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Abstract 

The efficient use of electrical energy is crucial for the industrial development 

worldwide and, in particular, for the emerging countries. Generation, transmission, 

and conversion of the electrical energy all require the use of soft magnetic cores. 

At the same time, a dramatic increase of the electrical and electronic applications 

in the car industry, including hybrid and electric cars, and trends towards the more 

electric aircraft are posing compelling requirements on the efficiency of the cores, 

be their used as nuclei in a variety of devices and drives or as stators/rotors in 

electrical motors. In order to design highly efficient components and machines, it 

is necessary to achieve excellent understanding of the magnetization process and 

good predicting capabilities of the behavior of the soft magnetic materials, with 

special attention devoted to the phenomenology of energy losses, under 

conventional and non-conventional excitation conditions. 

This thesis lays a foundation for the analysis of the National Nature Science 

Foundation of China project. It provides systematic, physically based, and 

quantitative investigation of the broadband loss behavior of different types of soft 

magnetic materials, ranging from the conventional non-oriented Fe-Si sheets to 

nanocrystalline ribbons. 

A few main innovative points can be highlighted: 

 



 

 (1) The definite demonstration, against recent criticism in the literature, of 

the general validity of the loss decomposition method formulated with the 

Statistical Theory of Losses (STL). It regards, in particular, the role of the 

classical loss and its formulation below the limit for the skin effect. Wide-band 

experimental characterizations on a variety of non-oriented silicon steel sheets and 

low carbon steels are fully and consistently described by the STL. This occurs, in 

particular, for high-induction values and near-squared hysteresis loops, a 

predictable condition for adopting the alternative Saturation Wave Model (SWM), 

which fails instead to account for the experiments 

(2) The analysis of magnetic losses under nonconventional magnetic 

induction waveform, such as PWM, symmetric and asymmetric triangular wave, 

is performed over a broad range of frequencies. It is shown that, by generalized 

application of the Statistical Theory of Losses and the related concept of loss 

separation, an accurate prediction can be made starting from standard results 

obtained with sinusoidal induction. This is a quite unique and general feature of 

our approach, because the prediction is done by simple analytical physically based 

methods, in contrast with the persisting use of empirical numerical methods in the 

present-day literature. Non-oriented Fe-Si and Fe-Co sheets, nanocrystalline 

Finemet–type ribbons, and Mn-Zn ferrites have been investigated up to f = 1 MHz 

and duty cycles ranging between 0.5 and 0.1. The intrinsic shortcomings of the 

popular approach to loss calculation of inductive components in power electronics, 

based on the empirical Steinmetz equation and its numerous modified versions, 

are overcome by the here described method.   

(3) The effect of cutting on magnetization curve and losses in non-oriented 

Fe-Si sheets is measured from DC and 400 Hz and assessed by a simple model, 

considering the evolution of the magnetic properties on the width of the cut strips 

(30 mm – 5 mm).  The analysis shows that the normal magnetization curve and 

the quasi-static magnetic losses evolve with the width of the strip according to a 



 

hyperbolic law. This permits one to predict, using minimum pre-emptive 

information, the evolution of curve and hysteresis loss from indefinitely wide to 

narrow fully degraded strip.  

 

KEYWORDS: Soft Magnetic Material; Broadband Frequency analysis; 

Magnetic Characterization; Loss Separation; The Statistical Theory of Losses 

.  

 

 



  
 
 

Contents 

1. Introduction ...................................................................................................... 12 

1.1 Aim, Scope and the significance of the thesis .................................. 14 

1.2 Overview of the thesis ...................................................................... 15 

1.3 List of publications ........................................................................... 15 

2. Ferromagnetic materials and magnetization process ....................................... 18 

2.1 Soft and hard magnets, Ferromagnetism, ferrimagnetism, magnetic 

energy terms ....................................................................................................... 18 

2.1.1 Magnetic materials categories......................................................... 18 

2.1.2 Ferromagnetism .............................................................................. 19 

2.1.3 Ferrimagnetism ............................................................................... 20 

2.1.4 Magnetic energy terms .................................................................... 21 

2.2 The domain structures ....................................................................... 25 

2.3 The magnetization process in soft magnetic materials: static and 

dynamic response ............................................................................................... 27 

3. The magnetic losses ......................................................................................... 29 

3.1 Introduction to the phenomenology of magnetic losses ................... 29 

3.2 Losses in metallic and in insulating magnetic material .................... 30 



 

3.3 Magnetic loss modelling ................................................................... 30 

3.3.1 Steinmetz formula ...................................................................... 31 

3.3.2 The Jiles-Atherton Modeling ..................................................... 33 

3.3.3 Preisach Model .......................................................................... 34 

3.4 The Statistical Loss Model and the physically based concept of loss 

separation 35 

3.5 Quantitative Formulas and Procedures of Loss Separation using the 

Statistical Theory of Loss................................................................................... 43 

4. Experimental Techniques and measurements setups ....................................... 49 

4.1 Measurement Apparatus ........................................................................ 49 

4.2 Control of the induction waveform by digital feedback ........................ 56 

5. Loss decomposition in non-oriented steel sheets: Role of the classical losses 57 

5.1 Introduction and Motivation ............................................................. 57 

5.2 The uniform induction model versus the saturation wave model ..... 58 

5.2.1 Arbitrary frequency, linear magnetization law, and low induction 

case ................................................................................................................. 59 

5.2.2 Arbitrary frequency, step-like magnetization, and high induction 

case (Saturation Wave Model (SWM)) .......................................................... 62 

5.3 Experiments ...................................................................................... 65 

5.4 Results and discussion ...................................................................... 66 

5.4.1 Energy Loss at Low Inductions ...................................................... 66 

5.4.2 Energy Loss at High Inductions ...................................................... 72 

5.5 Conclusion ........................................................................................ 81 



 

6. Measurement and Prediction of the Magnetic Losses with Minor Loops: two-

level PWM Regime and the Limits of the Analytical Approach ..................... 82 

6.1 Background and Introduction ................................................................ 82 

6.2 modelling the minor loops at high frequency and Experiments ............ 84 

6.2.1 Linear permeability and Complex Permeability ............................. 86 

6.2.2 Experimental results ....................................................................... 88 

6.3 PWM Regime Application and Experimental Results .......................... 90 

6.4 Conclusion and Discussion .................................................................... 94 

7. Energy loss in soft magnetic material under symmetric and asymmetric 

induction waveform ......................................................................................... 95 

7.1 Introduction ........................................................................................... 95 

7.2 Experimental Method and Procedure .................................................. 100 

7.3 From sinusoidal to triangular symmetric and asymmetric induction: 

energy loss prediction ...................................................................................... 104 

7.3.1 Losses in non-oriented Fe-Si and Fe-Co sheets ............................ 105 

7.3.2 Nanocrystalline ribbon and Mn-Zn ferrite Broadband analysis ... 117 

7.4 Conclusion ........................................................................................... 124 

8. Effect of punching and water-jet cutting methods on magnetization curve and 

energy losses of non-oriented magnetic steel sheets ..................................... 127 

8.1 Introduction ......................................................................................... 127 

8.2 Experimental Results and Discussion.................................................. 128 

8.2.1 Sample preparation and loss measurements. ................................ 128 

8.2.2 Quasi-static magnetic behavior ..................................................... 131 

8.2.3 Excess losses ................................................................................. 135 



 

8.3 Conclusions ......................................................................................... 138 

9. Conclusions and Future Research .................................................................. 139 

9.1 Summary .............................................................................................. 139 

9.2 The main innovations .......................................................................... 140 

9.3 Future research .................................................................................... 141 

10. References ...................................................................................................... 142 



  
 

List of Figures 
 

Figure 2.1: Directional diagrams of magnetic dipole moments in paramagnetic, 

ferromagnetic and ferromagnetic materials ........................................................... 19 

Figure 2.2:  180° domain wall and 90° domain wall....................................... 26 

Figure 2.3: Diagram of magnetic moment rotation of Bloch domain wall and 

Neel domain wall ................................................................................................... 27 

Figure 3.1: Hysteresis loop of  hypothetical elementary Preisach particle ..... 35 

Figure 3.2: Sample Simplified Diagram with Thickness d and Principle 

Simplified Diagram of Barkhausen jump .............................................................. 39 

Figure 3.3: Loss Separation Result of 0.194 mm Thickness Non-oriented 

Silicon Steel Sheet under 0.05T Excitation ........................................................... 48 

Figure 4.1: The wattmeter-hysteresisgraph developed by Fiorillo and co-

workers  at INRIM. The system implements digital control of the waveform of 

dB/dt by an iterative process. Samples such as Epstein strips, SST and ring 

samples can be employed in the system. ............................................................... 51 

Figure 4.2: 200 turns Epstein frame ................................................................ 52 

Figure 4.3: The Strip Single Tester ................................................................. 52 

Figure 4.4: The Ring Sample .......................................................................... 53 

Figure 4.5: The Ring Sample measurement system ........................................ 54 

Figure 4.6: High frequency measurement system ........................................... 54 

Figure 5.1: the sample geometry parameters. Here d is the thickness along y 

axis. The sample is assumed infinitely long and the external field is applied along 

z axis. ..................................................................................................................... 59 



2  

 
Figure 5.2: B-H loop of a non-oriented Fe-(3.2wt%)Si steel sheet, thickness 

d=0.194mm, at peak induction 0.1 T and f=5Hz. .................................................. 60 

Figure 5.3: Low-carbon steel sheets at 1.6T, J-H loop, and the dash black line 

is the step-like approximation of the blue one. ...................................................... 62 

Figure 5.4: Propagating fronts in magnetic materials observing step-like 

magnetization law. ................................................................................................. 63 

Figure 5.5: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. Decomposition of the 

measured energy loss (symbols) at Bp = 0.1 T up to 10 kHz. The classical loss 

Wclass( f ) is calculated with Eq. 5.1, skin effect emerge around 4kHz. ................. 68 

Figure 5.6: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. The number n, active 

magnetic objects (MOs), follows a linear dependence n = n0 + Hexc/V0 on Hexc = 

Wexc/4Jp. ................................................................................................................. 68 

Figure 5.7: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. The quantity 

Wdiff=Wtotal−Wclass is plotted versus the square root of frequency up to f = 10 kHz 

(open circles). The same quantity Wdiff is then computed theoretically as Wdiff = 

Whyst +Wexc, where Wexc is obtained through Eq. 5.20 (red lines). ......................... 69 

Figure 5.8: Non-Oriented Fe-(3.2 wt%Si) 0.194 mm thick sheets. 

Decomposition of the measured energy loss (symbols) at Bp = 0.1 T up to 10 kHz. 

The classical loss Wclass( f ) is calculated with Eq. 5.11, taking into account the 

skin effect. .............................................................................................................. 70 

Figure 5.9: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. The quantity 

Wdiff=Wtotal−Wclass is plotted versus the square root of frequency up to f = 10 kHz 

(open circles). The same quantity Wdiff is then computed theoretically as Wdiff = 

Whyst +Wexc, where Wexc is obtained through Eq. 5.20 (red lines). ......................... 71 

Figure 5.10: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. The number n, active 

magnetic objects (MOs), follows a linear dependence n = n0 + Hexc/V0 on Hexc = 

Wexc/4Jp. ................................................................................................................. 72 



Aim, Scope and the significance of the thesis 3 

 
Figure 5.11: DC hysteresis loops at Jp = 1.6 T in the three investigated low-

carbon steels (see Table 5.1). ................................................................................. 74 

Figure 5.12: The quantity Wdiff = Wtotal−Wclass versus f  in 0.506 mm thick 

LCS-1 at Bp=1.6T (red line) and its theoretical counterpart Wdiff =Whyst+Wexc (blue 

line) where Eq.5.20 has been applied to compute the excess loss. Deviation 

between the experimental and the theoretical results is observed at frequencies 

beyond 80 Hz due to the appearance of skin effect. .............................................. 75 

Figure 5.13: The quantity Wdiff = Wtotal−Wclass versus f  in 0.507 mm thick 

LCS-2 at Bp=1.6T (red line) and its theoretical counterpart Wdiff =Whyst+Wexc (blue 

line) where Eq.5.20 has been applied to compute the excess loss. Deviation 

between the experimental and the theoretical results is observed at frequencies 

beyond 500 Hz due to the appearance of skin effect. ............................................ 76 

Figure 5.14: The quantity Wdiff = Wtotal−Wclass versus f  in 0.636 mm thick 

LCS-3 at Bp=1.6T (red line) and its theoretical counterpart Wdiff =Whyst+Wexc (blue 

line) where Eq.5.20 has been applied to compute the excess loss. Deviation 

between the experimental and the theoretical results is observed at frequencies 

beyond 300 Hz due to the appearance of skin effect. ............................................ 77 

Figure 5.15: Decomposition of the energy loss measured at Bp = 1.6 T in the 

LCS-1 sample upon the skin-effect free frequency region. The classical loss Wclass 

is obtained by (5.1). The dash-dot line is obtained by calculating the classical loss 
(SWM)

classW  with (5.18), where Bmax = Bp. (SWM)
classW overestimates the measured loss. .. 78 

Figure 5.16: Decomposition of the energy loss measured at Bp = 1.6 T in the 

LCS-2 sample upon the skin-effect free frequency region. The classical loss Wclass 

is obtained by (5.1). The dash-dot line is obtained by calculating the classical loss 
(SWM)

classW  with (5.18), where Bmax = Bp. (SWM)
classW overestimates the measured loss. .. 79 



4  

 
Figure 5.17: Decomposition of the energy loss measured at Bp = 1.6 T in the 

LCS-3 sample upon the skin-effect free frequency region. The classical loss Wclass 

is obtained by (5.1). The dash-dot line is obtained by calculating the classical loss 
(SWM)

classW with (5.18), where Bmax = Bp. (SWM)
classW overestimates the measured loss. ... 80 

Figure 6.1: Example of PWM waveform and associated hysteresis cycles for a 

frequency modulation index of m f = 5. The major loop is in black. The nested 

minor loops are in red and blue. ............................................................................ 84 

Figure 6.2: Experimental quasi-static loop at peak induction Bp = 0.2 T in the 

NO Fe-Si sheet. It is approximated either by a straight B(H) line (µ = 8.13∙10-

3 Tm/A) or by the elliptic loop of identical area associated with the complex 

permeability  µ = µ–jµ, with  µ= 7.35∙10-3 Tm/A and µ = 3.47∙10-3 Tm/A ..... 86 

Figure 6.3: Energy loss W(f) measured in a 0.194 mm thick Fe-(3.2 wt%)Si 

sheet up to 10 kHz at peak polarization Jp = 200 mT. The Jp value is low enough 

to fulfill the Rayleigh law and the skin effect fully develops above a few kHz. The 

measured W(f) is predicted best by adopting the quasi-static complex permeability 

at Jp = 200 mT as the material constitutive equation. To note the increase of the 

hysteresis loss component Whyst with the frequency. ............................................. 89 

Figure 6.4: Acquisition method of the static complex permeability µ(Bm, Bb) 

on the anhysteretic curve as a function of peak and bias induction pair (Bm, Bb). 

The bias value is generated by a third winding supplied by a stable constant 

current. ................................................................................................................... 93 

Figure 6.5: Non-oriented Fe-Si sheet of thickness 0.194 mm. Comparison of 

the energy losses measured at the peak polarization Jp = 1.3 T with PWM 

waveform as a function of the modulation index mf at the fundamental frequency 

f = 1 kHz with the prediction of the model. ........................................................... 93 

Figure 7.1: Hysteresisgraph-wattmeter used to measure the broadband 

magnetic losses of soft magnetic materials. The induction waveform is controlled 



Aim, Scope and the significance of the thesis 5 

 
regulating the supply current (measured via the voltage drop on the calibrated 

shunt RH) by digital feedback. This setup has been used to characterize both the 

Fe-Si and Fe-Co Epstein strips up to 5 kHz and the Mn-Zn and nanocrystalline 

ring samples up to 4 MHz. The ring samples are eventually characterized up to 

100 MHz by a transmission line method using a Vector Network Analyzer (VNA).

 ............................................................................................................................. 100 

Figure 7.2: Example of investigated voltage waveforms for given peak 

induction Bp: sinusoidal, symmetric square, and asymmetric square with duty cyle 

a = 0.1. ................................................................................................................. 103 

Figure 7.3: Broadband behavior of energy losses at Bp = 100 mT in the 

tapewound transverse anisotropy (K⊥ = 25 J/m3) Finemet-type nanocrystalline 

ribbon and in the N87 Mn-Zn ferrite. d  thickness, <s>  average grain size. 

Symbols: fluxmetric measurements. Solid lines: measurements by transmission 

line and VNA and use of (2). The inset shows the corresponding frequency 

dependence of the real relative permeability ’r. ................................................. 104 

Figure 7.4: a) Energy loss in the 0.201 mm thick Fe-Co sheets up to 800 Hz 

(i.e., up to incipient skin effect) measured under sinusoidal (WSIN) and triangular 

symmetric (WTRI05) induction (symbols) of peak value Bp = 1.0 T. The loss 

components Wcl,TRI05 and Wexc,TRI05 are obtained from the corresponding quantities 

Wcl,SIN and Wexc,SIN according to (7.3) and (7.4) and WTRI05(f) is consequently 

calculated by (7.7) (dashed line). The loss figure WTRI01 (symbols) measured with 

asymmetric triangular B(t) and duty cycle a = 0.1, and its prediction (dash-dot line) 

are also shown up to 200 Hz. b) Excess loss components Wexc,SIN and Wexc,TRI05 

versus f1/2. They both follow the f 1/2 law below about 600 Hz. The experimental 

Wexc,TRI05 (full symbols) is compared with the predicted quantity (8/8.76)Wexc,SIN 

(open symbols). The dashed lines are a guide to the eye. .................................... 108 

Figure 7.5: Broadband loss analysis in the 0.201 mm thick Fe-Co sheets of 

Figure 7.4, carried out under sinusoidal induction of peak value Bp = 1.0 T up to 5 



6  

 
kHz. Whyst(f) and Wcl,SIN(f) are calculated using (7.12) and (7.13), based on the 

assumption of a constitutive B(H) equation defined in terms of complex 

permeability. To note the increase of Whyst and the non-linear behavior of Wcl,SIN 

versus frequency. The dashed lines show the frequency dependence of Whyst(f) and 

Wcl,SIN(f) predicted disregarding the skin effect. This actually starts to affect the 

magnetization process beyond about 800 Hz. ..................................................... 112 

Figure 7.6: As in Figure 7.5 for the 0.194 mm thick non-oriented Fe-Si sheets. 

The components Whyst(f) and Wcl,SIN(f) are calculated using (7.12) and (7.13). The 

effect of the frequency dependent non-uniform induction profile becomes 

apparent beyond about 1500 Hz, where the conventional prediction disregarding 

the skin effect (dashed lines) departs from the abovementioned calculation. ..... 113 

Figure 7.7: The energy loss WSIN(f) measured in the Fe-Co sheets under 

sinusoidal B((t) for Bp = 1.0 T is compared, up to 5 kHz, with the same quantity, 

measured at the same Bp value under symmetric triangular (WTRI05(f)), and 

asymmetric triangular B((t), with duty cycles 0.2T (WTRI02(f) and 0.1T (WTRI01(f) 

(symbols). The dashed fitting lines (WTRI,predicted) are obtained starting from the 

decomposition of WSIN(f), made according to (7.12)  and (7.13), and applying (7.7) 

twice, for the frequencies f1 = 1/(2aT) and f2 = 1/(2(1-a)T), respectively. The inset 

compares the experimental quasi-static hysteresis loop at Bp = 1.0 T with the 

equivalent elliptical loop (same Bp value and area), analytically defined through 

the real ' and imaginary '' permeability components. ...................................... 114 

Figure 7.8: The energy loss WSIN(f) measured in the Fe-Si sheets under 

sinusoidal B((t) for Bp = 1.0 T is compared, up to 5 kHz, with the same quantity, 

measured at the same Bp value under symmetric triangular (WTRI05(f)), and 

asymmetric triangular B((t), with duty cycles 0.2T (WTRI02(f) and 0.1T (WTRI01(f) 

(symbols). The dashed fitting lines (WTRI,predicted) are obtained starting from the 

decomposition of WSIN(f), made according to (7.12)  and (7.13), and applying (7.7) 

twice, for the frequencies f1 = 1/(2aT) and f2 = 1/(2(1-a)T), respectively. The inset 



Aim, Scope and the significance of the thesis 7 

 
compares the experimental quasi-static hysteresis loop at Bp = 1.0 T with the 

equivalent elliptical loop (same Bp value and area), analytically defined through 

the real ' and imaginary '' permeability components. ...................................... 115 

Figure 7.9: DC hysteresis loops of the investigated Mn-Zn ferrites and 

transverse anisotropy nanocrystalline Finemet ribbons at Bp = 0.1 T. We describe 

their evolution with frequency in terms of complex permeability, so that the 

energy loss W(Bp, f) can, in particular, be expressed by (7.2). ............................ 116 

Figure 7.10: Loss decomposition up to 100MHz in the N87 Mn-Zn ferrite and 

in the transverse anisotropy (K⊥ = 25 J/m3) nanocrystalline Finemet ribbon 

(sinusoidal B(t)). The experimental W(f) is shown by symbols (fluxmetric) and 

solid lines (VNA). The rotational loss component Wrot, which plays the role of 

classical loss Wcl, is theoretically predicted and separated from the domain wall 

contribution Wdw = Whyst + Wexc. Wdw is bound to decrease and eventually 

disappear at high frequencies, following the relaxation of the domain wall 

displacements. The excess loss Wexc = Wdw – Whyst., shown in the inset, displays a 

power law dependence on frequency Wexc  f n, with n > 0.5. ............................ 118 

Figure 7.11: The broadband (DC - 1 MHz) energy loss behavior at Bp = 100 

mT under triangular symmetric (WTRI05) and asymmetric (WTRI01, duty cycle a = 

0.1) induction, measured in the nanocrystalline Finemet transverse anisotropy 

tapewound ring sample (symbols), is compared with the same quantity WSIN(f) 

(line and symbols) measured with sinusoidal induction. By making the loss 

decomposition of WSIN(f), illustrated in Figure 7.10, and applying (7.7), WTRI05(f)  

and WTRI01(f) are predicted (dashed lines). .......................................................... 122 

Figure 7.12:  Same as Fig. 11 for the Mn-Zn ferrite. Besides the loss under 

triangular symmetric induction WTRI05(f), the same quantity for asymmetric 

induction, with duty cycles a = 0.2 (WTRI02(f)) and a = 0.1 (WTRI01(f)) is measured 

(symbols) and predicted (dashed lines), starting from the loss components of 

WSIN(f) and applying (7). ...................................................................................... 123 



8  

 
Figure 8.1:Non-oriented M400-50A NO Fe-Si sheets. Energy loss versus 

frequency measured at peak polarization Jp = 1.5 T (a) and Jp = 1.0 T (b) on strip 

samples cut by guillotine punching. The strip widths w range between 5 mm and 

30 mm. The inset provides a magnified view of the low frequency results. Loss 

decomposition is sketched for the 30 mm wide strip. .......................................... 130 

Figure 8.2: a) DC normal magnetization curves measured versus width w of 

the punched strips in the NO Fe-Si M400-65A sheets (transverse direction, 

symbols). b) The polarization values (symbols) measured under defined field 

strengths H decrease with decreasing strip width w according to the hyperbolic 

law (8.2) (solid lines). This law is obtained assuming the simplified scheme 

shown in the inset, where the damaged region of the strip is confined to the two 

lateral bands of width Lc, where Jpc < Jp0. The dashed lines in a) are the 

magnetization curves predicted by Eq. (8.2) for undamaged (w >> 30 mm) and 

fully damaged (w = 4.2 mm) cut strips. ............................................................... 133 

Figure 8.3: Normal magnetization curves obtained in the NO Fe-Si M400-

50A sheets subjected to abrasive water-jet cutting (rolling direction). a) Measured 

DC normal magnetization curves and their limiting behaviors (w >> 30 mm and w 

= 2Lc = 3.2 mm, dashed lines). b) Symbols: polarization values measured under 

given field strengths. Solid lines: evolution of the polarization with the strip width 

w under defined field H predicted by Eq. (8.2). .................................................. 134 

Figure 8.4: Measured hysteresis loss Wh,norm  = Wh / Wh0 (symbols), 

normalized to the loss value predicted for the pristine sheet, versus strip width. 

Both punched and water-jet cut sheets are considered at Jp = 1.5 T and 1.0 T. The 

continuous lines are predicted by Eq. (3). The vertical dashed lines identify the 

upper loss limit, which corresponds to the fully damaged strip of width 2Lc. .... 137 

  

 



Aim, Scope and the significance of the thesis 9 

 

List of Tables 
 

Table 5.1: The list of non-oriented and low carbon steel sheets ..................... 65 

Table 6.1: Parameters of the PWM induction regime ..................................... 94 

Table 7.1:  Physical Parameters of the Investigated Material ......................... 99 

Table 8.1: Physical parameters of the investigated non-oriented steel sheets

 ............................................................................................................................. 131 

 

 

 

 

 

 

 

 

 

 

 

 

 



10  

 

Nomenclature 
 

Acronyms / Abbreviations 

B Magnetic Flux Density 

H Magnetic Field 

INRIM Istituto nazionale di ricerca metrologica 

LCS   Low Carbon Steel 

e.m.f Electromotive force 

MO Magnetic Objects 

MSE Modified Steinmetz Equation 

SE Steinmetz Equation 

SST Single Sheet Tester 

STL Statistical Theory of Loss 

SWM  Saturation Wave Magnetization 

SMC Soft Magnetic Composite 

VNA Vector Network Analyzer 



Aim, Scope and the significance of the thesis 11 

 
PWM Pulse Width Modulation 



12 Introduction 

 

Chapter 1 

Introduction 

The global climate change is proofed by global temperature rise, warming 

oceans, shrinking ice sheets, declining arctic sea ice and so on. But the most 

compelling evidence is the CO2 level. As the data provided by NASA showed in 

Figure 1.1, the current warming trend is significance because most of it is 

extremely likely (greater than 95% probability) to be the result of human activity 

since the mid-20th century and proceeding at a rate that is unprecedented over 

decades to millennia [1]. And according to the International Energy Outlook 2016 

[2], CO2 emissions related to energy tends to increase from 32.3 billion Mt in 

2012 to 35.6 billion Mt and is expected to reach 43.2 billion Mt in 2040. 

According to 2011 International Energy Agency [3] reports about 70% of 

electricity is produced from fossil fuels and almost 46% electrical energy is 

supplied to electrical motors driven systems.  
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Figure 1.1: This graph, based on the comparison of atmospheric samples contained in ice 

cores and more recent direct measurements, provides evidence that atmospheric CO2 has 

increased since the Industrial Revolution.  

In order to control the CO2 emission and slow down the global warming, the 

key is to increase the efficiency of the electrical machines and motors. As we all 

know, the core of these electrical machines is magnetic material. For instances, 

regarding traditional magnetic materials, low-carbon laminations steels, non-

oriented and grain-oriented Fe-Si laminations steels and Fe-Co laminations are 

still maintaining as the major material for the yoke of motor, generator and 

transformer. Even though the main trends still focus on the reduction of magnetic 

loss, the condition and regime change to higher base frequencies due to electric 

machines high speed and increased time harmonics from the drive systems. As for 

nonconventional magnetic material, amorphous, nanocrystalline, Soft Magnetic 

Composites (SMC) and ferrites, these materials are finding their way into the core 

of specialized electrical machines. Applications of these materials not only 

decrease the magnetic loss, but also reduce the machines footprint. However, the 

characterization of these materials is still not fully understandable. The 

quantitative prediction of the magnetic loss is still under debate. To improve the 
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efficiency of electric machines, investigating the energy loss behavior of these 

magnetic materials applied in the electrical machines and motors is essential.  

    For centuries, the process of physical modelling and magnetic characterization 

of materials has been addressed. To summarize, there are two main approaches: 

empirical models and physical models. To build a solid theory, one-dimensional 

measurement standard has been established. And two-dimensional and three-

dimensional measurement are still developing. However, from the developing 

point of view, as the optimization of the magnetic material, inventions of new 

electrical machine device and the increasing domain of applications, both 

experiments and theory are challenged in these new conditions. 

1.1 Aim, Scope and the significance of the thesis 

The aim of this thesis is to fully investigate energy loss behavior of both 

conventional magnetic material and nonconventional magnetic material responding 

broadband frequency through suitable experiments and developing their analytical 

theory through loss separation theory and statistical theory of loss. I have investigated 

broadband frequency energy loss behavior of conventional magnetic material, Fe-Si 

and Fe-Co, and nonconventional magnetic material, nanocrystalline and Ferrite using 

Epstein frame, Single Sheet Testers, ring sample and Vector Network Analyzer 

(VNA)setup. To meet the needs of electrical machines application, different 

conditions are considered such as low and high induction level, different induction 

waveform and so on. Limits to the research are noted from the start. The experiments 

are conducted using one-dimensional measurement systems. And the main magnetic 

loss model has been exploited to develop according to the Statistical Theory of Loss 

(STL). One intended outcome of the study, on a theoretical level, is to develop the 

analytical theory to predict the energy loss of magnetic materials responding a 

broadband frequency, from DC to radiofrequency range. On a practical level, a 

second intended outcome of the study is to bridge the gap between theory and 

practice by providing the data under quasi-practical conditions. 
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1.2 Overview of the thesis 

This thesis consists of nine further chapters within two main parts. In PART 

I(Chap.2 &3&4), I situate the current study in related literature and establish the 

research methodology. In Chap.2, it includes a critical review of the ferromagnetism, 

ferrimagnetism, soft and hard magnets and magnetic energy terms, domain structures 

and magnetization process. Deep understanding of the magnetic properties of 

magnetic material builds a foundation of the magnetic loss model. Chap.3 introduces 

the core magnetic loss model ----loss separation theory and statistical theory of loss 

and related constitute law. In Chapter 4, I give a brief introduction of the 

experimental technique and measurements setups regarding the experiments in this 

thesis. Secondly, PART II(Chap.5&6&7&8) is the main part of my thesis. In this part, 

I present all the experimental results, data analysis, discussions and conclusions. In 

Chapter 5, the discussion focuses on different classical loss models, their application 

conditions and the experiments validation regarding non-oriented steel sheets. 

Chapter 6 presents measurements and prediction of the magnetic loss with minor loop 

under PWM regime and explores the limits of the analytical approach. Chapter 7 

contains energy loss in soft magnetic material under symmetric and asymmetric 

induction waveform. Chapter 8 discusses the effect of punching and water-jet cutting 

methods on magnetization curve and energy losses of non-oriented magnetic steel 

sheets. Finally, in Chapter 9, I present all the conclusions and reflective evaluation of 

the study and suggest further research agendas. 
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Chapter 2 

Ferromagnetic materials and 

magnetization process 

2.1 Soft and hard magnets, Ferromagnetism, 

ferrimagnetism, magnetic energy terms  

2.1.1 Magnetic materials categories 

Magnetic materials are widely used in life, industry and military. Generally, 

according to the magnitude and direction of permeability of magnets, the 

magnetic properties of materials are divided into five categories: diamagnetic, 

paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic material [4]. 

Figure 1.1 shows the diagrams of magnetic dipole moments in paramagnetic, 

ferromagnetic and ferrimagnetic magnets. Most of the magnetic materials used in 

electromagnetic and power electronic devices in real life are ferromagnetic and 

ferromagnetic materials. These materials can be divided into four categories 

according to their magnetic properties or application fields: soft magnetic 
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materials, hard magnetic materials, signal magnetic materials and special 

magnetic materials [4-6].  

 

Figure 2.2: Directional diagrams of magnetic dipole moments in paramagnetic, 

ferromagnetic and ferromagnetic materials 

2.1.2 Ferromagnetism 

Ferromagnetism is a form of magnetic ordering in which the intrinsic 

magnetic dipole moment, or spin, of electrons on each crystal-lattice site all align 

in the same direction. It is the phenomenon that gives materials such as iron, 

cobalt and nickel their magnetic properties. 

Ferromagnetic materials possess a permanent magnetic moment in the 

absence of an external field and exhibit very large, permanent magnetizations. 

The spontaneous magnetization is not apparent in materials which have not been 

exposed to an external field, because of domains in the material. Each domain has 

its own direction of magnetization. When a field is applied, the domains in which 

the magnetization is more nearly parallel to the field grow at the expense of the 

domains with less favorable alignments. Since the spontaneous magnetization 

may be several orders of magnitude greater than the applied field, ferromagnetic 

materials have very high permeabilities, e.g., as high as 106.When the applied 

field is removed, a part of the induced domain alignment may be preserved so that 

the body acts as a permanent magnet. Spontaneous magnetization is due to the 

alignment of uncompensated electron spins by the strong quantum-mechanical 

“exchange” force [7]. In antiferromagnetic materials, the uncompensated 

paramagnetic ferromagnetic ferrimagnetic 
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electron spins associated with neighboring cations orient themselves, below a 

temperature known as the Néel temperature, in such a way that their 

magnetizations neutralize one another so that the overall magnetization is zero. 

Metallic manganese, chromium, and manganese oxide  (MnO) are some of the 

materials exhibiting this behavior. 

The susceptibilities of these materials are low (~10−3) except when the 

temperature is close to the Néel point when the antiferromagnetic coupling breaks 

down and the materials become paramagnetic [8] 

2.1.3 Ferrimagnetism 

Ferrimagnetism, type of permanent magnetism that occurs in solids in which 

the magnetic fields associated with individual atoms spontaneously align 

themselves, some parallel, or in the same direction (as in ferromagnetism), and 

others generally antiparallel, or paired off in opposite directions (as in 

antiferromagnetism). The magnetic behaviour of single crystals of ferrimagnetic 

materials may be attributed to the parallel alignment; the diluting effect of those 

atoms in the antiparallel arrangement keeps the magnetic strength of these 

materials generally less than that of purely ferromagnetic solids such as metallic 

iron. Ferrimagnetism occurs chiefly in magnetic oxides known as ferrites. The 

natural magnetism exhibited by lodestones, recorded as early as the 6th century 

BC, is that of a ferrite, the mineral magnetite, a compound containing negative 

oxygen ions O2- and positive iron ions in two states, iron (II) ions, Fe2+, and iron 

(III) ions, Fe3+. The oxygen ions are not magnetic, but both iron ions are. In 

magnetite crystals, chemically formulated as Fe3O4, for every four oxygen ions, 

there are two iron (III) ions and one iron(II) ion. The iron (III) ions are paired off 

in opposite directions, producing no external magnetic field, but the iron(II) ions 

are all aligned in the same direction, accounting for the external magnetism.[9] 

In this thesis, the research is focus on soft magnetic materials.  

https://www.sciencedirect.com/topics/materials-science/manganese
https://www.sciencedirect.com/topics/materials-science/chromium
https://www.sciencedirect.com/topics/materials-science/oxide
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2.1.4 Magnetic energy terms 

The hysteresis of magnetic materials [10-11] is a macroscopic phenomenon 

arising from the evolution of micro-magnetic structure. To understand the 

magnetization process of magnetic materials, we need to understand this process 

from the perspective of energy. As an energy system, magnetic materials will 

obey the general principle of minimizing free energy under the excitation of an 

external magnetic field related to time. The main energy source of magnetic 

materials here is the domain structure, so the magnetic energy term is introduced 

in this section, and the domain structure will be discussed briefly in the next 

section. 

For magnetic materials, Helmholtz free energy F can be assumed as a 

complex function of magnetization M. Magnetization M (r) is used to express the 

magnetization at any point in the sample volume. Energy can be expressed as a 

multi-valley random structure, and when the applied magnetic field Ha changes, 

energy will begin to traverse. In principle, according to the minimum condition 

applied to Gibbs free energy G principle, the system will search for the magnetic 

structure that can make the sample energy reach local equilibrium, and the 

following formula can be obtained at equilibrium. 

                          
                          (2.1) 

Here V refers to the volume of the sample. The right integral term is the 

energy of the interaction between the magnetic field and the magnetization of the 

magnetic material, which is usually called Zeeman energy. If we generalize this 

energy, we can get Mi is a general expression of magnetic moment in magnetic 

material under the excitation of magnetic field intensity Ha. According to the 

energy relationship of the system:  

3
0 a ( )

V
G F H M r d r= − 
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                                              (2.2) 

Here U represents the sum of internal energy exchanges, T stands for 

temperature, S is entropy. The introduction of micro-magnetism is to find the 

magnetization M (r) at any position in the sample when the energy of G is the 

smallest when the sample is regarded as a homogeneous medium and the 

magnetization intensity is equal everywhere. In fact, under this condition, there 

are more than one magnetization intensity M (r) satisfying the minimum condition 

of G in real materials, which is the unique property of magnetic hysteresis. 

Although the micromagnetic equation is very complex, it is possible to solve the 

micromagnetic equation under several ideal conditions and has some practical 

significance. However, in practice, to solve this problem, we usually use 

experience to assume a variety of micro-magnetic structures and calculate the 

energy associated with them, and then compare one by one to find the minimum 

energy. Experiments show that the magnetic sample with larger than a certain size 

is composed of domain structure, which can minimize the Gibbs energy G of the 

magnetic sample, and the magnetization intensity M (r) in the domain is uniform 

and has a definite direction. But the direction of magnetization in different 

domains is different. The transition between two adjacent domains is connected 

through a continuous interface, which is called domain wall. Domains and domain 

walls are the basis for describing the magnetization process of materials. The 

magnetic energy terms are given below. 

(1) Magnetostatic energy 

Because of the hysteresis, the ferromagnet remains magnetized after the 

external magnetic field disappears. This magnet with remanence has a certain 

energy, which is called magnetic static energy and is generally expressed as  

                                      (2.3) 

F U TS= −

ms 0
1
2 dV

U H MdV= − 
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Here Hd is the demagnetization field, the integral is the volume of the whole 

sample, and the coefficient of 1/2 indicates the interaction between the magnetic 

moments. Hd can be solved by Maxwell's equation when the shape of the magnet 

is special. 

(2) Exchange energy 

The spontaneous magnetization of ferromagnets originates from quantum 

exchange forces, which keep each magnetic moment in the same direction below 

Curie temperature. From a phenomenological point of view, this effect is 

generated by an internal magnetic field, namely the Weiss molecular field, which 

also becomes the exchange magnetic field Hex. Exchange interactions are often 

considered to occur at adjacent spin electrons. Based on the Heisenberg model, 

the exchange energy is expressed as follows: 

                                             (2.4) 

Among them, Si and Sj are electron spin magnetic moments of two adjacent 

ions. In ferromagnets, Jij is a positive number. So the minimum energy is when 

the spin magnetic moments of any two adjacent ions are parallel and in the same 

direction. If Si and Sj are not parallel, the product of the two decreases and the 

energy increases. For this energy increase, it can be expressed by Taylor 

expansion of Heisenberg model. For a cubic lattice structure, the exchange energy 

density is approximately expressed as follows: 

22 2 3
ex

s

1 ( )x y zV

Au M M M d r
V M

=   +  +                (2.5) 

A is the exchange stiffness constant, which is related to Jij' integral. Ms is 

saturation magnetization. 

(3) Anisotropic energy 

, ij i ji j
J S S= − H
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The macroscopic behavior of ferromagnetic materials is usually not isotropic, 

but anisotropic. To change the magnetic moments of internal atoms, which need 

to consume energy, this part of energy is anisotropic energy. Anisotropy can 

usually be divided into the following categories: lattice anisotropy, stress-induced 

anisotropy and shape or other anisotropy. 

The main mechanism of lattice anisotropy is the coupling of spin magnetic 

moment S, which interacts with electron orbital angular momentum L by 

exchanging magnetized carriers. The orbital angular momentum L of an electron 

cannot be arbitrarily oriented. It is bound to the lattice by the crystal field. 

Therefore, the response of material to external magnetic field depends not only on 

the interaction between electron spin magnetic moment and orbital angular 

momentum (L-S), but also on the interaction between orbital angular momentum 

and crystal field. This explains why some natural easy-to-magnetize axis 

directions are determined by the symmetry of crystal field. Based on symmetry, 

the spatial dependence expressions of anisotropic energy density can be derived 

for uniaxial or cubic lattice materials. 

In cubic crystals:
2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 1 2 1 2 3( )anu K K        = + + +            (2.6) 

Among them, α1，α2，α3 represent the direction cosine of magnetization and 

the edge of cubic lattice, and K1 and K2 represent the anisotropic coefficient. 

In hexahedral crystals: 2 4
1 2sin sinanu K K = +                                 (2.7) 

θ is the angle between the magnetization and the axis of easy magnetization, 

and K1 and K2 are the anisotropic coefficient. The lattice structures of different 

elements are different, and the corresponding easy magnetization axes are 

different. 
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Stress-induced anisotropy refers to the lattice elastic distortion caused by 

stress, which affects the effect of the crystal field on the orbit, thus causing the 

anisotropy of magnetic materials. The anisotropy of real materials is also closely 

related to the magnetostriction of materials. 

Shape anisotropy is related to the demagnetization field mentioned above. In 

addition to these anisotropies, in practice, magnetic anisotropy can also be 

introduced by promoting or freezing the arrangement of atomic structures in 

alloys, mainly including introduction methods: first, magnetic annealing; second, 

stress annealing; third, plastic deformation; fourth, magnetic radiation and so on. 

It is pointed out that the above energies are not independent of each other, but 

the magnetic energy terms minimize the Gibbs energy of the whole system, and 

then determine the magnitude and direction of the magnetization intensity of each 

point in the sample, which is the actual domain structure. 

2.2 The domain structures 

The shape, size, type and thickness of domain wall are called domain 

structure. It has been stated above that the formation of magnetic domains is to 

reduce the energy of materials, so the domain structure in material should 

minimize the sum of magnetic static energy, exchange energy and other energy. 

(1) Domain Wall 

If the domain walls are classified according to the angle of the domain 

magnetization vectors on both sides of the domain walls, the domain walls can be 

divided into 180-degree and 90-degree domain walls, as shown in Figure 2.2. 
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Figure 2.3:  180° domain wall and 90° domain wall 

The direction of the magnetic moment in the domain wall gradually changes. 

According to the mode of the magnetic moment transformation, the domain wall 

can be divided into Bloch domain wall [12] and Neel domain wall [13]. As shown 

in Figure 2.3, the characteristic of Bloch domain wall is that the magnetic moment 

rotation in the domain wall is always parallel to the plane of the domain wall. 

When the thickness of the ferromagnet is reduced to the same as that of the 

domain wall, the domain wall is Neel domain wall. The transformation of 

magnetic moment is always parallel to the surface of the sample. The domain wall 

in the nanocrystalline material mentioned in this thesis is an example.  
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Figure 2.4: Diagram of magnetic moment rotation of Bloch domain wall and Neel domain 

wall 

2.3 The magnetization process in soft magnetic 

materials: static and dynamic response 

The static and dynamic response correspond to rate-independent and rate -

independent hysteresis from micromagnetic point of view. Rate-independent 

hysteresis applies when Barkhausen jumps develop in times much shorter than the 

time scale fixed by the field rate of change. Under this approximation, a 

Barkhausen jump appears as an instantaneous event, of which we do not see the 

internal structure. Yet, a system always needs a certain time to react varying 

external actions. This is the case, for example, in metallic ferromagnets, where 

magnetizations changes are damped by the production of eddy currents. When the 

spontaneous evolution of the system through Barkhausen jumps and the forced 

evolution driven by the external field take place on comparable time scales, rate-

independent approximations are no longer applicable, and more general frames of 

description are needed. So practically, when soft magnetic material is magnetized 

Bloch  wall 

 

Neel  wall 
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by very slow changed of field, we call this static response. When material is 

magnetized by alternating field, the magnetic hysteresis occurs which it is 

dynamic response. One of the most important phenomena causing the magnetic 

hysteresis is interaction of magnetic domain structure with material’s crystalline 

structure [10]. Due to magnetic domain walls pinning on the grain boundaries, 

irreversible part of magnetization is observed, causing magnetic hysteresis [11]. 
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Chapter 3 

The magnetic losses 

3.1 Introduction to the phenomenology of magnetic 

losses  

Magnetism loss refers to the irreversible transformation of some energy into 

heat in the process of magnetization and demagnetization of magnetic materials. 

The energy loss is called magnetic loss. Magnetic hysteresis is equal with energy 

dissipation. Research on the magnetization process and predictive efforts 

regarding its dependence on the nature of the material and the type of external 

excitation are in many cases directed at assessing the phenomenology of magnetic 

losses. In particular, soft magnetic materials are ubiquitously found. The physics 

of magnetic hysteresis is central to the problem of core efficiency and methods for 

the prediction of the energy loss based on the previously discussed concepts of 

magnetism and magnetization processes exist. We shall discuss such methods in 

the following, with special emphasis devoted to the principle of loss separation 
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3.2 Losses in metallic and in insulating magnetic 

material  

At first Bertotti only applied statistical loss theory to eddy current loss 

mechanism, because this loss mechanism is the only important mechanism for 

metals in low and intermediate frequencies. The eddy current loss is dominant in 

general, but in fact other energy dissipation mechanisms exist at the same time, 

but Bertotti did not consider other dissipation mechanisms when he put forward 

his theory. With the development of the future, the statistical loss theory can be 

generalized, and can also be applied to insulating/semi-insulating ferrites after 

appropriate adjustment. It was first applied and developed from Dillon and Earl's 

experiments on manganese-zinc ferrites [14]. Here, the mechanism of electron 

spin wave attenuation energy dissipation is introduced. In fact, other loss 

mechanisms exist, such as friction mechanisms on domain walls (e.g., post-

diffusion and post-relaxation effects), magnetic coupling and sound generation, 

etc., but these mechanisms are usually important only for a few alloys and for 

specific temperature ranges. In metal alloys, eddy current loss mechanism is still 

dominant. In amorphous and ultramicro-crystalline tapes, only at very high 

frequencies can the energy dissipation mechanism of electron spin-wave 

attenuation become the main dissipation mechanism. By introducing the Landau-

Livschitz formula of domain dynamics as the constitutive equation describing 

magnetic materials, Bertotti's theory can also be used for loss separation and 

prediction [15]. The theory of loss separation and statistical loss will be elaborated 

in detail below. 

3.3 Magnetic loss modelling 

Magnetic loss modelling as magnetic cores can be divided into three main 

categories: first, empirical Steinmetz formula and its improved method [16-18]; 

second, numerical calculation method of hysteresis model based on physical 
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properties of materials [19-21]; third, analysis method based on physical model of 

loss separation and statistical loss theory [22]. In addition to these three main 

methods, there are also various methods of improvement and combination 

modelling. The first method uses experimental data to fit the loss coefficient in 

Steinmetz formula. It is widely used by engineers because of its concise 

expression. However, it cannot be applied to complex working conditions and 

wide frequency range because it is not a physical model of magnetic material loss. 

The hysteresis models in the second method include Globus [23], Preisach [19], 

Stoner-Wohlfarth [24], Jiles-Atheton (J-A) [25,26] and so on. Most of these 

models are based on material physical modelling, but numerical methods are 

usually used to solve the dynamic loss part, which requires a large amount of 

calculation and is mainly suitable for application in simulation software. Based on 

the mechanism of magnetic loss, the third method separates the loss by using the 

micro, meso and macro scale of space-time, and divides the magnetic loss into 

hysteresis loss, excess loss and classical loss (also known as eddy current loss). 

On this basis, Bertotti put forward the concept of magnetic objects (MO), deduced 

the method of calculating the excess loss, and then established a complete set of 

basic models for predicting the loss of magnetic materials, namely the Statistical 

Theory of Loss (STL) [22]. This method only needs less experimental data to 

establish a more universal calculation method, which has high accuracy and 

moderate computational complexity. Because this paper does not involve complex 

numerical calculation methods, the hysteresis model will not be analysed in detail, 

only the Steinmetz formula, which is also applicable to engineering applications, 

will be analysed and the statistical loss theory will be introduced in detail. 

3.3.1 Steinmetz formula  

In 1892, Engineer Steinmetz proposed the famous Steinmetz formula to 

calculate the total loss of magnetic materials [16]: 
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                                           (3.1) 

CSE、α 、β are the fitting constants, depending on the material. At very low 

frequencies, the total loss is only attributed to hysteresis loss, when β=1.6. At high 

frequencies, these three constants can be obtained by fitting experimental data. It 

should be noted that the standard equation is only applicable to sinusoidal wave. 

With the wide application of power electronic equipment, a lot of harmonics are 

introduced into motor and transformer equipment. To predict the loss caused by 

non-sinusoidal wave excitation, many modified Steinmetz formulas are proposed 

by researchers. One of the methods is to decompose the waveform of magnetic 

induction intensity by Fourier series and calculate the loss of each harmonic wave. 

However, this method is accurate only when the magnetic induction intensity is in 

unsaturated state. Subsequently, the standard Steinmetz equation is extended to 

predict losses under arbitrary magnetic induction waveforms [17,27]. The 

formulas are as follows: 

                                   (3.2) 

Here the equivalent frequency is: 

                        (3.3) 

Among them. When the peak value of sinusoidal magnetic induction intensity 

is Bp excitation, it can be deduced that: 

                 (3.4) 

It coincides with Formula (3.2). Later, a generalized modified Steinmetz 

formula was proposed (GSE) [28]. The loss is given as a function of the derivative 

of magnetic induction intensity and magnetic induction intensity. 
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                              (3.5) 

Although Steinmetz and its improved method are very simple, there are some 

limitations related to this method. Because it is not based on physical principle, 

the coefficient of Steinmetz is very dependent on frequency. When the frequency 

changes, the coefficient changes sharply. It is worth pointing out that the 

Steinmetz equation cannot realize the broadband prediction of material loss. 

3.3.2 The Jiles-Atherton Modeling  

The principles of Jiles-Atherton model is connected with the analysis of the 
total free energy of the magnetic material [29]. In the Jiles-Atherton model it is 
assumed that the energy term can be expressed in terms of the anhysteresic curve 
Man(Ha). The hypothesis is that the stored energy should coincide with the work 
that would be performed on the system in the absence of hysteresis. The other 
term δQ corresponds to the dissipated energy, is taken proportional to the change 
in magnetization dM, with a factor k. This factor is proportional to the number of 
pinning sites seen by a moving domain wall. Each pining event will give rise to a 
Barkausen jump, and when integrated over the entire specimen, it will produce a 
dissipation contribution proportional to the pinning field k. Using these 
assumptions Jiles and Atherton derived the following expression for the 
differential susceptibility along a saturation loop under increasing field 

( ) ( )an a a

a

M H M HdM
dH k

−
=                                        (3.6) 

This equation represents the simplest case, where internal coupling fields are 
absent. 

 

tot 0

1 ( )
T

SE
dBP C B t dt

T dt


 −

= 
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3.3.3 Preisach Model  

Quantitative model of magnetization process proposed by Ferenc Preisach in 

1935[30] is still one of the most popular and commonly used model of magnetic 

hysteresis loop. This model is based on the concept of hypothetical elementary 

Preisach particle (so called “hysteron”) with square shaped hysteresis loop and 

saturation magnetization m. The M-H hysteresis loop of such elementary Preisach 

particle is presented in the Figure 3.1. As it is presented in the Figure 3.1, the 

elementary Preisach particle is described by saturation magnetization m, 

switching magnetizing fields a and b and its coercive field Hc and interaction field 

Hu [48]. It should be highlighted, that hysteresis loop of elementary particle is not 

symmetric. This effect is caused by the influence of neighbouring domains. The 

macroscopic properties of magnetic material are described by the probability 

density function n(a, b), which for very large number of elementary Preisach 

particles tends to continuous density function lP(a, b). In his original works 

Ferenc Preisach proposed the method of determination of magnetic hysteresis 

loops on the base of graphical diagrams. Basing on these ideas, in 1955, Douglas 

Hugh Everett proposed the function [31] enabling numerical calculation for the 

Preisach model, known as Everett function. It should be stressed that 

modifications of Everett function are the key elements of development of Preisach 

model [32].  
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Figure 3.1: Hysteresis loop of hypothetical elementary Preisach particle 

3.4 The Statistical Loss Model and the physically based 

concept of loss separation 

Because of the viscous dynamic effect of eddy current in metals, hysteresis 

occurs even at very low magnetization frequencies, which leads to magnetic loss. 

The calculation of loss should be derived from a general hysteresis model, which 

should be able to predict the magnetization curve and hysteresis loop, thereby 

calculating the area of hysteresis loop, and then get the loss. However, in fact, the 

current research shows that there is no such wideband universal hysteresis model. 

How to solve the loss problem directly without detailed description of the 

magnetization process has become the focus of research. In fact, the 

magnetization of magnetic materials occurs on a widely distributed time and 

space scale, so the total eddy current loss is calculated from the statistical average 

values of many randomly distributed parts. These statistical averages show some 

main characteristics, and many details about the magnetization process are proved 

to be totally unrelated to the total loss after average, so it is not necessary to 
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consider them. And some main characteristic attributes are particularly important 

when calculating the loss [33]. These loss parts separate the total loss, which is a 

widely used loss separation method. According to the principle of loss separation, 

the total loss can be divided into hysteresis loss Whyst, classical loss Wclass and 

excess loss Wexc. Then the total loss expresses as follow: 

total hyst class excW W W W= + +                                    (3.7) 

The existence of viscous damping mechanism in metallic materials leads to 

the introduction of a characteristic time scale in the magnetization process. When 

the external magnetic field varies in a certain extent in this time scale, the area of 

the hysteresis loop increases. To quantitatively describe this effect, the evolution 

of domain structure of magnetic materials under variable magnetic fields should 

be calculated in principle. However, the evolution of domain structure is a very 

complex micro magnetism problem. If the Maxwell equations are coupled by 

Brown equation, the spatial and temporal distributions of magnetization M(r, t) 

and eddy current density j(r, t)can be obtained by this solution. Under periodic 

excitation of frequency f, the average loss per unit volume per unit time can be 

expressed as follows 

2
3 1

0

( , )f

V

j r td rP f dt
V 

=                                 (3.8) 

V is the volume of the sample. In most cases, however, the solution given by 

this formula is only formal, because it is extremely complex to attempt to solve 

the problem with the dynamic micro magnetism method. The complexity of the 

overall energy of the system results in the instability of the wide distribution in 

space and duration. In addition, the eddy current tends to concentrate around the 

moving domain wall, which leads to the complexity of the domain structure. In 

addition, the whole problem depends heavily on the geometric size of the sample, 

because the eddy current is not only determined by the local properties of the 
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material, but also by the overall geometric shape of the sample. It can be 

concluded from the analysis that the eddy current density function j(r, t) has a 

very complex spatial and temporal distribution and can only be quantified in a 

statistical way. Therefore, the focus of the study will no longer be on calculating 

the specific value of formula (3.8), but on identifying which main features may 

exist completely independent of the specific details. 

In order to quantify and solve the formula (3.8), we will make some 

simplifications which are approximately equivalent to the actual situation. First, 

assuming that the material sample is infinitely long, the demagnetization field can 

be ignored. The applied magnetic field intensity Ha is uniform in space and 

applied along the longitudinal axis of the sample, which is z axis. Magnetization 

M and magnetic induction B are perpendicular to the cross section of the sample 

everywhere, and they are independent of z. In other words, only the change of 

magnetization M along the infinite cylindrical element of the sample is considered. 

Under these assumptions, according to the translation invariance along z, the 

problem described can be simplified to a two-dimensional problem in the dy plane. 

External magnetic field intensity Ha, sample magnetic field intensity H, sample 

magnetization intensity M, magnetic induction intensity B can be regarded as 

scalar. The electric field strength E and eddy current density j ( j=σE ) can be used 

as vectors on the xy plane and expressed by the fractions on the x and y axes 

respectively. The total sample magnetic field strength H= Ha +Heddy, Heddy which 

is generated by eddy current. 

According to Poynting's theorem, the energy inflow of the whole system 

follows the direction of the magnetic field intensity H along the z axis. In addition, 

the tangential component of the magnetic field is continuous on the sample 

surface, that is, the sample magnetic field strength H on the sample surface is 

equal to the external magnetic field strength Ha. Because the electric field 
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intensity is in the xy plane and the direction is tangent to the sample surface, the 

energy of injected sample per unit volume per unit time is obtained as follows: 

       a a
a

S

( )
C

d BH H dE H dS E dl H
S S dt dt

Ф
 =  = =             (3.9) 

The line integral is the integral along the contour path C of the sample cross-

section area, and S is the xy cross-section area. The flux through the cross-section 

area is expressed by Faraday's law of electromagnetic induction. <B>=Ф/S 

represents the average magnetic induction intensity of the cross-sectional area of 

the sample, and dФ/dt is the voltage value measured by the coil wound around the 

sample. The conclusion is that if the magnetic induction intensity <B> is 

expressed by the external magnetic field intensity Ha and the figure is drawn, this 

is the hysteresis loop, and the area of the hysteresis curve represents the energy 

loss per unit volume of a magnetization period. The integral of hysteresis curve 

area to time calculated by formula (3.9) is equal to the loss calculated by formula 

(3.8), if eddy current loss is the only important dissipation mechanism. Thus (3.8) 

can write: 

22 1/

0

( , )r f

s

j r tdP f dt
S 

=                                     (3.10) 

In order to study the properties of this integral, a specific cross-sectional area 

is selected. In this paper, we take a sample with thickness d as shown in Figure. 

3.2. On the one hand, this geometric shape produces relatively simple 

mathematical expressions, on the other hand, it is also the most commonly 

encountered geometric shape in applications, such as silicon steel sheets. If the 

width of the plate is large enough, here the demagnetization effect can be 

neglected. 
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Figure 3.2: Sample Simplified Diagram with Thickness d and Principle Simplified 

Diagram of Barkhausen jump 

1) Barkhausen jump sequence 

In order to explore the general loss properties, we will focus on the qualitative 

aspects as much as possible. The complexity of the magnetization process can be 

easily explained by the magnetization inversion associated with a random 

Barkhausen jump sequence. Each jump is the result of some local instability, such 

as the sudden release of the domain wall in pinning and the reversal of magnetic 

flux in the cylindrical element shown in Figure. 3.2. The transient eddy current 

around the jump is the cause of energy loss. The jump sequence is represented by 

the flux change, and it is assumed that all jumps cause the same flux change, 

which is that all jumps produce the same flux change rate. Once the local flux 

inversion is concretized, the spatial-temporal eddy current distribution around a 

single jump can be calculated by Maxwell's equations. 

If j(r, t; rp, tp) is used to denote the eddy current density associated with the 

jump at the spatial position rp and the time tp. rp and tp are random variables. The 

characteristics of magnetization are summarized by summarizing the statistical 

properties of (rp, tp) sequences. When passing through an eddy current ring, the 

magnetization of the material changes from -Mmax to +Mmax in each half cycle, i.e. 

1/2f. It is assumed that N random Barkhausen jump sequences are completed,then 

Barkhausen jump 

d 

z 

Ha 
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max2SMN
Ф

=


                                                (3.11) 

The same completely similar analysis applies to the second half of the cycle. 

According to the linear property of Maxwell equation, the total eddy current 

density j(r, t) generated by Barkhausen jump sequence is the sum of the single 

eddy current density generated by a single jump: 

p
p 1

N

j j
=

=                                                   (3.12) 

According to formula (3.10), the loss problem is simplified to the square of 

formula (3.12): 

2 22 2
p p q p p q

p p q
j j j j N j N j j



= +  = +                (3.13) 

Angular brackets denote the statistical average of all jump or jump pairs, and 

assume that N is very large, so N(N-1) ≈N2. Formula (3.13) is the sum of two 

terms, and the total loss is naturally expressed as the sum of two contributions, 

namely, hysteresis loss and dynamic loss. 

2) Hysteresis Loss 

Firstly, the term of coefficient N in formula (3.13) is considered. When this 

term is inserted into the formula (3.10) and integrated in time and space, the 

average energy loss EBJ at unit length z of 2fN/S times is obtained. If other 

circumstances are not considered, this energy is the energy produced by a single 

Barkhausen jump. When formula (3.11) is introduced, it becomes as follows: 

BJ
hyst max4 EP fM

Ф
=


                                       (3.14) 
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This loss part is called hysteresis loss. The calculation of hysteresis loss is 

related to the ability to solve a single Barkhausen jump. However, it is usually 

more convenient to solve this problem on a relatively rough spatial scale, so that 

the detailed information will be ignored. In this rough scale, the information of 

small-scale eddies generated around a single jump will be ignored and only the 

large-scale eddies will be considered. If the description problem is not properly 

corrected, this method will completely change the loss estimate. Loss separation 

provides a reliable solution because it allows for the representation of hysteresis 

by covering eddy current effects at fine scales with a rough constitutive relation B 

(H). This law provides a background for correctly dealing with macro-scale 

effects. This is what will be discussed in the next section. It is noteworthy that all 

the information of energy dissipation is concentrated in the constitutive relation 

Ф(Ha). However, the cost of such a sharp simplification is that the constitutive 

relationship becomes rate-dependent. Usually, rough constitutive relation should 

be avoided when Barkhausen jump and rate-independent hysteresis are in fine 

scale. 

3) Dynamic loss 

Consider again the term proportional to N2 in formula (3.13). This depends on 

the correlation of jump sequences. It produces a loss part which is stronger than 

the simple proportional relation but relatively dependent on frequency f, which is 

called dynamic loss. In this regard, the simplest case is, of course, that each 

Barkhausen jump is statistically independent of each other. In this case, N2<jp﹒

jq>=<Njp>2. However, due to the linearity of Maxwell's equations, the average 

current density is only the current density generated by the average magnetization 

rate on the cross-sectional area of the sample. In other words, if P(r, t) is the 

probability of Barkhausen jump at position r and time t, <Njp>is the eddy current 

density obtained by solving Maxwell equations whose magnetization rate is 
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proportional to probability P(r, t). Usually P(r, t) is a smooth function of r and t. 

The domain wall sweeps across the cross-sectional area of the material and tends 

to periodically aggregate at any position. Generally, if the medium is 

homogeneous, the probability of magnetization inversion occurring at any point in 

the cross section of the material is the same. In this case, P(r, t) is independent of 

position r, and can be simply seen as proportional to the total flux change rate 

dФ/dt. The discrete jump structure disappears in the mean value, and the loss is 

for a completely smooth medium without magnetic domains. This part of loss is 

called classical loss. Many Chinese literatures also call it eddy current loss. But in 

order to distinguish it from the loss mechanism, this part of loss is called classical 

loss in this paper. This part will be discussed in detail in the thesis. Generally 

speaking, jumps are not statistically independent, even if they are anywhere in 

space. Because once a Barkhausen jump occurs in a domain wall, there will be a 

high probability that the next jump will occur at another point in the same domain 

wall, or in some related regions, including simultaneous active domain walls or 

other situations. The important point is that the existence of these correlation 

effects is the direct result of the existence of domain structure. This formula (3.13) 

should be rewritten as follows 

( )2 2 2 22 2
p p q p p p q p

p p q
+ -j j j j N j Nj N j j j



= +  = +          (3.14) 

By substituting this formula into formula (3.10), three different loss 

components are obtained: 

hyst class excP P P P= + +                                    (3.15) 

In addition to the hysteresis loss and classical loss discussed earlier, the third 

term Pexc is generated due to the correlation effect, which is the excess loss. 

Formula (3.14) shows that loss separation is a general result of the random nature 

of the magnetization process. Therefore, it should be noted that when randomness 
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is no longer the dominant factor, loss separation will no longer be applicable. For 

example, a single 180o domain wall in a framed single crystal is certainly not the 

best target for statistical processing. In small-amplitude hysteresis cycles, small 

oscillations occur in the domain wall at a fixed position, and the statistical mean 

discussed previously is no longer applicable. However, stochastic characteristics 

are ubiquitous and provide a strong support for the hypothesis of loss separation, 

which can be dealt with in most cases. This theory is of great significance in 

predicting the relationship between loss and frequency f and peak magnetic 

polarization intensity. 

3.5 Quantitative Formulas and Procedures of Loss 

Separation using the Statistical Theory of Loss 

Taking 0.194mm silicon steel sheet as an example, the physical model is 

simplified as shown in Figure 3.2 under the excitation of 1T peak magnetic 

induction intensity. 

1) Hysteresis loss 

The cause of hysteresis loss has been analysed in last part. In practical, it is 

generally considered that the static loss is independent of frequency. By 

measuring the loss under quasi-static (2-20Hz), the total loss when linear 

extrapolation f is 0, that is hysteresis loss. 

2) Classical Loss 

This section gives specific analysis in the following specific chapters. This 

will not be repeated here. 

3) Excess loss 
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Excess loss is the loss at domain scale. Different calculation models are 

obtained according to different domain models. Weiss first proposed the concept 

of magnetic domain in magnetic materials [34], which magnetizes in different 

directions and minimizes energy in a specific arrangement. When such a domain 

structure is placed in an external variable magnetic field, the motion of the domain 

wall changes the eddy current path around the domain wall, resulting in excess 

loss [35]. The earliest excess loss model was proposed by William, Shokley and 

Kittel for single domain wall model [36]. Later, the periodic domain wall model 

was proposed by Pry and Bean [37], and the excess loss of a series of 180-degree 

domain walls in magnetic materials in an infinite plate was studied. However, in 

real materials, the size and shape of magnetic domains are not fixed and change 

with position and time. In order to consider this random domain structure, Bertotti 

introduced a statistical method to overcome the obstacle of describing this loss, 

proposed a random domain wall model, and finally gave the expression of excess 

loss. First, the power loss of random domain wall is shown as follows: 

class w( ) ( ) ( )RWP t P t P t
d


= +                                 (3.16) 

The total dynamic loss is divided into two parts. The second term at the right 

end is the expression of excess loss power. PW(t) is the average dissipation power 

of each domain wall, and λ is the average density of the domain wall. 2L =1/λ is 

the distance between the domain walls. Firstly, the excess loss domain can be 

expressed as: 

exc exc / ( / )H P dФ dt=                                    (3.17) 

If only the effect of excess magnetic field on a single domain wall is 
considered:  

W

exc
dH G

d
Ф

t
=

（ ）

                                       (3.18) 
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For a case where the number of domain walls is n, the total flux change 

should be equal to the overall flux change of the material: 

Wd dJn S
dt
Ф

dt
=

（ ）

                                         (3.19) 

Then the excess loss can be expressed as: 

exc
GS dJH
n dt


=                                          (3.20) 

 This formula can only be applied to the case where the domain wall spacing  

(2L) is much larger than sample thickness d [38]. This energy is described from 

the Barkhausen jump sequence: 

cl
(is)

exc
d dJP G

d
Ф

dt t
=

（ ）

                                   (3.21) 

G(is) is an internal structure function, which is the average flux change related 

to the Barkhausen jump sequence. At the domain scale, there is still a high 

probability that the domain walls are surrounded by many other domain walls, 

forming a unit. A concept introduced here, the unit is called magnetic object (MO), 

and it randomly distributed. For a hypothesized internal structure of G(x), the flux 

change rate ( ) /xdФ dt  satisfies the random distribution. For a hypothesized N 

magnetic objects, the excess magnetic field can be deduced as follows: 

( )

exc
SxG dJH

n dt


=                                           (3.22) 

Here introduce ( )/ xn nG G= , substitute this equation to formula (3.22), we 
can get: 

x

exc
HH

n
=

（ ）

                                               (3.23) 
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It represents the excess magnetic field of a material whose entire flux change 

is concentrated on a single 180-degree domain wall. When the frequency is low, 

the magnetization process is very uneven, because the sample correlation activity 

is very little. With the increase of the frequency, the related active areas gradually 

increase, and the magnetization process becomes more and more uniform. It can 

be seen as a general equation expressed by Hexc, which increases with the increase 

of Hexc. In order to express this process, parameters n0 and V0 are introduced [10]. 

exc 0 exc 0( ) / +......n H n H V +                       (3.23) 

n0 is the number of magnetic object (MO) in the sample when the frequency is 

close to zero, and V0 is the statistical parameter for aligning other magnetic 

objects in the same direction. Formula (3.23) shows that the excess magnetic field 

decreases with the increase of the number of active magnetic units. On the other 

hand, formula (3.23) shows that the number of active regions increases with the 

increase of residual magnetic field. When the formula (3.23) is established, it is 

brought into the formula (3.22), and the quadratic equation about Hexc is solved. 

( ) 20 0
exc 0 0( 1 4 / 1)

2
xn VH H n V= + −                    (3.24) 
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/                               4 / 1
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 
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当

当

       (3.25) 

The whole problem is solved by determining two parameters n0 and V0: 

( ) 20 0 0 0
exc exc 0 0 2

0 0

4( ) ( 1 4 / 1) ( 1 1)
2 2

xn V n VdJ dJ GS dJ dJP t H H n V
dt dt n V dt dt


= = + − = + −

 (3.26) 
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For soft magnetic materials, the magnetic induction intensity is almost equal to 

the magnetic polarization intensity, that is, a certain simplification can be obtained: 

3/2

exc 0 2
0 0

4 1dB GS dJP GSV
dt n V dt




 
  

 
   when             (3.27) 

Excess energy loss is: 

3/2
1/

exc exc 0 0
=

f dBW P t GSV dt
dt


 

  
 

                     (3.28) 

When the condition cannot satisfied 2
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 

   + −


       (3.29) 

The specific steps of loss separation are as follows: firstly, total loss is 
measured; secondly, hysteresis loss is deduced according to the linearity when the 
distribution of magnetic induction intensity is not uniform; thirdly, classical loss is 
calculated according to the appropriate model. Fourthly, according to the 
experimental results, the most suitable parameters n0 and V0 are found according 
to the method mentioned above, and the excess loss is predicted by using formula 
(3.28) or (3.29). Figure 3.3 shows the results of loss separation of 0.194 mm thick 
non-oriented silicon steel sheets under 0.05T excitation. Points are measured and 
lines are calculated. 
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Figure 3.3: Loss Separation Result of 0.194 mm Thickness Non-oriented Silicon 

Steel Sheet under 0.05T Excitation 
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Chapter 4 

Experimental Techniques and 

measurements setups 

4.1 Measurement Apparatus 

Research on magnetic materials magnetic properties require the measurement 

of magnetic field (H) and magnetic flux density(B). The measurement usually take 

place in specific apparatus and the classical method is fluxmetric approach. This 

chapter will introduce experimental techniques and the whole measurement 

system. Usually, in order to reveal and measure a magnetic field, we should create 

closed magnetic circuits. According to the Faraday-Maxwell law of 

electromagnetic induction, electromotive force is detected proportional to the time 

derivative of the flux. Upon time integration, the magnetization in the core 

ensuing from a variation of the applied field is computed. In soft magnetic 

materials, the term μ0H is negiligible with respect to J. So in this thesis, we 

assume that Bp≈Jp.  
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The wattmeter-hysteresisgraph apparatus [40] is applied. This set up can be 

satisfied with different shape of the sample, employed different kinds of 

magnetizers (Epstein frame, Single sheet Tester, Ring sample). A scheme of the 

hysteresisgarph is given in Figure 4.1. The input waveform is generated by a 

functional signal generator (Agilent 33220A). The signal is amplified by a power 

amplifier (NF-HSA4101). This waveform is driven the primary coil of the 

magnetizer. The voltage dropped uH is measured using a calibrated resistor RH. So, 

the magnetizing current is iH= uH / RH. Then the magnetic field strength is  

 in
H

H m

1( ) ( )NH t i t
G l

=                                            (4.6) 

GH is the low-noise pre-amplifier gain. This pre-amplifier is employed for 

amplifying the measuring signal and deduce the noise of the output signal. N1 is 

the number of the primary coil turns. lm is the magnetic path length. Different 

types of magnetizer have different lm. The flux density B is obtained by the 

induced voltage in the secondary coil of the magnetizer.  

B
B 2

1 1( )= ( )B t u t dt
G N A                                          (4.7) 

This signal is amplified by another low-noise pre-amplifier which gain is GB 

and fed into the digital oscilloscope (LeCroy4054A) for measurement. N2  is the 

number of the secondary coil turns. A is the cross-section area of the sample. 

The digital oscilloscope (LeCroy4054A) can obtain simultaneous acquisitions 

of both signals. The signals are calculated by PC. The energy loss is 

B H0
B 2

1 T
W u i dt

G AN
=         [J/m3]                         (4.8) 
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Figure 4.1: The wattmeter-hysteresisgraph developed by Fiorillo and co-workers  at 
INRIM. The system implements digital control of the waveform of dB/dt by an iterative 
process. Samples such as Epstein strips, SST and ring samples can be employed in the 
system. 

One dimensional measurement standard of soft magnetic material already 

established. Epstein test method is widely adopted by industry standard. The 

standard IEC 60404-2 [41] deals with the measurements on steel sheets using the 

Epstein magnetizer from DC-400Hz. In this thesis, I adopted 200 turns Epstein 

frame instead of 400 turns Epstein frame according to Standard IEC 60404-10 

[42]. The strip/single-sheet tester (SST) is developed for more accurate 

measurement. Now the SST is adopted in the IEC 60404-3 [43] standard. 

According to IEC 60404-6 [44], Methods of measurement of the magnetic 

properties of magnetically soft metallic and powder materials at frequencies in the 

range 20 Hz to 100 kHz of ring specimens are specified. Figure 4.2, Figure 4.3 

and Figure 4.4 show the actual Epstein frame, SST tester and ring sample.  
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Figure 4.2: 200 turns Epstein frame 

 

 

Figure 4.3: The Strip Single Tester 
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Figure 4.4: The Ring Sample 

Two-dimensional and three-dimensional measurement equipment are 

developing in these years. However, due to the complex of the measurement 

procedure, there are still no standard. Here is not elaborated apparatus of two and 

three dimensional, because the main research here evolved only one-dimensional 

measurement.  

These apparatuses are applicable at low and medium high frequency. When 

the frequency increase to Mhz. The method should change. Here we introduce the 

transmission line method. The measurement frequency band of transmission line 

method is from quasi-static to MHz. For accurate measurement of Ferrite and 

nanocrystalline tape-wound sample. We applied the measurement system shown 

in Figure 4.5 as much high frequency as it can, then we use transmission line 

method at very high frequency.  It is necessary to pay attention to the minimum 

spurious parameters guaranteed by the primary and secondary coils, the overall 

layout and the related wires in order to ensure the accuracy of the experiment. The 

measurement of high frequency band is from Mhz to 100MHz. This band is 

measured by transmission line method and vector network analyzer (VNA) 

Agilent 8753A. The experimental schematic diagram [40] is shown in Figure 4.6.  
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Figure 4.5: The Ring Sample measurement system 
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Figure 4.6: High frequency measurement system 

The Vector Network Analyzer is both a signal source and a signal collector. 

Firstly, the reflection coefficient S11(f) of the short-circuit coaxial characteristic 

resistance Z0 is measured, and the test sample is placed at the short-circuit end. 

The relationship between the reflection coefficient S11(f)and the resistance Zsh(f) is 

as follows 
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If the sample thickness h is less than 1/4 of the electromagnetic field 

wavelength coefficient h<<λ/4, the dielectric effect can be neglected, and the 

relationship between the short-circuit coaxial characteristic resistance Z0 and Zsh(f) 

is 

sh 0 0( ) tanh( )Z f jZ h jZ h =                         (4.10) 

= LC  is the propagation constant of the transmission line (phase change 

of electromagnetic waves per unit length). Because 0 /Z L C= , so

sh ( )Z f j Lh ,according to Figure 4.6: 
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If a magnetic ring sample is placed, the complex permeability is:
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The resistance portion is related to the magnetic loss. When mR R  and 

mr r  , Zsh is the ring sample (Rm, rm) and the resistance of the remaining air. 

Measure Zin,sh resistance twice, added and not added the sample respectively. The 

difference between these two    sh shre imZ Z j Z =  +  .The the real number 

and the complex permeability can be obtained: 
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This approximation of the complex permeability can only be limited to a 

certain power and sinusoidal waveform. However, through the previous 

measurements, Mn-Zn ferrites excited below 100 mT and nanocrystalline ribbon 

excited below 500 mT, the complex permeability is independent of the peak of the 

magnetic induction at a frequency close to the MHz. Fluxmetric method measured 

permeability overlaps with the magnetic permeability measured by the 

transmission line at certain frequency range. According to following equation ,we 

can obtain the magnetic loss:  

2
p 2 2

''( , )
' ''pW B f B 


 

=
+

                                          (4.14) 

4.2 Control of the induction waveform by digital feedback  

There are mainly two methods of implementing digital feedback. One consists 

of trying to emulate by computation the real-time control of the sample 

magnetization realized by computation the real-time control of the sample 

magnetization by means of analogy feedback. The other in programming the 

suitable time dependence of the magnetizing current by iterative augmentation of 

the input using an inverse approach. Computing requirements pose the basic 

limitation to the feedback chain bandwidth in real-time control. The following 

steps: (1) Acquisition at given instants of time, separated by conveniently small 

intervals, and A/D conversion of a reference signal, describing the desired dB/dt 

waveform, and of the actual measured waveform. (2) Comparison of these two 

signals and computation, by means of a regulation algorithm, of the correct value 

of the magnetizing current, taking into account the composition of the primary 

circuit and (3) Digital to analogy conversion and generation of the calculated 

current. This apparatus can be carried out as shown in Figure. The scheme of the 

general structure of a computer-controlled digital wattermeter-hysteresisgraph 

apparatus. 
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Chapter 5 

Loss decomposition in non-oriented 

steel sheets: Role of the classical 

losses 

5.1 Introduction and Motivation  

The fundamental theory of the classical loss is explained in Chapter 3. It 

influences the whole loss separation based on STL. As the application for the steel 

sheets are requested in middle high frequency, it is much more important for 

engineers to predict steel sheet’s total loss in a broadband frequency. For the 

calculation of the energy losses in non-oriented steel sheets, a simple standard 

formula for the classical loss is under the assumption of ignoring skin effect and 

uniform magnetization reversal through the sheet cross-section. However, this 

model has been challenged in the literature. In practical cases, due to the steel 

sheets laminations and the nearly saturation induction working condition, some 

researchers[45] proposed that the well-known simplified classical loss expression 
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is underestimated, which causes the overestimates of the excess loss in non-

oriented steel sheets. To validate different models and to summarize the role of 

the classical loss, I conducted experiments and the whole loss separation analysis 

on non-oriented Fe-Si and low-carbon steel sheets through a broadband frequency.  

5.2 The uniform induction model versus the saturation 

wave model  

The crucial problem is the fact how to accurate proceed the loss separation at 

broadband frequency. In order to be much clearer about the problem, I summarize 

the classical loss models as following: 

In order to address this problem, there are three important issue involved. One 

is magnetic material, considering material constitutive law, especially its intrinsic 

non-linearity. One is the amplitude of the induction and the last one is frequency.  

According to STL, the classical loss is associated with the dissipation of 

regular macroscopic eddy current. It could be deducted from the diffusion of the 

currents localized at the moving domain walls [33]. The steel sheet sample 

geometry is showed in Figure 5.1. Under sinusoidal induction of peak value Bp at 

frequency f in a sheet of conductivity σ and thickness d, we apply Maxwell 

equation and following boundary conditions, we obtain 

2
2

2 3
class pclass( )= / [J/m ]

6
W f P f d B f


 

=                             
 

                (5.1) 
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Figure 5.7: the sample geometry parameters. Here d is the thickness along y axis. The 
sample is assumed infinitely long and the external field is applied along z axis. 

The material is considered homogeneous, so ignoring material constitutive 

law.  The formula can only apply before emerging the skin effect. However, at 

very low induction, there is a linear approximation of the constitutive law (𝐵⃗ =

𝜇𝐻⃗⃗ ). The solution of Maxwell’s equations can be solved without resorting to 

numerical analysis.  

5.2.1 Arbitrary frequency, linear magnetization law, and low 

induction case 

According to Rayleigh law, at low-field magnetization case, a linear 

approximation of the material constitutive law ( 𝐵⃗ = 𝜇𝐻⃗⃗ ) can be accepted, 

magnetic permeability 𝜇 =
𝐵𝑝

𝐻𝑝
 is a constant. Hp is the peak value of magnetic field. 

For instant, Figure 5.2 shows the hysteresis loop of a non-oriented Fe-(3.2wt%) Si 

steel sheet at Bp = 0.1 T at 5 Hz, where a constant relative permeability of μ = 

5400 can be approximated.   

d 

Ha 
y 

x 
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Figure 5.8: B-H loop of a non-oriented Fe-(3.2wt%)Si steel sheet, thickness d=0.194mm, 
at peak induction 0.1 T and f=5Hz. 

In this case, we can solve magnetic diffusion equation. Let’s deduct this 

formula from Maxwell equation. The geometry parameter is showed as Figure 5.1. 

The magnetic field is induced along the z-axis. So Maxwell equation Eq. 5.2 and 

Eq. 5.3 can be specified to Eq. 5.4 and Eq. 5.5 

=H J                                                (5.2) 
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Where is the conductivity of the material, and ( , )zH H y t=  is the instantaneous 

magnetic field strength and ( , )zB B y t= magnetic induction, respectively, after 

deriving Eq. 5.4 and combining with Eq. 5.5, we obtain 

   

2

2

BH
y t




=
                                            (5.6) 

Approximated constitutive equation B H= , we get 

2

2

H H
y t


 

=
 

                                       (5.7) 

Under sinusoidal regime, we can introduce complex quantities. jwtH H e=

We can obtain  

2

2

H j H
y




=
                                      (5.8) 

The boundary conditions as following 

0 0y
H
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=
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=
                                            (5.9) 

y
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y
=


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                                    (5.10) 

Where B  is the average of the amplitude of B 

In this case, we can solve this diffusion equation. The result of the classical 

loss as  
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Where we introduce a dimensionless parameter  

                               
2fd =                                               (5.12) 

If Eq.5.12 is reduced to Eq. 5.1. Bp is the peak induction 

value. 

5.2.2 Arbitrary frequency, step-like magnetization, and high 

induction case (Saturation Wave Model (SWM)) 

   At high induction, the crucial factor, material constitutive law, should be 

considered. The material constitutive law is quite different from the low induction 

case. From the observation of the experiments data, we can assume the 

magnetization law of the material is the step-like as the black dash line in Fig. 5.3,  

Figure 5.9: Low-carbon steel sheets at 1.6T, J-H loop, and the dash black line is the step-
like approximation of the blue one. 
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B=±Bmax. This approximation of the magnetization is ideal. If B-H following this 

law, the magnetization changes in a certain portion of the slab cross-section only 

when H=0 everywhere inside it. However, this is not possible, because, according 

to Maxwell equation, H=0 means J=0, which can only be the case if 0B t  = .So, 

we know that the magnetization can only change in correspondence of one-

dimensional fronts propagating across the slab. Due to the symmetry of the 

problem, these fronts will be parallel to the slab surface, as shown in Fig. 5.4.  

 It is the layer-by-layer flux reversal originally described in Wolman [46], the  

 

Figure 5.10: Propagating fronts in magnetic materials observing step-like magnetization 

law. 

so-called saturation wave model (SWM). Let deduct the calculation of this 

model. In each half-period two symmetric fronts originate at the slab surface and 

propagate inward until they reach the center of the slab, where they annihilated. 

There is a direct quantitative correspondence between the position yF(t) of the 

fronts and the instantaneous value of the average induction B(t) in the slab cross-

section. Here the analysis is restricted to the case where Bp=Bmax. In fact

max

( )( ) [ 1]
4F
d B ty t

B
=  − , when B is increasing. And

max

( )( ) [ 1]
4F
d B ty t

B
= + , when B 

is decreasing. Due to the symmetry between the two fronts, we can limit the 

analysis to the region where (−d/2 < y < 0). Applying Faraday’s law, we obtain, 

z 
d x 

y 

yF(t) 

Ha 
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Integrate Eq.5.13 with respect to y, we obtained  
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Add boundary conditions 

a
2

( , ) ( )dy
H y t H t

=

=                                           (5.15) 

Where Ha(t) is the applied field. According to the equations mentioned before, we 

obtain the following magnetization law: 

2

a
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d dB B t dBH t
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= +                                  (5.16) 

Energy loss per unit cycle is 

(SWM) 1(SWM) class
class 0

f

a
P dBW H dt
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Under sinusoidal regime Eq.5.17 becomes 

2 2
(SWM) 2 2 2 2

class p p class
3 1.5 ( )

4 2 6
W d B f d B f W f 

 = =  =          (5.18) 

      From observation of this formula, SWM model estimates classical loss much 

greater than the loss obtained under uniform induction (Eq.5.1).  
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      Up to now, I summarized all the models that I will validate using experiments 

data of non-oriented steel sheets. To clarify the issue, I performed and analyzed 

measurements on NO Fe-Si and low-carbon steel (LCS) sheets at low and high Bp 

amplitude. 

5.3 Experiments  

The issue here is to explore which model is much more suitable for the 

classical loss component. The samples I need should have large classical loss 

material to clarify this problem. Classical loss is the macroscopic eddy current. If 

classical loss is large, the material should have relatively large resistivity. Energy 

losses are measured from quasi-static up to 10 kHz at different peak polarization 

Jp in non-oriented Fe-Si and Low carbon steel sheets listed in Table 5.1. These 

samples have chosen for their different resistivity and thickness. Especially, the 

Low carbo steel sample could emulate a step-like response as showed in Fig.5.3.  

Table 5.1: The list of non-oriented and low carbon steel sheets 

Material 
(NO)   

Fe-Si-1 

(NO)   

Fe-Si-2 
LCS-1 LCS-2 LCS-3 

Sample shape Epstein Epstein Epstein Ring Epstein 

Density(kg/m3) 7650 7600 7850 7860 7870 

Resistivity(Ω•m) 56 ×10−8 52 ×10−8 19.2×10−8 15.3 ×10−8 12 ×10−8 

Thickness(mm) 0.194 0.345 0.506 0.507 0.636 

The samples have been measured either as Epstein strips or Ring samples for 

comparison. These samples have been measured by a calibrated wattmeter-
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hysteresisgraph under controlled sinusoidal induction, and experiments 

procedures are elaborated in Chapter 4. 

5.4 Results and discussion  

Epstein strips and ring samples, either non-oriented or low carbon steel sheets 

are tested. I obtained a lot of experimental results and data. Some of them are 

elaborated and discussed in the following section.  

5.4.1 Energy Loss at Low Inductions 

The magnetic energy loss has been measured at Bp=0.1T and Bp=0.2T and 

frequency ranging from quasi-static conditions up to 10 kHz. Let us take 

0.194mm Fe-(3.2 wt%)Si sheet at Bp=0.1T case for example. Figure 5.5 shows the 

total loss decomposed into its three components, hysteresis loss Whyst, classical 

loss Wclass, excess loss Wexc. The classical loss Wclass calculated using Eq. 5.1. The 

hysteresis component Whyst is obtained by extrapolating Wtotal( f ) to f = 0.The 

excess loss Wexc is described by the theoretical law [39]. The details are discussed 

in Chapter 3.  

3 2T

exc 0
( ) ( )oW f GSV J t dt=                             (5.19) 

/2 0
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GSW f n J fJ d
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 
   

 
=    

 
        (5.20) 

The total loss obtained from the three components 

hyst class exc( )totalW f W W W= + +                                 (5.21) 

Wexc ( f ) complies upon the part of the investigated frequency range (before 

emerging the skin effect)with the theoretically assumed linear dependence n = n0 
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+ Hexc/V0 of the number n of active magnetic objects (MOs) on the excess field 

Hexc = Wexc/4Jp as illustrated in Figure. 5.6. The quantity V0 lumps the effect of the 

local coercive fields and the experimental n values are obtained as

exc4 /pn GSJ H= , with G = 0.1356 and S the sample cross-sectional area [33]. 

With the so-obtained V0 parameters, the experimental Wexc( f ) behavior and 

calculation value are compared in Figure. 5.7. 

From the observation of Figure5.5-5.7, 0.194mm Fe-(3.2wt%) steel sheet’s 

skin effect emerge around from fc=4kHz at Bp=0.1T. 

Then let us compare with another classical loss 

model considering skin effect. The DC hysteresis loop at this low Jp=0.1T value is 

described by the Rayleigh law, where the permeability /p pJ H = coincides with 

the differential permeability averaged upon a loop branch between pJ (relative 

5400r = at Jp=0.1T). So, I can confidently using Eq. 5.11 to obtain Wclass(f), The 

hysteresis loss Whyst and Wexc are obtained using the same method as before. The 

loss separation is illustrated in Figure. 5.8. Different from the last calculation, we 

can remarkably find Wexc(f) complied upon the whole investigate frequency band 

with the theoretically assumed linear dependence n = n0 + Hexc/V0 of the number n 

of active magnetic objects (MOs) on the excess field Hexc = Wexc/4Jp, as shown in 

Figure. 5.9. The quantity V0 lumps the effect of the local coercive fields and the 

experimental n values are obtained as, with G = 0.1356 and S the sample cross-

sectional area. With the so-obtained n0 and V0 parameters, the experimental 

Wexc( f ) behavior and calculation value are compared in Figure. 5.10. 

exc4 /pn GSJ H=
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Figure 5.11: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. Decomposition of the measured 

energy loss (symbols) at Bp = 0.1 T up to 10 kHz. The classical loss Wclass( f ) is calculated 

with Eq. 5.1, skin effect emerge around 4kHz.  
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Figure 5.12: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. The number n, active magnetic 

objects (MOs), follows a linear dependence n = n0 + Hexc/V0 on Hexc = Wexc/4Jp. 
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Figure 5.13: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. The quantity Wdiff=Wtotal−Wclass is 

plotted versus the square root of frequency up to f = 10 kHz (open circles). The same 

quantity Wdiff is then computed theoretically as Wdiff = Whyst +Wexc, where Wexc is obtained 

through Eq. 5.20 (red lines). 
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Figure 5.14: Non-Oriented Fe-(3.2 wt%Si) 0.194 mm thick sheets. Decomposition of the 

measured energy loss (symbols) at Bp = 0.1 T up to 10 kHz. The classical loss Wclass( f ) is 

calculated with Eq. 5.11, taking into account the skin effect. 
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Figure 5.15: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. The quantity Wdiff=Wtotal−Wclass is 

plotted versus the square root of frequency up to f = 10 kHz (open circles). The same 

quantity Wdiff is then computed theoretically as Wdiff = Whyst +Wexc, where Wexc is obtained 

through Eq. 5.20 (red lines). 
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Figure 5.16: NO Fe-(3.2 wt%Si) 0.194 mm thick sheets. The number n, active magnetic 

objects (MOs), follows a linear dependence n = n0 + Hexc/V0 on Hexc = Wexc/4Jp. 

5.4.2 Energy Loss at High Inductions 

The three LCS samples are chosen to test at Jp=1.6T to verify the SWM 

(Eq.5.18). Figure.5.11 shows the quasi-static hysteresis loops in the three 

investigated LCS samples, where I noted again that for all practical purpose 𝐵𝑝 =

𝐽𝑝. Because the LCS samples conductivity are high, the excess loss component is 

much lower than the classical loss. So the application of Eq.5.1 or Eq.5.11 could 

imply discrepancies between the correspondingly identified excess loss behaviors 

Wexc( f ). In order to comparison, all the measurements have been restricted to the 

region not affect by the skin effect. We cannot obviously make use of Eq.5.11, as 

previously done in the Rayleigh region. Because at high-induction, its non-linear 

material constitutive law is showed in Figure.5.11. But the STL provides a unique 

way to identify incipient skin effect. I apply the usual procedure, by subtracting 

Wtotal( f ) − Wclass( f ) with the classical loss calculated with Eq.5.1, ignoring the 
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skin effect, to obtain Whyst by extrapolating Wtotal( f ) to f = 0 and Wexc(f). By 

correspondingly finding the number n of MOs versus Hexc( f ) = Wexc/4Jp, I realize 

that, contrary to the low-induction case shown in Fig.5.10, n(Hexc) only follow the 

linear relationship n = n0 + Hexc/V0 below a certain critical Hexc value. This 

translates into a divergence between the prediction of Wexc( f ) by Eq.5.20 and its 

actual behavior beyond a certain frequency, where the skin effect makes Eq.5.1 

invalidate. The samples given in Figure.5.12, concerning the LCS 1 sample (d 

=0.506 mm) at Jp = 1.6 T, shows that in this case one can excellently fit the 

experimental Wexc( f ) with Eq.5.20 up to about f  80 Hz, before emerging the 

skin effect. Figure.5.13 shows that the skin effect free region is around up to 

500Hz in in LCS 2 and the free skin effect region in LCS 3 is around up to 300Hz 

shown in Figure.5.14. The larger the product of conductivity and permeability, the 

earlier the appearance of the skin effect. After decided the skin effect regions of 

the three LCS samples, I proceed the loss separation procedure with the classical 

loss calculated by using Eq.5.1 and Eq.5.18, where I assume, as before, the term

μ0Hp negligible with respect to Jp and Bmax=Bp=Jp=1.6T. The results are shown in 

Figure.5.15-5.17. All the classical loss calculated by SWM (SWM)
class ( )W f

overestimate the experimental total loss, leaving no room for the excess losses. 

These results contrast the idea that the very existence of moving domain walls and 

of the related localized eddy currents should always provide an extra-loss 

contribution, whatever assumption is made regarding the uniformity of the 

distribution of the flux density at low frequencies [47]. In other words, the results 

predicted by following the SWM model are not physical and the hypothesis of a 

step-like shape Figure.5.11 is not verified. 
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Figure 5.17: DC hysteresis loops at Jp = 1.6 T in the three investigated low-carbon steels 

(see Table 5.1). 
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Figure 5.18: The quantity Wdiff = Wtotal−Wclass versus f  in 0.506 mm thick LCS-1 at 

Bp=1.6T (red line) and its theoretical counterpart Wdiff =Whyst+Wexc (blue line) where 

Eq.5.20 has been applied to compute the excess loss. Deviation between the experimental 

and the theoretical results is observed at frequencies beyond 80 Hz due to the appearance 

of skin effect. 
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Figure 5.19: The quantity Wdiff = Wtotal−Wclass versus f  in 0.507 mm thick LCS-2 at 

Bp=1.6T (red line) and its theoretical counterpart Wdiff =Whyst+Wexc (blue line) where 

Eq.5.20 has been applied to compute the excess loss. Deviation between the experimental 

and the theoretical results is observed at frequencies beyond 500 Hz due to the 

appearance of skin effect. 
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Figure 5.20: The quantity Wdiff = Wtotal−Wclass versus f  in 0.636 mm thick LCS-3 

at Bp=1.6T (red line) and its theoretical counterpart Wdiff =Whyst+Wexc (blue line) 

where Eq.5.20 has been applied to compute the excess loss. Deviation between 

the experimental and the theoretical results is observed at frequencies beyond 300 

Hz due to the appearance of skin effect. 
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Figure 5.21: Decomposition of the energy loss measured at Bp = 1.6 T in the LCS-1 

sample upon the skin-effect free frequency region. The classical loss Wclass is obtained by 

(5.1). The dash-dot line is obtained by calculating the classical loss (SWM)
classW  with (5.18), 

where Bmax = Bp. (SWM)
classW overestimates the measured loss.  
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Figure 5.22: Decomposition of the energy loss measured at Bp = 1.6 T in the LCS-2 

sample upon the skin-effect free frequency region. The classical loss Wclass is obtained by 

(5.1). The dash-dot line is obtained by calculating the classical loss (SWM)
classW  with (5.18), 

where Bmax = Bp. (SWM)
classW overestimates the measured loss.  
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Figure 5.23: Decomposition of the energy loss measured at Bp = 1.6 T in the LCS-3 

sample upon the skin-effect free frequency region. The classical loss Wclass is obtained by 

(5.1). The dash-dot line is obtained by calculating the classical loss (SWM)
classW with (5.18), 

where Bmax = Bp. (SWM)
classW overestimates the measured loss. 
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5.5 Conclusion 

In this chapter, respect to the specific debate on the adoption of the classical 

loss model, I gave an overall analysis of the classical loss models. In order to 

validate the models, I conducted the experiments on different type of non-oriented 

Fe-Si. From the observation of the analysis of the experimental data, it is shown 

that magnetic energy losses can be assessed accurately at low and high induction 

using the concept of loss separation using statistic theory of loss (STL). In 

particular at low induction, Maxwell diffusion equation can be solved Eq (5.11) 

without resorting to numerical analysis. So considering the skin effect, Eq (5.11) 

can be verified up to 10kHz in 0.194mm Fe-(3.2wt%)Si. This is, in particular, 

achieved, within the constraints posed by the skin effect, assuming uniform 

reversal of the magnetization across the sheet cross-section at the macroscopic 

scale and corresponding standard formulation for the classical loss component. By 

making measurements at Jp = 1.6 T in low-carbon steels, one can put in evidence 

that the previous assumption still holds, although the B(H) constitutive equation 

tends to emulate a step-like function. This would theoretically imply the 

occurrence of the magnetization reversal by inward motion of one-dimensional 

fronts. The ensuing formulation for the classical loss turns however to grossly 

overestimate the measured losses and can be ruled out.   
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Chapter 6 

Measurement and Prediction of the 

Magnetic Losses with Minor Loops: 

two-level PWM Regime and the 

Limits of the Analytical Approach 

6.1 Background and Introduction 

Last Chapter, I give an overall description of the classical loss model which 

under the standard sinusoidal induction waveform. However, in practice, this is 

not always the case. For electromagnetic devices, magnetic cores or portions of 

the cores are induced to non-sinusoidal waveform. In some paper, there are 

discussions about the distorted waveform, which is different from the ideal 

sinusoidal condition caused by strong material nonlinearity at high inductions, 

anisotropy (T-joints of transformers), or pulsating waveforms (teeth of stator 

cores). For this matter, there are detailed solutions in litterateurs [48-49]. On the 
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other examples, like in high-speed electrical machines or inverters, most likely are 

supplied by Pulse Width Modulated (PWM) voltages, the driving circuit itself 

generates non-sinusoidal induction. Hence, magnetic material characterizations 

are crucial for the designers of electrical machines or power electronic 

transformers under these practical situations.  Let’s focus on the latter case, the 

Pulse Width Modulated voltage supply. This technology is  prevalently to supply 

modern electrical machines because of the advantages offered by power 

electronics for driving the machines at their maximum efficiency on a wide speed 

range[39,48] . The fundamental frequency is typical in the kilohertz range, with 

carrier frequencies of several tens of kilohertz, for instant, the new SiC- or GaAs-

based power transistors modules [51-52]. This PWM waveform introduces minor 

loops in the major hysteresis cycle. It complicates the calculation of the energy 

loss. Figure 6.1 shows an example of a PWM waveform and the associated major 

and minor hysteresis cycles, for a frequency modulation index of mf =5. As shown 

in Figure 6.1, PWM waveform the minor loops nest in the major loop. Therefore, 

to calculate the total energy loss, the major loop and minor loops should be all 

considered. Prediction of the energy loss of soft magnetic loss under such non-

conventional supply conditions has been investigated in the past, assuming 

negligible skin effect [49]. However, the present devices are utilized through a 

broadband frequency range. Kilohertz range can be found in the fundamental 

frequencies[50], with several tens of kilohertz carrier frequencies. Under these 

conditions, the dynamics of both the major loop and the minor loop is strongly 

influenced by the skin effect. Based on last chapter’s approach, the classical loss 

related to cycles of small amplitude at high frequencies could be computed by 

assuming a linear magnetic constitutive equation for the material. In this way, the 

skin effect could easily be accounted for through a linear diffusion model. The 

loss separation analysis then could be proceeded correctly. And the excess loss 

versus the square root of frequency is a linear behaviour predicted by STL [33]. It 

could be suitable up to 10 kHz in non-oriented Fe-Si sheets. On the other hand, as 

http://www.baidu.com/link?url=zwwLnHmmAWEtJwm1EVYwYePgFGriH5uJZUHzqBoaDWHaMJpZPS6kn2RXcR8tcxS_9YK6DnZhctD6odxyo3tm0MCTx0ROItIxjVOZF5xNm67
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the frequency goes up, an increase of the hysteresis loss component could be 

assumed duet to the non-uniform induction profile across the sheet thickness 

infused by the skin effect.  Hence, in order to address the difficulties with PWM 

supply conditions, I continue to work on loss modelling.  

  

Figure 6.1: Example of PWM waveform and associated hysteresis cycles for a frequency 

modulation index of m f = 5. The major loop is in black. The nested minor loops are in red 

and blue. 

6.2 modelling the minor loops at high frequency and 

Experiments 

The minor loops introduced by PWM waveforms shown in Figure 6.1 have 

low amplitude upon high frequencies. As we all know, the classical loss in 

magnetic sheets under negligible skin effect and sinusoidal induction is calculated 

by the standard formula Equation 5.1. However, at sufficiently high frequencies, 

the eddy current centerfield will impose an increasingly non-uniform induction 

profile across the sheet, and it is no longer a uniform induction. In this case, 

modelling magnetic loss encounter some difficulties, because it involves the 

T= /f1
time

B

H
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solution of Maxwell equations considering a strong non-linear magnetic 

constitutive equation. The solution is generally obtained through numerical 

method, which do not lead to simple expressions for the energy loss. As minor 

loops of small relatively small amplitude, laying in the Rayleigh region, we might 

consider adopting a permeability-based magnetic constitutive equation of the 

material.  This permeability could be introduced in the electromagnetic diffusion 

equation, achieving induction profile and classical energy loss. Therefore, 

hysteresis loops at very low frequencies could be assumed as a function of peak 

induction Bp. To validate the model, three types of permeability have been 

introduced in the modelling.  

1) The same as Chapter 5.2.1, the permeability μ chosen as the ratio of the 

peak induction Bp and the peak field Hp. 

2) The complex permeability = -j    .This permeability considers the 

phase shift appearing under quasi-static conditions between the sinusoidal 

B and the first harmonic of H, which increases the hysteresis loss. Its 

modulus is still equal to Bp/Hp. It is an approximate evaluation of the 

hysteresis loop as shown in Figure 6.2. As illustrated, the imaginary part 

is identified in such a way that the hysteresis loss Whyst of the measured 

loop and that of the equivalent elliptical cycle coincide, according to the 

equation
p

2
hyst= / ( )W H    .  

3) The Rayleigh law, 
p

2
p pJ aH bH= +   .  
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Figure 6.2: Experimental quasi-static loop at peak induction Bp = 0.2 T in the NO Fe-Si 

sheet. It is approximated either by a straight B(H) line (µ = 8.13∙10-3 Tm/A) or by the 

elliptic loop of identical area associated with the complex permeability  µ = µ–jµ, with  

µ= 7.35∙10-3 Tm/A and µ = 3.47∙10-3 Tm/A 

6.2.1 Linear permeability and Complex Permeability  

A. Classical Loss Component 

The first permeability adoption is elaborated in the last chapter. The following 

sections describe the loss separation and the statistical loss introduced these two 

types of permeability. 

 Considering the minor static loop represented as a first approximation by the 

modulus of the permeability p p= /B H , the classical loss is directly obtained by 

solving Maxwell’s diffusion equation and the detailed deduction is in Chapter 5. 

The result is   

      
2

3
class

sinh sin( ) , [J/m ]
2 cosh cos

pB
W f

  

  
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−                    (6.1) 
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where 2= fd  .Here ,introduce the complex permeability  

= -j    as magnetic constitutive equation, we get 

2 1 / 1 /
= + )

2 2 2
d

j j
     

  
  + −
  =  −

            (6.2) 

Then according to these two equations, we obtain the classical loss, 

2
p

class
( ) sinh( ) ( ) sin( )( )

2 cosh( ) cos( )
B

W f         

   

       −  − − +  +
= 

   − − +
   (6.3) 

B. Hysteresis Loss Component 

To consider the hysteresis loss versus frequency behaviour changes due to the 

frequency evolution of the induction profile across the sheet thickness, we shall 

take advantage of the local character of the associated dissipation mechanism, 

which is elementary Barkhausen jumps and extremely localized eddy currents. 

First step assumed that the hysteresis loss component depends on the peak 

induction according to a power law  

                                     
hyst pW K B=                                           (6.4) 

The parameters K and α can be identified by best fitting of the hysteresis loss 

measured at Bp=0.05T, 0.1T, 0.2T.  

Then let’s consider the induction profile across the sheet thickness bp(x), 

where x is the distance from sheet midplane. Using the adopted model 

permeability, Whyst is instantly expressed as 

2

hyst p p- 2

1( , ) ( )d
d

d
W B f K b x x

d
= 

                        (6.5) 
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C． Excess Loss Component 

V0 is depend on Bp, so the excess loss is assumed dependent on the measured 

peak induction Bp, the excess loss component is calculated as  

1.5
exc p 0 p p( , ) 8.76 V ( )W B f GS B f B=  

                        (6.6) 

where the dimensionless constant G=0.1356, S is the cross-section area of the 

sheet sample, and the statistical parameter V0 is an increasing function of Bp. 

V0(BP) is predicted by means of standard loss measurements under sinusoidal 

induction at frequencies where the skin effect can be ignored. 

6.2.2 Experimental results 

  The magnetic energy loss W(f) has been measured in 0.194 mm thick Fe-(3.2 

wt.%)Si sheets. Ring samples of outside diameter 100 mm and inside diameter 80 

mm, annealed 2 hours at 760 °C after punching, have been tested at Bp values 

ranging between 50 mT and 0.2 T up to 10 kHz. The measurements have been 

performed by means of a broadband calibrated hysteresisgraph-wattmeter with 

digital control of the induction waveform. Three interpretative models have been 

applied to the obtained results.  

1) A standard model neglecting skin effect and using (1) for the calculation of 

the classical loss. 

2) A linear diffusion model using the quasi-static modulus of permeability  

= Bp/Hp.  

3) A linear diffusion model assuming the complex quasi-static permeability 

µ = µ– jµ as the material constitutive equation. 
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Figure 6.3 provides an example of experimental W(f) behaviour obtained up to 10 

kHz for Bp = 0.2 T compared with the total loss predictions based on the previous 

three approaches. It shows how the complex permeability model (3) leads to the 

best agreement with the measured W(f). The hysteresis Whyst(f) and excess Wexc(f) 

loss components calculated according to (5) and (6) are also provided. It is noted 

the slight increase of Whyst(f) at the highest frequencies. Similar fitting results are 

obtained for Bp = 50 mT and Bp = 0.1 T.  

 

Figure 6.3: Energy loss W(f) measured in a 0.194 mm thick Fe-(3.2 wt%)Si sheet up to 10 

kHz at peak polarization Jp = 200 mT. The Jp value is low enough to fulfill the Rayleigh 

law and the skin effect fully develops above a few kHz. The measured W(f) is predicted 

best by adopting the quasi-static complex permeability at Jp = 200 mT as the material 

constitutive equation. To note the increase of the hysteresis loss component Whyst with the 

frequency. 
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6.3 PWM Regime Application and Experimental Results 

Two-level PWM induction waveforms have been measured in 0.194 mm thick 

Fe (3.2 wt%)-Si ring sample. An example of the obtained induction waveform and 

hysteresis loops is shown in Figure 6.1. The waveforms are characterized by the 

modulation index mf = F/ f, the ratio of the switching frequency F to the 

fundamental frequency f, and the peak induction Bp. To estimate the energy loss, I 

decomposed the whole PWM induction loop into the major loop (black in Figure 

6.1) and the minor loops (red and blue). The period of the major loop is TM and 

the equivalent frequency is fM = 1/TM. The period of each minor loop is Tm and its 

equivalent frequency is fm = 1/Tm. All the parameters of the PWM waveform are 

summarized in Table 6.1. I modelled the related energy loss by calculation of the 

hysteresis, classical, and excess components, each of them resulting from the 

separate contributions of the major and the minor loops.  

A. Loss Associated with the Major loops 

The major loop is equivalent to a symmetric cycle of peak value Bp and 

frequency fM, obtained under triangular induction waveform. For this case, the 

skin effect can be neglected. According to literature [53], there is almost no 

differences arising at intermediate inductions, for instance, Bp =1.3T. And the loss 

calculation is easily performed. 

a. Classical Loss 

2 2
class class0 0

1( ) ( )d ( )d
12

T T
W f P t t d J t t= =                 (6.7) 

For triangular magnetization 

2 2 2
class p

4( )
3

W f d B f =                               (6.8) 

b. Hysteresis Loss 
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In the major loop, ignoring the minor loop, hysteresis energy loss is 

independent of the induction wave shape. The hysteresis component Whyst 

is obtained by extrapolating Wtotal( f ) to f = 0 

c. Excess Loss 
3 2

exc exc0 0
( ) ( )d ( ) d

T T

oW f P t t GSV B t t= =                (6.9) 

For triangular induction 
3 2 1 2

exc p( ) 8 oW f GSV B f=                     (6.10) 

So 

2 2 2 3 2 1 2
total hyst p p

4( ) 8
3 oW f W d B f GSV B f  = + +

             (6.11) 

B. Loss Associated with the Minor Loops  

Each minor loop, characterized by the bias induction Bb, the peak-to-peak 

amplitude 2· Bm, and the equivalent magnetizing frequency fm, is separately 

considered. Since fm can be of several tens of kilohertz, the skin effect cannot be 

ignored. In addition, the minor loops are not centred, and their shape changes with 

the bias Bb. However, to simplify the matter, the following assumptions are made. 

Firstly, the minor loops are swept with sinusoidal flux, with the same parameters 

(Bb, Bm, and fm). Therefore, it is possible to use the complex permeability 

formalism to define the Maxwell diffusion equation. Secondly, the minor loops 

are assumed to be congruent in B, that is, a minor loop with parameters (Bb, Bm, 

and fm) starting from the anhysteretic curve, is congruent with the minor loop 

endowed with the same parameters hanging from the major cycle. Then the static 

complex permeability m b( , )B B  is identified on the anhysteretic curve as a 

function of Bm and Bb. This procedure is described in Figure 6.4. Here, the bias 

polarization is applied by a third winding, wound on the toroid and supplied by a 

stable DC current. Five values of Bb, up to 1.4 T, and ±Bm values ranging between 

50 mT and 0.2 T have been selected. The different loss contributions from the 
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minor loops at the typical PWM working frequencies have then been calculated as 

follows. 

1) Classical Loss Component: The classical loss is calculated applying 

Equation 6.3, with the complex permeability pertaining to each specific (Bm, Bb) 

minor loop. 

2) Hysteresis Loss Component: Equation 6.5 is calculated, with the 

coefficients K and α duly considered as a function of Bm and Bb. 

3) Excess Loss Component: Equation 6.6 is applied, now with V0 depending 

on both Bm and Bb. A direct determination of V0(Bm, Bb) would require 

measurements and loss separation at each bias induction Bb, a cumbersome 

procedure. We have, therefore, resorted to an approach, discussed in [39], where 

V0 is calculated as a function of the induction bias. The following formula holds:  

2
0 m p

1( , ) 1/V B B
c

=                                   (6.12) 

where c is a suitable constant introduced in literature [39], μ is the differential 

permeability, and the brackets indicate averaging of the differential permeability 

over the given minor cycle. For small amplitude Bm, we can write 

( ) ( )
( )

( )

m b
0 0 m b

m b

, 0
, , 0

,m b

B B
V B B V B B

B B





=
 =                  (6.13) 

and we can simply proceed to implement the loss separation procedure for 

symmetric minor loops. Figure 6.3 provides an example of PWM loss 

measurement at 1 kHz in the 0.194 mm thick non-oriented Fe–Si sheet. The major 

loop is described between ±1.3 T and the modulation index m f is varied between 
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5 and 13. The experimental dependence of the PWM energy loss is predicted to 

good extent by the model. 

 

Figure 6.4: Acquisition method of the static complex permeability µ(Bm, Bb) on the 

anhysteretic curve as a function of peak and bias induction pair (Bm, Bb). The bias value is 

generated by a third winding supplied by a stable constant current. 

 

Figure 6.5: Non-oriented Fe-Si sheet of thickness 0.194 mm. Comparison of the energy 

losses measured at the peak polarization Jp = 1.3 T with PWM waveform as a function of 

the modulation index mf at the fundamental frequency f = 1 kHz with the prediction of 

the model.   
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Table 6.2: Parameters of the PWM induction regime 

Symbol Description 

Bp Peak value of the PWM induction waveform (or the major loop), assumed to be centered 

2∙Bm Peak to peak value of a given minor loop 

Bb Mean value of the induction on a given minor loop (bias)  

f Frequency of the PWM waveform 

F Switching frequency of the PWM  

mf Modulation index of the PWM, defined as mf = F/f. 

fM Equivalent frequency of the major loop, obtained as the inverse of the time spent on the major 

loop 

fm Equivalent frequency on a given minor loop, obtained as the inverse of the duration of the minor 

loop 

 

6.4 Conclusion and Discussion 

It is shown that a simplified approach to the constitutive equation of a 

magnetic sheet at low induction values, expressed in terms of complex 

permeability, in combination with the STLs, makes it possible to account in 

analytical terms for the dependence of the energy loss of minor loops up to 

frequencies involving large skin effect. It is shown, in particular, that the case of 

the two-level PWM waveform with nested minor loops can be simply treated by 

the model, which permits one to attain good agreement with the experimental 

results. 
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Chapter 7 

Energy loss in soft magnetic 

material under symmetric and 

asymmetric induction waveform 

7.1 Introduction  

Last Chapter I considering the minor loop hysteresis loss modelling. However, 

non-sinusoidal voltage waveforms are ubiquitously found in magnetic 

components employed in power electronics. Besides the distortion engendered by 

the non-linear response of the material, a variety of pulsed and rectangular 

voltages are imposed in electrical machine cores and in various types of inductive 

devices. In order to find the magnetic components and the design providing the 

best tradeoff between costs and performance, a method to predict the magnetic 

losses for realistic working conditions should therefore be devised. A case in 

point is one of symmetric and asymmetric triangular-trapezoidal induction 

waveforms, a typical regime imposed to the inductive components found in 
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Switch Mode Power Supplies, converters, and permanent magnet motors. The 

buck DC-DC converter working in continuous mode provides a fitting example 

[54]. This is a standard device used to supply a load Rload with a DC voltage Vout 

lower than the input DC voltage Vdc, where the employed inductor is excited by 

an asymmetric sawtooth current.  

This part devoted to measurement and analytical prediction of the magnetic 

losses in different materials on a broad frequency range, under symmetric and 

asymmetric triangular induction waveforms. 

 Finding a way to calculate the magnetic losses under non-conventional 

operating modes starting from a minimum set of data, either measured directly or 

provided by the manufacturer, is an appealing objective, highly suitable for 

applications, where circuit designers still rely on empirical models. On the other 

hand, the broadband loss figures pertaining to such modes, namely the rectangular 

voltage waveforms, are much more difficult to achieve by measurements than in 

the usual case of sinusoidal voltage and are not available on the data sheets.    

The standard approach of the literature is based on the Steinmetz equation and 

its many extended/improved versions, like the Modified Steinmetz Equation MSE, 

the Generalized Steinmetz Equation GSE, the Improved Generalized Steinmetz 

Equation iGSE, the Natural Steinmetz equation NSE, and the Waveform 

Coefficient Steinmetz Equation WcSE  The standard Steinmetz equation for the 

power loss under sinusoidal induction at given frequency f and peak value Bp, is 

expressed as 
pBkfP = , where k, , and  are adjustable parameters. In order to 

deal with non-sinusoidal induction, it is modified in the iGSE according to the 

equation 

tB
t
BkfP

f

d)(
d
d/1

0
i





−=                                            (7.1) 
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for a peak-to-peak induction value B. The parameter ki is here a suitable 

combination of k, , and . This formulation aims at a more realistic account of 

the dependence, lumped in the exponent , of the power loss on the induction 

derivative. However, despite the claimed successful comparison with the 

experiments, the empirical character of the Steinmetz approach is unsatisfactory 

from a scientific viewpoint and the source of practical limitations. The involved 

parameters are, for example, dependent on frequency and flux density [57] and 

the domain of application can be widened at the cost of an increasing number of 

pre-emptive measurements [58].  

A certain difficulty in physically assessing the behavior of the magnetization 

process, its evolution with frequency and the related dissipation mechanisms [55] 

is one main reason for the persisting acceptance of the Steinmetz equation in the 

engineering milieu. Actually, the problem of predicting by analytical formulation 

the magnetic loss in soft magnetic sheets subjected to non-sinusoidal induction 

waveform has since long been posed, in the absence of skin effect, under the firm 

physical background offered by the Statistical Theory of Losses (STL) [33] and 

the related loss decomposition concept [60]. Trapezoidal and triangular induction 

waveforms have been treated in [61] and related applications have been reported, 

among others, in [62], [63], [64]. Further theoretical improvements, including loss 

prediction with minor loops, were obtained in [65] and pertaining concepts were 

later invoked in [66]. With the average energy loss at a given frequency W(f) = 

P(f)/f  composed of a frequency independent hysteresis (quasi-static) Whyst, 

classical Wcl(f)  f, and excess Wexc(f)  f1/2 contributions, according to W(f) = 

Whyst + Wcl(f) + Wexc(f), and with the instantaneous dynamic power loss values 

evolving in steel sheets as Pcl(t)  (dB/dt)2 and Pexc(t)  |dB/dt|3/2, the model can 

naturally incorporate the prediction for generic periodic B(t). A recent application 

of this concept concerning the inductor loss (Sendust powder core) in a buck 

converter has been proposed, although on a restricted frequency range (40 kHz – 
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100 kHz) [67]. On the contrary, awkward adaptation of the Steinmetz parameters 

to any specific B(t) law is imposed by the empirical character of the involved 

equations [68]. It is understood, for example, that defined single values for these 

parameters cannot comply with the obviously different frequency dependence of 

static and dynamic energy losses.  

On the other hand, the STL-based model has been so far mostly applied for 

working regimes of electrotechnical interest, typically on steel sheets excited up 

to a few hundred Hz with symmetric B(t) waveforms. With growing applications 

(e.g., in electric vehicles) of high-speed rotating machines and increasing working 

frequencies in power electronics, the need for broadband modelling of magnetic 

losses, including versatile treatment of non-sinusoidal regimes (e.g., triangular 

induction with symmetric/asymmetric duty cycles) has become apparent.  

In this study, I investigate the energy loss versus frequency properties of thin ( 

0.20 mm) Fe-Si and Fe-Co steel sheets, measured up to a few kHz, of field-treated 

high-permeability nanocrystalline Finemet ribbons, and of Mn-Zn ferrite samples, 

up to the MHz range. Physical and geometrical parameters of the investigated 

samples are provided in Table 7.1. Sinusoidal, triangular symmetric and triangular 

asymmetric induction waveforms have been considered, with duty cycle a ranging 

between 0.5 (symmetric wave) and 0.1.  Starting from the W(f) behavior measured 

under sinusoidal induction, we retrieve the associated loss components and 

transform them into the corresponding components for symmetric triangular 

induction. Remarkably, the method permits one to identify, on the one hand, the 

critical frequency for the appearance of the skin effect in the steel sheets (fc  800 

Hz in Fe-Co and fc  1500 Hz in Fe-Si) and, on the other hand, to correspondingly 

manage the loss decomposition upon the whole investigated DC – 5 kHz range. 

At the same time, it is applied up to the MHz range in the nanocrystalline and 

ferrite samples. In this case, a generalized classical loss component Wcl(f) is 
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discussed and calculated. With the so predicted W(f) for symmetric triangular 

induction, we can easily derive the W(f) behavior for the asymmetric waveforms, 

combining the losses pertaining to the two different duty cycles, that is, the two 

different frequencies f1 = 1/(2aT) and f2 = 1/(2(1-a)T).  

Table 7.3:  Physical Parameters of the Investigated Material 

Material NO Fe-Si Fe-Co Mn-Zn ferrite N87 
Nanocrystalline 

ribbon 

Sample Epstein Epstein Ring Ring 

Thickness 

d (mm) 

0.194 0.201 5.09 20.4610-3 

Density 

 (kg/m3) 

7650 8120 4850 7200 

Resistivity 

 (Ω m) 

52.010-8 44.010-8 9.4 118.010-8 

Saturation 
polarization 

Js (T) 

2.00 2.35 0.50 1.25 

 

Such a broad combination of different materials and frequency ranges is, to 

authors’ knowledge, unique. The fact that high frequencies are involved in 

applications has prompted many literature investigations at such frequencies, 

generally upon a narrow band [67]. However, comprehensive modelling calls for 

wideband measurements.  

We remark that the role of the DC bias, like the one imposed by the load in a 

buck converter, is not considered in the present treatment, for the sake of 

simplicity. It could be considered, at least in the absence of deep skin effect, by a 

pure phenomenological approach [16] or with the method introduced in [69], 
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leading to the prediction of the loss with sinusoidal induction and bias starting 

from the separation without bias (symmetric minor loops). This would require, 

however, the introduction of a hysteresis model (e.g., the Preisach model) and 

numerical calculations and would be at odds with our declared aim of developing 

a simple analytical approach. The presently discussed method can actually 

provide substantial prediction of the loss under square-wave voltage, even in the 

presence of a DC bias, if one can obtain this figure via the much simpler 

measurements under sinusoidal voltage. In such a case, we can again perform the 

loss separation, because the classical loss Wcl(f) is independent of the bias, and 

simply retrieve the loss components for square-wave voltage. This will be further 

discussed in the following. 

 

7.2 Experimental Method and Procedure 

 

Figure 7.1: Hysteresisgraph-wattmeter used to measure the broadband magnetic losses of 

soft magnetic materials. The induction waveform is controlled regulating the supply 

current (measured via the voltage drop on the calibrated shunt RH) by digital feedback. 

This setup has been used to characterize both the Fe-Si and Fe-Co Epstein strips up to 5 
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kHz and the Mn-Zn and nanocrystalline ring samples up to 4 MHz. The ring samples are 

eventually characterized up to 100 MHz by a transmission line method using a Vector 

Network Analyzer (VNA). 

Non-oriented Fe-Si and Fe-Co steel sheets, 0.194 mm and 0.201 mm thick, 

respectively, have been characterized at peak induction Bp = 1.0 T up to a few 

kHz using a 200-turn Epstein magnetizer, according to the IEC 60404-10 

Standard.  A calibrated hysteresisgraph-wattmeter with digital control of the 

induction waveform, using an Agilent33220A arbitrary function generator and a 

DC-10 MHz NF-HSA4101 power amplifier for supplying the primary winding, 

was employed. Signal detection, conversion, and analysis were made through a 

12-bit 500 MHz LeCroy4054A oscilloscope and software (Agilent VEE 

environment). The digital control of the induction waveform was carried out by 

means of recursive method, where the desired voltage output u(t) is approached 

through an iterative procedure, by which the (n  + 1)th periodic voltage input e(t) 

is updated by addition of a term linearly dependent on the difference between the 

desired output and the one obtained at the nth iteration [20]. The scheme of the 

employed setup is shown in Figure 7.1. Besides the conventional characterization 

under sinusoidal induction, carried out up to f = 5 kHz, energy loss measurements 

were performed in the non-oriented steel sheets with square wave voltage and 

duty cycle a ranging between 0.5 and 0.1, as schematically illustrated in Figure 

7.2. In this case, we start by generating a rectangular voltage with the function 

generator and we proceed with the recursive procedure till the desired rectangular 

voltage V2(t) is obtained on the secondary winding. The same setup was employed 

to measure nanocrystalline Finemet ribbons of thickness d = 20.46 m and width 

w = 10 mm, tapewound as 20 mm diameter rings and annealed under a tranverse 

saturating field (induced transverse anisotropy K_|_  25 J/m3) and commercial 

N87-type Mn-Zn ring samples (outside diameter 15 mm, thickness 5.09 mm). The 

measurements in these samples were performed up to 1 – 4 MHz at Bp = 100 mT. 

The primary and secondary windings, their layout, and the connecting cables 
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ensured minimum stray parameters. High-frequency measurements, from a few 

hundred kHz to 100 MHz, were covered by a transmission line method using an 

Agilent 8753A Vector Network Analyzer, as discussed in [21]. Such method 

provides the frequency behavior of the complex permeability '''  j−=  and is 

obviously restricted to defined exciting power (10 mW in the present case) and 

sinusoidal signal. But the fluxmetric measurements show that, on approaching the 

MHz frequencies, ' and '' become independent of Bp, at least below some 100 

mT in the Mn-Zn ferrites and 500 mT in the transverse anisotropy nanocrystalline 

ribbons, and overlap with the VNA measured permeabilities.  This occurs at 

frequencies high enough to induce full relaxation of the domain wall (dw) 

displacements, much more restrained than the rotations by the dissipative effects. 

On the other hand, the rotational permeability is relatively independent of Bp, up 

to about 0.1Js – 0.2Js in ferrites and 0.5Js in the transverse anisotropy 

nanocrystalline ribbons. It is therefore found that, at sufficiently high frequencies 

(typically beyond a few hundred kHz), the energy loss fluxmetrically measured at 

given Bp value tends to coincide with the loss figure calculated from the measured 

' and '' through the equation 

22
2
pp '''

''),(





+
= BfBW        [J/m3]                               (7.2) 
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Figure 7.2: Example of investigated voltage waveforms for given peak induction Bp: 

sinusoidal, symmetric square, and asymmetric square with duty cyle a = 0.1. 

 

This property is illustrated, together with the behavior of ', in Figure 7. 3 for 

the investigated Mn-Zn ferrite and nanocrystalline samples at Bp = 100 mT. The 

upper frequency portion of the fluxmetrically obtained results (symbols) are 

shown to overlap with the lower frequency portion of the VNA determined 

permeability and loss values. ' and '' suffice then to describe, for defined Bp 

value, shape and area of the hysteresis loop (quasi-linear response) .  
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Figure 7.3: Broadband behavior of energy losses at Bp = 100 mT in the tapewound 

transverse anisotropy (K⊥ = 25 J/m3) Finemet-type nanocrystalline ribbon and in the N87 

Mn-Zn ferrite. d  thickness, <s>  average grain size. Symbols: fluxmetric 

measurements. Solid lines: measurements by transmission line and VNA and use of (2). 

The inset shows the corresponding frequency dependence of the real relative permeability 

’r. 

 

7.3 From sinusoidal to triangular symmetric and 

asymmetric induction: energy loss prediction 

In this Section we develop first a comprehensive approach to the prediction of 

magnetic losses under symmetric and asymmetric square-wave voltage in thin (d 

 0.20 mm) non-oriented steel sheets, up to 5 kHz, in Mn-Zn ferrites and in 

transverse anisotropy (K_|_  25 J/m3) nanocrystalline ribbons up to a few MHz.  
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We verify that skin effect enters into play in the steel sheets around 800 Hz in the 

Fe-Co sheets and 1500 Hz in the Fe-Si sheets. In order to extend the analysis 

beyond such frequencies, we describe the magnetic constitutive equation of the 

material at low and intermediate inductions (Bp = 1.0 T in the present 

measurements) by an equivalent complex permeability. In this way, we can 

analytically solve the Maxwell’s diffusion equation and proceed with the loss 

decomposition under sinusoidal induction. The Landau-Lifshitz equation is 

invoked for making explicit the constitutive equation of the Mn-Zn ferrite and 

nanocrystalline ring samples at high frequencies and for proceeding with loss 

decomposition. Examples of experimental and interpretative results obtained in 

these materials for Bp = 100 mT are given.  

7.3.1 Losses in non-oriented Fe-Si and Fe-Co sheets 

The energy losses under triangular induction waveform at power frequencies 

can be easily dealt with in magnetic steels sheets starting from standard 

measurements under sinusoidal induction, resorting to the STL, and formulating 

in a simple way the energy loss components Whyst, Wcl(f), and Wexc(f) under 

generic induction waveform [10], [13]. The condition of negligible skin effect, 

implying relatively low working frequencies, is, however, required. We provide in 

Fig. 4 an example concerning the energy losses measured up to f = 800 Hz in the 

0.201 mm thick Fe49Co49V2 sheet. Following the loss decomposition method, we 

identify first the waveshape independent hysteresis component Whyst(Bp) = 

limf→0W(Bp, f) and calculate the classical loss component 

=

f
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in the sheet of thickness d and conductivity . The appraisal of the dynamics 

of the Magnetic Objects (mesoscopic regions where the dws move in a tightly 
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correlated fashion [9]), made according to the STL [15], leads to the following 

general formulation for the excess loss 

         𝑊exc(𝐵p, 𝑓) = √𝐺𝑆𝑉0(𝐵p) · ∫ |
d𝐵

d𝑡
|
3/2

d𝑡
1/𝑓

0
, [J/m3]                        (7.4) 

 where G = 0.1356, S is the sample cross-sectional area, and V0(Bp) is a 

statistical parameter, increasing with Bp. This parameter lumps the role of the 

microstructure [9].  We can easily specialize (7.4) to any kind of periodic 

induction waveform without local minima (i.e. without minor nested hysteresis 

loops). For sinusoidal B(t) we obtain 
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and  
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pp0pSINexc, )(76.8),( fBBGSVfBW =  . [J/m3]                    (7.6) 

Using (7.3) and (7.4), we conclude that, once the energy loss for sinusoidal 

induction is known, we can predict the same quantity for triangular symmetric 

B(t), according to   
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with Whyst(Bp) independent of the B(t) law and the constant kexc = 8/8.76. In 

some circumstances, as shown in the following, the excess loss is found to follow 

the power law Wexc,SIN(f)  f p, with p > 0.5 [22]. In this case, the general 

relationship for Wexc applies  
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𝑊exc,TRI05(𝐵p, 𝑓) = 𝑘exc ∙ 𝑊exc,SIN(𝐵p, 𝑓)                        (7.8) 

where 𝑘exc = 4(1+𝑝)/[(2𝜋)𝑝 ∙ ∫ |cos 𝛼|(1+𝑝)2𝜋

0
d𝛼]  and  = t. It is remarked 

that a couple of measurements, for given Bp, of WSIN(Bp, f) at two frequencies 

suffice in principle to make the loss decomposition and apply (7.7). The ensuing 

prediction is shown, as an example, in Figure 7. 4a (0.201 mm thick Fe-Co sheet, 

dashed line), compared with the experimental WTRI05(f) at Bp = 1.0 T (open 

symbols) up to the maximum frequency f = 800 Hz. Fig. 4b shows, in particular, 

the measured excess losses Wexc,SIN(f) and Wexc,TRI05(f), both following the f 1/2 law. 

The latter is compared with the predicted quantity (8/8.76)Wexc,SIN(f). It is a result 

easily extrapolated to the case of asymmetric triangular B(t). It suffices to apply (7) 

twice, for the frequencies f1 = 1/(2aT) and f2 = 1/(2(1-a)T), respectively, and 

average the resulting loss figures. Fig. 4a also shows the measured (symbols) and 

predicted by (7) (dashed-dotted line) loss WTRI01(f) (symbols), for the asymmetric 

B(t) with duty cycle a = 0.1.  

(a) 
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(b) 

Figure 7.4: a) Energy loss in the 0.201 mm thick Fe-Co sheets up to 800 Hz (i.e., up to 

incipient skin effect) measured under sinusoidal (WSIN) and triangular symmetric (WTRI05) 

induction (symbols) of peak value Bp = 1.0 T. The loss components Wcl,TRI05 and Wexc,TRI05 

are obtained from the corresponding quantities Wcl,SIN and Wexc,SIN according to (7.3) and 

(7.4) and WTRI05(f) is consequently calculated by (7.7) (dashed line). The loss figure 

WTRI01 (symbols) measured with asymmetric triangular B(t) and duty cycle a = 0.1, and its 

prediction (dash-dot line) are also shown up to 200 Hz. b) Excess loss components 

Wexc,SIN and Wexc,TRI05 versus f1/2. They both follow the f 1/2 law below about 600 Hz. The 

experimental Wexc,TRI05 (full symbols) is compared with the predicted quantity 

(8/8.76)Wexc,SIN (open symbols). The dashed lines are a guide to the eye.     

 

It is apparent here, besides our capability of transposing in a simple way the 

theoretical assessment of WSIN(f) into a good prediction of WTRI01(f) by (7.7), the 

relatively restricted frequency range of our prediction. This descends from the 

limitation posed by the appearance of the skin effect above a certain critical 

frequency f0 ( 800 Hz and  1.5 kHz in the Fe-Co and Fe-Si sheets, respectively), 

with the ensuing deviations of the predictions by (7.5) and (7.6) from the actual 
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behaviors of Wcl,SIN(f) and Wexc,SIN(f). The loss decomposition procedure is indeed 

affected by the establishment of a non-uniform induction profile across the sheet 

thickness, a condition whose full treatment requires, because of the non-linear 

hysteretic constitutive magnetic equation of the material, hysteresis modelling (for 

example, the Dynamic Preisach modelling) and numerical methods [23]. It is a 

cumbersome procedure, of little practical appeal, and it might be appropriate to 

look for a much simpler approach, if worth the price to pay in terms of predicting 

accuracy. The conventional approach to the eddy current losses in a magnetic 

sheet of thickness d (-d/2  z  d/2) with AC field applied along the y-direction 

consists in solving, with appropriate boundary conditions, the Maxwell’s diffusion 

equation 
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in a hypothetical structureless material with linear DC constitutive equation B 

= H. The classical loss is obtained as 
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where fd 2 =  [9]. The gross approximation involved with a linear 

constitutive equation leads, however, to poor prediction of WSIN(Bp, f) at high 

frequencies. Aiming thus at a realistic analytical formulation approximately 

accounting for hysteresis, we emulate the constitutive magnetic equation, as given 

by the quasi-static hysteresis loop of peak induction Bp, by an equivalent complex 

permeability, that is, an elliptical loop of identical area 

))'''/(''()( 222
pphyst  += BBW  and same Bp value. With 𝐵p = √𝜇′2 + 𝜇′′2 𝐻p, we 

can also write '')( 2
pphyst  HHW = . With these two independent conditions, we 
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obtain the real and imaginary permeability components as ' = 0.0159 TA-1m-1 

and '' = 0.0121 TA-1m-1 in the Fe-Co sheets, '=0.0100 TA-1m-1 and '' = 0.0078 

TA-1m-1 in the Fe-Si ones. Under quasi-static conditions, we assign these 

relationships both local and macroscopic character. The local static relationships 

are defined, over the here investigated frequency range, once and for all. The 

macroscopic ones, involving the applied field and the induction averaged over the 

sample cross-section, evolve with frequency. I am interested in predicting such an 

evolution. The involved approximations are obviously expected to apply better at 

low inductions and to comply with the frequency response of the material up to 

relatively mild non-uniform induction profiles. By introducing the previously 

defined complex  in the diffusion equation (7.9), now written as 
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with the appropriate boundary conditions, we eventually arrive at the 

following analytical formulations for the frequency dependence of hysteresis and 

classical losses in the presence of skin effect  
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where the complex quantity  = ' + j ′′  is related to the complex 

permeability through to the equation    
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Equations (7.12) and (7.13) reduce to Whyst(Bp) = limf→0W(Bp, f) and (7.5), 

respectively, for f <  5/(||d 2). The full procedure by which the diffusion 

equation (7.11) leads to (7.12) and (7.13) is discussed in the Appendix. We have 

no equivalent formulation for the excess loss component Wexc(Bp,  f), which can 

only be obtained by making the difference between the experimental loss W(f) and 

the sum Whyst(Bp,  f) + Wcl,SIN(Bp,  f).  An example of the so obtained loss 

decomposition is shown, for the Fe-Co and Fe-Si sheets measured at Bp = 1.0 T up 

to 5 kHz, in Figure 7.5 and 7.6, respectively. Under increasing frequencies, the 

sample falls into a condition of non-uniform induction profile. By the previous 

equations we obtain, in particular, that Whyst starts to increase and Wcl,SIN(f) attains 

a less than linear increase with f beyond about 800 Hz  in Fe-Co and 1500 Hz in 

Fe-Si. This contrasts with the behaviors predicted for these quantities by the 

conventional equation (7.5) (dashed lines).  

We connect now the so-defined broadband loss components Whyst(f), Wcl,SIN(f), 

and Wexc,SIN(f) with the same quantities associated with the symmetric and 

asymmetric triangular induction. We calculate WTRI05(f) with (7.7), by posing 

Wcl,TRI05(f) = (8/2)Wcl,SIN(f) and Wexc,TRI05(f) = (8/8.76)Wexc,SIN(f) over the full 

frequency range. The total loss for triangular B(t) is thus predicted, as previously 

discussed, as shown in Figure 7.7 and Figure 7.8 for the Fe-Co and Fe-Si sheets, 

respectively. Here, in particular, the experimental broadband energy losses WTRI(f) 

associated with the duty cycles a = 0.5, 0.2, and 0.1 (symbols) are shown to 

compare well with the prediction made by (7.7), starting from the calculated 

sinusoidal components Whyst(f), Wcl,SIN(f), and Wexc,SIN(f).  

 

 

 



112 Energy loss in soft magnetic material under symmetric and asymmetric 
induction waveform 

 
 

 

 

Figure 7.5: Broadband loss analysis in the 0.201 mm thick Fe-Co sheets of Figure 7.4, 

carried out under sinusoidal induction of peak value Bp = 1.0 T up to 5 kHz. Whyst(f) and 

Wcl,SIN(f) are calculated using (7.12) and (7.13), based on the assumption of a constitutive 

B(H) equation defined in terms of complex permeability. To note the increase of Whyst and 

the non-linear behavior of Wcl,SIN versus frequency. The dashed lines show the frequency 

dependence of Whyst(f) and Wcl,SIN(f) predicted disregarding the skin effect. This actually 

starts to affect the magnetization process beyond about 800 Hz. 
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Figure 7.6: As in Figure 7.5 for the 0.194 mm thick non-oriented Fe-Si sheets. The 

components Whyst(f) and Wcl,SIN(f) are calculated using (7.12) and (7.13). The 

effect of the frequency dependent non-uniform induction profile becomes 

apparent beyond about 1500 Hz, where the conventional prediction disregarding 

the skin effect (dashed lines) departs from the abovementioned calculation. 
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Figure 7.7: The energy loss WSIN(f) measured in the Fe-Co sheets under sinusoidal 

B((t) for Bp = 1.0 T is compared, up to 5 kHz, with the same quantity, measured at 

the same Bp value under symmetric triangular (WTRI05(f)), and asymmetric 

triangular B((t), with duty cycles 0.2T (WTRI02(f) and 0.1T (WTRI01(f) (symbols). 

The dashed fitting lines (WTRI,predicted) are obtained starting from the 

decomposition of WSIN(f), made according to (7.12)  and (7.13), and applying (7.7) 

twice, for the frequencies f1 = 1/(2aT) and f2 = 1/(2(1-a)T), respectively. The inset 

compares the experimental quasi-static hysteresis loop at Bp = 1.0 T with the 

equivalent elliptical loop (same Bp value and area), analytically defined through 

the real ' and imaginary '' permeability components. 
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Figure 7.8: The energy loss WSIN(f) measured in the Fe-Si sheets under sinusoidal 

B((t) for Bp = 1.0 T is compared, up to 5 kHz, with the same quantity, measured at 

the same Bp value under symmetric triangular (WTRI05(f)), and asymmetric 

triangular B((t), with duty cycles 0.2T (WTRI02(f) and 0.1T (WTRI01(f) (symbols). 

The dashed fitting lines (WTRI,predicted) are obtained starting from the 

decomposition of WSIN(f), made according to (7.12)  and (7.13), and applying (7.7) 

twice, for the frequencies f1 = 1/(2aT) and f2 = 1/(2(1-a)T), respectively. The inset 

compares the experimental quasi-static hysteresis loop at Bp = 1.0 T with the 

equivalent elliptical loop (same Bp value and area), analytically defined through 

the real ' and imaginary '' permeability components. 
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Figure 7.9: DC hysteresis loops of the investigated Mn-Zn ferrites and transverse 

anisotropy nanocrystalline Finemet ribbons at Bp = 0.1 T. We describe their 

evolution with frequency in terms of complex permeability, so that the energy loss 

W(Bp, f) can, in particular, be expressed by (7.2). 
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7.3.2 Nanocrystalline ribbon and Mn-Zn ferrite Broadband 

analysis 

anisotropy nanocrystalline ribbons and the Mn-Zn ferrites extend deeply in 

the MHz region, as shown in Figure 7.3. Here, in particular, one can appreciate 

the excellent frequency response of the nanocrystalline samples, which combine 

high Snoek’s product with low losses at all frequencies. The low value of the 

anisotropy constant and the ensuing prominent role of magnetization rotations are 

indeed instrumental in promoting such behavior of Mn-Zn ferrites and 

nanocrystalline alloys. However, the quantitative assessment of the loss properties 

over the many-decade frequency range useful for applications reveals a complex 

task. To simplify the matter, quasi-linear DC constitutive equation is therefore 

assumed, so that the concept of complex permeability and related energy loss, 

according to (7.2), applies [70], [71], [72]. The shape of the actually measured DC 

hysteresis loops (Bp = 0.1 T), shown Figure 7.10, ensures that the description of 

their frequency evolution in terms of complex permeability provides a good 

approximation. 

 

 

 

 

 

 

 



118 Energy loss in soft magnetic material under symmetric and asymmetric 
induction waveform 

 
 

  

Figure 7.10: Loss decomposition up to 100MHz in the N87 Mn-Zn ferrite and in 

the transverse anisotropy (K⊥ = 25 J/m3) nanocrystalline Finemet ribbon 

(sinusoidal B(t)). The experimental W(f) is shown by symbols (fluxmetric) and 

solid lines (VNA). The rotational loss component Wrot, which plays the role of 

classical loss Wcl, is theoretically predicted and separated from the domain wall 

contribution Wdw = Whyst + Wexc. Wdw is bound to decrease and eventually 

disappear at high frequencies, following the relaxation of the domain wall 

displacements. The excess loss Wexc = Wdw – Whyst., shown in the inset, displays a 

power law dependence on frequency Wexc  f n, with n > 0.5.  
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 Fast stroboscopic Kerr observations performed on the transverse anisotropy 

nanocrystalline ribbons show a relatively sharp transverse domain structure and 

both rotational and dw processes in response to an applied longitudinal AC field 

[73]. The activity by the transverse dws is caused by magnetostatic conditions at 

the ribbon edges evolving with the field amplitude. The dw displacements, which 

do not contribute to net sample magnetization, are observed to progressively relax 

under increasing frequency, eventually coming to a halt on approaching the MHz 

range. Here, only the rotations survive. Consequently, the loss phenomenology 

attains a classical character, the one pertaining to a quasi-homogeneous rotational 

process. We note, however, that the slope of the W(f) curve in the MHz range 

(Figure 7.3) is higher than the f 1/2 law predicted by the Maxwell’s equations for 

the investigated metallic ribbons . Such a power law would be in fact expected to 

hold beyond about 1 MHz, where the skin effect is predicted to appear, according 

to (7.9) and the value of the DC permeability r,DC = 27103. Actually, we know 

that the magnetic constitutive equation pertaining to the rotations evolves at high 

frequencies in obedience to the Landau-Lifshitz (LL) equation [74]. By 

introducing then the solution of the LL equation, expressed in terms of complex 

permeability, in the Maxwell’s diffusion equation (7.11), we can eventually derive 

an analytical expression for the rotational classical loss Wrot(Bp, f). This approach 

is fully discussed in [71]. It leads to the loss decomposition procedure for 

sinusoidal induction, shown up to 100 MHz in Figure 7.10, where we separate 

Wrot(f) from the d.w. contribution Wdw(f) by subtracting it from the measured loss 

Wdw(f) = W(f) – Wrot(f).  We note in Figure 7.10 the drop of Wdw(f) beyond a few 

hundred kHz, following the relaxation of the dw processes. We can further 

subdivide Wdw(f) into the static and dynamic loss components Wdw(f) = Whyst + 

Wexc(f). The latter is shown in the inset of Fig. 10. It exhibits a power law 

dependence on frequency Wexc(f)  f  0.75, against the typical Wexc(f)  f 0.50 

displayed by the steel sheets in the absence of skin effect (see Figure 7. 4b).  



120 Energy loss in soft magnetic material under symmetric and asymmetric 
induction waveform 

 
There are good phenomenological similarities between the magnetic loss 

behavior of the transverse anisotropy nanocrystalline ribbons and the sintered Mn-

Zn ferrites, because of a similarly important role of the moment rotations. In 

ferrites, rotations are favored by the intrinsically low value of the 

magnetocrystalline anisotropy, ensuing from the phenomenon of anisotropy 

compensation [75]. But the major dissipation mechanism in ferrites is related to 

the spin damping and the eddy currents play a role only at very high frequencies 

in sufficiently large samples [70]. Again, the LL equation is invoked for dealing 

with the rotational processes. Real and imaginary rotational permeabilities are 

calculated as solutions of the LL equation by assuming distributed effective 

anisotropy fields, that is, ferromagnetic resonance frequencies changing from 

grain to grain.  The rotational (classical) loss Wrot(Bp, f) is  then obtained with 

(7.2), after suitable integration over the distribution functions for amplitude and 

orientation of the anisotropy fields. A detailed discussion on the physical 

assumptions and the performed calculations, including the possible contribution 

by eddy currents in sufficiently thick specimens, is given in [70] [72]. Figure 7.10 

shows the so-obtained loss decomposition in the N87 Mn-Zn ring samples. Wdw(f) 

drops beyond a few MHz, denoting full relaxation of the dw processes. It is also 

noted that Wexc(f)  f  0.82.  

With the so-calculated loss components Whyst, Wrot,SIN(f) (i.e. Wcl,SIN(f)), and 

Wexc,SIN(f), we apply again (7.7), in order to predict W(f) in the nanocrystalline and 

ferrite samples under triangular symmetric and asymmetric B(t). Whyst is 

independent of frequency and B(t) waveshape. Non-uniform induction profile due 

to the skin effect can in fact be safely excluded, at least in the frequency range 

where the contribution by Whyst is not negligible . Eddy current losses are actually 

shown to play a role in the 5 mm thick N87 ferrite samples only beyond a few 

MHz. At the same time, the skin effect in the nanocrystalline ribbon is restrained 

by the exchange field [76]. In order to derive WTRI(f) from the decomposed  WSIN(f) 
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we start by posing Wrot,TRI(f) = (8/2)Wrot,SIN(f), a simplifying and relatively crude 

approximation for the Mn-Zn ferrite, where the slope of the predicted Wrot,SIN(f) 

undergoes a rapid change around 1-2MHz. We take then kexc according to (7.8) 

and the obtained power law Wexc,SIN(f)  f p (inset in Fig. 10), to find kexc = 0.86 

and kexc = 0.84 for the nanocrystalline and Mn-Zn samples, respectively. The 

losses for triangular symmetric and asymmetric induction are finally calculated 

through (7.7) and compared with the experimental WTRI05(f), WTRI02(f), and 

WTRI01(f) behaviors, as shown in Figure 7.11 and Figure 7.12 for the 

nanocrystalline and the Mn-Zn samples, respectively. 
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Figure 7.11: The broadband (DC - 1 MHz) energy loss behavior at Bp = 100 

mT under triangular symmetric (WTRI05) and asymmetric (WTRI01, duty cycle a = 

0.1) induction, measured in the nanocrystalline Finemet transverse anisotropy 

tapewound ring sample (symbols), is compared with the same quantity WSIN(f) 

(line and symbols) measured with sinusoidal induction. By making the loss 

decomposition of WSIN(f), illustrated in Figure 7.10, and applying (7.7), WTRI05(f)  

and WTRI01(f) are predicted (dashed lines). 
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Figure 7.12:  Same as Fig. 11 for the Mn-Zn ferrite. Besides the loss under 

triangular symmetric induction WTRI05(f), the same quantity for asymmetric 

induction, with duty cycles a = 0.2 (WTRI02(f)) and a = 0.1 (WTRI01(f)) is measured 

(symbols) and predicted (dashed lines), starting from the loss components of 

WSIN(f) and applying (7). 

 

It might be argued that the here proposed method would not fully cover the 

case where a DC field bias is applied to the magnetic core. However, this problem 

can be mitigated to some extent. Regarding the Fe-Si sheets, we can estimate, 

based on the study reported in [19], which shows that the bias mainly affects Whyst, 

that at intermediate frequencies (say around 2 kHz) and Jbias = 0.75 T, we can 

expect an increase of the loss of the order of 5 % for Jp =  1.0 T. In the Fe-Co the 
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increase should be lower, of the order of 2 %, for a same Jp swing and Jbias = 1.5 T. 

Negligible variation is expected in the nanocrystalline ribbons, because of their 

extended J(H) linearity, while a substantial effect might be appreciated in the Mn-

Zn ferrites. It is nevertheless important to stress that the classical loss component 

Wcl(Jp, f), (be it due to eddy currents or spin damping) is quite independent of the 

field bias. Consequently, it suffices to measure W (f) under DC bias and sinusoidal 

induction and calculate Wrot,SIN(Jp, f), as previously discussed, to achieve loss 

separation. It is then an easy matter to pass, according to (7), to the 

symmetric/asymmetric square voltage regime. Such a regime, with its extended 

harmonics spectrum, would prove quite challenging for direct measurements. 

Good practical advantage is thus achieved by relying on the much more affordable 

sinusoidal induction measurement.  

7.4 Conclusion 

Symmetric and asymmetric squared voltage waveforms are frequently 

imposed on inductive components for power electronics. The usual approach to 

the prediction of the magnetic losses under such working conditions is based on a 

suitable generalization of the Steinmetz’s equation. The fully empirical character 

of such equation calls, however, for the introduction of a range of fitting 

parameters, depending on peak induction level, frequency, and duty cycle. 

Besides bearing undistinguished scientific value, this method results into 

somewhat restricted domain of application under a reasonably restricted range of 

parameters. In this work, we demonstrate that, starting from the physical 

background provided by the Statistical Theory of Losses and the associated 

concept of loss decomposition, we can provide a good predicting approach to the 

frequency dependence of the magnetic losses under symmetric and asymmetric 

triangular induction, upon a remarkably broad range of frequencies and with 

different types of soft magnetic materials. We show, in particular, that this is 
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achieved using only basic knowledge of the material response under sinusoidal 

flux (i.e. voltage), by which the loss components (hysteresis, classical, and excess) 

are derived. Such a response is, in turn, predictable with minimum information on 

the Fe-Si and Fe-Co sheets (conventional measurement of the quasi-static 

hysteresis loop and the energy loss at 50 Hz), while broadband fitting for 

sinusoidal flux is desirable in the Mn-Zn samples and the nanocrystalline alloy. 

The fundamental step, in any case, is the derivation of the classical loss, for which 

analytical formulation is provided.  

Fe-Si and Fe-Co non-oriented sheets have been characterized up to about 5 

kHz at peak induction Bp = 1.0 T. By entering the kHz range, skin effect takes 

place in these sheets. Consequently, modelling is performed exploiting the 

additional knowledge of the DC hysteresis loop and the best fitting of it using the 

complex permeability. This plays the role of constitutive magnetic equation, to be 

used in the calculation of the classical loss Wcl,SIN(f) by the Maxwell’s diffusion 

equation.  

Transverse anisotropy nanocrystalline ribbons and Mn-Zn ferrite samples 

have been measured at Bp = 100 mT up to about 1 MHz. Again, loss 

decomposition for sinusoidal B(t) is performed, but the calculation of Wcl,SIN(f) 

upon the involved high-frequency range calls for the calculation of the dynamic 

constitutive equation of the material. This concerns, in particular, the rotational 

processes, largely prevailing on the domain wall displacements. We thus obtain 

the complex permeability versus frequency as a solution of the Landau-Lifshitz 

equation. This provides a frequency dependent magnetic constitutive equation. 

With the loss components for sinusoidal voltage at our disposal, the response of 

the material to imposed symmetric and asymmetric square-wave voltage can thus 

be predicted, making use of a couple of known constants. The role of the DC field 

bias, though not explicitly accounted for, is predictably decreasing with increasing 

frequencies and can be approximately estimated relying on the determination of 
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the bias-independent classical loss under sinusoidal voltage and the ensuing loss 

separation.  



8.1 Introduction 127 

 

Chapter 8 

Effect of punching and water-jet 

cutting methods on magnetization 

curve and energy losses of non-

oriented magnetic steel sheets  

8.1 Introduction 

Non-oriented fully processed magnetic steel sheets are assembled to form the 

core of the rotating machines after a cutting operation, without intervening stress-

relief annealing. The degradation of the magnetic properties introduced by cutting, 

especially important across the stator teeth [77], is well recognized and is 

empirically accounted for in the machine design by introducing a building factor. 

The direct detrimental consequence of cutting is the relevant magnetic hardening 

of the region close to the cutting line, which propagates in the sheet through 

residual stresses up to a few millimeters from the cutting edge [78-81]. This 
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additionally imposes, especially at low inductions, a non-uniform magnetization 

profile across the width of the cut strip.  

The complex problem of modelling the effect of cutting on the magnetic losses 

is tackled in general by numerical methods [77] [81-83], focusing on the induction 

profile and the retrieval of the loss contributions from the damaged and the 

undamaged regions.  Little or no attempt is made to separately determine and 

physically assess the loss components [83-85].  

We have measured the magnetic properties of two different types of non-

oriented Fe-Si sheets, where strip samples of widths ranging between 5 mm and 

30 mm have been obtained either by conventional guillotine punching or abrasive 

water-jet cutting. DC magnetization curves and energy losses at peak polarization 

values 1.0 T and 1.5 T up to 400 Hz have been determined versus strip width and 

analyzed according to the statistical theory of losses (STL). It is shown that a 

simple inverse dependence on the strip width can fully describe the behavior of 

normal magnetization curve and hysteresis loss, whatever the cutting method. One 

can predict in this way, from a minimum set of measurements, how these 

quantities evolve from pristine conditions to full material degradation in narrow 

cut strips. The dynamic loss behavior is in turn interpreted, following the STL, in 

terms of distribution of the local coercive fields  [86].   

8.2 Experimental Results and Discussion  

8.2.1 Sample preparation and loss measurements.  

Non-oriented Fe-(3 wt%)Si 0.638 mm thick (M400-65A) and 0.470 mm thick 

(M400-50A) magnetic sheets were cut as 300 mm long strips using either an in-

house guillotine or an abrasive water- jet machine (MAXIEM 1530, 0.2 mm 

diameter garnet particles). 300 mm long strips  of width w = 30, 15, 10, 7.5, and 5 

mm were prepared. They were measured using a single strip tester, where a 300 
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mm long 30 mm wide sample, made placing side-by-side the appropriate number 

of strips, according to their width, was inserted between the pole faces of a flux-

closing double-C laminated yoke, built of 0.30 mm thick grain-oriented Fe-Si 

sheets. The magnetic field, supplied by a 173-turn solenoid, was associated with a 

150 mm magnetic path length, equal to the distance between the pole faces of the 

yoke. The secondary voltage was detected by a 20 mm long 101-turn pickup coil 

placed at the center of the strip under test. Hysteresis loops and losses were 

measured under sinusoidal induction in the frequency range 2 Hz – 400 Hz by 

means of a calibrated hysteresisgraph-wattmeter, endowed with digital control of 

the induction waveform [87] and using a 12-bit 500 MHz HDO4054 LeCroy 

oscilloscope for signal acquisition. Energy loss W(f) versus frequency behaviors 

were obtained at the peak polarization values Jp = 1.0 T and 1.5 T. 

By cutting the strip samples at decreasing widths, increase of the energy loss, 

ensuing from a correspondingly higher proportion of strain-hardened material, is 

always observed upon the whole frequency range, as shown in the example of 

Figure 8.1, concerning the guillotine punched M400-50A sheet. Stronger relative 

deterioration is observed for Jp = 1.0 T. Quite similar behaviors are displayed by 

the losses measured on the punched M400-65A sheet, while in all cases milder 

magnetic hardening is demonstrated upon cutting by the water-jet method. The 

lowest-lying W(f) curves (strip width w = 30 mm) are subjected in Figure 8.1 to a 

decomposition procedure, where it is posed W(f) = Wh + Wcl(f) + Wexc(f), with Wh, 

Wcl(f), and Wexc(f) the hysteresis (quasi-static), classical, and excess loss 

components, respectively. Here the classical loss is calculated according to the 

following standard formula, assuming uniform induction across the sample cross-

section [84], then 

 )/()6/()( 2
p

22
cl  fJdfW = ,         [J/kg]                    (8.1) 

where d is the sheet thickness,  is the density of the material, and  is the 

conductivity. These quantities are all unaffected by cutting (see Table 8.1). 

Equation (8.1) requires some comments. First, it is noted that, with the field 
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strengths involved in the present experiments, the induction Bp, usually appearing 

in this equation, coincide with the polarization Jp. It is also remarked that Eq. (8.1) 

calls for uniform induction across the sample cross-section and cannot be applied 

beyond a critical frequency fs, where the skin effect cannot be neglected. fs is 

identified by analyzing the frequency dependence of Wexc(f) according to the STL 

[33]. It is fs slightly larger than 300 Hz for the measurements shown in Fig. 1. It is 

finally stressed that the approximation of indefinitely extended sheet, required for 

formulating Eq. (8.1), generally applies [13], because the strip width is always w >> 

d.  This condition also justifies the use of the measured Jp in Eq. (8.1), neglecting 

the decrease of the local polarization value at the cold-worked strip edges. In fact 

Wcl(f) chiefly relates to the dissipation by the surface eddy currents, which depend 

on the total measured flux rate of change throughout the whole sample cross-

section. 

 
Figure 8.1:Non-oriented M400-50A NO Fe-Si sheets. Energy loss versus frequency 

measured at peak polarization Jp = 1.5 T (a) and Jp = 1.0 T (b) on strip samples cut by 

guillotine punching. The strip widths w range between 5 mm and 30 mm. The inset 

provides a magnified view of the low frequency results. Loss decomposition is sketched 

for the 30 mm wide strip.    
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Table 8.4: Physical parameters of the investigated non-oriented steel sheets 

 

 

8.2.2 Quasi-static magnetic behavior  

The detrimental effect of cutting on the magnetic properties of the Fe-Si sheets 

is apparent in the evolution of the measured normal magnetization curves versus 

strip width shown in Figure 8.2a (M400-65A sheet, symbols). Progressive 

deterioration of the magnetic permeability upon decreasing width is in fact 

observed, consistent with the increase of the hysteresis loss Wh (i.e. coercive field) 

shown in Figure 8.1. Such evolution can be quantitatively understood by 

schematically assuming that cutting generates two narrow bands of strain-

hardened material at the strip edges (see inset of Figure 8.2b) [78,81,83]. By 

approximating the decline of the magnetization across such bands with a step-like 

function, we identify, for any given field H, the magnetization values Jpc in the 

hardened side bands of width Lc and Jp0, with Jp0 > Jpc, across the inner unscathed 

region of width w0 = w - 2Lc. The measured magnetization Jp, obtained as the 

weighted sum of Jp0 and Jpc, follows then an inverse dependence on w       

w
LJJJJ c

pcp0p0p
2)( −−=     ,                                        (8.2) 

Non-oriented 
Fe-(3 wt%)Si 

steel sheet 

Thickness 
d (mm) 

Density 
 (kg/m3) 

Resistivity 
 ( m) 

Grain size 
<s> (m) 

M400-65A 0.638 7650 44.010-8 97 

M400-50A 0.470 7700 42.010-8 127 



132 Effect of punching and water-jet cutting methods on magnetization 
curve and energy losses of non-oriented magnetic steel sheets 

 
under the condition w  2Lc, where Jp = Jpc for w  2Lc. Consequently, by 

measuring the magnetization curve at two generic strip widths, one can calculate 

the quantities Jp0 and (Jp0 - Jpc)Lc as a function of H for any width and trace the 

fitting curves given by Eq. (2). They are shown in the examples provided in 

Figure 8.2b, corresponding to different H values. The Jp values measured on the 

experimental J(H) curves for the different widths w (symbols) are here observed 

to follow to very good extent the hyperbolic function (8.2). We then see how, for 

w >> 30 mm, the limiting normal magnetization curve Jp0(H) associated with the 

pristine material (upper dashed curve in Figure 8.2a) can be retrieved. The width 

2Lc at which the strip becomes fully degraded can also be approximately predicted, 

as sketched in Figure 8.2b. We estimate 2Lc  4.2 mm for the punched M400-65A 

sheets. The lowest lying magnetization curve in Figure 8.2a (dashed line) is 

correspondingly calculated with Eq. (2) (w = 2Lc = 4.2 mm). Pretty similar results 

are obtained in the punched sheet M440-50A. Figure 8.3 shows that an identical 

interpretative scheme applies to the effect of abrasive water-jet cutting. It points to 

reduced magnetic hardening and degraded width 2Lc = 3.2 mm, compared to 

punched strips 
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Figure 8.2: a) DC normal magnetization curves measured versus width w of the punched 

strips in the NO Fe-Si M400-65A sheets (transverse direction, symbols). b) The 

polarization values (symbols) measured under defined field strengths H decrease with 

decreasing strip width w according to the hyperbolic law (8.2) (solid lines). This law is 

obtained assuming the simplified scheme shown in the inset, where the damaged region 

of the strip is confined to the two lateral bands of width Lc, where Jpc < Jp0. The dashed 

lines in a) are the magnetization curves predicted by Eq. (8.2) for undamaged (w >> 30 

mm) and fully damaged (w = 4.2 mm) cut strips. 
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Figure 8.3: Normal magnetization curves obtained in the NO Fe-Si M400-50A sheets 

subjected to abrasive water-jet cutting (rolling direction). a) Measured DC normal 

magnetization curves and their limiting behaviors (w >> 30 mm and w = 2Lc = 3.2 mm, 

dashed lines). b) Symbols: polarization values measured under given field strengths. 

Solid lines: evolution of the polarization with the strip width w under defined field H 

predicted by Eq. (8.2). 

 

A same conclusion is drawn from the behavior of the hysteresis (quasi-static) 

loss Wh, a quantity directly connected with the coercive field. It is obtained by 

extrapolating the W(f) curves to f → 0. Using again the simplifying scheme 

previously adopted for predicting Jp versus w, according to Eq. (8.2), we relate the 

measured loss density Wh to the contributions Wh0 and Whc pertaining to the 

unscathed and damaged regions, respectively 

w
LWWWW c

h0hch0h
2)( −+= ,                                      (8.3) 

for w  2Lc. The overall dependence of Wh on w, measured upon both punching 

and water-jet cutting at Jp = 1.5 T and 1.0 T in the M440-65A and M440-50A 
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sheets, is shown in Figure 8.4. The experimental normalized value Wh,norm = 

Wh/Wh0 is in particular represented here (symbols). It follows the hyperbolic 

dependence on w predicted by (8.3) using the previously estimated width Lc 

(Figure 8.2 and 8.3) of the strain-hardened band. The upper limit Whc predicted for 

the fully damaged strip is then obtained as shown in Figure 8.4a and 8.4b.  One 

can remark the lower magnetic deterioration brought about by water-jet cutting 

with respect to punching and, consistent with the behavior of the magnetization 

curves (Figure 8.2a and 8.3a), the larger relative increase occurring at  Jp = 1.0 T. 

We observe indeed that the normal curves tend to coalesce around and beyond Jp 

= 1.5 T, revealing the participation at high inductions of the upper tail of the 

distribution of the local coercive fields and the nascent role of the magnetization 

rotations. Both phenomena are negligibly affected by strain hardening.     

 

8.2.3 Excess losses  

Having clarified the role of the classical loss component, basically unaffected 

by the cutting operation, we analyze the effect of cutting on the dynamic losses by 

focusing on the excess loss Wexc(f) = W(f) - Wcl(f) – Wh, where Wcl(f) is given, at 

frequencies lower than the threshold for the occurrence of the skin effect, by Eq. 

(8.1). The general outcome of the experiments is that also Wexc(f) tends to increase 

upon sheet cutting, again to a larger relative extent at Jp = 1.0 T. The excess loss 

descends from the discrete nature of the magnetization process, which is 

theoretically incorporated in the concept of “magnetic objects” (MO) and the 

distribution of their local coercivities [86]. Figure 8.5 provides examples of the 

evolution of Wexc(f) versus strip width in the punched M440-65A and M440-50A 

sheets (symbols), The dashed fitting lines are calculated, according to Ref. [33], 

by the equation  
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where n0 is the number of MOs simultaneously active in the sample cross-

sectional area S in the limit f → 0 and G = 0.1356. V0 is a statistical parameter 

associated with the distribution of the local coercive fields for the MOs.  n0 and V0 

are experimentally identified by finding Wexc(f) as Wexc(f) = W(f) - Wh - Wcl(f) and 

plotting the number n of MOs, obtained as n = 4GSJp / Hexc, where Hexc = Wexc(f) 

/4Jp, versus Hexc [10]. At frequencies lower than the threshold for the skin effect, 

n(Hexc) satisfies the linear relationship n(Hexc)  = n0 + Hexc/ V0 and from intercept 

and slope of this straight line we obtain the values of the parameters n0 and V0. 

Examples of this procedure are discussed in Refs. [33]. V0 depends on the 

coercivity of the material and the character of the domain structure, the wider the 

domain wall spacing the larger V0. The effect of strain hardening by cutting is 

likely one of increasing, on the average, the parameter V0, following the increase 

of the coercive field, that is, of Wh (Figure 8.4). This is what fitting of Wexc(f) by 

Eq. (8.4) reveals. For example V0 increases from V0  0.2 A/m to V0  1.8 A/m in 

the punched M400-65A sheets on passing from w = 30 mm to w = 5 mm. It is 

observed in Figure 8.5 that Eq. (8.4) provides excellent fitting of Wexc(f) up to a 

limiting frequency, where the skin effect is appreciated and the Eq. (8.1) for the 

classical loss component becomes inaccurate. Fitting of Wexc(f) by Eq. (8.4), while 

expectedly affected by earlier deviation in the thicker sheets (Figure 8.a), provides 

a simple tool for detecting the appearance of the skin effect.    
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Figure 8.4: Measured hysteresis loss Wh,norm  = Wh / Wh0 (symbols), normalized to the loss 

value predicted for the pristine sheet, versus strip width. Both punched and water-jet cut 

sheets are considered at Jp = 1.5 T and 1.0 T. The continuous lines are predicted by Eq. 

(3). The vertical dashed lines identify the upper loss limit, which corresponds to the fully 

damaged strip of width 2Lc. 

 

 

 

 

 



138 Effect of punching and water-jet cutting methods on magnetization 
curve and energy losses of non-oriented magnetic steel sheets 

 
8.3 Conclusions  

The detrimental effect of strip cutting by guillotine punching and water jet 

abrasion on the magnetization curve and energy losses in non-oriented Fe-Si 

sheets can be assessed by a simple interpretative scheme, where these quantities 

evolve as weighted contributions of the damaged bands at the strip edges and the 

undamaged material portion. A hyperbolic dependence on the strip width of the 

magnetization at given applied field and of the hysteresis loss (i.e. coercive field) 

at given peak polarization value is therefore predicted and shown to excellently 

comply with the experimental results. It is shown, in particular, that the limiting 

magnetization curves and hysteresis (quasi-static) losses for the fully damaged 

and the pristine sheets can be retrieved from knowledge of the behavior of these 

quantities at two generic strip widths. The role of cutting on the dynamic energy 

losses, measured up to 400 Hz, is assessed by formulating the frequency 

dependence of the excess loss component according to the statistical theory of 

losses. This shows that strain hardening by cutting reflects into the statistics of the 

local coercive fields, eventually leading to increased excess losses.        
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Chapter 9 

Conclusions and Future Research 

9.1 Summary 

In this thesis, the magnetic materials properties and broadband magnetic loss 

of traditional non-oriented silicon steel sheets, iron-cobalt-vanadium alloy sheets, 

Mn-Zn ferrite and nanocrystalline strips are systematically studied. The research 

results obtained in the thesis are as follows: 

(1) In this part, the one-dimensional magnetic characteristics of broadband 

non-oriented silicon steel sheets and low carbon steels are measured, and the 

magnetic losses of the two materials under high and low magnetic induction are 

analyzed. It is proved by experiments that the saturated wave model in the 

classical loss calculation model is not suitable for predicting the classical loss of 

these two materials under high magnetic induction intensity, but the statistical loss 

theory has applicability.  

(2) This part discusses the characteristics of pulse width modulation 

waveform excitation and the method of small hysteresis loop loss prediction, and 

applies the small hysteresis loop loss prediction method to the total loss prediction 
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under PWM excitation, using two-stage pulse. The PWM experiment verifies the 

calculation model of the total loss with nested small hysteresis loops, and the 

prediction results are in agreement with the experimental results.  

(3) The theoretical modelling and experimental verification of the broadband 

loss of non-oriented silicon steel sheets, iron-cobalt-vanadium alloy sheets, 

manganese-zinc ferrite and ultra-microcrystalline strips excited by symmetric and 

asymmetric voltage rectangular waves are presented. A simple method for 

predicting the magnetic loss under the excitation of symmetric and asymmetric 

waveforms using the basic data of material response under sinusoidal magnetic 

induction waveform excitation. 

(4) From quasi-static to 400Hz frequency range, the magnetization curve and 

the loss of non-oriented silicon steel sheets with different cutting widths 

(5mm~30mm) were measured. The relationship between the magnetization curve, 

and thus the relationship between the hysteresis loss and the width of the sample 

is established, and the magnetization curve and hysteresis loss of the same width 

sample are predicted by less measurement data in consideration of the influence of 

the cutting on the magnetic properties of the material. 

9.2 The main innovations  

(1) The systematic and in-depth quantitative research on the statistical loss 

theory and loss separation is carried out. Through a large number of experiments, 

the applicability of the loss separation method of the statistical loss theory under 

high and low magnetic induction is verified. However, some literature stated that 

the saturation wave model is more suitable for classical loss calculation under 

high magnetic induction excitation cannot be proved by experiments. 

(2) For the loss of soft magnetic materials under the excitation of 

unconventional magnetic induction intensity waveform (such as PWM wave, 
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symmetrical triangular wave, asymmetric triangular wave), a calculation model of 

minor loop considering skin effect is proposed. At the same time, how to derive 

the broadband loss under asymmetric and symmetric triangular magnetic 

induction wave excitation is directly derived from the result of standard sinusoidal 

excitation. 

(3) Aiming at quantifying the influence of cutting on material loss, a 

simplified model is proposed, which the sample is divided into the affected area 

and the unaffected area by cutting. The relationship between hysteresis loss and 

sample width under a given applied magnetic field is predicted, and quantitative 

analysis is also carried out. The effect of different cutting processes on the 

magnetic properties of non-oriented silicon steel sheets are analyzed. 

9.3 Future research  

(1) In this thesis, measurement and loss analysis are carried out for non-

oriented silicon steel sheets, Fe-Co alloys, nanocrystalline strips and Mn-Zn 

ferrites, but the types of materials are still needed. 

(2) This thesis only focus on one-dimensional magnetic property 

measurement and loss analysis. The subsequent work should further research on 

two-dimensional broadband loss modelling. 
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