
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Simulation-based Equivalence Checking between IEEE 1687 ICL and RTL / Damljanovic, Aleksa; Jutman, Artur;
Portolan, Michele; Ernesto, Sanchez; Squillero, Giovanni; Tsertov, Anton. - ELETTRONICO. - (2019). (Intervento
presentato al convegno 50th IEEE International Test Conference, ITC 2019 tenutosi a Washington DC (USA) nel 12-14
November) [10.1109/ITC44170.2019.9000181].

Original

Simulation-based Equivalence Checking between IEEE 1687 ICL and RTL

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ITC44170.2019.9000181

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2751832 since: 2020-04-26T19:38:24Z

IEEE

Simulation-based Equivalence Checking between
IEEE 1687 ICL and RTL

Aleksa Damljanovic∗, Artur Jutman†, Michele Portolan‡, Ernesto Sanchez§, Giovanni Squillero¶, Anton Tsertov‖
∗‡§¶Politecnico di Torino, Italy; ‡Universit Grenoble Alpes, France †‖Testonica Lab, Estonia

Abstract—A fundamental part of the new IEEE Std 1687 is
the Instrument Connectivity Language (ICL), which allows for
abstract description of the scan network. The big novelty if
compared to legacy solutions like BSDL is the possibility of
describing new topology-enabling elements such as the Scan-
Muxes in a behavioural way which can be easily and efficiently
exploited by Test Generation Tools to retarget instrument-level
operations to top-level patterns. This means that for a given
design, the Developer will have to write both the RTL and
the ICL descriptions: to the author’s best knowledge there
is no automated tool to make the translation RTL to ICL.
This methodology is error-prone due to the human factor, the
difference in intent in the two descriptions and the syntactic and
semantic complexity of the languages. Incoherence between ICL
and RTL will result in retargeting errors, so it is fundamental
to validate the equivalence between the two descriptions. This
paper presents an automated methodology that starting from
the ICL description is able to generate a set of RTL testbenches
that can be simulated against the original RTL model to detect
discrepancies and incoherence, and provides quantitative metrics
in terms of code and functional coverage. Experimental results
are reported on the set of ITC2016 set of benchmark networks.

Index Terms—Simulation, RTL, ICL, Code-coverage, Pattern
Generation, Reconfigurable Scan Networks, IEEE 1687

I. INTRODUCTION

With the scale and complexity of modern electronic systems,
dependability has become a key concern, demanding the
deployment of several complementary Design-for-Test (DfT)
approaches to reach the disordered quality goals. Traditional
scan-based Automated Test Pattern Generation (ATPG) is now
coupled with resources embedded within integrated circuits
(ICs). These are used for supporting test, such as Built-In
Self-Test (BIST) modules, for monitoring internal parameters
such as current, temperature or delay sensors and configu-
ration/calibration of different modules through registers. The
growing number of these devices made it infeasible to in-
clude them into the single scan chain or provide a separate
instruction for accessing every single one, relying on the IEEE
1149.1 standard [1]. A solution for simplifying the access to
all these resources and to reduce the overhead while allowing
complexity scaling has been proposed and published as the
IEEE 1687-2014 standard [2]. In this context, the biggest
evolution if compared to IEEE 1149.1 is the introduction
of variable-length scan chains, thanks to the introduction
of dynamic typologies. In order to support this feature, the
Standard introduces the Instrument Connectivity Language
(ICL), whose role is to describe the new systems in a tool-
friendly manner. This means that a given system will have

two different descriptions: the RTL, used in the design flow
to obtain the final circuit, and the ICL, which will describe
the DfT infrastructure. Depending on the company’s internal
design strategy, ICL and RTL could be developed in parallel
starting from the same high-level specifications, ICL could
be extracted from the RTL or vice-versa. In all cases, this
implies to have two different descriptions of the same system:
any incoherence between the two models might cause serious
problems. This is especially true for a new standard like IEEE
1687-2014 : ICL can be quite complex and engineers are still
learning it, making human error extremely likely.

In recent years, numerous works dealing with different
issues related to reconfigurable scan networks (RSNs) have
been published. Design automation of optimized 1687 SIB
networks is tackled in [3]. In [4]–[7], authors address the issue
of testing such structures in the context of test strategies, test-
time minimization and structure-oriented test. An approach to
diagnose high-level faults in configurable modules has been
presented in [8]. Methodology for modelling, verification and
pattern retargeting related to RSNs is described by the authors
in [9], [10]. Network verification and pattern retargeting are
transformed to a Boolean satisfiability (SAT) problem, since
the formal model is used to prove if specified structural and
functional properties hold. Furthermore, a method for the
verification of security properties in RSN designs is proposed
in [11]. The methodology is based on formal modelling of the
networks and unbounded model checking.

In this paper, we propose an automated and reliable method
for verifying equivalence between ICL and RTL descriptions.
After giving a short introduction to IEEE-1687 and ICL in
Section II, we will introduce our approach in Section III.
Section IV will provide experimental results based on the
ITC16 benchmark suite [12]. Lastly, Section V will draw
conclusions and point out future developments.

II. BACKGROUND

A. Overview of IEEE 1687 Reconfigurable Scan Networks

In traditional JTAG, all access is done from the Test Access
Port (TAP), which allows access to one or more fixed-length
Test Data Register (TDR) : all elements connected to the chain
are always accessed together. The only way to provide a se-
lection is to use multiple TDRs, individually selected through
the Instruction Register (IR). TDR and IR are accessed using
a CSU (capture-shift-update) protocol: capture(C) is used to
read the data latching the value provided by the instrument to

the scan cell, Shift(S) to shift the data through the scan chain
(latching the input of the scan cell) and Update(U) to latch data
from the scan cell to the update stage cell of the TDRs. This
solution is simple and easy to set-up, but it scales badly: when
the number of elements grows, so does the IR and the related
selection logic. Moreover the overhead of having to go through
the TAP’s Finite State Machine each time to change the
selected elements rapidly become unbrearable. For the reason,
the IEEE 1687 standard enables designers to flexibly trade-off
between area, access time and other parameters, because TDRs
can now be split and configured thanks to the introduction of
programmable modules, i.e., Segment Insertion Bits (SIBs) and
ScanMuxes (SMs). Figure 1 depicts a SIB: a control registers
is used to set the configuration of SIB and controls a scan
multiplexer module. Configuration is performed by shifting a
sequence of values into the chain to match positions of shift(S)
flip-flop of the control registers. Finally, by updating, values
from the shift(S) cells are latched to the update(U) cells of
the control register: as a consequence, the configuration of
the Scan Chain is changed for the following access, without
needed special operations such an IR access. Therefore, SIB
supports variable length of the active scan path and can be
used to support construction of a hierarchical structure.

0
 1

U

S so
si

fsotsi

SIB sosi

fsotsi

a) b)

Fig. 1. SIB module with its functionality and symbolic representation

The SIB is just the simplest way of using a 2-way ScanMux:
it is also possible to use n-ways scan muxes, as depicted in
Figure 2. This configuration is sometimes called a Multiple
Insertion Bit, or MIB.

0
0

 0
1

 1
0

 1
1

U

S

TDR0

TDR1

TDR2

TDR3

U

S S

a) b)

Fig. 2. Scan Multiplexer with 4 inputs and symbol used for conf. bits

Thanks to these new elements, IEEE 1687 has shifted from
fixed-length scan chains to what is usually called Reconfig-
urable Scan Networks (RSNs). Example in Fig.3, shows a
network with five instruments. Two TDRs (instruments A and
B) are hidden hierarchically behind two SIBs. Two instruments
(C and D) are interfaced with two mutually-exclusive TDRs
placed in input segments of a Scan Multiplexer. ScanMux

control bit is used to include wanted TDR in the active path.
One remaining TDR (instrument E) is always included in the
scan chain. When SIB1 is asserted by shifting appropriate
value into corresponding shift scan cell and applying update,
Select signal is asserted to enable operation on the SIB2 and
on the TDR interfacing instrument B. Accessing hierarchically
nested SIB (SIB2) requires opening all the previous SIBs
gating its access (SIB1). For the configuration depicted in
Fig. 3, SIB1 is asserted, including TDR1 into the active path.
SIB2 is de-asserted, bypassing scan segment containing TDR2.
Additionally, SM is in a such configuration that TDR4 is
selected and a part of the active scan path. Therefore, the total
path length is 3 + 1 + 1 + 10 + 1 + 5 = 21 with instruments
A, D and E being accessible.

SIB1

SIB2

SM

Instrument
D

Instrument
C Instrument

E

Instrument
B

Instrument
A

L=3

L=7

L=4

L=10
L=5

TDR1

TDR2

TDR3

TDR4

TDR5

0

1

Fig. 3. 1687 RSN example

B. Instrument Connectivity Language

The Standard document states that ICL’s purpose is ”to
describe the elements that comprise the instrument access
network as well as their logical (though not necessarily their
physical) connections to each other and to the instruments at
the endpoints of the network” [2]. To obtain this result, the
language takes an approach quite similar to a ”light-RTL”:
registers and instruments can be instantiated and parametrized,
and connected through ”ports” and ”logic signals”. Dynamic
topologies can be described using ”ScanMuxes”, whose truth
table is used to select the active path. ICL designs can also be
split into multiple files for easier maintenance and code reuse.
The code base can therefore become quite big, and manual
verification cannot be trusted : an automated and quantifiable
Equivalence Checking tool is the only viable solution.

A fundamental entity in ICL is called a module. As an
example, we provide a description for the pre-SIB module
in Figure 4. Here structural description of the module is given
together with the definitions of two scan interfaces: host and
client interface. The module consists of one ScanMux primitive
- SIBmux and ScanRegister primitive - SR, whose update stage
is used to control the multiplexer. This control register (bit)
is placed after the multiplexer since its source (ScanInSource)
is defined as the output of SIBmux. CaptureSource and Re-
setValue fields are also specified for the register. SIBmux has

two input segments, first used to bypass (client input - SI) and
the second one to include the segment (host input - fromSO).

A description of the device can contain instantiated mod-
ules. In Figures 5, 6 and 7, example network from Fig. 3 is
partially described. Parameters are used to define the length
of the registers (Fig. 5). It can be seen that not all ports of the
instantiated modules are connected. Since ICL is an abstract
language rather than a netlist language, they are considered
to be connected implicitly. For example, SEL ports of some
instances (TDR1 and TDR2) are produced implicitly, directly
from the parent modules (SIB1 and SIB2) (Fig. 6). On the
other hand, instance TDR3 placed behind the ScanMux has
explicitly defined select signal where SM’s SEL port is gated
with the associated decode of the DO[0:0] signal used to select
the active SO signal of the ScanMux (Fig. 7).

III. METHODOLOGY

A. Post-silicon validation approach

In [13] we proposed an approach for the purpose of vali-
dating silicon implementation of the RSN against respective
ICL descriptions. The method itself relies on the ICL as only
specification, without any additional information available.
Since the observability is reduced compared to gate level or
RTL level in simulation, the device itself is considered to be a
black-box. Therefore, the proposed approach relies solely on
applying the stimuli at the input and observing responses at
the output.

Although well-defined and experimentally verified metrics
exist for post-manufacturing tests and some less standardized
semantic and syntactic for verification (pre-silicon), for post-
silicon validation they are still the subject of research. Inde-
pendent on the specific reasons for the existence of a mismatch
between the specification and the implementation we defined
a fault model containing a set of mismatches of different type:
a missing register, an added register, a wrong register length,
exchanged position of two modules (TDR, ScanMux & SIB),
wrong configuration, exchanged inputs and control lines of the
ScanMux, wrong SIB type.

Additional constraint we set is that the TAP controller is
used for controlling the network. Its state machine allows
specific order of operations to be executed: either capture shift
and then update, in cycles, with the possibility to avoid shift
- only capture and then update. Therefore, we organized the
procedure for detecting such mismatches as a set of steps.
Every step consists of:

• Capture operation
• Shift operation - first a unique key sequence (32/64/128

bits) is inserted into the scan chain. Its purpose is to check
the integrity of the scan chain and the length of the active
scan path. To continue, a sequence of bits containing the
new configuration is inserted while observing the values
at the serial output.

• Update operation - to apply the wanted configuration
After analyzing potential mismatches a conclusion has been

drawn that their effect is such that the checking sequence is

Module SIB_mux_pre {
ScanInPort SI;
CaptureEnPort CE;
ShiftEnPort SE;
UpdateEnPort UE;
SelectPort SEL;
ResetPort RST;
TCKPort TCK;
ScanOutPort SO {

Source SR;
}
ScanInterface client {

Port SI;
Port CE;
Port SE;
Port UE;
Port SEL;
Port RST;
Port TCK;
Port SO;

}

LogicSignal toSel_SR_SEL {
SR[0] & SEL;

}
ScanInPort fromSO;
ToCaptureEnPort toCE;
ToShiftEnPort toSE;
ToUpdateEnPort toUE;
ToSelectPort toSEL {

Source toSel_SR_SEL;
}
ToResetPort toRST;
ToTCKPort toTCK;
ScanOutPort toSI {

Source SI;
}
ScanInterface host {

Port fromSO;
Port toCE;
Port toSE;
Port toUE;
Port toSEL;
Port toRST;
Port toTCK;
Port toSI;

}
ScanRegister SR {

ScanInSource SIBmux;
CaptureSource SR;
ResetValue 1’b0;

}
ScanMux SIBmux SelectedBy SR {

1’b0 : SI;
1’b1 : fromSO;

}
}

Fig. 4. Description of the pre-SIB as module in ICL

Parameter lenR1= 3;
Parameter lenR2 = 7;
Parameter lenR3 = 4;
Parameter lenR4 = 10;
Parameter lenR5 = 5;

Fig. 5. Parameteres in ICL

Instance sib1 Of SIB_mux_pre {
InputPort SI = SI;
InputPort fromSO = sib2.SO;

}
Instance TDR1 Of WrappedScan {

InputPort SI = sib1.toSI;
Parameter dataWidth = $lenR1;

}
Instance sib2 Of SIB_mux_pre {

InputPort SI = regR1.SO;
InputPort fromSO = regR2.SO;

}
Instance TDR2 Of WrappedScan {

InputPort SI = sib2.toSI;
Parameter dataWidth = $lenR2;

}

Fig. 6. SIBs with TDRs in ICL

either corrupted - its values are modified, or shifted in time
- values are appearing later or earlier than expected. When a
segment that includes modules (TDRs, SIBs and ScanMuxes)
whose order is modified is included into the active for the first
time, it does not have an effect on the length of the active path.
However, detecting them remains possible as long as certain
configuration bits do not match original positions. Writing into
them to set the desired configuration may result in writing into
TDRs or some other configuration bits.

Instance TDR3 Of WrappedScan {
InputPort SI = sib1.SO;
InputPort SEL = sel_SR3;
Parameter dataWidth = $lenR3;

}
ScanMux SM SelectedBy controlSM.DO {

0: TDR3.SO;
1: TDR4.SO;

}
Instance controlSM Of SCB {

InputPort SI = SM;
}
LogicSignal sel_SR3 {

SEL & (controlSM.DO[0:0] == 1’b0);
}

Fig. 7. ScanMux and TDR in ICL

The algorithm for generating configurations is deterministic.
It starts from the internal network model and the set of con-
sidered mismatches. Some of the mismatches are considered
detected implicitly with the condition that each scan segment
has to be accessed at least once.

The network is modelled as a Finite State Machine (FSM):
• State is represented as the current configuration of the

network.
• Output symbol is the length of currently active scan path.
• Input symbol is the bit stream shifted at the input
• Transitions are reconfiguration operations.
Apart for the original, unmodified network, one FSM is

created for every mismatch. Such FSMs contain the set of
segments that do not match those in the original network due
to the injected mismatch. Additionally, the record of positions
for all configuration bits is kept. Initial states are generated and
set for all FSMs, while consecutive states are being created
dynamically.

Reconfigurable modules are listed based on their position
in the hierarchy of the network as well as on the highest
hierarchical level they provide access to.

Two algorithms for generating configurations were devel-
oped in order to support both, networks with all modules
controlled in-line and those incorporating remotely controlled
configurable modules as well, where the ScanMux and asso-
ciated set of control bits are either non-adjacent or do not
belong to the same scan segment. The latter are more difficult
to manage since for a certain network configuration to be
applied, multiple reconfiguration operations may take place
to first set the desired value(s) of relevant control bit(s) and
then include the module into the active path.

4

SO,Fb,Fc,Fd

11

SFa

t1

t2

15

SO

11
SFd

t2

10

SO

18

SFc

1

SFd

t1
t1

t1

9

SFb

4

Fig. 8. FSMs example

B. Application to RTL Equivalence
In this paper, we propose to apply the same approach to the

problem of RTL and ICL Equivalence: starting from the ICL
description of the System Under Test we develop a testbench,
which thanks to the properties detailed in the previous sub-
section, when simulated against the correct RTL description

provides a 100% coverage. In case of non-compliance between
the RTL and the ICL, coverage will drop as the hypothesis
behind the testbench generation are not true: this condition
will therefore allow us detection, as will be detailed in the
following Section.

IV. EXPERIMENTAL RESULTS

A. Setup

To validate our approach, we devised an experimental setup
based on the ITC16 testbenches [12]: for each testbench we
follow this experimental procedure:

1) We first parse the ICL provided by the testbenches to
obtain an internal network model;

2) From this model, we generate an RTL description of the
System-Under-Test, which is correct and coherent with
the ICL by construction. It is our golden reference;

3) By applying the method of Section III-A, we obtain a
reference benchmark;

4) The testbench is simulated in Questa®SIM, while en-
abling the calculation of code coverage and functional
coverage

5) Starting from the Golden Reference of Point 2, we
generate a set of erroneous RTL by mutating the model
against a set of possible error

6) For each mutated RTL, we execute the testbench and
record coverage: we consider the mutation as detected
if there is a coverage drop

In Table I we report some basic information on the subset
of ITC2016 benchmark networks [12], together with exper-
imental results. The networks from the evaluation set differ
in the number and type of programmable modules. For each
network given in column 1 (Network) following information
is reported:

• Columns 2 (SIB) and 3 (SM) - the total number of SIB
and ScanMux reconfigurable modules, respectively.

• Column 4 (Conf. bits) - the total number of configuration
bits in the network

• Column 5 (Max. depth) - the maximum hierarchical depth
of the network (for SIB-based networks this value equals
to the maximum number of nested SIBs, according to
[12])

• Column 6 (Long. path) - the length of the longest scan
path in the network

• Column 7 (Scan Cells) - the total length of all scan cells
existing in the network

• Column 8 (TB Gen) - the time needed to generate the
testbench for the given network

• Column 9 (TB Exe) - the time needed to execute the
testbench for the given network

In all of the considered benchmarks, the statement coverage,
branch coverage and assertion coverage have reached 100%
when simulating the Golden Reference RTL design.

To validate the approach, we selected the following set of
possible errors:

• mismatch in one register’s length

TDR1

TDR2

TDR3

TDR5

cb1cb0 cb2

000

001

010

011

101

SIB

SIB SIB

SM

TDR TDR

Fig. 9. TreeBalanced ScanMux with equal length registers

• wrong position of the controlling register of a SIB’s: pre
(i.e. ScanMux precedes the control register) - & post (the
ScanMux comes after the control register

• Error in the order of scan segments connected to the
inputs of scan multiplexers

This is only a subset of possible errors, but from their
experience the authors deem it representative of typical hu-
man coding. As this selection only impact the experimental
validation and not the benchmark generation itself, it would
be extremely easy to verify coverage for other error types.

Fig. 10 depicts the output of an experimental run for a
Network being subjected to given error type.

For each mutation, represented on the X-Axis, three cov-
erage metrics are given: statement, branch and assertion.
In all 63 cases but 2 (replica 50 and 56) at least one of
the three types of coverage is under 100%, which is the
mismatch detection condition. For this example, detection rate
is therefore 88/90=97.8%.

Instruments are considered to be raw with defined data
input and output ports, while the network has been designed
with the feedback functionality to enable reading out the same
values that were previously written. This is the main reason
why full toggle coverage cannot be achieved on registers
representing TDRs. Additional constraint is that we considered
no information is available on which type of instruments are
to be integrated or how they are operated.

B. Results

Table II resumes experimental results: for each network in
Column 1, ranges for three types of coverage (A-Assertion,
B-Branch, S-Statement) for each error type are reported in
percentage of hits with respect to the total bin number.
Furthermore, for each error type the number of detected errors
and number of generated errors is given in the ratio form in
Columns Det/Tot. Finally, for each network, the last column
gives detection rate taking into account all mutations generated
for each error type.

The approach provides extremely good performances: cov-
erage is close to 100% in most cases, and execution times are
extremely low, making its usage compatible with the Design

TABLE I
BENCHMARK NETWORKS LIST

Network SIB SM Conf.
bits

Max
depth

Max
path

Scan
cells

TB
Gen

TB
Exe

Mingle 10 3 13 4 171 270 2s 5s
TreeBalanced 43 3 48 7 5,219 5,581 11s 16s
TreeFlat Ex 57 3 62 5 5,100 5,195 12s 40s
TreeUnbalanced 28 - 28 11 42,630 42,630 6s 2m
a586710 - 32 32 4 42,381 42,410 20s 3m
q12710 27 - 27 2 26,185 26,185 5s 16s
N132D4 39 40 79 5 2,555 2,991 52s 95s
N17D3 7 8 15 4 372 462 2s 2s
N32D6 13 10 23 4 84,039 96,158 7s 4m
N73D14 29 17 46 12 190,526 218,869 9s 10m

0 10 20 30 40 50 60 70 80 90
Mutated RTLs

75

80

85

90

95

100

C
o
v
e
ra

g
e
[%

]

statement
assertion
branch

Fig. 10. Coverage for the RTL designs with wrong register lengths

flow without impacting development times. As of now, test-
benches are executed until the end to obtain complete coverage
metrics, but it is possible to pinpoint the moment the deviation
from the Golden Reference occurs: future developments will
focus on this aspect to identify the exact difference between
ICL and RTL to help debugging. There are some test escapes,
which need to be analyzed in more details. In these cases, the
mutated circuit cannot be differentiated from the original one
because of symmetry inside the network. Take for instance
network TreeBalanced, whose part is depicted in Fig. 9: the
registers TDR1, TDR3 and TDR5 have the same length, so
even though the ScanMux has a selection error, it is impossible
to tell them apart. Rather than limitations of our chosen
detection algorithm, these escapes are pathological networks
which result in untestable topologies, and which should be
avoided in the final silicon.

V. CONCLUSIONS AND PERSPECTIVES

In this paper we have addressed the problem of detecting
inconsistencies between ICL and RTL models of RSNs, resort-
ing to simulation-based verification. Automatically generated
test-benches for stimulating the RTL model are based on
the patterns used for post-silicon validation of networks.
We verified our approach through a series of experimental
benchmarks, obtaining extremely high detection coverage with
reduced execution time. We were also able to identify test
escapes as pathological network configurations. Future work
will be based on extending the experimental verification to

other error models such as, for instance, ICL connection errors,
and to reinforce debug capabilities. Another direction will be
the in-depth analysis of test escapes configurations to devise
algorithms able to detect potentially untestable networks and
warn the designer.

ACKNOWLEDGEMENTS

The work has been partially supported by the European
Commission through the Horizon 2020 RESCUE-ITN project
under the agreement No. 722325.

REFERENCES

[1] “IEEE standard for test access port and boundary-scan architecture,”
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444,
May 2013.

[2] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, pp. 1–283, Dec
2014.

[3] F. G. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, “Design
automation for IEEE p1687,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[4] M. A. Kochte, R. Baranowski, M. Schaal, and H. Wunderlich, “Test
strategies for reconfigurable scan networks,” in 2016 IEEE 25th Asian
Test Symposium(ATS), vol. 00, Nov. 2016, pp. 113–118. [Online].
Available: doi.ieeecomputersociety.org/10.1109/ATS.2016.35

[5] R. Cantoro, A. Damljanovic, M. Sonza Reorda, and G. Squillero, “A
new technique to generate effective test sequences for reconfigurable
scan networks,” in International Test Conference (ITC), 2018. IEEE,
2018.

[6] R. Cantoro, F. G. Zadegan, M. Palena, P. Pasini, E. Larsson, and
M. S. Reorda, “Test of reconfigurable modules in scan networks,” IEEE
Transactions on Computers, 2018.

[7] D. Ull, M. Kochte, and H. J. Wunderlich, “Structure-oriented test of
reconfigurable scan networks,” in 2017 IEEE 26th Asian Test Symposium
(ATS), Nov 2017, pp. 127–132.

[8] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and
E. Larsson, “Automatic generation of stimuli for fault diagnosis in IEEE
1687 networks,” in On-Line Testing and Robust System Design (IOLTS),
IEEE 22nd International Symposium on. IEEE, 2016, pp. 167–172.

[9] R. Baranowski, M. A. Kochte, and H. Wunderlich, “Modeling, verifica-
tion and pattern generation for reconfigurable scan networks,” in 2012
IEEE International Test Conference, Nov 2012, pp. 1–9.

[10] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable
scan networks: Modeling, verification, and optimal pattern generation,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 20, no. 2, p. 30, 2015.

[11] M. A. Kochte, M. Sauer, L. R. Gomez, P. Raiola, B. Becker, and H. Wun-
derlich, “Specification and verification of security in reconfigurable scan
networks,” in 2017 22nd IEEE European Test Symposium (ETS), May
2017, pp. 1–6.

[12] A. Tšertov, A. Jutman, S. Devadze, M. Sonza Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of
IEEE 1687 benchmark networks,” in Test Conference (ITC), 2016 IEEE
International. IEEE, 2016, pp. 1–10.

[13] A. Damljanovic, A. Jutman, G. Squillero, and A. Tsertov, “Post-silicon
validation of ieee 1687 reconfigurable scan networks,” in 24th IEEE
European Test Symposium (ETS) (to be published). IEEE, 2019.

TA
B

L
E

II
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

.
SI

B
ty

pe
m

ut
at

io
ns

R
eg

is
te

r
le

ng
th

m
ut

at
io

ns
Sc

an
M

ux
se

gm
en

ts
m

ut
at

io
ns

R
an

ge
[%

]
R

an
ge

[%
]

R
an

ge
[%

]

N
et

w
or

k
A

B
S

D
et

/T
ot

A
B

S
D

et
/T

ot
A

B
S

D
et

/T
ot

D
et

ec
tio

n
ra

te
M

in
gl

e
58

.5
-9

2.
2

89
.8

-1
00

92
.5

-1
00

10
/1

0
60

.2
-9

9.
2

89
.8

-1
00

92
.5

-1
00

9/
9

59
.7

-6
9.

4
84

.6
-9

3.
2

88
.7

-9
4.

5
3/

3
10

0%

Tr
ee

B
al

an
ce

d
79

.0
3-

99
.9

6
65

.4
1-

10
0

73
.7

6-
10

0
43

/4
3

79
.4

7-
99

.8
8

66
.2

5-
10

0
74

.3
9-

10
0

44
/4

4
82

.2
4-

10
0

74
.5

8-
10

0
80

.7
1-

10
0

11
6/

12
1

97
.6

%

Tr
ee

Fl
at

E
x

96
.9

7-
99

.9
8

88
.4

1-
10

0
91

.1
4-

10
0

57
/5

7
97

.5
1-

99
.9

8
88

.7
1-

10
0

91
.3

8-
10

0
63

/6
3

98
.1

7-
10

0
93

.5
9-

10
0

95
.1

-1
00

11
6/

12
1

97
.9

%

Tr
ee

U
nb

al
an

ce
d

84
.6

-9
9.

92
68

.4
5-

10
0

75
.6

1-
10

0
28

/2
8

85
.3

1-
99

.9
2

70
.8

3-
10

0
77

.4
5-

10
0

35
/3

5
-

-
-

-
10

0%

a5
86

71
0

-
-

-
-

10
0-

10
0

10
0-

10
0

10
0-

10
0

0/
32

-
67

.1
8-

96
.4

8
75

-9
7.

32
32

/3
2

50
%

q1
27

10
93

.8
9-

99
.9

2
85

-1
00

88
.7

2-
10

0
27

/2
7

93
.8

9-
99

.8
5

86
.5

-1
00

89
.8

4-
10

0
23

/2
3

-
-

-
-

10
0%

N
13

2D
4

97
.1

2-
99

.9
7

91
.1

8-
10

0
92

.9
1-

10
0

39
/3

9
95

.1
-1

00
79

.0
8-

10
0

83
.1

7-
10

0
16

7/
17

2
95

.7
3-

10
0

79
.0

8-
10

0
87

.1
7-

10
0

37
/4

0
96

.8
%

N
17

D
3

79
.6

9-
98

.4
9

80
.3

5-
99

.1
84

.4
3-

99
.2

9
7/

7
72

.4
3-

10
0

80
.3

5-
10

0
84

.4
3-

10
0

25
/2

7
76

.9
4-

88
.7

2
78

.5
7-

97
.3

2
83

.0
1-

97
.8

7
8/

8
95

.2
%

N
32

D
6

85
.6

4-
99

.7
4

79
.8

5-
10

0
83

.9
5-

10
0

13
/1

3
82

.5
6-

10
0

73
.1

3-
10

0
78

.6
-1

00
43

/4
4

81
.0

2-
97

.6
9

78
.7

3-
98

.8
8

83
.0

6-
99

.1
10

/1
0

98
.%

N
73

D
14

93
.0

4-
99

.9
3

87
.5

9-
10

0
90

.0
9-

10
0

29
/2

9
90

.7
6-

10
0

75
.1

8-
10

0
80

.1
9-

10
0

88
/9

0
87

.1
2-

91
.2

5
72

.4
2-

81
.9

8
77

.9
8-

85
.6

1
17

/1
7

98
.5

%

