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Abstract

In the Information Age, software is omnipresent in almost everyone’s life. A
plethora of services is offered in a digital manner, for example with e-government
portals, e-banking mobile apps, and e-commerce websites. Indeed, users trust the
software enabling such services with their personal information, like credit card num-
bers or e-banking credentials. Thus, software must be protected with care, in order
to mitigate possible threats against such valuable data. Furthermore, software com-
panies have to protect the assets in their applications, such as intellectual property
of algorithms, methods preventing unauthorized application distribution, and users’
personal data. Failing to do so may deeply damage software companies’ finances, due
to lost application sales, and reputation, if users’ personal data is leaked.

However, protecting applications is a cumbersome task, reserved to few expert prac-
titioners of this field, due to the rising complexity of applications, and the availability
of numerous protection techniques. Each of the latter has strengths and weakness, and
their effectiveness in safeguarding the application assets depend on numerous factors,
such as the structure of protected code, the tools employed to apply such protec-
tions along with their configuration parameters, and the expected skills of a possible
attacker that may be interested in breaching the application assets.

In this thesis, an expert system for automating the protection of applications is
presented. To the best of the author’s knowledge, it is the first application of the
expert system paradigm to this challenging problem. Mimicking the decision process
of a software security expert, the system, given the source code of an application
that must be protected, is able to produce a binary of the application, hardened
with the protection technique most suitable to defer, for the longest time possible,
an attacker aiming to breach the application assets. Apart from the program source
code, the system requires from the user only a list of the assets that must be protected,
with each of them associated with one or more high-level security requirements (e.g.,
confidentiality, integrity), which must be safeguarded against possible attacks. The
system has been developed during the EC-funded ASPIRE project, whose objective
was to develop a set of protection techniques for Android applications, along with
automated tools to deploy them on threatened code. The system is not only able to
decide the generic protection techniques that must be applied to the program code,
but also the specific parameters to drive such tools, thus providing a comprehensive
protection solution specifically tailored for the targeted application. The system is
based on the formalization of the mental decision processes and background knowledge
of software security experts involved in the aforementioned project.

This thesis advances the state of the art in the field of software security with the
following contributions: (1) a meta-model for software security, able to formalize all the
related concepts, such as characteristics of the application and of the components of its
code, attacks that can be mounted against the application, and protection techniques
that can be used to mitigate them; (2) a risk assessment methodology for software, with
a formalization of attacks against applications assets, consisting in the identification
of simple attack tasks, which can be then chained incomplete attacks that can be
carried out to successfully breach the application assets; (3) a risk mitigation strategy,
based on a game-theoretic approach, able to infer the protections best able to defer
possible attacks against the application; (4) a set of asset hiding strategies, devised
to increase the effort needed by an attacker to locate assets in the application binary;
(5) a complete and automated workflow for software protection, implementing the
aforementioned risk management processes in a fully-fledged expert system.
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Introduction

I guarantee that whatever (protection)
scheme you come up with will take less
time to break than to think of it.

Philip Don Estridge

Over the last 50 years, software has evolved from being a technology obscure to most people,
used to solve complex problems in military and research (e.g., guidance of the Minuteman inter-
continental ballistic missiles [130] and of the Apollo 11 spacecraft [78]), to a fundamental part of
almost everyone life. This was due to numerous breakthroughs in the IT field, from the successful
commercialization of first personal computers [61] (e.g., Altair 8800, Apple I) to the development
of the World Wide Web [20], and more recently the widespread adoption of smartphones!. Lever-
aging these advancements, in the last years an impressive amount of services have been digitized,
for example trough e-government portals, e-banking apps and media streaming services. Indeed,
people trust the software employed to offer these services with sensitive personal information,
like credit card and routing numbers, health-related data, and, in countries adopting e-voting
systems (notably, the U.S.) even their political orientation. However, this valuable private data is
frequently endangered by cyber-attacks, leveraging vulnerabilities of the software used to enable
these services. Governments and companies have suffered massive data leakages. Recent exam-
ples are the account data exposure of millions of Facebook users?, and the Equifax data breach?,
resulting in millions of U.S., Canadian and U.K. consumers credit rankings exposed. Sensitive
data is targeted by malicious actors either internal (e.g., disgruntled employees) or external to the
organization (e.g., criminal groups, state-affiliated actors, solo attackers)*. Such actors leverage
a variety of vulnerabilities of attacked organizations IT ecosystems, for example misconfigured
network security devices (e.g., firewalls), human errors (e.g., weak passwords) and presence of
malware on the targeted organization user devices (computers, but also personal mobile phones
due to BYOD policies).

A common cause of the latter vulnerability is the use of unlicensed proprietary applications
on such devices. The 2018 BSA Global Security Survey estimated that, worldwide, 37% of pro-
prietary software copies are unlicensed. Attackers develop cracks to circumvent the license checks
embedded in such applications, and then redistribute them (for example via BitTorrent sites),
after having inserted malware in them. When private users or companies illegally download and

Ihttps://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/
us-global-mobile-consumer-survey-second-edition.pdf

2https://www.upguard. com/breaches/facebook-user-data-leak
Shttps://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832

“https://enterprise.verizon.com/resources/reports/DBIR_2018_Report.pdf
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use such unlicensed application, they open themselves to a plethora of attacks, for example Re-
mote Access Trojans (RATS), opening a backdoor that gives to the attacker complete control of
the infected system, or keyloggers, which register and send to the remote attacker every user
keystroke (including account logins, credit cards numbers, private messages). For companies,
attacks enabled by the use of pirated software has a tremendous economic impact. The afore-
mentioned BSA report indicates a cost of 10,000 $ per infected computer, and a global cost for
companies worldwide of 359 billion dollars per year. Conversely, software companies are deeply
hit by lost application sales, with an estimated global unlicensed software commercial value of 46
billion dollars.

Some attackers, belonging to the so-called warez scene, are not driven by economic motiva-
tions; instead, they compete to be the first to crack a given application, just for fun and glory [74].
However, other malicious actors redistribute applications cracked by such “benign” attackers, in-
serting malware in them for financial gain [81]. Regardless of the attacker motivations, companies
must protect the valuable assets in their application. Protection is needed not only to prevent the
circumvention of licensing schemes, adopted to safeguard their revenue from application sales, but
also to defend the company Intellectual Property (IP), i.e., algorithms, comprised in the endan-
gered software, which enable the company to have a technical advantage against its competitor,
are undoubtedly valuable. Clearly, such algorithms can be protected juridically, through the reg-
istration of patents covering the algorithms. However, if another company manages to steal such
information, the ensuing litigation due to the infringed patent could last years, such in the case
of the patent wars between Apple and Samsung [44]. Finally, to prevent leakage of user sensitive
information, protection is also needed for data structures holding such information. If a program
(e.g., an e-banking application) is executed on a compromised user device, an attacker controlling
the latter remotely (e.g., with a RAT) could attack the application, purloining such sensitive
information (e.g., credentials to access the bank account). Another kind of sensitive data, con-
tained in an application running on an untrusted device, which must be protected, are the keys
of cryptographic algorithms used to secure communications of the application over the Internet.
For example, an instant messaging app on a mobile device can use end-to-end encryption (as in
the case of WhatsApp®) to prevent eavesdropping of communications between two users of the
application, perpetrated by a malicious actor residing on the path between the users. However,
if the attacker obtains remote access of one of the users’ devices, he or she can try to find the
cryptographic key used to secure the communication, thus rendering encryption useless.

Indeed, the first software protection techniques were devised contemporaneously to the diffu-
sion of personal computers, when the physical means of distribution of applications were floppy
disks or audio cassettes, and users started to make and distribute copies of the original medium,
instead of legally buying the applications [58]. Especially floppy disks were an enabling medium
for software piracy, due to their lower cost for user w.r.t. audio cassettes [102]. These techniques
tried to prevent successful copying of disks with the insertion of bad sectors, i.e., voluntarily
damaged small sections of the original disk, whose presence was checked by the application at
boot. The consumer disk drives were not able to reproduce these sectors on the copied disks,
and, when a user started an illegitimate copy of the application, the latter would not find the
bad sectors and would subsequently halt immediately after boot. However, crackers responded
by merely finding and subsequently removing the code responsible for the bad sector check in
the application. An even more naive technique was checking that the user physically possessed
the manual shipped with the application, e.g., by asking at run-time the user to provide the first
word at a given line and page of the manual; obviously, this protection could be easily circum-
vented by photocopying the manual, and was inconvenient for legitimate users. Through the

Shttps://faq.whatsapp.com/en/android/28030015/
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years, numerous copy protection techniques were proposed, and constantly defeated by crackers.
A more resistant copy protection was hardware-based, consisting of a serial port dongle, tasked
by the protected application to execute some instructions. Circumventing this kind of protection
was more difficult, since the hardware dongle itself was too costly to reproduce by crackers, and
involved the identification of all instructions executed in the dongle, and the writing of a software
emulator that executed the instructions, fooling the application in believing that the hardware
dongle was connected to the user pc. A comprehensive survey of the copy protection techniques
available at the time was presented by Gosler in 1985 [60].

Modern software protection was introduced after 1990, with the seminal works of Cohen [35],
Goldreich and Ostrovsky [59], and Aucsmith [9]. The first two introduce the family of techniques
known as software obfuscation, aiming at rendering the application code difficult to read and
understand by an attacker. A comprehensive taxonomy of such techniques was presented by
Collberg [37]. Aucsmith paper is the first to present the concept of tamper-resistant software,
i.e., applications protected with techniques able to identify any modifications to their code, and
to react at this tampering attempts, for example terminating instantly the execution, or with
graceful degradation®. A fundamental assumption of such techniques is that, in the so-called
man-at-the-end (MATE) scenario, where the attacker operates the application on its device, he
or she has white-box access [33] to the application. Without any protection applied, the attacker
has complete access to the program code, being able to analyze and modify it at will, and to
the application execution, again with the possibility of analyzing it, for example observing the
instructions executed by the processor through a debugger, and tamper the content of application
memory. Indeed, in such context, a perfect protection does not exist. An attacker, if willing
to spend the requested time, will be able to circumvent such protections, as shown formally
by Barak et al. [11]. However, as noted by Cohen [35], a possible business model for software
companies involves deferring of such attacks for a time sufficient to sell enough copies of the
product, and possibly to release a new version of the application, protected in a different way in
order to force the attack process to start again from scratch.

Nowadays, many different protection techniques are available, falling in the two aforementioned
families. However, protecting software remains a cumbersome task, reserved to few experts,
working in software security companies. The reasons for this are various. First, choosing the right
protection techniques requires a deep knowledge of attackers methodologies and used tools (e.g.,
decompilers, debuggers, memory scanners), in order to understand the possible attacks against the
application assets. Furthermore, the effectiveness of protections in safeguarding specific functions
or data depends on the characteristics of the program code, the specific attacks that can be
mounted on them, and the specific implementation of such protection techniques. Thus, the right
protections for the targeted applications are still decided manually by experts.

This was the case also of computer network protection, for example for the task of configuring
network access control devices, like for example firewalls. Experienced system administrator man-
ually chose the rules for access control, and configured devices accordingly. However, abundant
research showed that writing manually these rules was an error-prone task, and formal methodolo-
gies to assess the correctness of such rules were possible [14, 109]. In the same field, expert system,
i.e., decision support systems aiming to solve complex problems reasoning on formalized human
expert knowledge, were devised to monitor networks and identify intruders automatically[6, 18].
Surprisingly, the same approach has, to the best of the author’s knowledge, never been applied
to the complex problem of the protection of software applications.

This thesis aims to advance the state of the art in software security, presenting ESP, the first

6 A reaction strategy to tampering attempts. At first, the application works normally, in order to lure the attacker
into believing that the application code has been successfully modified, but over time, program functionalities stop
working, leading in the end to a useless application.



application of the expert system paradigm to software protection. Starting from the source code of
an application that must be protected, ESP is able to mimic the behaviour of a software security
expert, assessing threats against the application assets, choosing among possible protections the
ones best suitable to mitigate the aforementioned threats, and combining them in a comprehensive
protection solution, i.e., combination of protections, able to defer for as most as possible the breach
of application assets security. The system carries out these tasks automatically. The user needs
only to specify the functions and variables in the code that constitute the program assets, and
their security requirements (e.g., confidentiality, integrity). The system has been first devised
and implemented during the EC-funded Advanced Software Protection: Integration, Research
and Exploitation (ASPIRE) project. Its objective has been the definition and implementation of
a set of automated protection tools, able to protect the software by modifying its source code
without user intervention. The system has been based upon the knowledge of experts working on
top-notch software security companies.

Using the automated protection tools designed in ASPIRE, ESP is not only able to define the
best combination of protections, but can actually deploy such protections to the application, thus
implementing a complete automated workflow that, starting from the target application source
code, leads to a protected binary of the application, ready for distribution to users. After the end
of the project, ESP has been extended to support Tigress’, an automated obfuscator designed at
the University of Arizona.

Due to this automated workflow, utilization of ESP is possible also for developers not intro-
duced to the intricacies of software protections, thus enabling them to protect their applications.
However, ESP can be also a powerful tool in the hands of software security experts, which can
save precious time obtaining a first solution, of which they can assess the effectiveness in deferring
a possible attacker, and that they can further refine with other protection techniques, at their
discretion.

Due to the original scope of the ASPIRE project, which targeted mobile applications for the
Android OS, the ASPIRE protections can be deployed only for applications written in C and de-
signed to run on ARM processors; Tigress, instead, supports also the x86 Central Processing Unit
(CPU). Since ESP has been tested thoroughly in the ASPIRE project by experts of the aforemen-
tioned software security companies, its experimental validation holds only for ARM applications;
however, the formal reasoning processes, based on a generalized model of the application, behind
its decision are not architecture-dependent; similarly, ESP supports only C applications for now,
but can be easily extended, due to its modular design and generalized application model, by
simply adding a new source code analysis engine for the desired programming language.

Finally, ESP integrates a novel software security strategy, which aims to solve the problem of
protection fingerprints. When deployed to the code constituting the application assets, protection
techniques may introduce a pattern in the code, or a peculiar behaviour during application exe-
cution, which can be easily recognized by the attacker, and leveraged to find the code containing
the valuable assets in which the attacker is interested. To solve this problem, the ESP workflow
includes an asset hiding phase. In addition to protecting the application assets’ code, this strategy
applies protections also to areas of code that are not sensitive from the security point of view. In
this way, the attacker may be easily misled in believing that a heavily protected code contains an
asset, but, after spending time to remove these protections, realizes that he or she has lost time
on a regular code, with no value for him or her.

The contributions of this thesis to the existing state of the art in software protection are:

o the first comprehensive meta-model for software security, modelling all the concept involved

"http://tigress.cs.arizona.edu/
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in the software protection process, comprising the application structure, the model of pos-
sible attacks, and of protection techniques, with their actual implementations enforced by
automated protection tools;

a formal risk assessment methodology for software, based on attack graphs;
a formal risk mitigation methodology for software, based on a game-theoretic approach;

a novel software security strategy to increase the effort needed by an attacker to locate
assets in the application binary, based on the protection of code areas not sensitive from a
security point of view;

a complete automated workflow for software protection.

As a final remark of this (not so) brief introduction, the author of this thesis wants to highlight
that ESP is the result of a long-lasting collaboration with Daniele Canavese, PhD, under the
technical supervision of Cataldo Basile, PhD. Thus, all the merits resulting from the research
detailed in this thesis are to be shared with them.

Bibliographic foundation

The complete workflow for software protection and the formal risk mitigation methodology
described in this thesis are unpublished. However, the other methodologies part of the workflow
have been the subject of the following publications:

the risk assessment methodology has been reported in “Towards Automatic Risk Analysis
and Mitigation of Software Applications”, presented at the 2016 IFIP International Confer-
ence on Information Security Theory and Practice [104];

the asset hiding strategy has been described in “Towards Optimally Hiding Protected Assets
in Software Applications”, presented at the 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS) [105];

a method to predict the complexity metrics of a code after protecting it with a given tech-
nique, without actually deploying the protection to the code, used by the risk mitigation
methodology to evaluate the effectiveness of protections when applied to specific code areas,
have been described in “Estimating Software Obfuscation Potency with Artificial Neural
Networks”, presented at the 13th International Workshop on Security and Trust Manage-
ment (STM 2017) [29];

the meta-model for software security has been presented in “A meta-model for software pro-
tections and reverse engineering attacks”, published in the Journal of Systems and Software
(Elsevier) [15].

Thesis organization

This thesis is structured as follows:

Chapter 1 describes the protection techniques supported by ESP, and the paradigm of expert
system, with an insight on their previous applications for cybersecurity;

Chapter 2 contains a bird’s eye view of ESP, describing its requirements, a high-level view
of the software protection workflow, and a report of ESP validation by software security
experts during the ASPIRE project;



e Chapter 3 details the software security meta-model, used to formalize all the data used
throughout the software protection workflow;

e Chapter 4 describe the software risk assessment methodology, which enables ESP to auto-
matically infer the possible threats against the analyzed application assets;

« Chapter 5 elaborates on the software risk mitigation methodology, which is used by ESP
to decide the best combination of protection against the possible attacks endangering the
application assets;

e Chapter 6 presents the problem of protection fingerprints, and a methodology to infer the
additional protections, deployed on non-asset code areas, best able to hide the application
assets location;

e Chapter 7 contains a set of concluding remarks, listing also possible future research in the
software security field that may stem from further development of ESP;

e Appendix A reports the main information on ESP implementation.
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Chapter 1

Background

Any fool can know. The point is to
understand.

Albert Einstein

This section presents the state of the art in literature regarding the software protection tech-
niques adopted by ESP, also presenting information about the supported implementations of such
protections. Furthermore, this section provides a general background on expert systems, with a
focus on previous works describing tools of this kind for computer and network security purposes.

1.1 Software protection

This section presents the software protections employed by ESP. Such techniques are catego-
rized in function of the type of attack on software that they try to prevent. Section 1.1.2 presents
the protections against reverse engineering of software. Their objective is to slow an attacker
trying to understand the logic of protected code. Section 1.1.3 depicts the techniques able to
identify, during the execution of a protected application, if an attacker has tampered with its
code. Finally, Section 1.1.4 presents an anti-debugging technique, able to stop an attacker from
attaching debuggers to a protected program, so that uses of such tools for reverse engineering or
tampering purposes can be prevented.

1.1.1 Automated protection tools

To protect a target application, its code must be modified, for example altering its control flow
graph (in the case of Control Flow Flattening (CFF), presented in the Section 1.1.2), or including
other functions in the application (e.g., the appraiser code for remote attestation, a technique
presented in Section 1.1.3). This must be done without altering the semantics of the application
code, i.e., the correctness of the target application execution and of its results. Indeed, this is
not easy avoiding this when manually protecting an application. Human errors in this process
can easily happen, for example due to the ripple effect [30, 23]. Even small modifications to the
code of a specific module of an application may cause the latter to assume unwanted behaviours
during execution. Therefore, automating this process is certainly desirable, avoiding the insertion
of bugs in the code while protecting it. A notable example of automated protection tool is the
Irdeto Cloakware Transcoder [85], a proprietary obfuscator for C/C++ code.

In the remainder of the section, three automated protection tools are presented; these are
leveraged by ESP, after choosing the most suitable protections to defend the application against
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possible attacks, to deploy such protections to the target application code. Many of the protections
techniques supported by ESP have been developed during the ASPIRE project.

One of the most powerful tools used by ESP is DIABLO (Diablo Is A Better Link-time Opti-
mizer) [122], a link-time rewriting framework, able to analyze and transform the binary objects
constituting an application, when such objects are being linked. Information produced by the
linker (e.g., how relative addresses of instructions and data of relocatable object files are trans-
lated into absolute addresses in the final linked executable) is leveraged by Diablo Is A Better
Link-time Optimizer (DIABLO) to build an abstract representation of the program code, inde-
pendent from the Central Processing Unit (CPU) architecture for which the code has been written
(e.g., ARM, Intel x86). However, it also includes optimizations for specific CPU architectures. In
this way, transformations and analyses on binaries can be devised on this representation, with-
out taking into account the subtleties of a specific instruction set. DTABLO has been employed
for a variety of purposes, such as program compaction, reducing power consumption and code
instrumentation. In particular, ESP employs the binary obfuscation transformations built on top
of DIABLO during the ASPIRE project. These will be detailed in the following sections. Given
the ASPIRE project scope, DIABLO obfuscations have been devised for Android applications
running on ARM CPUs. Also, optimizations for the ARM architectures are more advanced w.r.t.
the ones implemented for Intel x86 CPUs. Thus, ESP will use DIABLO transformations only
when protecting such programs.

Deployment of this protection techniques is automated using the ASPIRE Compiler Tool
Chain (ACTC), a Python 3 script that, given the code location that must be protected, and the
technique that must be used to do so, produces a protected binary from the target application
source code. Examples of tasks automated by the ACTC are the invocation of DIABLO with the
appropriate parameters to binary-level obfuscation techniques (see Section 1.1.2), or the inclusion
at compile-time of libraries needed by the deployed protections. When protecting a program, the
ACTC follows these three main steps (a detailed description of the ACTC workflow is available
in [12]):

1. applies source-level protections, editing the target application source code, e.g., to insert the
appraiser in the target application when applying remote attestation (see Section 1.1.3);

2. compiles the source code; since target applications are written for devices equipped with
ARM CPUs, the ACTC supports cross-compilation® in order to compile ARM applications
on Intel machines, using for example the cross-compilation toolchains provided with the
Android Native Development Kit?;

3. applies the binary-level protections, rewriting the binary using DIABLO, e.g., to apply the
code obfuscation techniques described in Section 1.1.2.

To instruct the ACTC on the areas of code that must be protected, and on the protections
that must be used, the target application developer must mark such code and variables with a set
of code annotations, specified with the pragma C directive®, which are parsed by the ACTC at the
start of its workflow. A detailed description of the annotations supported by the ACTC is reported
in [12]; taking the password check example from Section 1.1.2; the annotation in Listing 1.1 tells
the ACTC to apply the binary CFF technique with DIABLO on all the code comprised between
the pragma directives.

1Cross-compilation is a technique that permits to compile an application on a machine running a different
Operating System (OS) or CPU architecture w.r.t. the one on which the obtained binary will be executed.

2https://developer.android.com/ndk/guides/standalone_toolchain

Shttps://gcc.gnu.org/onlinedocs/cpp/Pragnas . html
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1 #include <stdio.h>

2 #include <string.h>

3

4 char pwd[] = ;

5

6 int main ()

7 {

8 char temp [20] = ;

9

10 _Pragma (

11 )
12 printf ( );

13

14 scanf ( ,temp);

15

16 if (strcmp (temp ,pwd)==0)

17 printf ( )
18 else

19 printf ( )
20 _Pragma ( )

21

22 return O;

23}

Listing 1.1: C code marked with ACTC annotation to flatten comprised code.

Apart from the techniques developed during the ASPIRE project, ESP supports also the code
and data obfuscation techniques deployed by Tigress, an automatic obfuscator for C applications.
Instead of applying transformations on the binary code (such as DIABLO), Tigress operates on
the application source code. In particular, the latter is preliminary transformed in C Intermediate
Language (CIL) [95], a subset of the C language that is characterized by a reduced number of
syntactic forms, thus being more easily manageable in an automated fashion. For example, all
the different loop syntaxes supported by standard C (for, while, do) are transformed into a
specific while(1) construct, with the loop termination handled by an explicit break statement.
Then, Tigress performs the transformations requested by the user on the simplified CIL code,
producing the obfuscated source code. As claimed by its authors, Tigress design is similar to the
aforementioned Irdeto Cloakware Transcoder [85]. Tigress can obfuscate applications written for
Linux, either for ARM or x86-64 CPU architectures.

1.1.2 Anti-reverse engineering techniques

Reverse engineering can be defined as “the process of extracting the knowledge or design
blue-prints from anything man-made” [51]. Indeed, it has been a common practice in a variety
of fields, such as mechanical engineering [26], biology [41] and even for military purposes [120].
Similarly, software reverse engineering, also known as program comprehension or understanding,
is “the process of identifying software components, their inter-relationships, and representing these
entities at a higher level of abstraction” [96]. Software reverse engineering can be legitimate. An
example is a software developer that has to interface its code with an open source Application
Programming Interface (API) that is poorly documented, and therefore has to understand the
API ’s code to properly use it.
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From a legal point of view, reverse engineering is legitimate, unless, in the case of a propri-
etary application, it is explicitly prohibited by the reversed software EULA*. However, European
Union [40] and U.S.A. [1] laws regulating the rights of software providers explicitly allow reverse
engineering of proprietary software, if it is carried out for interoperability purposes. A well-known
example of this caveat is the Samba® free software, which enables Linux machines to offer or use
network file sharing and printing services based on the Microsoft Server Message Block (SMB)®
(Server Message Block) proprietary network protocol: Samba development has been carried out
essentially via reverse engineering of the SMB protocol”.

Still, software companies need to counter reverse engineering of their applications, in order
to preserve the assets that, as said in Section 1.1, constitute the business value of the software.
Indeed, distributing only the application binaries to end-users is not sufficient, since, as detailed
in Chapter 4, attackers may easily obtain the assembly code from a binary, by means of a dis-
assembler, or even a reconstruction of the application’s original source code, using a decompiler.
For example, the well-known commercial debugger Hex-Rays IDA® supports both disassembling
and decompilation (via a separate plug-in?).

Various protection techniques have been devised in order to increase the difficulty of the reverse
engineering process. They fall under the umbrella term of software obfuscation [37]. Essentially,
the objective of such techniques is to transform the binary (or the sensitive parts of the binary)
that must be protected into an obfuscated version that, whilst behaving in the exact same way
as the original binary when executed, is difficult to understand by a human being. Similarly,
obfuscation can be applied to constants or variables in the code, in order to mask their real value
when the application is inspected either statically (especially for constants), for example looking
at the application reconstructed assembly or source code, or dynamically, inspecting the execution
by means of a debugger.

It is theoretically possible to apply obfuscation by hand, and even to directly write obfuscated
code. However, this is typically a recreational activity. There are even competitions, like the Inter-
national Obfuscated C Code Contest (I0OCCC)!?, where programmers compete in writing the best
obfuscated code. In the software industry, where applications must be protected against reverse
engineering, it is more common to rely on automated obfuscation tools, e.g., the aforementioned
Irdeto Cloakware Transcoder [85]. The remainder of this section details the obfuscation tech-
niques supported by ESP, provided by the automated protection tools detailed in Section 1.1.1.
Possible attacker behaviours are used in the explanation of the presented techniques for the sake
of clarity. While a complete model of such behaviours is still not present in literature, an initial
work towards this has been made by Ceccato et al. [31].

Code obfuscation

This section describes the code obfuscation techniques supported by ESP. The main objective
of such techniques is to harden the comprehension by an attacker of the protected code. All the

4End User License Agreement: the contract between the software provider and the end-user, indicating the
rights obtained by the latter after purchasing from the first a license for the software.

Shttps://www.samba.org/

Shttps://docs.microsoft.com/en-us/windows/desktop/fileio/microsoft-smb-protocol-and-cifs-
protocol-overview

"https://www.samba.org/samba/docs/Sambalntro.html
8https://www.hex-rays.com/products/ida/index.shtml
9https://www.hex-rays.com/products/decompiler/index.shtml

Ohttps://www.iocce.org/
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following transformations are deployed by ESP via DIABLO!! or Tigress'?, with some techniques
supported by both.

CFF is a transformation that, when applied to a function or, generically, to a code area, hides
its original control flow, modifying its structure in a form that increases the effort needed by an
attacker to understand the protected function logic. Indeed, analyzing the control flow is one of
the basic activities a reverse engineer must undertake, to understand an algorithm. The control
flow is usually obtained in an automated fashion, and is one of the most typical features of static
program analysis tools, able to analyze an application code without actually executing it; control
flow can be reconstructed both from source and binary code. The Control Flow Graph (CFG)
is the most common human-readable representation of such flow; its nodes, called basic blocks,
contain sequences of consecutive instructions, so that if the first instruction of a basic block is
executed, the other instructions in the basic block must be executed as well, in the specified order.
Therefore, a basic block code must have:

e exactly one entry point, so that no instruction after the first one in the block must be a
target for any jump instruction in the whole application;

e exactly one exit point, the last instruction of the block, which is the only one that can cause
the program execution to jump to another basic block.

The basic algorithm to “flatten” a function, first described by Wang et al. [126] and subse-
quently formalized by Lészl6 and Kiss [82], is the following:

1. the function body is split into basic blocks;

2. a selective structure (e.g., the switch statement in the C language) is set-up, with a number
of case statement equal to the number of basic blocks obtained in the previous step;

3. the selective structure is wrapped in a loop statement (e.g., while in C);
4. each basic block code is put into a different case statement;

5. a control variable, which is checked by both the while and switch statements, is responsible
to ensure the original control flow of the protected code; it is set at the end of each basic
block, i.e., case statement, in order to select the next basic block that must be executed (via
the switch statement), and finally to terminate the protected code execution (by negating
the condition of the while statement).

Flattening may be deployed by ESP either on a source level, using Tigress, or on a binary one,
thanks to DTABLO. For an example of flattening (source-to-source for simplicity), consider the
code in Listing 1.2, a (rather naive) C implementation of a password check. Flattening the main
function would lead a result like the one in Listing 1.3.

Excluding the initial variable declarations, the main body contains five basic blocks, which
appear in each case statement of the flattened version'®. The password insertion by the user with
its comparison with the hardcoded password, the branch depending on the comparison result, and
the two possible outcomes in the cases of a correct or a wrong password inserted by the user. The

Hhttps://aspire-fp7.eu/sites/default/files/D2.06-Binary-Code-0bfuscation-Report.pdf
2http://tigress.cs.arizona.edu/transformPage/index . html

13Note that the case arguments in the example follow the actual control flow for the sake of simplicity; real im-
plementations use arbitrary numbers for the control variable, and, for source-to-source transformations, randomize
the order of case compound statements.
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1 #include <stdio.h>

2 #include <string.h>

3

4 char pwd[] = ;

5

6 int main ()

7 {

8 char temp [20] = ;

9 printf ( )

10 scanf ( ,temp) ;

11

12 if (strcmp (temp,pwd)==0)

13 printf ( )
14 else

15 printf ( )
16 return O;

17 F

Listing 1.2: C code for a password check.

control variable drives the flow of the program. In the case 1 body is responsible for displaying
the correct message depending on the result of the password comparison, and also ensures that,
either reaction is taken, the program terminates, thanks to the condition in the while statement.
Figure 1.1 shows the effect of CFF obfuscation on the CFG of the protected code. While on
the original graph the consequentiality of the basic block is evident (read the password from the
user, check it, and print the appropriate message), understanding the flow of the flattened version
of the code is more difficult, since all the basic blocks are parallel in the graph. Therefore, to
understand the flow of a flattened function, an attacker cannot just rely on the CFG structure,
but must actually analyze the code to reconstruct the original function structure.

[variables declaration]

[read password from user} [variables declarationj

i

check password loop head

TS S

[wrong password] [correct password] [ case 0 j [ case 1 ] [ case 2 ] [ case 3 j

(a) original (b) flattened

I

{

Figure 1.1: Control flow graph before and after the control flow flattening obfuscation.

It should be noted that, for source-to-source flattening, the actual algorithm differs slightly
from the one stated before. Looking at the case 1 of the obfuscated example from before, the
binary equivalent of the case after compilation may comprise'® three basic blocks, as shown in

14The exact result of the compilation depends on various factors, including the compiler used and the chosen
level of optimization.
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1 #include <stdio.h>

2 #include <string.h>

3

4 char pwd[] = ;

5

6 int main ()

7 o

8 char temp [20] = ;

9 int strcmp_result = 0;

10 int control = 0;

11

12 while (control != 4) {

13 switch (control) {

14 case O0:

15 printf ( )
16 scanf ( , temp);

17 strcmp_result = strcmp(temp,pwd);
18 control = 1;

19 break;

20 case 1:

21 if (strcmp_result == 0)

22 control = 2;

23 else

24 control = 3;

25 break;

26 case 2:

27 printf ( )
28 control = 4;

29 break;

30 case 3:

31 printf ( )
32 control = 4;

33 break;

34 ¥

35

36 return O;

37}

Listing 1.3: Flattened C code for a password check.

Figure 1.2. The check on the strcmp result, and the two control variable assignment depending on
the check result. Indeed, this is necessary on a source-to-source level to preserve the correctness
of the resulting C code, since the if statement is usually followed by at least an instruction.
Therefore, the flattening is applied to such statements by moving all the instructions contained
in the if compound statement into a new case, and by setting the control variable in the if to
preserve the original control flow, i.e., to execute the compound statement after the if, should
the related condition be satisfied.

In [82], Lészl6 and Kiss formally describe how to flatten all the C/C++ control flow statements
(e.g if, for, switch), while preserving the resulting source code correctness.

Branch functions have been first introduced by Linn and Debray [86], as a way to decrease
the accuracy of disassemblers in translating binary code in human-readable assembly. Before
describing this transformation, a brief overview of the main disassembly techniques is necessary.

Disassemblers can operate in a static way, analyzing the machine code, or in a dynamic
way, inspecting the execution of the binary using a debugger. The problem of the dynamic
approach is that only the actually executed instructions are translated into assembly, therefore
the disassembly result is dependent on the particular input given to the program. Also, dynamic
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0x400858 (0x4007aa) main+Oxae \
0x00400858: cmp dword ptr [rbp - @x28], GJ

0x0040085c: jne Ox4DBB67

o

0x40085e (0x4007aa) main+0xb4 \ ( Ox400867 (0x4007aa) main+0xbd

—

LGXGMGGSSE: mov dword ptr [rbp - 0x24], 2

Bx00400867: mov dword ptr [rbp - @x24], 3
Ox00400865: jmp Ox400839

0x0040086e: jmp 0x400899

Figure 1.2: Control flow graph of binary code resulting from compilation, after source-to-source
flattening, of a if...else statement.

disassembly is considerably slower than the static one, since it involves the actual execution of
the analyzed program. Since dynamic disassembly is achieved by debugging the application, in
order to trace the executed instruction, preventing application debugging automatically hinders
dynamic disassembly techniques. DIABLO anti-debugging technique is described in Section 1.1.4.

Instead, branch functions are effective against static disassembly, in particular against two of
the most common static disassembly techniques, linear sweep and recursive traversal. The first
one, implemented for example by the GNU utility objdump!®, consists in decoding instructions
linearly, starting from the first byte of the text section'®; the address of the next instruction that
must be decoded is evaluated by incrementing the actual instruction address with its expected
length!”. However, sometimes static data (e.g., constants) may be inserted into the code section
[127], e.g., for performance purposes. Therefore, linear sweep disassemblers may confuse static
data for instructions. On variable instruction length architectures as x86, this may lead to an
incorrect translation of all the following machine code, since the next instruction address evalua-
tion will be based on the length of the misinterpreted instruction opcode. The disassembler can
become aware of its error only if the miscalculated next instruction address will point to an op-
code that is invalid for the analyzed program instruction set; this may happen after an indefinite,
possibly large number of erroneously decoded instructions.

To solve this problem, the recursive traversal disassembly algorithm has been devised. Instead
of following the order in which instructions appear in the executable, the disassembler, when
encountering a jump, will decode as next instruction its target; in general, the disassembly order
will follow the program control flow. In case of branches, all the possible targets, and consequently
the possible resulting flows, are followed. Indeed, this tackles the issues related to the presence
of constants in the text section, since these will never be the target of jumps. However, this
approach presents another problem, the handling of indirect jumps. The latter are the result of
jump instructions with a target that is not explicitly known until run-time, e.g., a Jvp EAX x86
instruction, which will jump to the address specified in the general purpose register EAX when
the Jvp instruction is executing. Therefore, the disassembler would be unable to follow indirect
jumps, resulting in a partial translation of the machine code. Therefore, disassemblers rely on

Bhttps://www.gnu.org/software/binutils/

161n x86 and ARM architectures, the text section is the executable area containing instructions; constants and
variables are stored in the data section.

17 Traditional ARM instructions have a fixed length of 32 bits, while the Thumb and Thumb-2 modes feature
respectively 16 bits and a mix of 16 and 32 bits instruction widths; x86 instructions have a variable length,
depending on the number of operands expected by the specific instruction (e.g., 2 operands for the MOV instruction).
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extensions of the basic recursive traversal algorithm to handle the most common cases when
compilers produce indirect jumps. For example, switch statements of C programs are typically
translated in binary via jump tables. These contain the target addresses for the first instruction
of each case. The switch is translated as an indirect jump having as target one of the addresses
contained in the jump tables, in function of the switch control variable value during the execution;
in practice, this will result in a JMP jump_addr+offset instruction, where jump_addr is the address
of the first element of the jump table, incremented by an offset equal to the size of one jump
table element times the control variable value. Consequently, a disassembler may be extended to
recognize this evaluation, in order to find statically the jump table in the binary, thus being able
to follow all the possible targets of an indirect jump resulting from the translation of a switch
statement.

Branch functions aim to thwart static disassembly algorithms, by transforming direct jumps
into indirect ones, and by also increasing the difficulty to reconstruct the targets of indirect jumps
already present in the code that must be protected against reverse engineering. This is obtained by
substituting these jumps with calls to a branch function, which will be responsible of transferring
the program control to the substituted jump target, preserving the original program control flow.
Therefore, a branch function needs a way to select the target to which it will ultimately jump,
given the code location from which it has been called. The most simple implementation may be a
jump table, with the index of the correct target passed with the call to the branch function. While
this could be effective in hindering automatic disassembly, it can be easily reverse engineered by an
attacker, which could then develop an extension to the disassembler to handle automatically with
such branch functions. Therefore, the target evaluation must be implemented in an obfuscated
way. Linn and Debray [86] propose an implementation based on perfect hashing [57]. Essentially,
instead of explicitly specifying in the binary code the jump table index, the latter is evaluated
at run-time using a perfect hash function, which receives in input the address of the call to the
branch function (e.g., the substituted jump address). In this way, an attacker should reverse
engineer the perfect hash function, a task that is deemed not trivial by the authors.

Both Tigress and DIABLO support this technique. However, neither of them uses the per-
fect hash table implementation. In particular, Tigress authors justify their decision'® due to the
infeasibility of a source-to-source version of such technique implementation. Instead, both obfus-
cators implement indirect jumps by passing to the branch function the offset from the function
call address to the original target address. Tigress implements this by using C pointer arithmetic,
starting from the addresses of locally declared labels'? specifically inserted for this purpose, while
DIABLO store the offsets in global variables by the branch function, loaded into a random register
that is subsequently read by the actual jump instruction.

Opaque predicates, introduced by Collberg et al. in [37], are boolean expressions that have
always the same outcome at run-time (always true or always false). However, this outcome is
difficult to be formally evaluated by an automatic deobfuscator?® in a static way?'. Therefore,
if employed as the condition of a branch, is difficult to automatically derive from the predicate
that always one of the branches will be taken by the program. This can be leveraged to add fake
code, which will be positioned as the target of the branch that is never taken. While the actual

8http://tigress.cs.arizona.edu/transformPage/docs/encodeBranches/index. html
Ohttps://gcc.gnu.org/onlinedocs/gcc/Local-Labels. html

20 An automated tool, able to analyze obfuscated source codes or binaries in order to partially revert known
obfuscation schemes, thus producing an approximation of the original sources or binaries prior to obfuscation.

211t should be noted that, while using a fuzzer can mark a branch as probably never taken, there is no dynamic
way to be formally assured of it, since predicates are typically evaluated on unbounded variables, resulting on
infinite possible inputs that should be tested by the fuzzer.
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program control flow remains untouched, the amount of code that an attacker will need to analyze
to understand the application will be increased, thus slowing the reverse engineering process. Also,
this transformation can be exploited to split basic blocks, again to hinder comprehension of the
contained code; adding an opaque predicate in the middle of the block means adding a branch,
therefore resulting in four basic blocks, as shown in Figure 1.3.

@

instruction 1

instruction n-1

@ [opaque predicatej

Yy
instruction 1 / instruction n

[fake instructions]

instruction n \ instruction m

instruction m . .
instruction m—+1

instruction p instruction p

| !

(a) original (b) with opaque predicate

Figure 1.3: Basic block splitting with an opaque predicate: the condition is always true, therefore
the branch will be always taken.

Again, both DIABLO and Tigress support this technique. However, the implementations
differ. DIABLO relies on opaque predicates based on mathematical expressions, while Tigress
uses pointer algebra.

Opaque predicates implemented by DIABLO are based on mathematical properties of the
conditional expression, e.g., 2 > 0 which is always true, since the square of a real number is
never negative. While they can be evaluated rapidly at run-time, without slowing the application
execution, they are designed to prevent disassemblers from formally proving them, unless the
latter are instructed to recognize such hardcoded predicates by an attacker that has found them
via manual inspection of the code. Therefore, while the predicates inserted by DIABLO are
always comprised in the aforementioned set, the generation of the instructions implementing this
predicates is randomized in two ways. Registers employed by such instructions are randomly
chosen among dead registers?? if they are available. Also, if the employed predicate includes an
integer constant, it will be randomized, e.g., in the fourth predicate, the 0 can be substituted with
any negative number.

Tigress instead relies on a technique, described by Collberg et al. in [38], which consists in
evaluating conditions on pointers to data structures, with the latter specifically added to the code

22Registers are defined dead if, at a specific point of a function execution, they contain a value that will be not
read by any instruction until function termination.
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for this purpose. For example, given two completely separated linked lists L1 and L2, we can
define three pointers: pt and p2 pointing to nodes of L1, and p3 pointing to an element of L2. In
the program code, a series of instructions that will move the pointers to other nodes, but that
will make them always point to the same list, can be added in order to increase deobfuscation
hardness. Therefore, we can list three opaque predicates:

1. p1 '= p3 and p2 != p3: this will always be true, since p3 points to nodes in a different list of
the ones pointed by p1 and p2;

2. pt == p2: this can be true or false depending on the initial nodes pointed by the pointer, and
on the movement instructions operating on such pointers before the comparison.

The first kind of opaque predicates can be leveraged as explained before, i.e., to insert fake
instructions in the never taken branch. This is implemented in various ways by Tigress. Calls
to a random existing function or to ones that do not exist, the original code with random bugs
inserted, or even random bytes. Instead, the second kind of predicates must be employed in
a different way, since the branch taken is not known a priori, and can possibly depend on the
program inputs®3. The idea is to put the same code in both branches, but in different forms. In
the example depicted in Figure 1.4, if the branch is taken a flattened version of the original code is
executed, otherwise the original code is executed; therefore, taking the branch or not has no effect
on the executed program logic. In this way, the amount of code that an attacker must analyze to
comprehend the protected code doubles, since he or she has no way to know that the two branches
actually execute equivalent code. Also, the attacker will probably spend time in understanding
the branch logic, having to track all the possible modifications to the pointers (and possibly to
the pointed structures), before realizing that these branches are taken randomly, without altering
the original program logic.

Tigress applies opaque predicates to code in a semi-automatic fashion. First, the user is
responsible for selecting a function that will initialize the global data structures leveraged by
predicates throughout the code. Clearly, this function must be executed before any other one
containing opaque predicates; while an easy choice would be to initialize these structures in the
main function, this would advantage the attacker, since main is usually the first examined function,
and is therefore discouraged. Also, the user is responsible to select which functions will update
pointers and data structures, and how many updates will be made by each function. Intuitively,
a large number of updates will make the protection more effective, but they can slow down the
application execution, especially if a function containing updates is called frequently.

Virtualization obfuscation [54] is a transformation that protects instructions by hiding
their real opcodes. It is similar to executing code in a virtual machine, hence the name, but,
instead of emulating an existing CPU to support program written for its architecture, translates
instructions in a specially devised instruction set that, while in general preserves the original
structure of instructions, uses different opcodes. At run-time, the code execution is delegated
to an interpreter, which translates each instruction that must be executed from the “virtual”
instruction set to the original one, so that it can be actually understood and executed by the
CPU. Consequently, an attacker that wants to comprehend code protected with such obfuscation
needs to reconstruct the mapping between the virtual and the original instruction set.

This transformation is deployed by ESP using Tigress. The latter, as for other transformations,
implements such technique® in a source-to-source fashion. Given a C function that must be
virtualized, Tigress first analyzes the function code to build an abstract syntax tree (AST) and the

23Instructions that move node pointers can be executed conditionally, depending on program input.

24http://tigress.cs.arizona.edu/transformPage/docs/virtualize/index. html
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Figure 1.4: Basic block splitting with an opaque predicate: its evaluation is not known a priori,
but both possible flows result in the same program logic.

CFG, which in turn are used to generate the function bytecode, written in the virtual instruction
set, which will be interpreted at run-time. The generated bytecode is saved in the C code as
raw data, using an unsigned char array. Then, the interpreter code is added to the program, and,
throughout the code, calls to the translated functions are substituted with calls to the interpreter.
To select the specific virtualized function that must be executed, a pointer to the array containing
the function bytecode is passed with the call to the interpreter.

The virtual instruction set is generated at the start of the transformation randomly. This
is important because, if the same instruction set would be used by Tigress for any program, an
attacker that, analyzing a protected application, has been able to reconstruct the mapping between
original and virtualized instruction sets, he or she would be able to construct a de-virtualizer able
to automatically remove such obfuscation from any program protected by Tigress. To prevent
this, a number of solutions are adopted. First, opcodes of the virtualized instructions can be
randomized. Also, the instruction set may contain duplicate instructions, with different opcodes,
but with the same semantic value. These instructions can be used interchangeably to translate
the original C code, while this will increase the size of the resulting virtualized instruction set,
thus augmenting the time needed by an attacker to reconstruct the instruction mapping. Finally,
sequences of instructions can be mapped into a single superoperator [103], a virtualized instruction
that, when interpreted, will result in the execution of the original instruction sequence; this
solution is particularly effective in slowing instruction remapping by attackers [106].

The interpreter, to actually perform the translation at run-time, has a virtual program counter
(VPC), which points to the next instruction that must be translated, and a dispatch unit, which,
given the bytecode pointed by the VPC, reads the instruction virtual opcode, and calls the
appropriate instruction handler. This is a function, part of the interpreter, which will actually
translate the instruction in the original instruction set and will therefore execute it. An attacker
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may be interested in understanding the interpreter logic, since this could help with the instruction
remapping. Especially finding the instruction handler can be useful for this purpose. Therefore,
Tigress protects the interpreter itself with other obfuscation techniques. For example, the dispatch
unit control flow may be split by adding opaque predicates to its code.

Data obfuscation

This section presents the data obfuscation techniques supported by ESP are reported. As said
in the previous sections, the purpose of data obfuscation is to prevent an attacker to understand
the value of constants present in source code, when he or she analyzes the code statically, and the
value of variables during the execution, if the code is inspected dynamically e.g., by means of a
debugger. ESP supports two techniques to obfuscate respectively constants and variables. Both
are implemented by Tigress, and therefore are source-to-source transformations.

Literals obfuscation is implemented by Tigress with two different schemas, one to obfuscate
hard-coded integers, and the other applied to string literals.

To obfuscate integer constants, Tigress relies on opaque predicates, implemented with the form
depicted in Section 1.1.2. For example, given two pointers pt and p2 that, throughout the code,
point always to two different C structures, e.g., two linked lists, the boolean expression p1==p2 will
always be false. Since the boolean false value is treated in C as a o, this integer value can be
obfuscated easily using the aforementioned opaque predicate.

Instead, to obfuscate string literals, Tigress transforms them into calls to an “encoder” func-
tion, which will generate them at run-time. therefore, this blocks the attacker from statically
searching the binary for intelligible strings. As an example, looking at the password checker from
Section 1.1.2, the attacker can easily find the hard-coded password, e.g., by using the strings
Linux command on the binary. Also, the attacker may try to elude the comparison between
inserted and hard-coded password, by finding (and modifying) the strcmp call. Since, trying the
code with a casual password, he will receive in output the “Wrong password!” message, he can
statically analyze the code to find the address of this message in the data section, identify the
specific printf call with that address passed as a parameter, and starting from this call location
analyze the code nearby to ultimately find the strcmp call. By generating the strings at run-time,
Tigress can prevent such (rather trivial) attacks. If the “Wrong password!” message is obfuscated,
the string encoder function in Listing 1.4 is added to the code.

The encoder function can be used to obfuscate various string literals in the code. A specific
string can be requested via the n integer, which will drive the switch statement in the encoder.
The generated string is saved in the str parameter, a char array passed by reference. Obviously,
the encoder function can be easily understood by the attacker. Therefore, it is strongly suggested
to protect this function with the code obfuscation techniques described in Section 1.1.2.

Variable obfuscation aims to change the representation of a protected variable in memory,
by means of an encoding mathematical function. When the variable is used in the code, it is
decoded on-the-fly, so that its real value is present in memory for the shortest time possible.
Tigress uses by the default®® one of the encodings described in [132][75], which substitutes an
integer variable v with the following:

v=a-v+b (1.1)
where a and b are two random integers. When the original value must be used, it can be easily
retrieved with the dual expression of 1.1:

-

a

v= (1.2)

250ther encodings are supported, but they are trivial and therefore their use is discouraged. For example, a
variable can be saved in memory xor-ed with a constant, and decoded by xor-ing it again with the same constant.
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1 void _1_stringEncoder(int n , char str[] )

2 {

3 int encodeStrings_i3 = 0;

4 switch (n)

5 {

6 case O:

7 str[encodeStrings_i3] = "UW’;
8 encodeStrings_1i3 ++;

9 strlencodeStrings_i3] = '1r’;
10 encodeStrings_1i3 ++;

11 strlencodeStrings_i3] = ’07;
12 encodeStrings_1i3 ++;

13 strlencodeStrings_i3] = ’'n’;
14 encodeStrings_1i3 ++;

15 str[encodeStrings_i3] = ’g’;
16 encodeStrings_i3 ++;

17 str [encodeStrings_i3] = ’ 73
18 encodeStrings_i3 ++;

19 str[encodeStrings_i3] = 'p’;
20 encodeStrings_1i3 ++;

21 str[encodeStrings_i3] = ’a’;
22 encodeStrings_1i3 ++;

23 strlencodeStrings_i3] = ’=7;
24 encodeStrings_1i3 ++;

25 strlencodeStrings_i3] = ’s7;
26 encodeStrings_1i3 ++;

27 strlencodeStrings_i3] = "u’;
28 encodeStrings_1i3 ++;

29 strlencodeStrings_i3] = ’07;
30 encodeStrings_i3 ++;

31 str[encodeStrings_i3] = ’'r’;
32 encodeStrings_i3 ++;

33 str[encodeStrings_i3] = ’d’;
34 encodeStrings_i3 ++;

35 str[encodeStrings_i3] = ’!7;
36 encodeStrings_1i3 ++;

37 str[encodeStrings_i3] = ’"\n’;
38 encodeStrings_1i3 ++;

39 str[encodeStrings_i3] = ’\000~’
40 encodeStrings_1i3 ++;

41 break;

42 }

43}

Listing 1.4: Example of string encoder function used by the literals obfuscation technique.

While the encoding itself seems trivial, it can become interesting when applied to several variables
that are subsequently combined in the code. For example, suppose we have this expression:

z=x-y (1.3)

and we encode all the three variables, so that:

' =ay-x+0b, (1.4)
'=ay-y+by (1.5)
2 =a, z+b, (1.6)

To encode z, we should first decode 2’ and y’ using Equation 1.2, then multiply them with
Equation 1.3, and finally encode the result with Equation 1.6. However, if the decoding formulas
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are explicitly used in the code to obtain =z and y, an attacker could easily find such values
debugging the code. However, using some modular arithmetic properties, z could be encoded by
using directly 2’ and 3’ values. Using the decode formula in Equation 1.2, Equation 1.6 becomes:

I _ ! _
YV —a, (ac ba Yy by> +b, (1.7)
Gy

Gy

If a modulo n algebra is used, the additive and multiplicative inverse can be evaluated, so that
Equation 1.2 becomes:

v=>w4+b"1)a! modn (1.8)
(a-a™') modn=0 (1.9)
(b+b"") modn=0 (1.10)

Therefore, Equation 1.7 can be rewritten as:

Z=a. (@ +b;")ar' +(/ +b,")a,') modn+b, (1.11)

which can be simplified into:

Z=c(a'y +b,7 2 +b,""y) modn+d (1.12)
c=a, 'a,"'a, modn (1.13)
d=(by 'b,"'c) modn+b, (1.14)

Where ¢ and d are constants, since their components can be evaluated with Equation 1.9 and
Equation 1.10, which also holds for b, ' and byfl; therefore, thanks to Equation 1.12 we can
evaluate the encoded 2’ using directly the encoded z’ and 3’, without exposing the value of
z, y and z during the program execution. Similar formulas are proposed in the patent from
Kandanchatha and Zhou et al. [75] to evaluate directly the basic boolean operations on encoded
variables, without decoding them first.

1.1.3 Anti-tampering techniques

The Oxford English Dictionary defines tamper as “interfere with (something) in order to cause
damage or make unauthorized alterations.”?S. Indeed, this definition applies well also to software
tampering, especially when targeted to proprietary applications. A good example is software
piracy. Attackers may be interested in obtaining an application that, during its execution, does
not behave as originally intended by its authors. Motivations for this may be various. For
example, given a proprietary software that should work only if a valid license is present on the
user’s computer, an attacker may want to alter, in the target application, the logic of the code
responsible to check the license and stop the application execution if the latter is not valid. This
is colloquially known as writing a crack for the application. Attackers may then release such
modified code on Internet, either freely or for a fee (lower than the one asked by the software
publishers); in the end, legitimate proprietors of the tampered software will suffer a monetary
loss, due to lost sales of their application. However, attackers do not tamper software only for
piracy purposes, and may not only target proprietary software. For example, an attacker may
tamper with a Free and Open Source Software (FOSS) application code in order to hide a RAT?7

26https://en.oxforddictionaries.com/definition/tamper

2Thttps://wwu.owasp.org/index.php/Trojan_Horse
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in it, and then redistribute the tampered program on the Internet; in this way, the attacker will
obtain complete access to the machines of any unaware users that will install the free application,
which can then be used at his or her pleasure, e.g. to mount Distributed Denial of Service (DDoS)
attacks [90].

Thus, adding tamper resistance to software is paramount. The idea is to obtain an application
that, when executed, automatically checks its code and, if notices any change to it, stops its
execution. It should be noted that, similarly to reverse engineering, also software tampering can
be done in a static or dynamic fashion. In the first case, the attacker modifies code prior to its
execution, editing the application binary files, while in the second, the attacker first launches
the execution, and then modify the application code in memory (e.g., attaching a debugger to
the program), thus altering the behaviour of the program for the remainder of its execution.
Therefore, checks to the application code cannot be done only when the program is started, but
must span all the program execution.

ESP uses three anti-tampering techniques, all developed during the ASPIRE project, which
will be described in the remainder of this section. Deployment of these techniques on target code
is automated via the ACTC, a Python 3 script developed during the ASPIRE project, described
in Section 1.1.1.

Two of them, namely Remote Attestation and Code Mobility, rely on a trusted remote server
to verify that the code of the protected application, running on an untrusted machine, has not
been tampered with. Therefore the machine running an application protected with such tech-
niques must be connected to the Internet in order for the program to execute correctly. This
client-server paradigm [131], has been implemented during the ASPIRE project with an ad-hoc
client library, called ASPIRE Client-side Communication Logic (ACCL)?°, and a unified server
application, called ASPIRE Server-side Communication Logic (ASCL)3. The first contains the
methods used by such techniques to communicate with the remote server, and is included in
applications protected with on-line techniques. The second one handles requests of the different
on-line techniques, within a single server process. The actual client-server communication is done
via a custom network protocol, based on the HT'TP stack, but hardened in order to resist man-
in-the-middle (MITM)3! network attacks, e.g., avoiding that an attacker tampers a protected
application, and then makes the protection techniques to communicate with its version of the
server, thus disabling such protections.

The anti-tampering techniques described in the following sections enable the application to
identify attempts done by an attacker to modify its code. However, simply identifying that the
application has been tampered with is not sufficient, since the final aim of such protection is to
obtain an application that, if tampered with, must halt its execution. Thus, if any tampering with
the program code is detected, these techniques activate one of the reaction mechanisms developed
during the ASPIRE project [42]. The latter are able to stop the tampered application execution,
either immediately or after a specified time period. However, since the reaction mechanisms code
has not been open-sourced, they will not be included in this thesis.

28

28The server is trusted by licensors of the protected application, typically because is under their direct control;
for example, for a proprietary application, the server could be located at the software company premises.

29https://github. com/uel-aspire-fp7/accl/
3Ohttps://github.com/uel-aspire-fp7/ascl/

3lhttps://www.owasp.org/index.php/Man-in-the-middle_attack
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Anti-callback Stack Checks

This technique [48], implemented by DIABLO, identifies attempts by an attacker to call a
protected function in points of program execution not originally intended by the application
developers. For example, consider a program that handles sensitive data, such for example medical
records of patients in a hospital. To prevent privacy breaches, such records could be stored
encrypted, with the key for decryption hidden in the program code (e.g., by means of one of the
data obfuscation techniques depicted in Section 1.1.2). If a user tries to display a record, the
program calls a routine that checks the user credentials, in order to verify that he or she has the
authorization to view such records. If this check succeeds, another function is called, decrypting
the record and showing it to the user. Thus, an attacker having access to the encrypted record, but
without the proper authorization, could try to avoid this check, by calling directly the decryption
function. This can be done even without tampering with the program code. The process could
be forced to load a malicious dynamic library, with an attack known as Dynamic-Link Library
(DLL) injection [72], which will call the decryption function when the program is executed; for
example, this could be done by substituting an OS dynamic library, which the target application
needs to load, with a version of such library tampered by attacker.

To prevent this attack, this protection technique relies on checks that verify, when a call to
a protected function occurs, if the caller function is part of the application code (and not of an
attacker injected library); the checks are located in the code at entry points of the protected func-
tions. In practice, these checks read the first position of the call stack, which contains information
about the last function call executed by the program. Since checks are inserted at the entry
point of the protected function, the aforementioned information will be related to the call made
to the protected function immediately before the execution of the checks. By checking the return
address, this technique is able to verify if the caller function belongs to the same library of the
protected one, by verifying that the return address specified in the call stack is comprised in the
memory segment hosting the library code. Therefore, this protection technique is able to ensure
that a protected function is called only by other functions of the same library, thus blocking calls
by dynamic libraries injected by an attacker.

Remote attestation

Attestation is a technique that aims to verify if the code of a target application has been
tampered with. An external application, namely appraiser, is responsible for the verification.
The latter is carried out by an ad-hoc component of the latter, called attestation manager. The
verification is executed by evaluating measurable characteristics of the target application execution
(e.g., a hash of the memory hosting the target code), and comparing them with the results of an
evaluation carried on an un-tampered copy of the application executed on a trusted machine, prior
to distributing the software. This process can be repeated multiple times during the execution of
the target process, to ensure that dynamic tampering does not occur during the whole lifespan of
the process execution. This general architecture of the technique has been proposed by Coker et al.
in [36].

The generic workflow of software attestation is the following;:

1. the appraiser sends an attestation request to the manager;
2. the manager calculates the requested measurements, and sends them to the appraiser;

3. the appraiser decides if the target application code has been tampered with, basing such
decision on the measurements received from the manager;

4. the appraiser informs the manager of its decision;
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5. if the appraiser decides that the application has been tampered with, a reaction procedure
(if implemented) can be put in action by the manager, e.g., terminating the application.

Implementations of this technique can be grouped based on whether the measurements are
evaluated with dedicated hardware, e.g., leveraging a cryptoprocessor3? mounted on the machine
executing the target application, or with a software implementation, therefore distinguishing
between hardware and software attestation [8]. A notable example of the first is the Trusted
eXecution Technology (TXT)3? marketed by Intel, which attests the whole OS code running
on the target machine, leveraging a hardware cryptoprocessor, called Trusted Platform Module
(TPM) and designed by the Trusted Computing Group (TCG)3?.

A further distinction can be made based on the location of the appraiser code. In local
attestation techniques, it is deployed on the machine running the target application, while software
attestation techniques require the appraiser to be located on a remote server. An example of local
software attestation is the technique known as code guards [32], where the appraiser is embedded
in the target application. Remote attestation has been for example implemented by Intel®® via
hardware support, in particular with Software Guard Extensions (SGX) [39].

Finally, another categorization of software attestation techniques relates to the characteristics
on which the measurements are based. Techniques that take into account only static character-
istics of the code, such as for example instructions and constant data loaded in memory, consti-
tute the static attestation category, while the others are generically called dynamic attestation
techniques. An example of the latter are the ones based on software invariants, dynamic char-
acteristics of the code (e.g., variable values, instructions executed) that remain constant in all
possible executions of the application, e.g., regardless of the input given to the latter. A practical
implementation has been proposed by Abadi in [2] leveraging data likely invariants, which are
properties of variables values, such as falling into a defined range, which should be respected dur-
ing the whole program execution and are evaluated with an empirical analysis of the application
execution traces. However, this approach has been evaluated as unfeasible in real-life applications
by Viticchié et al. in [17].

ESP supports a static remote software attestation technique, described in [124], which permits
to specify areas of the target application code that are likely to be tampered with by an attacker.
Measurements are calculated at run-time by hashing the memory locations containing instructions
of the selected code areas. Various hash algorithms are supported, including Blake2 [10] and
SHA256 [46]. As said before, on-line techniques developed in the ASPIRE project use a unified
client-server architecture, described at the beginning of this section. Remote attestation fits in this
architecture by implementing the appraiser as a sub-routine of the ASCL, while the attestation
manager code is placed inside the target application, and uses the ACCL library functions to
communicate with the server.

Remote attestation has the problem of being subject to replay attacks. An attacker can
record attestation messages sent by an un-tampered version of the application, and then send
these messages to the appraiser after having tampered with the program code. This specific
implementation solves this problem by correlating the measurement calculation with nonces sent
by the verifier with the attestation request. In particular, such nonces will drive a random walk

32 A cryptoprocessor is a microprocessor (or a System-On-Chip) specifically designed to executing cryptographic
operations; typically, it has various physical security measures to resist hardware tampering.

33https://www.intel.com/content/www/us/en/support/articles/000025873/technologies.html
34nttps://trustedcomputinggroup.org/

35https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-
sealing
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algorithm [101], in order to define the order by which the instructions memory addresses will be
taken into account by the selected hash algorithm; therefore, an attacker should first find the
location of the nonce in the attestation request message, and consequently understand how the
nonce is related to the hash calculation.

Code mobility

Code mobility is an on-line anti-tampering technique, designed by Cabutto et al. [27], which
protects an application code from both static and dynamic modifications by moving areas of code
to a trusted remote server, called mobile blocks, which are deemed sensitive from a security point
of view. To harden tampering of the protected code, while preserving the target application
functionality, mobile blocks are downloaded on an as-needed basis. If and only if instructions in
a mobile block must be executed, the latter is downloaded from the server.

With the current implementation, code blocks with a single entry point are supported. These
can be whole functions of the program, or parts of a function control flow, with a granularity level
of single basic blocks. Also, moving data sections is not supported by the technique, therefore only
instructions are moved, while static data (i.e., constants) are left untouched in the application
binary. The architecture of this protection technique comprises the following components:

o the code mobility server, implemented as a sub-routine of the ASCL, which delivers mobile
blocks when asked by the application running on the client;

e the binder, a component in the target application that monitors the execution flow, and
detects when a mobile block must be downloaded from the server;

o the downloader, another component in the target application that, when tasked by the
binder, downloads the needed mobile block from the server, via calls to ACCL functions,
and saves it in the program memory, so that the contained instructions can be executed by
the client.

Essentially, when the target application is protected with this technique, the blocks removed
from the binary are substituted with calls to the binder, which, at run-time, will call the down-
loader, and then will redirect the program flow to the first instruction of the downloaded block.
To further increase the attacker effort in tampering with the protected code, mobile blocks are
not downloaded in the code section of the program, but at random locations in the heap.

It should be noted that the binder is called only when instructions in a mobile block must be
executed for the first time; downloaded mobile blocks are subsequently left in the client memory.
Clearly, the protection could be enhanced by downloading the blocks every time their instructions
must be executed, and removing them from memory immediately after their execution. However,
this approach has not been deemed feasible since this technique has been developed in the ASPIRE
project, which targets specifically Android applications for mobile phones. First, mobile operators
offer plans that comprise a limited amount of Internet traffic, so the communication with the
server must be limited to avoid the exhaustion of the available traffic that would lead to charges
from the service provider to the application user; second, mobile phones have generally limited
computational resources, thus calling the binder every time a mobile block must be executed
could lead to significant slowdowns of the application; finally, mobile Internet connections are
not always reliable, therefore this architectural choice limits the possibility of a target application
halting execution due to the impossibility of downloading a mobile code when requested, thus
preserving user experience.
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1.1.4 Anti-debugging

Debuggers are one of the most common tools used by malicious reverse engineers. Indeed,
they can be employed by an attacker for a variety of purposes, both for reverse engineering
an application and to tamper with its code. For example, from a reverse-engineering point of
view, they can be used to dynamically inspect the behavior of an application at run-time or to
collect execution traces that can be analyzed after program termination. For tampering purposes,
debuggers may be utilized to halt an application execution, modify its memory locations (in
code or data sections), and then resume it, therefore changing the application behaviour for
the remainder of its execution. Many debuggers are available, either FOSS or proprietary, the
most notable being GDB?S for Linux applications, OllyDbg for Windows programs®’ and IDA
Debugger®® for both.

Thus, when protecting an application, preventing a debugger from being attached to it would
be a desirable outcome. For this purpose, many techniques have been proposed, generically known
as anti-debugging protections. It should be noted that, theoretically, the OS could provide such
protection, since debuggers rely on system calls to work. For example, on a Linux system, a
debugger can be attached to a target process by calling, within the debugger code, the ptrace®’
system call, with the following arguments:

ptrace (PTRACE_ATTACH,pid,0,0)

where PTRACE_ATTACH is a constant identifying the attach request, and pid is the target process
identifier. However, a Linux application that do not want to be debugged can communicate this
to the OS by calling the prctl system call with the following arguments:

prctl (PR_SET_DUMPABLE ,SUID_DUMP_DISABLE,0,0,0)

In Linux distributions with a kernel version > 2.613, this will reset a flag, contained in the
/proc/sys/fs/suid_dumpable file, which is checked by the Linux OS when a debugger asks to be
attached to a process. If the flag has been reset with the aforementioned procedure, the ptrace
call by the debugger will have no effect, and the debugger will be prevented from attaching to
the target process. However, this protection can be easily circumvented by an attacker. If he has
root access to the OS, after the target process calls prct1, he can simply set the flag again by
modifying directly on the suid_dumpable file.

Since in a MATE scenario an attacker normally uses his machine to operate on the target
program, he will clearly have root access to the OS, therefore this protection is not suitable in
this case®. However, applications running on untrusted machines can be protected against de-
bugging with self-debugging, a technique that is built upon an inherent limitations of all major
Operating Systems. A process can be debugged by only one other process. An application pro-
tected with this technique leverages this OS constraint by launching, immediately after starting
its execution, a custom debugger that will immediately attach the protected process, taking the
only spot available to debug the target application. To prevent the attacker from removing the
protection debugger and attaching his or her own one, some application logic is moved to the
protection debugger, so that the protected process will stop behaving correctly if an attacker
detaches the self-debugger from it. A simple way to implement this schema is substituting some

36https://www.gnu.org/software/gdb/

37http:/ /www.ollydbg.de/
38https://www.hex-rays.com/products/ida/debugger/index.shtml
3%http://man7.org/linux/man-pages/man2/ptrace.2.html

40Tt would be applicable if the target application runs on a secure server, with the attacker having remote access
to it, but without root capabilities.

26



1 — Background

jump instructions in the protected process with debug exceptions. The control will pass to the
self-debugger, which, given the interrupt instruction address in the protected code, will resume
its execution at the target address of the substituted jump instruction. For example, this imple-
mentation of self-debugging has been used to protect the Starcraft II*! video game. However, also
this implementation can be easily circumvented by an attacker, e.g., by statically analyzing the
self-debugger, locating the debug exception handlers, and restoring the original jump instructions
in the protected application.

ESP deploy a self-debugging technique, developed by Ghent University during the ASPIRE
project, and detailed in [3], which overcomes the aforementioned limitations. Using DIABLO,
which, as described in Section 1.1.2, is able to rewrite the binary code of the target program, whole
parts of the protected application code can be moved to the self-debugger. Every time the program
execution falls into a part of code moved in the self-debugger, the protected application throws
a debug exception. The self-debugger will copy the target process context to execute the moved
instructions, and will be able to read and write the target process memory via the ptrace system
call, with the first argument set respectively with the constants PTRACE_PEEKDATA and PTRACE_POKEDATA

The attacker can try to restore the moved instructions in the original position in the target
application code, in order to detach the self-debugger and obtain a working application. However
this it is not a trivial process. For example, registers used by the instruction are changed when
the context is copied by the self-debuggers, and instructions accessing memory are substituted
with self-debugger ad-hoc routines that in turn use the aforementioned ptrace system calls. It
should be noted that this technique has been patented by their inventors [125], but its code??
license allows free use for non-commercial purposes.

1.2 Knowledge-based and expert systems

Knowledge-based systems are computer programs designed to solve problems by reasoning on
existing knowledge pertaining to the analyzed problem. Their typical structure [5] comprises two
separate components. A knowledge base, containing information about the problem domain, and
an inference engine, which uses a set of logical rules to reason on existing knowledge, in order to
infer new information that will be saved in the knowledge base and can be further reasoned on,
ultimately leading to a solution for the given problem. In this way, the knowledge base will be
expanded automatically, in a process known as self-learning. Finally, a user interface is included in
the system to manually add existing information in the knowledge base, for providing the system
with problems to solve, and to present the user with the solution of the problem, along with an
explanation of the reasoning that led to such solution.

This architecture is typically used to implement expert systems [70], computer programs aiming
to solve problems by emulating the decision-making process of a human expert in the domain of
the problem. Expert systems are built by gathering domain-specific knowledge among experts
of the problem field; this knowledge is then formally modelled as structured data saved in the
knowledge base, and logical rules constituting the inference engine.

1.2.1 Knowledge bases and ontologies

The knowledge base contains all information that is deemed useful to solve the specific prob-
lem. It can be implemented via an ontology, a data representation that, as the classic Greek

http://web.archive. org/web/20180303093853/http: //www.bhfiles.com/files/StarCraft II/
Wings of Liberty (Beta)/0x1337.org - SCII Anti-Debug.htm

42https://github.com/csl-ugent /anti-debugging
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philosophical discipline with the same name [115], aims to model the information regarding a
specific knowledge domain. Abstract concepts, their hierarchical representation, relationships be-
tween them, and specific entities that embody the aforementioned abstract concepts. Ontologies
are written using formal languages, known as ontology languages (e.g., Web Ontology Language
2 (OWL2)%3, RDF Schema??) that are able to represent domain-specific information with the
concepts of individuals, classes, attributes, relations. For example, consider the example ontology
about vehicles in Listing 1.5, written in the OWL2 Manchester Syntax®>.

Class: Vehicle
EquivalentTo: (wheelsNumber min 1) and (producedBy only Manufacturer)

Class: Car
EquivalentTo: Vehicle and (wheelsNumber exactly 4)

Class: Truck
EquivalentTo: Vehicle and (wheelsNumber min 5)

© 0 N O U A W N e

Class: Manufacturer
EquivalentTo: (manufactures some Vehicle) and (hasNationality some
Nationality)

=
= o

12

13 Class: CarManufacturer

14 Equivalent: Manufacturer and (manufactures some Car)
15

16 Class: TruckManufacturer

17 Equivalent: Manufacturer and (manufactures some Truck)
18

19 ObjectProperty: produces

20 InverseOf: producedBy

Listing 1.5: Example ontology about vehicles, written in the OWL2 Manchester Syntax.

First, there are two general concepts, or classes. Vehicles and manufacturers. The concept of
vehicle is characterized by an attribute, i.e., the number of wheels, and a relationship with the
manufacturer of the vehicle. Attributes represent specific properties of a class, while relationships
bind together different concepts. The class scheme is hierarchical, so that for example the concept
of car is a specialization of the general concept of vehicle, in particular representing that a car is
a vehicle with four wheels. Classes, with their attributes and the relationships between them, fall
under the term axiom, and in general describe the structure of the model. Specific instances of the
abstract classes, representing the data described by the aforementioned model, are represented
with individuals, for example the ones in Listing 1.6.

In a certain sense, an ontology may be defined as a database, with the axioms being the
database schema and individuals corresponding to the information populating the database. How-
ever, ontologies and databases on how information is treated. First, they treat differently missing
information when elaborating queries. In the example, given that information about the national-
ity of Volvo manufacturer is not given, a query in the form "Volvo is Swedish?" will be negatively
answered by a database, since the latter treat missing information as false, while the ontology
will give an uncertain answer. Another difference is that database schemata can only constraint

Bhttps://www.u3.org/TR/owl2-overvieu/
https://www.w3.org/TR/rdf-schema/

4Shttps://www.w3.org/TR/owl2-manchester-syntax/
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Individual:
Types: Car
Facts: hasManufacturer Ferrari

Individual:
Types: Truck
Facts: hasManufacturer Volvo

© 0w N U A W N e

Individual:
Types: CarManufacturer
Facts: hasNationality Italian

= e
N o= O

Individual:
Types: Manufacturer

[T
@

Listing 1.6: Individuals in the example ontology about vehicles.

the data (e.g., that the number of wheels is a positive integer), while ontology axioms can treat
implicit information, e.g., is not necessary to specify the number of wheels of a Ferrari Testarossa,
since it is defined as a car, which in turn is a vehicle with four wheels.

1.2.2 Inference engines

As already said, an inference engine is a component of a knowledge-based system, able to
reason on the information contained on the knowledge base to infer new information. To do so,
inference engines apply to existing information a set of human-defined logical rules, in order to
reach a goal, such as evaluating a user assertion as true or false. Rules are formally expressed as if-
then rules, such as, referring to the vehicle ontology in Section 1.2.1, "Rulel: X is a manufacturer
AND X is Italian = X is an Italian manufacturer'. Formally, a rule is expressed as a Horn clause
[65], which has the following form:

Rule name: premises = consequence

Which entails that, if the premises, containing a logical combination of basic sentences, evaluate
true, then the sentence also evaluates to true. Inference engines and their rules are typically
written using ad-hoc logic programming languages. A notable example is Prolog, developed in
1972 by Alain Colmerauer at the Aix-Marseille University, formalized by ISO in 1995 [67], and
available at time of writing in various implementations, both free (e.g., GNU Prolog®, SWI-
Prolog?”) and commercial (e.g., LPA-PROLOG*®, SICStus®?).

Inferencing on such rule can be implemented using either forward or backward chaining (or
reasoning). Forward chaining tries to reach the user-defined goal from the available information,
searching for a chain of rules that in the end reaches the goal. Instead, backward chaining starts
from the goal and tries to find a chain that ends with rules that are verified by axioms in the
ontology. For example, considering the following set of rules regarding the vehicle ontology:

1. Rulel: X is a manufacturer AND Y is a nationality AND X has nationality Y = X is a
manufacturer of nationality Y

4http://www. gprolog.org/
4Thttp://www. swi-prolog.org/
Bhttp://www. 1pa. co.uk/

Ohttps://sicstus.sics.se/
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2. Rule2: X is a manufacturer of nationality Y AND Z is a vehicle AND X produces Z = X is
a vehicle of nationality Y

3. Rule3: X is a vehicle of nationality Y AND X is a car = X is a car of nationality Y

Suppose that the inference engine is asked to verify the proposition "Testarossa is a car of
nationality Italian". With a forward chaining approach, the goal will be reached verifying the
first rule, obtaining that "Ferrari is a manufacturer of nationality Italian' from axioms in the
ontology, then the second rule, asserting that "Testarossa is a vehicle of nationality Italian" both
from the consequence of the first rule and from axioms, and finally the third rule, reaching the
goal by verifying the sentence "Testarossa is a car of nationality Italian' supplied by the user.
With a backward chaining approach, the inference engine would start from the goal, see that it
is a consequence of the third rule, and then try to verify its premises, checking both axioms and
consequences of other rules, stopping when the search leads to all axioms in the ontology. Thus
rules would be verified in the inverse order of the forward chaining approach.

1.2.3 Expert systems

As defined before, expert systems are knowledge-based systems whose objective is solving a
problem by imitating the reasoning that would be made by an expert in the field of the problem
when trying to solve the latter. Information is gathered among experts in the field of the specific
problem that the expert system is designed to solve. Generic domain information is saved in
the knowledge base, while rules used by the inference engine are designed to mimic the mental
processes of the experts when tackling the targeted problems.

The first expert system has been designed and implemented by Buchanan, Feigenbaum and
Lederberg in 1965 at Stanford University, and was called DENDritic ALgorithm (DENDRAL)
[65]. Its objective was to help organic chemists to discover new organic molecules. The system
was designed by both gathering and formalizing generic knowledge of chemistry (e.g., concepts of
atoms, molecules, mass) but also modelling the mental processes of organic chemist when tack-
ling the problem, such as for example how the interpreted the results of analysis such as mass
spectrometry. DENDRAL was written in the LISt Processor (LISP) functional programming
language, which at the time was the standard language for artificial intelligence. Techniques de-
veloped in the DENDRAL project were then used to develop expert systems for various purposes.
Notable examples are MYCIN [111], designed to identify the bacteria responsible for an infection
by asking closed questions to a physician, and eXpert CONfigurer (XCON) [129], which assisted
customers of Digital Equipment Corporation (DEC) in buying the most suitable Virtual Address
eXtension (VAX) computer system basing on their requirements.

In [63], the author presents a categorization of expert systems based on the type of problem
solved:

o Control of systems behaviors by interpreting their output (e.g., the INCO expert system
[94] used by NASA in Space Shuttle mission control);

e Debugging systems, analyzing malfunctions in them and prescribing remedies;
e Design of objects under constraints (e.g., DENDRAL [55]);

e Diagnosis of system malfunctions from observable behaviors of the system (e.g., MYCIN
[111]);

e Instruction problems, analyzing student behaviors and proposing learning methodologies
better suited to specific students;
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o Interpretation of sensor data, inferring situation descriptions (e.g., XCON [129]);

e Monitoring of systems, comparing observations gathered over time to identify vulnerabilities;
e Prediction of likely consequences of given situations;

e Planning of actions needed to reach a goal;

e Repair a system, executing a plan to administer a prescribed remedy.

In the field of cybersecurity, research on the possible application of expert systems for risk
analysis of computer network and systems has been active from 1986 at least. In [64], Hoffman
suggests that, even if at the time expert systems were generally in an early stage of development,
using them for risk analysis might lead to a positive outcome, especially after building a suitable
general model for cybersecurity experts knowledge. The author theorizes that an expert system
built in this way would be able to identify vulnerabilities in the analyzed computer system config-
uration and suggest the appropriate countermeasures to reduce the overall risk. In the same year,
Denning and Neumann started the development of the Intrusion Detection Expert System (IDES)
[49], an host-based Intrusion Detection System (IDS) mixing an expert system with statistical
anomaly detection techniques to detect unauthorized access, both by local and remote users, of
resources hosted by the monitored system. A first prototype, monitoring a DEC-2065 computer
running the TOPS-20 operating system, has been presented in 1990 and is detailed in [87]. An
evolution of the aforementioned system, renamed Next-generation Intrusion Detection Expert
System (NIDES) and detailed in [6], and supported real-time analysis of inter-process communi-
cations for host security purposes. Another IDS expert system developed in the same years was
the Network Intrusion Detection eXpert system (NIDX), presented in [18], targeting UNIX Sys-
tem V machines and able to suggest to a network administrator possible security breaches, with
a knowledge base that contains information about the structure of the monitored network, and
usage profiles of its users, thus mimicking the decision process of administrators. Systems with
similar capabilities have been implemented in the same period. The Network Anomaly Detection
and Intrusion Reporter (NADIR) [69], to monitor the internal network of the US Los Alamos Na-
tional Laboratory, and Haystack [113], to detect breaches in US Air Force systems. In particular,
the latter presented self-learning capabilities, being able to evolve user profiles over time. Such
changes are summarized to the system administrator so that he or she could assess such evolution
in order to verify that breaches are not masked by this system behaviour. All the aforementioned
systems aimed to detect security breaches at real-time. Instead, the Expert System for security
Auditing (AudES) [119] was developed to assist computer security auditing process, such as the
analysis of log-in or resource access records after a security incident.

More recent research on network security expert system has focused on enhancing breach
detection performances of such tools by combining the classic architecture of expert systems
with other techniques. For example, Eronen and Zitting [53] present a tool to analyze firewall
rules. The network administrator can write author’s knowledge-level rules using constraint logic
programming [71], which are subsequently translated by an expert system into a low-level access
control list written in the format used by Cisco routers®’. Also, combinations of machine learning
approaches and expert systems have presented. Examples are [50] by Depren et al., using Self-
Organizing Maps (SOM) and decision trees for breach detection and an expert system to interpret
the result of such machine learning algorithms, and [100] by Pan et al., which uses neural networks
for detecting attacks leveraging unknown vulnerabilities, while an expert system identifies known
attacks. Fuzzy logic algorithms have also been embedded in expert system for real-time intrusion

50https://wuw.cisco.com/c/en/us/support/docs/security/ios-firewall/23602-confaccesslists.html
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detection, as in [98], and post-incident network forensics, for example in [77] and [84]. Finally,
no applications of expert systems technology to the software protection field has been found in
literature. This thesis aims to fill this gap in research, presenting an expert system with the
objective of detecting vulnerabilities in applications, and suggesting to the software developer
suitable protections to mitigate such vulnerabilities.
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Chapter 2

Decision support system for
software protection

In any moment of decision, the best thing
you can do is the right thing, the next
best thing is the wrong thing, and the
worst thing you can do is nothing.

Theodore Roosevelt

This chapter contains a bird’s eye view on ESP, providing general information about how,
starting from a vanilla application, its components, processes and data are orchestrated to produce
a protected version of the application in an (almost) automated fashion. This chapter is organized
in the following sections:

e Section 2.1 lists the main requirements for ESP;
e Section 2.2 contains an high-level description of the ESP workflow;

e Section 2.3 presents the results obtained executing ESP to protect an example application
(Sumatra, a comparison tool for DNA sequences);

e Section 2.4 details how software security experts validated, during the ASPIRE project, the
results produced running ESP on three real-life use cases, summarizing the contents of the
D1.06 ASPIRE deliverable [13]; furthermore, the section presents an experimental assess-
ment of the ESP workflow, executed on three different applications of increasing complexity
and size.

2.1 Problem statement

The main objective of this thesis is to present a decision support system for automatic software
protection, called Expert system for Software Protection (ESP). As detailed in the introduction,
protecting software has been a task reserved to few experts in the field, which manually analyze the
application to protect, identify the possible vulnerabilities, and then decide the best mitigations,
i.e., software protection techniques, to solve them. In doing so, experts base their decisions
mainly on their knowledge in the field, their past experience, and ultimately on their instinct.
Thus, a decision support system that wants to automatically protect applications needs to mimic
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how security experts do their job, following the classical approach of expert systems detailed in
Section 1.2, already applied to other aspects of cybersecurity, e.g., network vulnerability analysis
and mitigation [6, 18, 69, 119]. To the best of the author’s knowledge, no prior works in literature
apply the expert system methodology in the software protection field.

The software protection process may be more formally defined framing it as a risk manage-
ment process, a customary activity in various industry sectors, such as finance, pharmaceutics,
infrastructure, energy and, of course, information technology. Regarding the latter, the National
Institute of Standards and Technology (NIST) standard for information security [68] outlines a
high-level workflow for IT systems risk management, comprising the following phases:

1. risk framing: establish the scenario in which the risk must be managed;

2. risk assessment: identify threats against the system assets, vulnerabilities of the system,
the harm that may occur if such vulnerabilities are exploited, and the likelihood this would
happen;

3. risk mitigation: determine and implement appropriate actions to mitigate the risks;

4. risk monitoring: verify that the implemented actions are effective in mitigating the risks.

2.1.1 Risk framing

To frame risk, it must be taken into account that this thesis targets MATE scenarios, with
software running on untrusted machines, therefore an attacker has complete access to the software
binary code, and can monitor its execution. A broad range of tools (e.g., debuggers, decompilers,
disassemblers, fuzzers) can be used by an attacker to endanger the software assets, whatever its
drive may be (e.g., financial gain, industrial espionage, or simply personal satisfaction). However,
a less experienced attacker may not be able to use effectively these tools, therefore more complex
attacks may be executed only by few attackers. Conversely, more experienced attackers may
not be interested in attacking the application that must be protected. For example, a seasoned
attacker is unlikely to spend time in hacking a low value application, thus protections against more
complex attacks may be unnecessary, or even unfeasible from a financial point of view. Spending
thousands of dollars to safeguard an application licensing scheme, acquiring licenses of strong
proprietary protection schemes, is financially sustainable only if the value of the application and
the expected turnover from the application sales justify it. Thus, different attacker profiles, with
increasing levels of skill and experience, must be modelled, so that ESP can take this information
into account, in order to correctly assess risk depending on the application value.

Also, as presented in the Introduction, ESP must be designed for two different usage scenarios.
First, ESP can be useful to application developers, without specific knowledge in software security,
which do not have the financial resources or the will to hire security experts to protect their
application. In this case, ESP must implement a completely automated workflow, driving a set of
automated protection tools (as the ones presented in Section 1.1.1), able to provide the software
developer with a protected application binary, limiting as most as possible the interaction required
with him or her in the process. Second, ESP can constitute an interesting tool for security
experts, which want to obtain a first solution to the problem, which they can analyze to assess
its effectiveness, and further manually refine if necessary. Thus, insights on the results of all the
workflow phases must be provided.

Finally, as pointed out by security experts interviewed in the ESP design phase, the target
application life-cycle must be taken into account. Prior to software release, enough time is available
to carry out a thorough assessment of the application risks and to infer and apply the possible
mitigations. However, after distribution of the application, possible bugs may surface. After users
encounter such problems and report them, a patch that solves these issues must be released as
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soon as possible. Thus, the amount of time to find possible threats or vulnerabilities introduced in
the new version of the application by the aforementioned patches is limited, and a more shallow
assessment of risk must be performed. Therefore, ESP must provide different usage profiles.
Accuracy of results produced by its reasoning processes will depend on the time available to
perform them. Thus, the user can choose the more appropriate profile, given the software life-
cycle phase in which ESP is employed.

2.1.2 Risk assessment

Regarding risk assessment, a first fundamental activity is defining what is an asset in soft-
ware security, and which security requirements it may have. A software asset is any code or
data comprised in the application that, if successfully attacked, involves a damage for the soft-
ware proprietors, for example financial losses (e.g., lost sales due to an unlicensed version of the
application illicitly distributed) or reputation damage (e.g., disclosure of sensitive data of the
application users). To model assets, specific asset security requirements, i.e., asset properties that
must be safeguarded against attacks, must be defined, in order to infer possible attacks against
them and the appropriate mitigations. Following [68], two possible security requirements' are
defined:

o confidentiality: preventing the disclosure of parts of the application that must remain un-
intelligible to the attacker, such as proprietary algorithms or cryptographic keys;

o integrity: preserving code that must not be altered by the attacker, for example licensing
schemes.

ESP needs to include a risk assessment phase, where possible threats against the application
are identified, given a set of asset security requirements specified by the application developer.
Requesting this information from the latter has been deemed reasonable by experts interviewed
in the design phase of ESP, and, to the best of the author’s knowledge, there is no prior work
in literature automatically identifying assets. To ease developers in this preliminary task, a
method must be devised to include requirement definitions in the source code, so that this may
be done during the application development and not with an a-posteriori analysis, which can be
cumbersome and error-prone, especially with complex applications.

Then, ESP needs a way to assess risk. Following the classic structure of expert systems, ESP
must include a knowledge base, containing all the information needed to correctly infer the threats
against assets, and an inference engine, which must model the attacker mental processes in devising
actual attacks having as target the breaching of at least one asset security requirement. Also, we
need a way to represent the threats against application assets found with the inference engine. A
well-known approach in literature to threat modelling is the use of attack graphs, first proposed
by Swiler et al. [117] for computer networks risk assessment. Each threat is modelled with a
tree, having as root node the target of threat (in the ESP case, an asset security requirement),
while other nodes correspond to indivisible attack steps, simple attacker actions (e.g., executing
the application, debugging a function); each attack step has a set of preconditions that must
hold for the attacker to execute it (e.g., to debug a function, a debugger must be attached to the
application) and a set of effects if the attacker succeeds in carrying out the task (e.g., debugging the

1The NIST standard identifies an additional requirement, availability, defined as “Ensuring timely and reliable
access to and use of information.”, which is applicable for a network scenario, for example hardening the system
against DDoS attacks. However, in a MATE scenario, this requirement can be safely ignored, since attacks on
the target application remain confined to the attacker machine, not endangering the application availability for
legitimate users.
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function, the attacker understands its business logic, or finds values of local variables at runtime).
Starting from the root of the graph, attack paths can be inferred, i.e., ordered sequences of specific
actions that an attacker may execute to substantiate its threat against an asset, breaching a
specific security requirement of the latter. Thus, to implement an inference engine able to build
attack graphs for each application asset, a set of simple tasks that an attacker may execute in a
MATE scenario must be enumerated (e.g., analyze execution traces, find a function in the binary
code), associated with a set of preconditions and results, in order to obtain meaningful paths. The
attack steps level of detail must be also set carefully, so that attack steps are neither too vague
or unnecessarily specific: on one hand, using too much generic attack steps can lead to paths
lacking expressiveness, with the risk of overlooking possible mitigations, while on the other hand,
too detailed attack steps would lead to an impractical high number of equivalent attack paths,
which could be solved with the same mitigations, with a detrimental effect on the performances
of the inference engine, and increasing the effort needed to manually analyze the inferred attack
paths, if the ESP user wants to assess them prior to the mitigation phase. Thus, this ESP phase
must be validated: the level of detail of attack steps must be tuned accordingly, by evaluating the
accuracy of automatically inferred attack paths on test applications in describing actual attacks
executed by security practitioners against such applications.

Also, relationships between generic attack steps and the application structure must be defined,
to model realistic attack steps (and consequently paths) that represents the real actions that
an attacker must execute to endanger the analyzed applications: for example, if an attacker
wants to change the initialization value of a local variable of a function, he may first locate
the latter in binary code, and then focus its analysis on the function code to locate the specific
variable and subsequently tamper with the initialization code. Finally, ESP must be able to
quantify the probability of an attacker succeeding in the attack must be assessed, taking into
account the attacker skills, but also the application code characteristics: for example, the effort
needed to understand the logic of a function increases with its complexity, in terms of number
of instructions comprised in the function code, amount of nodes, edges and possible paths in
the CFG, and number of different memory locations accessed by the instructions. This leads to
another requisite for ESP: it must be able to assess the complexity of code constituting application
assets. Abundant research has been done in the field of software engineering regarding this issue,
with the definition of various software metrics devised to analyze various aspects of code, in order
to obtain quantitative measures that summarize its complexity: notable examples are metrics
proposed by Halstead [62] and McCabe [88].

2.1.3 Risk mitigation

Given the threats modelled in the risk assessment phase, i.e., the attack paths against the se-
curity requirement, ESP must be able to infer the possible mitigations against these requirements.
Indeed, software protections, as provided in the overview in Section 1.1, are designed to safeguard
the security requirement of assets, countering possible attacks against them. However, it should
be noted that in a MATE scenario, an attacker with sufficient motivation and resources will be
ultimately able to find a way to remove or circumvent protections, thus succeeding in breaching
such security requirement: in other terms, there is no perfect software protection, as it has been
formally proved for obfuscation techniques by Barak et al. in [11]. However, protections may be
still effective, if they succeed in deferring an attacker (given its profile, as defined in Section 2.1.1)
for a sufficient amount of time: for example, protections safeguarding a license check embedded
in a proprietary application may be deemed effective, if the software remains un-cracked for a
time sufficient to provide an economic return (i.e., applications sales) that justifies the previous
investments in the application developing. So, the objective of ESP, targeting a MATE scenario,
is to infer a set of protections that must be used to safeguard the application assets, deferring for
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the longest time possible the substantiation of threats against them, i.e., successful attacks.

Therefore, ESP must be able to find, for each attack path inferred in the risk assessment
phase (see Section 2.1.2), a set of possible mitigation that can be effective in defending the
asset endangered by the threat. In other terms, each attack path against one or more security
requirement of an asset must be countered by applying the appropriate protections to asset code.
To do so, a mapping between the available protection techniques and the security requirements
that such protections are able to safeguard is indeed useful: however, it is not sufficient, since
the objective is deferring a possible attacker for as long as possible. This involves defining a
method to quantify the effectiveness of protections able to counter the attack paths, in order to
compare possible mitigations and infer the ones among them that are most suitable to protect
the analyzed application against assessed threats. The concept of potency of transformation,
introduced by Collberg et al. [37], is a good starting point to solve this problem, since it binds
protection effectiveness with software metrics of the asset code on which the protection is applied,
quantifying it with the increase of metrics in the protected application w.r.t. the original one: in
the aforementioned work, Collberg et al. propose a set of metrics that can be used to evaluate
the efficiency of code obfuscation (see Section 1.1.2), while more general metrics are proposed by
Tonella et al. [118]. Thus, building on this prior research, software metrics appropriate to assess
the real effectiveness of protection techniques, evaluating their performance when applied on the
specific application assets that must be protected; furthermore, such metrics must be evaluated
by ESP in an automated fashion, analyzing the source code of the target application.

It should be also noted that applying protections to the application code has the side-effect
of slowing it down. An application is useless if it is well protected but too slow to appeal to
the user. The ESP mitigation process will take this problem into account, aiming to find an
optimal trade-off between the achieved security for the assets, and the performance overhead
introduced by the selected mitigations. Overhead can clearly be assessed after protecting the
application, executing a previously instrumented protected binary, and measuring the additional
time, memory and network bandwidth needed to execute the application. However, this execution
test should be done automatically: this would require the developer to provide a set of tests for the
application, and also would be problematic if the target program has a Graphical User Interface
(GUI); furthermore, the application should be tested for each possible set of mitigation inferred by
ESP, and this would lead to unfeasible times, especially in the case of big applications, with many
assets and a non-negligible time for execution. Thus, a method to approximate the introduced
performance overhead on the analyzed application, without actually executing it must be devised:
for this purpose, the use of software metrics for overhead estimation will be investigated.

Also, as detailed in Section 2.1.1, ESP must be able to drive a set of automated protection
tools, in order to protect the code without requiring user intervention. To do so, the information
needed to operate such tools must be modelled. First, tools are able to enforce various protections
(e.g., DTABLO supports different code obfuscation techniques, as reported in Section 1.1.2), so
each protection technique must be mapped to the tools enforcing them. Then, for each specific
implementation of a technique provided by a tool, all the necessary configuration parameters
for the latter must be identified: this is necessary also to infer realistic mitigations, since these
parameters may influence the obtained security level and performance overhead after using a tool
to protect an asset. For example, DIABLO provides a parameter to specify the percentage of
basic blocks that must be obfuscated: clearly, setting a high value for this parameter will result in
a thorough obfuscation, but will also incur in a considerable slow-down when the obfuscated code
is executed. So, different usage profiles for these automated protection tools must be modelled,
so that ESP can take them into account in its reasoning processes, and can subsequently drive
the automated protection tools with the appropriate values for their parameters.

Another characteristic of mitigations that must be modelled is that interactions among differ-
ent protections applied to the same assets must be modelled. As emerged in talks with security
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experts in the ESP design phase, some protections are able to amplify the effectiveness of other,
when applied to the same code: for example, if a local variable is protected with Tigress data
obfuscation technique (see Section 1.1.2), the variable value is stored in an encoded form, and
decoded on the fly when the variable must be accessed; obfuscating the decoding instructions
can certainly increase the effort needed by the attacker to comprehend the encoding schema and
compute the real variable value. Conversely, there are cases of incompatibilities among protec-
tions: for example, after protecting a function with remote attestation (see Section 1.1.3), further
modifications cannot be made to the protected code, since this would be erroneously identified by
the attestation technique as a tampering attempt by an attacker: so, protecting the same code
with remote attestation, and subsequently for example with CFF (a code obfuscation technique
described in Section 1.1.2), leads to a non working application; however, the inverse order of appli-
cation of protections is perfectly legal. So, ESP must infer also the order of protections that must
be applied to the code, trying to leverage the aforementioned “amplification effect” to improve
the protected application security level, while illegal sequences of protections must be avoided.

Finally, there is another side effect of protections that must be considered by ESP. Some
protections expose a “fingerprint”, an introduced code structure or run-time behavior that can be
recognized by the attacker, when he or she analyzes the protected binary: thus, an attacker may
look for these fingerprints introduced by protections, easily finding the protected assets in code,
and thus concentrating its effort on a more limited amount of code. Examples may be the large
CFG introduced by CFF, or the increased network activity of an application protected against
tampering with code mobility (see Section 1.1.3). This problem was highlighted by security
experts involved in the preliminary design phase of ESP. The solution to this problem adopted
in software security companies is obfuscating as much code as possible, applying this protection
even on areas of code not sensitive from a security point of view (i.e., non-assets), and then
executing the application to assess its performances: if the additional obfuscation introduced too
much overhead, the cycle is repeated, diminishing the areas of application of the technique and
testing again the program: indeed, this is a tiresome manual process, which involves potentially
multiple cycles of obfuscation and testing, until assets are hidden from the attacker with acceptable
application performances. So, a set of strategies must be devised and implemented in the ESP
risk mitigation phase, in order to limit this side effect of protections, finding ways to hide assets
and confuse the attacker when he or she analyzes the target program; also, having an automated
asset hiding phase would be an appealing plus for software security experts using ESP.

Summarizing, the ESP risk mitigation phase should propose a comprehensive protection solu-
tion, an ordered set of protections that must be applied to the application to increase the effort
needed by the attacker to implement the threats found in the risk assessment phase; application
of each protection must be detailed with the specific assets targeted and the specific automated
tool that must be used to enforce the protection, with the values for the parameters requested
by the tool. Also, each solution must be associated with a score, indicating its effectiveness in
mitigating possible threats, so that solutions can be compared with each other, and a best solution
can be inferred and suggested to the user.

2.1.4 Risk monitoring

Monitoring the risk of software in a MATE scenario means essentially constantly verifying
that the application has not been hacked after its distribution: this is indeed a complex matter,
involving for example monitoring torrent distribution websites for unauthorized redistribution
of the protected software; however, this is a task that goes beyond the scope of this thesis.
However, software security companies, prior to distribution of a protected application, test its
resilience against possible threats on the fields: tiger teams, composed by highly skilled white-hat
hackers, execute a penetration testing phase [7], trying to breach the assets security requirements,
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impersonating a possible attacker. The objective of this phase is assessing the security introduced
in the software with the mitigation phase: if attacks carried out in this phase are successful,
exposing security flaws overlooked by the chosen mitigations, the appropriate corrective measures
are taken, with a new mitigation phase aiming at countering possible attacks found by penetration
testers. ESP aims to mimic the security experts methodologies: while a real execution of the attack
paths found in the risk mitigation phase as been deemed not feasible, since it would require a way
to automatically write scripts driving real attack tools to test the protected application. However,
the idea of testing the found solutions with the attack paths found in the risk mitigation phase
can be applied to assign a more realistic score to inferred protection solutions: since attack steps
must be associated with a probability of success, dependent on the attacker profile and the assets
code complexity metrics, and since deploying protections to code increase such metrics, the score
of inferred protection solutions can be bound to their effectiveness in reducing the probability
for an attacker to succeed in the attack paths found in the risk assessment phase, reflecting ESP
main objective, i.e., increase the time and effort needed by the attacker to successfully implement
its threats against the asset security requirements.

2.2 Automated workflow for software protection

This section outlines the design of the automated workflow for software risk management,
highlighting how its phases verify the requirements described in Section 2.1. Furthermore, this
section describes the research problems encountered in the design and implementation of each
workflow phase, along with the adopted solutions, presenting the main contributions of this thesis
w.r.t. the existing state of the art of software protection in the MATE scenario.

2.2.1 Software protection meta-model

Indeed, the main objective of this workflow is automating the software protection process, a
task that until now has been reserved to highly trained professionals, with a deep knowledge in
the field of software security: due to their experience, they know which vulnerabilities can be
exploited by attackers to target an application assets, how to find possible vulnerabilities on the
source code, and the mitigations that are better suitable to defer possible attacks. During the
ASPIRE project, security experts of the industrial partners of the project have been interviewed,
gathering a large amount of information on their modus operandi and the background knowledge
and experience on which their decisions are founded, when tasked with the protection of an
application. Interestingly, while a plethora of security models for computer networks have been
defined, to the best of the author’s knowledge literature lacks works on software security modelling.
Thus, the first contribution of this thesis is a software security meta-model, formalizing the
information gathered during the ASPIRE project among experts in the field. All concepts relevant
to the software risk management process are modelled, such as attacks, protection techniques,
assets and security requirement, with relationships among them: these concepts aim to grasp the
background knowledge of security experts, which they put into action when the best mitigations
for a given application risks must be decided. Such abstract concepts can be instantiated into
formal descriptions of actual protection techniques and threats. Indeed, this is an advancement in
description of software vulnerabilities and threats, which, as in the case of well-known databases
such as the Common Vulnerabilities and Exposures (CVE)? and Common Weakness Enumeration
(CWE)?, are mainly based on free text descriptions of actual threats against specific applications,

2https://cve.mitre.org/

Shttps://cwe.mitre.org/
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unusable by a machine to automate risk management processes. However, the meta-model goes
beyond the modeling of generic software security concepts, formalizing also information about the
application that must protected, used by the experts to adapt their general knowledge for the
specific task: to model this mental process, a set of relationships have been introduced in the model
to link generic security concepts with the actual application structure. Furthermore, the model is
able to formalize all the results of the experts work, with a formal structure for possible attacks,
in the form of ordered sequences of simple attacker tasks, and of the combination of mitigations
that must be applied to the target software to block them, expressed as ordered sequence of
actual implementation of protection techniques, stating the tools that must used to enforce them,
along with the configuration parameters value to drive the results of their execution. This meta-
model can be used by anyone tasked with the protection of an application, in order to organize
all the information involved in this process. Also, modelling all the background knowledge and
specific application information used by a software security expert, and also the results of its
mental processes, the meta-model is also suitable to structure the knowledge base of ESP, which
in fact must mimic the expert behaviour. The abstract meta-model, and its implementation as a
Knowledge Base for ESP, is described in Chapter 3, which is a reworked version of the publication
“A meta-model for software protections and reverse engineering attacks” [15], in which the meta-
model has been first presented.

A requirement for all risk management phases is that the target application structure should
be taken into account: this is necessary, as described in Section 2.1, so that ESP, carrying out
these phases, can produce realistic results (i.e., attack paths, protection that defer them, and the
best protection solution to globally safeguard the application). As already said, the meta-model
is able to formalize the information about application structure, with a set of classes described
in detail in Section 3.2, comprising information about functions, local variables, assets with the
user-defined security requirements, but also relationships among them, including a representation
of the application call graph and data dependency graph. However, since ESP must implement
an automated workflow, all these abstract concepts must be instantiated to describe the structure
of the target application limiting as much as possible user intervention. Thus, the ESP work-
flow includes a preliminary phase, in which the application source code is analyzed in order to
instantiate all the related meta-model classes in the ESP Knowledge Base: to do so, ESP first
obtains an Abstract Syntax Tree (AST) [79], i.e., a formal description of the application source
code, which in turn is analyzed to instantiate the needed meta-model classes in the Knowledge
Base. The AST, in ESP implementation, is obtained using Eclipse C/C++ Development Tooling
(CDT)*. However, assets and security requirements must be marked by the ESP user: a set of
code annotations, described in Section A.3 and based on the GNU is Not Unix (GNU) C Com-
piler (GCC) Attribute Syntax®, have been defined in order to ease this task for the user; such
annotations will be automatically parsed by ESP, instantiating in the Knowledge Base related
meta-model classes.

The ESP Knowledge Base has been implemented with an OWL2 [99] ontology (see Sec-
tion 1.2.1), containing all the modeled background information gathered from the software se-
curity experts. ESP manipulates the ontology, inserting additional data produced in the various
phases of its workflow, via an external ontology management APIC.

https://uww.eclipse.org/cdt/
Shttps://gcc.gnu.org/onlinedocs/gec/Attribute-Syntax. html

Shttps://github.com/daniele-canavese/ontologies
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2.2.2 Risk assessment phase

Given the formalization of generic background knowledge of software security experts, and
after the modelling of the application code structure described in the previous section, ESP is
able to assess the possible threats against the security requirements of application assets defined
by the user; in doing so, the reasoning processes used by ESP in this phase must satisfy the
requirements detailed in Section 2.1.2.

First, possible threats are formalized in the meta-model using attack paths, i.e., ordered se-
quences of simple and indivisible attacker tasks, called attack steps, which an attacker can execute
in succession to breach an asset security requirement. Each step is characterized by a set of pre-
conditions: if these are satisfied, the attacker can execute the step. Conversely, attack steps can
have postconditions, results of their successful execution by the attacker: thus, a step can enable
another one, following in the path, if the second preconditions are satisfied by the postconditions
of the first. For example, an attacker, to tamper with a variable at run-time, must be first able to
locate it in memory. Also, preconditions can be related to the characteristic of application code,
thus binding the inference of possible attack paths with the code structure, satisfying one of ESP
requirements for the risk assessment phase: taking the previous example, if the attacker needs
the location of a variable at run-time, in order to tamper with its value, he can clearly analyze
the program memory searching for the variable; however, the attacker can take another approach
if the case of a local variable, first locating the code of the function comprising the variable (e.g.,
debugging the code), and subsequently analyzing the function instructions, in order to narrow
the search to the memory addresses accessed by such instructions. Summarizing, attack paths
will be ordered sequences of attack steps, with each of the latter fulfilling with their results the
preconditions of following steps: paths will be concluded with a last step, having as postcondition
the breaching of the asset security requirement targeted by the path.

Indeed, attack steps represent the execution of an attack task to a specific code or function
of the application: information about these tasks, including preconditions, postconditions are
consequently necessary to assess the risk. A set of generic attack tasks has been obtained from the
study by Ceccato et al. [31]: the authors manually analyzed a set of penetration testing reports,
executed by professional security practitioners, building a taxonomy of attacks in the MATE
scenario. Also, as defined in the risk assessment requirements, the probability of an attacker
being able to execute specific tasks has been taken into account: given a set of attacker profiles,
with increasing skills and experience (geek, amateur, professional, guru), software security experts
involved in the ASPIRE project indicated, given their past experience, probabilities relating each
attacker profile with each type of attack step: this information has been included in the meta-
model, as experts background knowledge, and is used by ESP in its mitigation phase.

Information about attack step types, preconditions and postconditions have been modelled as
Horn clauses (see Section 1.2.2): the inference engine uses these clauses to infer the possible attack
paths against the assets security requirements, with an algorithm based on backward chaining.
ESP can query the inference engine to obtain a complete attack graph, i.e., all the possible attack
steps having as target the security requirement of a specific asset in the application: the resulting
attack paths are stored in the Knowledge Base, formalized with the meta-model classes presented
in Section 3.3, and will be the starting point for the subsequent risk mitigation and monitoring
phases of ESP. The time needed to execute the risk assessment phase, and subsequently the
accuracy of the inferred attack steps, can be limited by the ESP user, setting a hard time limit,
or specifying a maximum length for the inferred attack paths. Thus, the execution of the ESP
risk assessment phase is adaptable to the application lifecycle, respecting the related requirement
defined in Section 2.1.1.
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2.2.3 Asset protection phase

The main objective of ESP is, given an application that must be protected and a user-defined
list of security requirements for each asset, present the user with the best protection solution, i.e.,
the combination of mitigation able to defer for the longest time possible the attack paths against
the application assets, found in the risk assessment phase presented in the previous section. Thus,
given such attack paths, ESP can carry out the asset protection phase, with the aforementioned fi-
nal objective. In doing so, both the risk mitigation and monitoring phases of the risk management
process, described in Section 2.1, are carried out: first, the best mitigation for each asset security
requirement, taken in isolation, are inferred; then, such mitigations are combined, with each gen-
erated combination safeguarding all the attack paths inferred in the risk mitigation phase; finally,
a score to each combination is assigned by testing it against the aforementioned attack paths,
thus mimicking the penetration testing activity described in Section 2.1.4. The asset protection
phase, detailed in Chapter 5, must therefore satisfy the requirements listed in Sections 2.1.3 and
2.1.4.

As already introduced in Section 2.2.1, in order to drive the automated protection tools (Ti-
gress, DIABLO and the ACTC, presented in Section 1.1.1), a set of usage profiles has been defined,
specifying for each supported protection techniques, all the configuration parameters that influ-
ence the actual application of such techniques. Regarding these, two fundamental concepts are
modelled (see Section 3.3 for details): the PI and the Deployed Protection Instance (DPI). A PI
represent a specific implementation of a technique, stating the tool used to deploy it automatically
on the code, and all the configuration parameters needed by the tool. A DPI represents the actual
deployment of a specific technique implementation to a specific variable or section of code in the
application (e.g., an asset).

Each protection technique has been assigned a generic level of effectiveness against each of the
attack steps types defined in the previous section, obtained by the security experts involved in the
ASPIRE project. Furthermore, each protection technique has a specific set of constraints w.r.t.
the structure of the asset on which they must be deployed: a simple example is that the Tigress
literal and variable obfuscation techniques (see Section 1.1.2 can be applied to the respective
types of datum. However, also specific implementation issues of the automated protection tools
are considered: for example, the code mobility anti-tampering technique can be applied only to
whole functions (and not to a subset of them), due to a limitation of the specific implementation
used by ESP. Checking this constraint, ESP is able to infer, for each asset security requirement,
and each attack path endangering it, all the suitable mitigations, able to block at least one step of
one of the aforementioned attack paths against the asset: this first result is saved in the Knowledge
Base using the aforementioned concept of DPI. This preliminary task of the asset protection phase
is detailed in Section 5.2.

Then, given all the possible DPIs, ESP infers all the possible combinations of DPIs, or pro-
tection solutions: each one must respect the fundamental requirement of being able to block all
the attack paths against the application found in the risk assessment phase. Also, for a combi-
nation to be valid, protections deployed on the same asset must not present any incompatibility
among them, as described in Section 2.1.3: ESP takes this problem into account, generating only
valid solutions, given a set of incompatibilities reported by the software security experts, saved
in the Knowledge Base using the relationships among protections defined in the meta-model for
this purpose (see Section 3.3). Furthermore, since protections cause a decrease of application
performances when deployed to protect its assets, in terms of CPU resources, memory occupa-
tion, and used network bandwidth for on-line protections. Thus, the global performance overhead
introduced in the application by the inferred combinations of DPIs must be limited: the user can
set an upper bound for the overheads, which will be respected by the inferred combinations of
DPIs. As highlighted in Section 2.1.3, since it is unfeasible to actually measure the overheads by
instrumenting the application, these are approximated using formulas specific for the protection
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techniques, designed during the ASPIRE project in collaboration with protection authors: over-
heads depend also on the characteristics of the specific asset code protected with such techniques,
thus these formulas are based on the complexity metrics, to take account of this dependence and
obtain more reliable estimations. Evaluation of protection overheads is described in more detail
in Section 5.4.3, while Section 5.3 reports on the generation by ESP of valid DPIs combinations.

However, the objective of ESP is presenting the best protection solution, so a way to compute
the score of solutions must be devised. Indeed, multiple factors influence the effectiveness of
a solution: the attacker profile, the possible attacks that must be deferred, the specific protec-
tion techniques used, the characteristics of assets code are all considered in assigning the score.
The latter is assigned with a game-theoretic approach, which, taking into account all the afore-
mentioned application, simulates a software protection “game”: first, the defender protects the
application and releases it to public, then the attacker tries the attack paths previously inferred
in the risk mitigation phase, trying to breach at least one asset security requirement. A set of
security measures, based on the assets software metrics, are used to model the resistance of assets
against attack: the defender will first increase this measures through protections (extending the
concept of transformation potency introduced by Collberg et al. [37]), then the attacker will try
to decrease the measures until at least an asset is not defended anymore, so that its security
requirements can be breached. The effectiveness of attacks in lowering the software measures
is bound to the probability of success in executing the steps forming the path, which in turn
depends on the attacker profile, and on the attacked asset metrics. This game-theoretic approach
implements the simulation of the penetration testing executed by human security experts to test
the protected application, thus fulfilling the related requirements for the risk monitoring phase
(see Section 2.1.4).

Finally, the use of assets complexity metrics to assess protection efficacy have posed a cum-
bersome problem: as previously stated, the effectiveness of protections is closely related to the
increase of such metrics in the protected code w.r.t. to the original one. Thus, to measure this
increase, the metrics on the protected code must be calculated: for this, ESP relies on DIABLO,
which evaluates metrics on the binary, after applying its protections. Thus, every time the score
of a solution must be assessed, the protected binary should be built: however, the time needed
to build the protected binary for each analyzed solution would not be feasible, especially when
big applications, with not negligible compilation times, must be protected. Thus, a method is
needed to predict the increase of complexity metrics of a specific asset, given the protections
included in the solution that must be deployed on it: this problem has been solved, as presented
in Section 5.4.2, with a set of predictors based on machine learning techniques: tests on real
applications proved the high accuracy of the predictions obtained with this approach.

All the described algorithms, implementing the asset protection phase in ESP, present various
configuration parameters that can be used to obtain increasing levels of result accuracy, at the
expense of additional time needed by ESP to execute this phase: this permits the adaptation of
this phase to the software life-cycle, as prescribed by the related requirement in Section 2.1.1.

2.2.4 Asset hiding phase

An additional mitigation phase has been introduced in ESP to hide assets from the attacker,
mitigating the protections’ side-effect of introducing fingerprints in the application, i.e., peculiar
code structures or run-time behaviors that can indicate to the attacker the location of assets in
the protected binary. This phase relies on the refinement of the best solution with additional
protections, applied also on code areas that are not marked by the user as asset, so that the
attacker can mistake such regular code areas as asset: this strategy is similar to the use of
honeypots [116] to attract and identify intruders in computer networks, however, given the MATE
scenario, aims to defer attackers, instead of identifying them. Three strategies to apply such

43



2 — Decision support system for software protection

additional applications have been devised:

o fingerprint replication: additional fingerprints are added to the application, having a similar
structure to the ones used during the assets protection phase, applying the same protections
on non-sensitive code regions;

o fingerprint enlargement: the area of deployment of protections already present in the solution
is extended to adjacent areas of code;

o fingerprint shadowing: existing fingerprints are concealed, applying other protections on the
same asset.

The effectiveness of each strategy is related to the protection technique that introduced the fin-
gerprint that must be concealed, and on the code complexity metrics of the protected application:
this factors are combined in together in a confusion indez, stating the additional effort needed
by the attacker to locate the application assets, due to the additional protections inferred in this
phase. Characteristics of the fingerprints, due to the protection techniques generating them, has
been analyzed during the ASPIRE project, involving security experts and the developers of AS-
PIRE techniques in the definition of the fingerprints characteristics. Also overhead is taken into
account in this phase (if not constrained, fingerprint enlargement and replication strategies could
lead this phase to protect all the application code), using the evaluation formulas described in
Section 5.4.3.

Thus, ESP must be able to refine the solution produced in the asset protection phase, adding
to the existing solution additional protections to conceal their fingerprints: to choose the best
protections, ESP must maximize the aforementioned confusion index while keeping the additional
overheads below the user-defined limits. The solution adopted to find the best additional pro-
tections relies on the definition of a Mixed Integer-Linear Programming (MILP) optimization
problem [19], based on the well known Knapsack Problem [47]. To solve the problem, ESP sup-
ports two external solvers: lp_solve, a FOSS solver, and IBM ILOG CPlex, a proprietary one.
Also in this case, to satisfy the application lifecycle requirement stated in Section 2.1.1, the size
of the problem can be limited to hasten its solution, paying the price of a lower accuracy in the
found solution.

2.2.5 Complete workflow

All the phases described in this section can be organized in a unified software protection
workflow, depicted in Figure 2.1, enabling ESP to safeguard an application to possible threats
that can endanger the security requirements of the application asset, which are defined by the
user. ESP, starting from the application source code, protects the code in an automated fashion,
generating an application binary with all the protections needed to counter the possible threats
deployed on it. Due this high grade of automation, ESP is usable also by a software developer
that has no experience in the software security field. Conversely, ESP outputs also attack paths
and analyzed mitigations, providing a software security expert with the information needed to
manually assess the solution proposed by ESP, so that he or she can manually refine it, if deemed
necessary. Thus, ESP satisfies the requirements related to interaction with the user, as defined in
Section 2.1.1.

Summarizing, the workflow constitutes of the following phases:

1. source code analysis, a preliminary phase needed to generate automatically the model of the
application source code structure, inferring the related information needed in the following
workflows phases; the source code structure is formalized with classes and relationships of
the meta-model defined in Chapter 3;
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Figure 2.1: ESP workflow.

2. risk assessment phase, inferring possible attacks against application assets, with a reasoning
process, based on backward programming, described in Chapter 4;

3. asset protection phase, selecting, among possible mitigations against the risk assessed in
the previous phase, the ones that best perform in protecting the application, given its code
structure and the attacker profile selected by the user; this phase is based on a game-theoretic
approach detailed in Chapter 5;

4. asset hiding phase, refining the protection solution inferred in the previous phase with
additional protections, applied also on areas of code not sensitive from a security point of
view, with the objective of increasing the effort needed by an attacker to locate the assets
in the protected application binary; this phase is based on the generation and solution of a
customized Knapsack optimization problem, presented in Chapter 6;

5. solution deployment, driving the external software protection tools, presented in Section 1.1.1,
to automatically generate an application binary protected with the best combination of pro-
tections obtained in the asset protection phase, and further refined in the asset hiding phase;
details on how ESP drives the external protection tools are given in Appendix A.3.

2.3 Workflow execution example

This section provides an example of ESP execution on a simple application, in order to further
ease comprehension of the automatic workflow phases. In particular, ESP has been used to protect
Sumatra”, a C console application used to compare DNA sequences. Sumatra is an open-source

"https://git.metabarcoding.org/obitools/sumatra/wikis/home/
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Sumatra phase  Asset names # assets
1 main 1
2 seq_readAllSeq2, cleanDB, addCounts, 9

seq_ fillHeader, seq_ fillSeqOnlyATGC,
seq_ fillSeq, seq_ fillDigitSeq,
seq__readNextFromFilebyLine, unigSegsVector

3 comparel, calculateMaxAndMinLen, 4
compare2, calculateMaxAndMinLenDB
4 seq_ findSeqByAccld, seq_ printSeqs 11

printOnlySeqFromFastaSeqPtr,
sortSeqsWithCounts, seq__getNext,
reverseSortSeqsWithCounts,
printHeaderAndSeqFromFastaSeqPtr,
printOnlySeqFromChar, printResults,
printOnlyHeaderFromFastaSeqPtr,
printOnlyHeaderFromTable

Table 2.1: Functions marked as assets, grouped by Sumatra phases.

Class name File  ApplicationPart Asset Datum Code Call  Datumltem

# instances 12 1159 25 909 225 708 1551

Table 2.2: Classes automatically instantiated in the source code analysis phase of ESP workflow,
executed on the Sumatra application.

application. However, it can be treated as a commercial software, with a valuable comparison
algorithm that must be protected against reverse engineering.
The DNA comparison can be subdivided into four consecutive phases:

1. the command line arguments are parsed; in function of their value, the appropriate functions
are called to perform the DNA comparison;

2. the DNA sequences selected by the user are parsed and stored in memory, using a set of
data structures for this purpose;

3. the latter are used by Sumatra core algorithm to perform the comparison of the sequences;

4. the comparison results are shown to the user.

Table 2.1 lists the 25 functions that have been manually marked as assets (using the code
annotations described in Appendix A.3), subdivided by Sumatra phase. An example of asset is
the function comparet, which contains one of Sumatra’s core algorithms, designed to compare all
the DNA sequences in a single dataset. For this example workflow, ESP has been instructed
to find the protection solution best able to protect the confidentiality and integrity of all the
aforementioned assets.

First of all, the application source code is automatically parsed, generating an instance of
the application meta-model described in Section 3.2. The latter contains all the information
needed in the subsequent phases of ESP workflow, including details on functions, global and local
variables, and on the call graph. Table 2.2 lists the application meta-model instances automatically
instantiated by ESP parsing the Sumatra source code.

Then, ESP risk assessment phase (detailed in Chapter 4) is executed, identifying the possible
attack paths, ordered sequences of simple actions that a malicious actor may undertake in order to
endanger the assets security requirements defined by the user. ESP has found 162 different attack
paths against Sumatra’s assets, combining a total of 150 different attack steps. For example,
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an attacker may try to breach the integrity of the compare1 asset (the function implementing the
algorithm for the comparison of all the DNA sequences in one dataset) with the attack path
constituted by the following steps:

1. the attacker executes Sumatra with a debugger attached, running a comparison between
DNA sequences in a dataset;

2. the comparet function is consequently executed to perform the comparison, and the attacker
can identify its position in the application binary thanks to the attached debugger;

3. knowing the asset’s location in the binary, the attacker may tamper with it, again using the
debugger, thus breaching the asset’s integrity security requirement.

Knowing the possible attacks against Sumatra’s assets, the asset protection phase (described
in Chapter 5) can be performed. First, for each attack path previously found, ESP identifies the
protections that can be applied to the endangered asset, in order to mitigate the analyzed path,
thus generating the related Deployed Protection Instances (DPIs) that will be then combined
into a comprehensive protection solution, able to protect all the assets against all the attack
paths previously inferred. Each protection is associated with a level of mitigation against each
kind of attack; for example, static remote attestation (see Section 1.1.3) has a high mitigation
level against both static and dynamic tampering attacks, since this technique is designed to detect
modifications of the monitored code. Then, ESP builds various combination of the DPIs, assessing
the global effect of such protection solutions in deferring the possible attack paths found in the
risk assessment phase, until all the possible solutions are generated or a termination condition
is found (e.g., a hard time limit set by the user). The user can then select one of the solutions,
deploy it as it is, or further refine it with the asset hiding phase (see Chapter 6) of the ESP
workflow. In this way, additional protections, deployed on non-sensitive areas of code, are added
to the solution, to further confuse a possible attacker.

Table 2.3 lists the DPIs constituting the best solution found in the asset protection phase by
ESP on Sumatra. ESP has been instructed to consider only DPIs with at least a medium level
of effectiveness against at least one attack path. For example, ESP has deployed three different
protections to the comparet asset. Code mobility (see Section 1.1.3) moves to a remote trusted
server a part of the asset’s code, that is downloaded on the client machine only immediately before
of its execution. In this way, the protection increases the effort needed by the attacker to reverse
engineer the asset, thus preserving its confidentiality. However, the attacker could attach a debug-
ger, manage to have the function downloaded and executed (e.g., using the attack path previously
described) and analyze its behaviour at run-time, thus breaching its confidentiality. The asset
is thus protected by this attack using the anti-debugging technique (see Section 1.1.4). Finally,
both static and dynamic attempts to tamper with the asset’s code are identified, monitoring it
with the static remote attestation protection technique. This solution has been further refined
with the asset hiding phase of the ESP workflow, adding 60 DPIs (on non-asset code areas) to
the 27 DPIs constituting the original solution. For example, since the anti-debugging exhibits a
peculiar fingerprint (the system call needed to attach the self-debugger on which the technique is
based), the protection has been deployed also on non-sensitive code areas. In this way, an attacker
looking for the anti-debugging protection fingerprint can be mislead to analyze one of these not
valuable functions (from a security point of view).

2.4 Validation

This section elaborates on how ESP fulfils the requirements for the software risk management
methodologies reported in Section 2.1. A more detailed evaluation is provided for each phase of
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Protection name Asset name # mitigated attack paths
Anti-Debugging cleanDB.r9 8
Code Mobility printResults.r16 2
Source code obfuscation printOnlySeqFromFastaSeqPtr.r20 8
Code Mobility seq_readAllSeq2.r6 2
Anti-Debugging calculateMaxAndMinLenDB.r13 6
Source code obfuscation reverseSortSeqsWithCounts.r15 4
Anti-Debugging seq__printSeqgs.r8 2
Anti-Debugging seq_ fillSeqOnlyATGC.r4 4
Source code obfuscation seq_readNextFromFilebyLine.rl 2
Anti-Debugging addCounts.r10 2
Anti-Debugging sortSeqsWithCounts.r14 4
Anti-Debugging printOnlySeqFromChar.r21 2
Binary Obfuscation main.rl9 2
Anti-Debugging seq__getNext.r0 4
Anti-Debugging calculateMaxAndMinLen.r12 4
Code Mobility compare2.r18 2
Static Remote Attestation comparel.rl? 3
Anti-Debugging comparel.rl? 6
Code Mobility comparel.rl?7 2
Code Mobility printHeaderAndSeqFromFastaSeqPtr.r24 2
Anti-Debugging seq__fillDigitSeq.r5 2
Anti-Debugging printOnlyHeaderFromTable.r23 2
Anti-Debugging seq_fillSeq.r3 4
Anti-Debugging seq__findSeqByAccld.r7 2
Code Mobility seq__fillHeader.r2 2
Anti-Debugging unigSeqgsVector.r11 6
Anti-Debugging printOnlyHeaderFromFastaSeqPtr.r22 2

Table 2.3: Protection solution inferred by ESP for the Sumatra application.

the ESP workflow at the end of each chapter. Furthermore, this section presents an experimental
assessment of ESP algorithms on three different applications, in order to prove its computational
feasibility.

2.4.1 Qualitative evaluation

First of all, the workflow implemented by ESP models all the main tasks executed by software
security experts tasked with the protection of a target application. The workflow comprises
a phase to analyze the application structure, another to infer the possible attacks against the
assets defined by the ESP user, and a phase to decide the mitigations most suitable to safeguard
the assets security requirements. This workflow has been analyzed by software security experts
involved in the ASPIRE project, and judged to correctly model the workflow they follow when
tasked with the protection of an application.

Also, the implemented workflow is completely automated, with minimal interaction requested
to the ESP user. In particular, the latter needs to provide to ESP the assets and the security
requirements for them, which has been considered reasonable by the experts. Also, ESP can deploy
the inferred protection solution automatically, since all the evaluated protections are implemented
with the automatic protection tools described in Section 1.1.1. Thus, ESP can be used also by
software developers with a limited background in software security. Also, the results of each
phase in the ESP workflow are provided to the user in a human-readable format, e.g., sequences
of simple attacker tasks for the risk assessment phase, ordered lists of protection techniques to
be applied for each asset in the risk management phase. In this way, an expert using ESP can
obtain automatically a protection solution for the application that he must protect, and can then
evaluate it analyzing the results produced in each ESP workflow phase. If needed, he or she can
then refine the automatically obtained solution.

All the decision processes implemented by ESP take into account the application structure,
thus the produced results are tailored for the specific target application. All the concepts and
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Application C H Java CH+ Total
DemoPlayer 2,595 644 1,859 1,389 6,487
LicenseManager 53,065 6,748 819 - 58,283
OTP 284,319 44,152 7,892 2,694 338,103

Table 2.4: SLOC of ASPIRE use-case applications, used for the ESP validation.

relationships between them that are deemed useful in the software protection process have been
formalized in a software security meta-model, presented in Chapter 3. Also, protection solutions
are inferred taking into account the complexity metrics computed on the code comprising each
asset, thus the efficiency of the solutions in safeguarding the assets reflects the real characteristics
of the code.

During the ASPIRE project, three real-life Android applications, written in C, have been
provided by the project industrial partners, in order to test the protection techniques developed
during the project, and to validate the protection solution inferred by ESP on these applications.
The use-case applications on which the ESP reasoning processes have been validated are a One-
Time Password generator for home banking applications, an application licensing scheme, and a
video player for Digital Rights Management (DRM) protected content. Details on these use cases
have not been publicly released by their proprietors, and therefore are not included in this thesis.
However, the Source Lines Of Code (SLOC) metrics for each use case application are reported in
Table 2.4, proving the feasibility of analyzing and protecting complex applications with ESP.

Regarding the validation process, six experts from the three industrial partners have judged
the results of the execution of ESP on the aforementioned use cases: in particular, two experts
from each partner have validated the results on the use case built by their company. The data
produced by ESP and validated by the experts has been the Attack Path (AP) inferred by the
Risk Assessment Engine on the use cases assets, the protections deemed suitable by the Protection
Enumerator to block these attacks, and the solutions produced by the Risk Mitigation Engine
and Asset Hiding Engine combining the aforementioned protection; in particular, solutions have
been validated in terms of achieved security for the assets, preservation of the application business
logic, and containment of the inevitable slow-down of the protected application w.r.t. the original
one. Furthermore, the AP have been compared with real attacks executed by each company’s
tiger team.

The validation has been positive: quoting from the related project deliverable [13], “after the
analysis of the validation data, the ASPIRE consortium concluded that the ADSS® has a very
high potential even if it is not yet ready to be used to protect real applications”. In particular, the
combinations of protections inferred by the Risk Mitigation Engine and the Asset Hiding Engine
have been judged as correct, i.e., they can be applied to the use case source codes, obtaining
protected binaries that are unaltered in terms of business logic and are still usable, without
an excessive overhead introduced by the protection. Also, the proposed solutions have been
deemed effective to block the AP inferred by the Risk Assessment Engine, and also many real
attacks executed by the professional tiger teams of the project industrial partners. The main
flaw of ESP reported by the experts is that APs produced by the Risk Assessment Engine are
too coarse-grained, since the attack rules are generic: future work on ESP will have to address
this limitation, expanding the existing attack rules, e.g., by modelling actual attacks against real

8 ASPIRE Decision Support System, the name originally adopted for ESP in the context of the ASPIRE project.
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application listed in databases such as the CVE? and CWE!?, or in automated attack frameworks
such as Metasploit'!. The complete report on the ESP validation is presented in the related
project deliverable [13].

2.4.2 Experimental assessment

ESP has been tested on three applications written in the C language, with increasing size
and complexity. Statistics about such test cases are reported in Table 2.5. The ESP complete
workflow has been executed on each application, running the asset protection (see Chapter 5)
and hiding (see Chapter 6) phases multiple times, varying the number of different PIs available
to protect the applications’ assets. The tests have been executed on an Intel i7-8750H 2.20 GHz
with 32 GiB of RAM, using Java 1.8.0_212 under GNU/Linux Debian 4.18.0. Figure 2.2 depicts
the obtained results, showing the total ESP computation time, along with the time needed for
the risk assessment, asset protection and hiding phases.

In all the executed tests, the time needed to analyze the applications source code and to
generate the application meta-model instance has been negligible (less than 1s) and is thus not
drawn in Figure 2.2. Also the time needed to deploy the solution is excluded from the afore-
mentioned figure, since it is completely dependent on the time needed for the external protection
tools execution, and is therefore not relevant for the assessment of ESP computational feasibility.
The time needed to execute the risk assessment phase is clearly not dependent on the numbers
of Pls available to protect the application, since the algorithm evaluates possible attacks on the
vanilla application. However, Figure 2.3 highlights that time needed for such phase is strongly
dependent on the application code complexity (e.g., SLOC, number of assets and functions). The
asset protection phase is by far the most computationally intensive, especially with high numbers
of available PIs. The order used to deploy different protections to the same asset may have a deep
impact on the achieved level of security (see Section 2.1.3). Thus, in the asset protection phase,
ESP must not only assess the different combinations of PI that can be applied to each asset, but
also the possible permutations of each combination of PI, causing the strong correlation of asset
protection algorithms complexity with the number of available PIs. The same holds also for the
asset hiding phase, even if less time needed to execute the latter, compared to the asset protection
phase.

s e . Assets
Application SLOC  Functions Code Variables  Total
A 443 18 2 2 4
B 1029 47 12 3 15
C 3749 178 26 13 39

Table 2.5: Code statistics of applications used for ESP experimental assessment.

Mttps://cve.mitre.org/
Onttps://cwe.mitre.org/

Uhttps://www.metasploit.com/
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Figure 2.2: ESP execution times on applications reported in Table 2.5, with increasing number
of available PIs.
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Figure 2.3: Execution times for ESP risk assessment phase on applications reported in Table 2.5.
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Chapter 3

Software security meta-model

Information is the resolution of
uncertainty.

Claude Shannon

This chapter, which is a reworked excerpt of the paper “A meta-model for software protections
and reverse engineering attacks” [15], presents the software security meta-model on which the
Knowledge Base is modelled, introducing how the a-priori knowledge gathered among software
security experts during the ASPIRE project, and all the relevant information about the target
application code structure is formalized, in order to be used by the ESP reasoning processes.

Information formalized by the meta-model can be distinguished in three main categories:

e generic a-priori knowledge: all the information about obtained from software security ex-
perts, e.g., generic attacks, protection techniques, security requirements;

o target a-priori knowledge: the description of the target application, i.e., concepts and classes
that can be automatically inferred by ESP analyzing the target source code (e.g., functions,
variables, CFG and call graph), or manually specified by the user (e.g., assets and their
security requirements);

o a-posteriori knowledge: the results of the ESP reasoning processes, such as the attacks
against the target application assets inferred in the risk assessment phase, and combinations
of protections devised in the risk mitigation phase to safeguard application assets from the
aforementioned attacks.

The meta-model is implemented by the Knowledge Base as an OWL-2 ontology. At the start
of the ESP workflow, this ontology contains the aforementioned generic a-priori knowledge. Then,
is enriched with target a-priori and a-posteriori knowledge during the various phases of the ESP
workflow, described in Section 2.2. The Knowledge Base, to manipulate the ontology file, leverages
methods from an external library, providing an API for OWL-2 ontology management’.

For the sake of readability, the meta-model is split in four smaller ones. This section is
organized accordingly in the following sections:

e Section 3.1 describes the core meta-model, presenting the basic classes and concepts used
among all the ESP workflow phases;

Thttps://github.com/daniele-canavese/ontologies
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e Section 3.2 details the application meta-model, formalizing the main concepts used to de-
scribe the target application source code structure, built at the start of the ESP workflow
parsing the target application source code, and used by the all the ESP reasoning processes
in the subsequent phases of the workflow;

e Section 3.3 outlines the protection meta-model, with the classes and relationships represent-
ing general information about protections techniques, and the concept of applying them to
specific assets of the target application, in order to model the decision processes of the asset
protection (see Chapter 5) and hiding (see Chapter 6) phases of the ESP workflow;

e Section 3.4 describes the attack meta-model, containing the classes used to model general
information about attacks in a MATE scenario, and actual attacks that can be mounted
against the target application assets, inferred in the risk assessment phase (see Chapter 4);

e Section 3.5 reports on the ESP requirements satisfied with the definition of the software
security meta-model, and its implementation as the ESP Knowledge Base.

3.1 Core meta-model

The core meta-model formalizes the main concepts and relationships between them involved
in all the phases of the software protection workflow implemented by ESP. Figure 3.1 sketches the
UML class diagram of the core meta-model, which comprises the classes needed to model the target
application, the user-defined assets and security requirements, the attacker, the potential attacks
targeting assets security requirements inferred in the risk assessment phase (see Chapter 4), and
the software protections supported by ESP and used in the asset protection and hiding phases
(described respectively in Chapters 5 and 6).

The main class is Application, abstracting the applications or libraries that must be protected.
An Application is composed by ApplicationPart instances, representing functions, code regions (syntac-
tically valid sections of functions, see Section 6.3.1 for more details), and variables, both global
and local. An Asset is an instance of the ApplicationPart class associated with a set of security re-
quirements, (as reported in Section 2.1.2; ESP supports confidentiality, integrity, and execution
correctness) targeted by an attacker and that must be safeguarded with some protection. All the
Asset instances must then have at least one hasRequirement association with the SecurityRequirement
enumeration, containing all the security requirements the ESP user may assign to an asset.

The AttackTarget class models a possible target of an attacker, aiming at breaking the asset
security requirements. The meta-model associates each AttackTarget instance with one and only
one Asset, using the threatens association, and with one and only one SecurityRequirement element, via
the affects relationships. If the user defines multiple secuirty requirements for an asset, several
AttackTarget on the same asset are instantiated, since an attacker may target each of the asset
security requirements.

As it will be shown in Chapter 4, attacks are modelled in the ESP risk assessment phase as
ordered sequences of steps. For example, an attacker targeting the integrity of a function in the
application, e.g., a license check, can decompile or disassemble the application binary, identify
the asset (i.e., the license check function), and then tamper with it, thus breaking its integrity
security requirement. Such basic attacker tasks are modelled with the class AttackStep. Instances
of this class may have one or more hasTarget relationships with instances of the AttackTarget class.
Attack steps that model some preparatory actions, needed by the attacker to execute the following
attack steps (e.g., attaching a debugger to the application, before inspecting the execution flow
in a targeted function), are not associated with any target.

Attacks are modelled with the AttackPath class, whose instances are ordered sequences of attack
steps. It should be noted that not only the last attack step in a path can breach an asset security
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Figure 3.1: UML class diagram of the core meta-model.

refersTo

requirement, e.g., an attack step threatening the confidentiality of an asset may lead to another
step that breaches the asset integrity. The attack step ordering is formally enforced with the
class AttackStepltem, whose instances are associated with a single AttackStep object using the refersTo
association, and with the next step in the attack path via the isFollowedBy association. Each
AttackPath instance is related to one AttackStepltem instance, representing the initial step in the
path, using the startswith relationship.

Generic protections techniques are modeled with the Protection class. A protection enforced with
a specific tool, with a specific configuration, is represented as an instance of the Protectionlnstance
class. Every Protectionlnstance object has a hasType association that binds a Protectionlnstance object
with its generic protection (i.e., a Protection instance), and a isEnforcedWith association with one
or more ProtectionTool instances, modeling all the tools supported by ESP to actually deploy the
protection. For example, the control flow flattening obfuscation technique (see Section 1.1.2) is
modeled as a Protection class instance.

Various PIs must be deployed to the application assets, in order to slow down an attacker.
Thus, the DeployedProtectionlnstance class is introduced in the model, representing a PI deployed to
a generic application part. This association is not directed to the not the asset concept, but
to the more generic ApplicationPart class, since ESP protects also non-assets in the asset hiding
phase (see Chapter 6), in order to confuse and consequently slow down the attacker. Instances
of the DeployedProtectioninstance class are related via the hasinstance and isAppliedOn associations to
respectively a Protectionlnstance and ApplicationPart instances, representing the PI and the application
part where the former is deployed.

Sets of DPIs, representing the solutions inferred by ESP in the asset protection (see Chapter 5)
and hiding (see Chapter 6) phases of its workflow, are modeled with the Solution class. To find
the best trade-off between the level of security achieved and the introduced overhead, different
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Figure 3.2: UML class diagram of the application meta-model.

solutions are devised by such phases, thus the meta-model will contain multiple Solution instances
for the same application.

When more than one protection is deployed to the same asset, the order of application is
important, since it could lead to different levels of obtained security and even to incoherent cases
(see Section 5.3). Thus, an ordering between the DPIs in a solution is enforced using the De-
ployedProtectionlnstanceltem class, representing a DPI in a solution. Every DeployedProtectioninstanceltem
object is related to a DeployedProtectionlnstance object with the refersTo association. Each Solution
instance will have an association startsWith with an DeployedProtectionInstanceltem instance, in order to
individuate the first DPI. The DPI ordering in the solution is then modeled with the isFollowedBy
relationships between the DeployedProtectioninstanceltem instances.

3.2 Application meta-model

The meta-model sketched in Figure 3.2 contains the fundamental information about the ap-
plication used by all the phases of the ESP workflow. This data is needed to protect its assets, in
order to preserve the security requirements of the latter from the attacks mounted by the attacker.

The ApplicationPart class models the various components of an application. Each application
part has a name attribute and it is contained into a source file modelled with a homonym class,
indicating its location in a file system with the path element. All the ApplicationPart instances can
be assets, code or data, modelled by three distinct sub-classes.

The Datum sub-class is used to represent a generic variable or function parameter. Each
datum is defined by its type (e.g., string literal, integer variable), represented by the DatumType
class and hasType association. This information is important for ESP, since data protections
supported by ESP are only applicable to specific data types, e.g., the literals obfuscation described
in Section 1.1.2 can be applied only to string literals and integer constants.
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The Code sub-class is used to represent functions or any code region?, i.e., a container of other
application parts (e.g., a function contains variables, but also other smaller code snippets). This
can be represented with the containment relationship between the ApplicationPart and Code classes.
A code region can also access a (local or global) variable, which is represented with the accesses
association. In addition, since also the call graph of the application may prove useful, especially
when inferring attacks in the ESP risk assessment phase, each function call is represented with
an instance of the Call class. The caller code is related to the call via the hasCall 1-to-1 association,
while the call is bound to the callee with the hasCallee 1-to-1 association. FEach call instance
comprises also to the parameters passed to the called function, organized in an ordered list. A
parameter is thus represented through the Datumitem class, associated to the correspondent Datum
instance with the refersTo relationships and the next item with the isFollowedBy association. If the
called function has at least one parameter, the Call instance will comprise a startswith association
with a Datumltem instance representing the first call parameter. When it is relevant to take into
account multiple calling sites to the same callee in a caller function, this can be done by considering
multiple ApplicationParts in the function, and by relating each of them to the callee with hasCallee.

As already described in the core meta-model, assets are represented as instances of the Asset
class, which in turn is a sub-class of ApplicationPart, and are associated with their security require-
ment with the relationship hasRequirement to elements of the SecurityRequirement enumeration. ESP
supports as requirements confidentiality, integrity, and execution correctness, which are detailed
in the introduction of Chapter 4. However, the meta-model does not restrict the usage of these
requirements, but allows the security expert to add additional ones if needed.

3.3 Protection meta-model

The protection meta-model, outlined in Figure 3.3, comprises the classes and relationships
related to the protections, used in the asset protection (see Chapter 5) and hiding (see Chapter 6)
workflow phases. This data can be used to protect the security requirements of the assets against
attacks. This meta-model is able to represent not only the protection relationships, but can be
also used to precisely describe how an application must be protected.

The Protection class is related with SecurityRequirements values by means of the enforces association.
This relationship models the abilities and purposes of applying a given protection. Also, the
Protection class has various association loops useful to model protection synergies and forbidden
precedences. The shouldBePrecededBy and shouldNotBePrecededBy associations are respectively used
to define that a DPI should or should not be preceded by another DPI of a given kind. This
is useful when choosing the best solution since one protection can make another, previously
applied protection stronger (e.g., static remote attestation, presented in Section 1.1.3, can be made
more resistant to attacks if coupled with anti-debugging, detailed in Section 1.1.4), but applying
one protection can also make a later one weaker (e.g., control flow obfuscations, presented in
Section 1.1.2, if applied first can negatively impact the data flow analysis that checks preconditions
for applying data obfuscations detailed in Section 1.1.2), thus affecting the aggressiveness with
which the data obfuscation can be applied. Furthermore, the cannotBePrecededBy relationship is
used to model impossible sequences of protections that can lead to incoherent or non-compilable
applications (e.g., software remote attestation is usually the last protection to be put, since altering
the code after its deployment will trigger an invalid attestation).

The ProtectionTool class comprises all the tools supported by ESP that can be used to deploy
a protection on an asset or application part. The supported Pls are related to their tool via the
isEnforcedWith association.

2A formal definition of code region is presented in Section 6.3.1.
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Figure 3.3: UML class diagram of the protection meta-model.

Concluding, the Metric class instances model the value of complexity metrics computed over
an application part (see Section 5.4). The value attribute represents the quantitative value of the
metric, while the kind is represented via the hasType association towards an enumeration MetricType
containing all the available metric categories (see Section 5.4.1). The refersTo and the hasMetric
associations direct towards respectively the relative application part and the current protection
solution. Complexity metrics are used in the asset protection and hiding phases of the ESP
workflow to adapt their decision to the actual characteristics of the protected code; in particular,
for the asset protection phase, the increase of complexity metrics evaluated on a protected asset
w.r.t. the original asset code is used as an index of employed protection effectiveness, following
the concept of transformation potency proposed by Collberg et al. [37]. Based on this indexes, in
the aforementioned ESP workflow phase a score (see Section 5.5.1) is assigned for each inferred
protection solution. To model this, the Solution contains the score attribute.

3.4 Attack meta-model

The attack meta-model, depicted in Figure 3.4, comprises all the classes and relationships
employed by ESP in the risk mitigation phase (see Chapter 4). These allow to represent the
attacker, his attacks and their effects on the application and the protections.

Attackers are represented with the Attacker class, related with the hasExpertise association to
the AttackerExpertise enumeration, representing the four levels of attacker expertise supported by
ESP, defined in Section 2.2.2. Also, the solution is related to a specific attacker via the hasAttacker
relationship to explicitly indicate that it was generated in function of the attacking profile specified
by the ESP user.
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Figure 3.4: UML class diagram of the attack meta-model.

Attack steps are related to the targeted application part. This is represented through the
refersTo association. An attack step can threaten a security requirement of an asset, a fact modelled
with the AttackTarget class and its relationships. For example, if a variable ‘a’ is an asset whose
confidentiality must be preserved, the attack step ‘locate the variable a in the function b’ is related
to the function ‘b’, and has a relationship with the attack target for the confidentiality of the
asset ‘a’.

An AttackStep may need a minimum level of attacker expertise to be mounted, thus representing
its base difficulty level. The requiresExpertise relationship models this concept, used in the risk mit-
igation phase of ESP to evaluate the probability of an attacker successfully executing an attack
path (see Section 4.4). Similarly, the meta-model comprises the requiresExpertise relationship be-
tween AttackTool and AttackerExpertise instances, which permits the classification of tools, in function
of the minimum level of skills the attacker should have to be capable of employing it.

All attack steps are associated with a specific type, e.g., dynamic analysis or static tampering.
This is modeled through the AttackStepType class and the hasType association. An attack step does
not need to represent a complete attack, but it can be also used to model a preliminary step such
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as ‘execute the application’. Also, the requiresExpertise association represent that an attack step
type needs a minimum level of expertise to be executed by an attacker.

An attack step type (e.g., a debugging attack) can be executed by one or more different
attack tool types (e.g., a debugger). This is modeled via the isimplementedBy association with the
AttackTool Type enumeration. The latter is associated with the AttackTool class, with the hasType
relationship, comprising the known attack tools (e.g., IDA Pro).

The hasMitigation relationship models the fact that a protection can mitigate an attack step
type. For example, this is able to express that the opaque predicates obfuscation technique (see
Section 1.1.2) can be employed to increase the effort needed to perform both static and dynamic
analysis attacks. The Mitigation class models the protection mitigation, and is related with the
attack step type it is able to temper through the mitigates association. It also permits to specify
a non-numeric level of effectiveness by using the hasLevel association and the Level enumeration.
Conversely, an attack can be mounted with the objective of removing a protection, partially or
completely. This concept is used in the assessment of the effectiveness of the solutions inferred
by ESP in the asset protection phase of its workflow (see Section 5.5), and is represented the
hasDisruption relationship with one or more Disruption class instances. Analogously to the mitigation
case, this class specifies the protection that is affected by an attack via the disrupts association and
the effectiveness level of the disruption with the hasLevel relationship.

3.5 Meta-model validation

This section presents the validation of the meta-model presented in this section w.r.t. the
requirements for ESP defined in the Section 2.1.

Indeed, the meta-model is able to perform its main purpose, i.e., the modelling of all the
data needed to perform the decision processes executed throughout the ESP workflow, along
with their results. All the general a-priori classes have been instanced in the ESP Knowledge
Base with background knowledge gathered among the software security experts involved in the
ASPIRE project, which validated during the project results validation phase the ability of ESP
to model their generic software security knowledge on which they base their decisions.

The application meta-model (see Section 3.2) contains all the information needed to charac-
terize the application structure in detail, and to model the security requirements provided by the
ESP user for the application assets; via an automated parsing of the target program source code
(see Appendix A.2), ESP is able to infer all the target a-priori classes of the meta-model. For the
risk mitigation phase (see Chapter 4), the attack meta-model described in Section 3.4 is able to
model the attack paths as ordered sequences of attack steps, and comprises all the information
needed to represent the attacker profile, its skills and the attack tools that he or she may be able
to use. For the asset protection and hiding phases (see Chapters 5 and 6), the protection meta-
model provides all the needed classes to model the protections as ordered sequences of specific
protection instances. The latter are associated with the tools (see Section 1.1.1) that automates
their deployment, in order to obtain the protected binary without requiring intervention from the
ESP user.

However, the applicability of the meta-model is not limited to the ESP Knowledge Base.
Indeed, concepts from various taxonomies and surveys of reverse engineering and software pro-
tection techniques, previously presented in literature, can be easily mapped to the classes and
associations of the meta-model. Ceccato et al. [31] developed a taxonomy of concepts used by
attackers to describe their attack methods and the reasoning processes behind their choices. The
authors built such taxonomy analyzing penetration tests and public challenge reports produced
by both amateur and professional hackers. Along with the taxonomy, the authors presented also
four models able to express the causal, conditional, temporal and instrumental relationships be-
tween various attacker activities, such as high-level comprehensions tasks, attack tool selection
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and creation activities, and choices made to removing or circumvent protections. The meta-model
is able to map all the top-level concepts in the aforementioned work. Examples are assets, attack
tools, attack steps, all of which are present both in the meta-model and in Ceccato et al. models
and taxonomies. The full mapping has been reported in [15]. The meta-model also completely
covers the taxonomy detailed in Collberg et al. seminal work [37], organizing various obfusca-
tion techniques against reverse engineering (see Section 1.1.2). The latter are easily supported in
the meta-model through the Protection, Protectionlnstance and other classes and associations of the
protection meta-model (see Section 3.3). Furthermore, the authors of the aforementioned work
proposed to evaluate the potency of obfuscation techniques using software complexity metrics,
which are expressed in the meta-model with the related class. Another interesting taxonomy
from Schrittwieser et al. [108] models attack techniques against software obfuscation, based on
code analyses. Such techniques are partitioned in categories based on the attack goal, the ab-
stract technique leveraged to reach such goal (e.g., “locating code through static analysis”) and
whether or not the attack technique can be fully automated. All the combinations considered
by the authors can be modelled with the attack meta-model, in particular via multiple instances
of the AttackStepType and AttackToolType. Finally, it is interesting to compare the meta-model with
the taxonomy of software integrity protection by Ahmadvand et al. [4]. The latter defines generic
attacks, that can be easily mapped via instances of the AttackStepType class of the meta-model,
which is more precise, being able to represent complex attack paths tailored to endanger security
requirements of specific assets. Also, the taxonomy lacks the concept of deployed protections and
solutions, since it has been designed to describe and categorize integrity protections. The tax-
onomy includes information about the life cycle of such protections, describing the management
and production stages of the targeted application. Indeed, this would be an interesting addition
to the meta-model, extending its applicability to situations when applications must be protected
without access to the source code. The taxonomy includes also the high-level concept of overhead,
which is covered by the meta-model and ESP using software metrics (see Section 5.4.3).

To best of the author’s knowledge, this is the first meta-model targeting software security.
However, various meta-models have been defined for computer network security. Various meta-
models and modelling languages have been proposed to represent threats in enterprise networks.
Sommestad et al. [114] defined the Cyber Security Modeling Language (CySeMoL), which is able
to model computer systems in an enterprise network scenario. The authors have also presented
a method to infer threats directed to such systems via an inference engine based on the models
characterized with CySeMoL; success probability of the inferred attacks is also evaluated. An
extension of this work, presented by Valja et al. [121], includes an improved security analysis,
which handles attacks from malicious actors external to the enterprise network, and also by
legitimate users inside the analyzed network.

A meta-model to assess the security of cloud applications has been presented by Kritikos et al.
[80], with the definition of the Cloud Application Modelling & Execution Language (CAMEL),
a domain-specific language able to describe the design and the security requirements of cloud
applications. It also allows the validation of the model against a set of constraints.

Mouelhiv et al. [92] presented a meta-model to model access control policies, focusing on
mutation analysis, a testing technique for security policies based on the voluntary injection in the
analyzed policies of flaws (mutation), to assess the efficiency of security tests; the meta-model is
able to represent the mutation operators used in such tests.
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Chapter 4

Risk assessment

To know your Enemy, you must become
your Enemy.

Sun Tzu

This chapter presents the risk assessment method used by ESP to infer possible attacks against
the application assets in the vanilla application, i.e., the unprotected program. As detailed in
Section 2.2.1, ESP, prior to this phase, executes a preliminary analysis of the source code, enriching
the Knowledge Base with the description of the application structure, instancing the related meta-
model classes described in Section 3.2. The risk assessment phase employs this information, in
order to infer attacks tailored to the specific application examined. Each attack aims to breach
a security requirement of an application asset; these are provided by the user, annotating the
application source code as detailed in Section A.3.

ESP supports three security requirements for assets: confidentiality, integrity, execution cor-
rectness. A confidential asset must not be understandable by an attacker: this is the case for
example of an algorithm that must remain secret, in order to safeguard the software company IP,
or of a data structure that holds personal information of the user, such as the credit card num-
ber in an e-commerce application. The integrity requirement specifies that an asset must not be
modifiable by an attacker: for example, in the case of a soccer video-game, the variables holding
the characteristics of the soccer players, or the match score, can be marked with the integrity
requirement, in order to avoid an attacker to cheat. The execution correctness requirement is
a stronger form of integrity for code: the latter must not be modified, but must also be called
as expected by other functions. For example, an attacker that wants to remove a license check
function, marked with this requirement, may modify the function in order to not perform the
check, but can also avoid the function to be executed, removing any calls by other functions to
the license check one.

ESP models attacks against such security requirements with attack paths, which are sequences
of simple tasks that an attacker may execute (e.g., locating a variable in the binary, debugging a
function at run-time), called attack steps: this modelling approach has already been used by other
works in literature for risk assessment of computer networks [52, 56]. Each attack step is associated
with a set of postconditions, which model the result of a successful execution by the attacker of
the simple task related to the step, and a set of preconditions, which must be fulfilled by the
results of other steps preceding it in the path. Attack steps may contain also preconditions about
the application structure: for example, an attack step modelling the debugging of a function, can
be executed only if the analyzed asset is a code and not a variable.

ESP, to infer the possible attack paths against the asset security requirements of the target
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application, relies on an external inference engine, where attack steps are modelled as logical
rules. At the start of the risk assessment phase, ESP instructs the engine about the structure
of the application, modelling each concept of the application meta-model (see Section 3.2) as an
axiom, i.e., a fact that engine knows to be true. Then, ESP queries the engine, for each asset
security requirement, to prove that the attacker can breach it: to do this, the engine tries to find
every possible chain of rules (i.e., a sequence of attack steps forming an attack path), which can
be ultimately proven with a subset of the aforementioned axioms about the application structure.
The engine carries out this task using a backward programming algorithm (see Section 1.2.2).
Other works in literature [97, 73] have already used a similar approach to assess risk for computer
networks. To ease readability, in the remainder of this chapter attack steps and axioms are
expressed with the mathematical proofs notation.
The attack steps are modelled with the following inference rules:

g id,

Where:
e id is the name that identifies the attack step;

e P is a set of facts, called premises: if these facts are verified, the attack step can be executed
by the attacker;

o (' is a set of facts, called conclusions: these facts will be verified if the attack step can be
carried out by the attacker.

The user can influence the time needed to infer the possible attack steps with two parameters.
First, he or she can set a hard time limit (expressed in seconds). Also, he or she can decide a limit
for the backward programming algorithm, in term of number of traversed relationships among
application parts (e.g., the maximum distance among application parts in the call graph), when
the algorithm is searching for an attack step that, with its conclusions, can satisfy a premise of
another attack step.

Finally, the attack paths are saved in the ESP Knowledge Base, structured using the related
classes described in the meta-model (Section 3.4). The attacks are then used in the risk mitigation
phase of ESP: during the latter, the protections best suitable to protect the application assets,
against the attack paths previously found by the inference engine.

This chapter is a reworked version of the publication “Towards Automatic Risk Analysis and
Mitigation of Software Applications” [104]. It is organized in the following sections:

e Section 4.1 describes the preliminary of the application structure modeling in the inference
engine, previously obtained by ESP parsing the source code;

o Section 4.2 defines the rules needed to model the attacker goals;

o Section 4.3 details the methodology for modelling attack steps, and how the inference engine
combines them in attack paths;

e Section 4.4 reports on the method used to assess the risk of the inferred attack paths;

e Section 4.5 contains a comparison of the obtained results w.r.t. the ESP requisites defined
in 2.1.
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4.1 Application structure modeling

This section presents the modelling of all the preliminary information needed by the inference
engine to find possible attacks against the application, comprising assets with their security re-
quirements and the application structure. All this information is automatically retrieved by ESP
in the preliminary source code analysis phase of its workflow.

First, the existence of an application a is defined with the following fact:

application(a)

Then, the application structure must be formally modelled. Each basic component of the code
can be either a code or a datum (a constant or a variable); for example, if the application a
contains a function f and a global variable d, this can be modelled with the following facts, using
by abuse of notation the symbol > to indicate the containment relationship:

code(f) datum(d) fra d>a

The containment relationship permits to organize the application structure in a hierarchical way.
For example, if the function ¢ contains a local variable v, and a code snippet s, we can define the
function structure with the following facts:

datum(v) >f code(s) ©>f
Then, a code ¢ accessing a variable v can be expressed with the following fact:

accesses(c,v)

Also the call graph of the application can be modelled; if a function f; containing a call to a
function fs, the following fact holds:

calls(f1, f2)

Finally, the assets and their security requirements must be defined. If the ESP user requests
the confidentiality security requirement C for a function f, integrity Z for a function f, , and
execution correctness £ for a function fs, the following facts are asserted:

code(f1) code(fa) code(fs) C(f1) Z(f2) E(f3)

4.2 Attacker goals modeling

After modelling the application structure, and the assets with their security requirement, the
basic rules that define the goals of the attacker can be defined. ESP, for each asset security
requirement, will query the inference engine to find a set of rules that lead to breaching the
requirement, denoted formally as the logical negation of the requirement. For example, if the
application contains a variable v whose confidentiality must be safeguarded, the inference engine
will try to find all the possible sequences of attack steps that lead to the following outcome, which
is a goal G of the attacker:

-C(v) <= G. (4.1)

Security requirements are characterized by the different ways in which the attacker can breach
them. The confidentiality of an asset a; is breached if the attacker finds a way to retrieve its
content (instructions if a; is a code, or data if a; is a variable):

contentRetrieved(ay)

ﬁC(Ch)
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The integrity of an asset aq is breached if the attacker manages to change it, modelled with the
following rules:
changed(y)
—|I(CL2)

To model the breaching of execution correctness, two rules are needed. Formally, the attacker
breaches the execution correctness of a code, either by modifying its instructions, or by avoiding
the execution of the code, removing at least one call to the function. Thus, if a function f is
marked with the execution correctness requirement, the latter can be modelled with the following

rules:
changed(f) calls(g, f) changed(g)

—&(f) —&(f) (4.2)

With the definition of the following facts in the inference engine, ESP informs the latter of the
application structure and of the security requirements of the assets. Thus, the attacks able
reach the attacker goals, i.e., to breach the security requirements of the assets, will adapt to the
application structure.

4.3 Attack steps and paths modeling

This section elaborates on the formal modelling of attack steps, basic and indivisible tasks
that an attacker may carry out, and that can be combined into complete attack paths against the
application assets.

First, a set of basic attack steps must be defined. First, the attacker may retrieve the content
of a hard-coded asset h, e.g., a constant or a set of instructions, by locating it in the binary, and
inspecting the latter manually:

hardcoded(h)
content Retrieved(h)

statLocate(h)

Conversely, the attacker may retrieve the instructions constituting a code asset ¢ at run-time,
for example by means of step-by-step execution with a debugger, provided that the execution flow
of the application can lead to the target code. Similarly, an attacker can read the value of a local
variable v locating it in memory at run-time. This leads to the following attack steps:

code(c)

content Retrieved(c)

dynLocate(c)

datum(v) v f
content Retrieved(v)

dynLocate(v)

If an attacker wants to locate a datum d to retrieve its value, he may try to first identify and
execute at run-time a function f that uses the aforementioned datum, thus finding it in memory
when the instruction of the function f that accesses the datum d is executed:

code(c) contentRetrieved(c) accesses(c,v)
content Retrieved(d)

dynLocate(d)

Also, if an attacker wants to locate a function f, and he or she has already retrieved a function g
that calls f, then by simply following the call, looking at the target address of the call instruction,
he or she can retrieve the function f in the binary:

calls(g, f) contentRetrieved(g)
content Retrieved(f)
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Thus, if such datum d is a confidential asset, one of the possible attack paths, leading to the
attacker goal G of breaching d confidentiality can be obtained by chaining the previous attack
steps:

code(c)
hardcoded(c)
content Retrieved(c)
content Retrieved(d)
-C(d)
G

statLocate(c) —————
accesses(c,v)

dynLocate(d)

In this example, the attacker first identifies the address of the function ¢ in the code section of
the application binary, analyzing statically the latter. Indeed the statLocate(c) attack step can
be executed, because ¢, being a code, is hard-coded. Then he or she attaches a debugger to
the application and sets a breakpoint at the address of the function ¢ previously located. Then,
since the code ¢ accesses the variable v, by executing c step-by-step the attacker is able to find
the variable v when c¢ accesses it, and thus, knowing v’s location in memory, can retrieve its
content. Therefore, the confidentiality of the asset d is breached, and the attacker goal G is
proved. Clearly, instead of this hybrid approach (i.e., by resorting to both static and dynamic
analysis), the attacker can breach d confidentiality in a completely dynamic manner, finding the
code ¢ observing the execution flow of the application. Similarly, the call graph of the application
can be used to define other attack steps. For example, an attacker may locate a function f; at
run-time, if he has previously located a function f5 that calls fi, and the function is executed.
For tampering attacks two types of attack steps may be modelled. As for the retrieval of
content, tampering may be carried out statically only on hard-coded assets, while it can be
executed dynamically on every kind of asset. Given a code or datum z, the attacker may change
it statically or dynamically with the following attack steps, which require the attacker to know

the location of z:
contentRetrieved(x) hardcoded(x)

tatCh
changed(x) statChange(z)
content Retrieved(x)
dynCh
changed(x) ynChange(z)

Thus, attack paths that endanger the integrity and execution correctness security requirements
of an asset can be obtained by chaining the steps required to locate the asset that must be
tampered, and the steps in which the attacker actually tamper with the asset. Given a function
f whose execution correctness must be preserved, i.e., f must not be tampered with, and all the
calls to f must be executed, this attacker goal G can be obtained with the following two example
attack paths:

hardcoded(g)
- statLocate(g)
contentRetrieved(g) tatCh )
calls(g, f) changed(g) srartnangely
~&(f)

G
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hardCotedy)
calls(g, f) contentRetrieved(g) stat Locate(g)
; followCall(g, f)
content Retrieved( f) dunCh 0
changed(7)
—&(f)
G

In the first attack path, the attacker first locates the function g. He can do it statically since g is
hard-coded. Then he or her changes it, removing from g the call to the asset f. In this way, the
execution correctness of f is broken. In the second attack path, the attacker locates statically the
function g as before, but in this case uses its address to set a breakpoint in a debugger attached
to the application. For example, this can be useful in the case of an indirect call, when the target
address of the call (i.e., the address of f) is not known a priori, since it is evaluated by the program
at run-time. Thus, he will execute the application, which will stop at the breakpoint set at the
start of function g. With an execution step-by-step of the function g, the attacker finds the call
to function f, follows it an then retrieves the address of the address function, thus being able to
change the contained instructions and breach the execution correctness of the asset f.

Thus, starting from apparently naive attack steps, the inference engine can combine them
in rather complex attack paths. All the concept and relationships among them, modelling the
application structure, are obtained automatically by ESP, thus these attack paths can be obtained
in a completely automated fashion, with the users asked only for the security requirements of the
assets.

Other attack steps have been devised to model attacks on applications that include network
connections in their execution flow, modelling sniffing, spoofing and remote code injection attacks.
However, these attack steps cannot be employed in a completely automated workflow by ESP,
since it would require the identification of the specific functions that perform such network activity.
This is complicated to do automatically, especially if the application uses custom network libraries.
Since the requirements for ESP (see Section 2.1) state that all workflow phases must be executed
automatically, such network-based attack steps are not deemed relevant for the scope of this
thesis. Still, use of the spoofing attack step to model attacks against an One-Time Password
(OTP) generator has been reported in a conference publication [16].

The chaining of the rules is executed by the inference engine via a custom backward pro-
gramming algorithm, called by ESP for each asset security requirement. Given this goal, the
algorithm starts by negating the asset security requirement and then finds all the possible attack
steps that can lead to the asset security requirement negation: each parallel attack step leads to
a separate attack path. Then, it goes on building all the possible paths: for each of the latter,
the algorithm consider completely inferred a path when the last attack step requirements can
be proved only with the axioms detailing the application. Therefore, ESP builds for each asset
security requirement an attack graph, which contains four different attack paths to breach the
execution correctness of a code ¢y, which is called by another function c;.

4.4 Risk probability

In this section, a method to assess the probability of the threats against the application assets
is presented. ESP, when presenting the attack paths to the user, includes also such a probability:
this is useful for experts that want to manually analyze the protections inferred by ESP in the
risk mitigation phase, since they can identify the assets that are most at risk, and consequently
focus on the protections targeting the most threatened assets.

Instead, it will not be used to drive the risk mitigation phase (see Section 5.5.1): the motivation
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behind this is that the probabilities inferred in this phase refer to the unprotected application,
while the risk mitigation phase uses a set of formulas tailored to assess the effect of attacks on
protected assets, to assess the effectiveness of the inferred mitigations.

The risk probability is based on the types of attacks inferred, and on the presumed skills of
the attacker, given the profile chosen by the user at the start of the ESP workflow. Given all the
inferred attack paths AP;, all their attack steps AS; ;, and all the assets ag, the risk Q4p_ of an
attack path AP; executed by an attacker with expertise € is defined as:

Q;PL = W(Aph 6) FAPi

where I'pp, represents the damage resulting from a successful attack path, and 7(AP;,€) is the
probability of an attacker being able to successfully carry out the attack path, given its expertise
e. To do so, it must be able to execute all the attack steps needed to complete it. Thus, the
probability of executing an attack path is evaluated taking into account the probabilities of all
the attack steps constituting the path:

7'('(AP1‘7 6) = f (F(Asi,h 6),71'(ASZ*727 6), RPN ) .

The ESP user can decide the function f that must be used to combine the probabilities of the
attack steps belonging to the same path, choosing among a worst case analysis, with f = min, a
best case analysis, with f = max, and an approximation of the probabilities composition, with
f=-

Iap, is a quantitative measure of the damage resulting from a successful attack path. It is
evaluated as the sum of the damage I'sg, ; from each attack step:

Tap, =Y Tas, =YY (Wab(ax, AS; ;)
J I

where W,, is a user-defined asset weight, and b(ay, AS;) is a function, evaluated by ESP, that
returns the fraction of the security properties of the asset a; that are breached by the attack step
AS;, that is, it returns 1 if all the security properties are compromised and 0 if none'.

The attack step probabilities w(AS; ;), for each combination of attack step type, and level of
attacker skill, have been obtained during the ASPIRE project, interviewing the software security

experts involved in the project during ESP design phase.

4.5 Validation

In this section, the methodologies presented in this chapter, used by ESP to infer possible
attack paths against the application assets, are compared w.r.t. the ESP requisites listed in
Section 2.1.

Regarding the requisites on the usage scenario of ESP, detailed in Sec. 2.1.1, they are satisfied
by the risk assessment phase. First, the profile of the attacker is taken into account, when the risk
of each attack path is evaluated. Second, the execution of the backward programming algorithm
used by the inference engine can be constrained, using a hard time limit, and also setting a
maximum length for the attack paths: a deeper and more time-consuming search is suitable prior
to the distribution of the application, while, when patches are released and time is an issue, a
shallow search for possible new attack paths derived from the introduction of the patch code

IThus, the whole asset weight assigned by the user is gained by the attacker when all the security properties
are compromised.
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can be performed, limiting the time needed using the aforementioned constraints. Third, the
results of the mitigation phase, i.e., attack paths, are easily readable, being modelled as ordered
sequences of simple attack steps: furthermore, logical inferences that do not correspond to real
tasks executed by the attacker are not included in the paths, to avoid confusion for the user.
Furthermore, a risk level for each inferred attack path is presented to the ESP user, which can
easily identify the most problematic threats to the application.

Analyzing the requisites for the risk assessment phase, described in Sec. 2.1.2, they are mostly
satisfied. First, ESP supports not only the security requirements defined by the NIST for risk
monitoring [68], i.e., confidentiality and integrity, but also a stronger form of the latter, called
execution correctness, and applicable only to functions: this security requirement prescribes that
the function marked with it must not only be preserved from modification, but it must be also
called as originally devised by the application developer (e.g., a license check that must not be
circumvented). Furthermore, ESP is able to build attack graphs for every asset in the application,
due to the definition of logical inference rules that define attack steps, i.e., simple attacker tasks.
The chaining of these steps in attack paths is subject to the application structure, which is
automatically modelled with logical facts in the inference engine: thus, the relative requirement is
satisfied. Finally, a probability of execution for each attack path is evaluated, based on the attacker
skills, and the probability of execution of each attack step: the latter are based on information
gathered among the software security experts involved in the ASPIRE project. The complexity
metrics of the software are not taken into account in the attack path probability evaluation:
however, they are taken into account later in the ESP workflow, during the risk mitigation phase,
when the effectiveness of the inferred protections in protecting the assets, against the attack path
inferred in the risk assessment phase, is tested with a game-theoretic approach based on this
metrics.

Finally, in the validation phase of ESP at the end of the ASPIRE project [13], software security
experts analyzed also the attack paths inferred in the risk mitigation phase. In particular, the ones
inferred by ESP on the ASPIRE use cases (see Section 2.4) were compared with actual attacks
executed by highly skilled white-hat hackers on the same test applications. In general, ESP attack
paths covered the real methodologies of the aforementioned hackers. However, they were deemed
as too general to model with a sufficient amount of detail such attacks. Indeed, new rules can
be added to the inference engine, in order to better model real attacks on software: however, as
in the case of network-related attacks, the main problem is inferring automatically the semantics
of the code that enables the execution of such complex attack step. Thus, this is still an open
problem, which the author is actively investigating, in particular focusing on automated binary
exploitation frameworks [112, 66], which could be used to actually assess the vulnerabilities of the
applications in an automated manner. Their results could be still modelled as attack paths, thus
being compatible with the remainder of the workflow.
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Chapter 5

Asset protection

Chess is a war over the board. The
object is to crush the opponent’s mind.

Bobby Fisher

This chapter presents how ESP is able to assess the effectiveness of mitigations against the risks
on application assets. ESP combines different protection techniques, such as the ones presented in
Section 1.1, in a comprehensive protection solution, able to safeguard a given application against
possible attacks that can endanger its assets. This task is typically carried out manually, by
software protection experts, that analyzes the application source code, reason on the possible
attacks that can be carried out against the application assets, and decide the most suitable
protection techniques to block the attacks. This decision is mainly based on their knowledge and
past experience in the software protection field.

Indeed, this is not an easy task, even for an expert. First, there are various possible security
requirements for an asset, and there does not exist one protection able to preserve all of them:
for example, code obfuscation techniques (Section 1.1.2) are able to preserve the confidentiality
of a protected function or code region', but are not capable of blocking attacker attempts to
tamper with them, which is the scope of anti-tampering protections (Section 1.1.3). Also, the
applicability of a protection is limited to one type of asset: different techniques are necessary to
protect code areas or the values of variables and constants. Attackers have a broad range of tools
at their disposal, such as debuggers, automatic code analysis tools, disassemblers and decompilers,
leading to a plethora of different types of attacks, and, again, one protection cannot block all of
them: thus, a simple mapping between protections and enforced security requirements is clearly
not enough, and a set of protections must be applied to each asset in order to block all the possible
attacks endangering its requirements. Another problem is assessing the real effect of a protection
technique, when applied on a specific function or variable, in increasing the difficulty of executing
possible attacks against them: again, a simple mapping between protections and blocked attacks
is not sufficient, since the effectiveness of protections may vary in function of the structure of the
code on which they are applied. For example, the effectiveness of CFF is directly related to the
number of basic blocks in the CFG of the protected code, since each basic block can be put in a
different case of the CFF loop, leading to a wide CFG difficult to analyze for an attacker.

LA code region is a section of a function that is syntactically valid if parsed in isolation; a formal definition of
code regions is provided in Section 6.3.1.

69



5 — Asset protection

Furthermore, combining different protections techniques is a process that must be carried
out with extreme care, and even the order in which the protections are applied to the same
asset can have a beneficial or detrimental effect on the obtained security. For example, if CFF
is applied on a function that has been previously protected with opaque predicates, the latter
become more difficult to be removed, since the two branches introduced by each opaque predicate
will be put in different cases of the CFF loop: on one hand, this increases the parallel cases
of the flattened CFG, hardening its analysis, while on the other hand identifying that the two
branches pertain to the same opaque predicates takes more effort for the attacker, since this
correlation is not evident anymore in the CFG; however, this effect is not obtained if the opaque
predicates are inserted on a code already flattened, since each of them will be inserted in one of
the CFF cases, without having their branch split. A case of combination that ultimately leads
to an application not working at all is the deployment of any kind of obfuscation after remote
attestation (Section 1.1.3): since the latter monitors attested code in order to find any attempts of
tampering with it, the modifications introduced by an obfuscation technique will be mistaken for
a tampering attack, triggering a reaction, for example the abrupt termination of the application.
Therefore, all the possible interactions among used techniques must be taken into account when
protecting an asset.

When protections techniques are combined, also the relationships among assets must be taken
into account. A simple example can be a whole function whose integrity must be preserved, which
contains a sub-routine that should remain confidential: while theoretically these two assets can be
seen as separated, having different security requirements, this containment relationship must be
taken into account to avoid incompatible combinations of protections; taking again the example
above, if the whole function integrity is protected with remote attestation, and afterwards the
confidentiality of the contained code region is ensured with some kind of obfuscation, the remote
attestation checks will be triggered and the application will not work.

Finally, it should also be noted that protections usually take a toll on application perfor-
mances: an example is the anti-debugging technique (Section 1.1.4), which prevents an attacker
from launching a debugger, by actually debugging the protected areas of code with a custom de-
bugger out of the attacker control. However, a context switch is necessary every time the execution
flow enters a protected code, thus slowing the application. Also, on-line techniques (Section 1.1.3)
need to exchange data over the Internet, in order to communicate with their server counterpart: if
this communication is executed across unreliable networks, such as the one used by mobile phones,
this may lead to a slow-down of the application, for example if the application is protected with
code mobility (Section 1.1.3) and the code needed to continue the execution is not downloaded
on time; also, if the user of the mobile application has a limited data plan for his phone, this may
lead to undesirable charges by the mobile ISP. Thus, when choosing the protections, the overhead
introduced by them in the application must be taken into account, with the protected applica-
tion that must be thoroughly tested after deployment of protections: this may lead to various
time-consuming cycles of protection and testing, until the wanted trade-off between security and
usability of the application is found.

Summarizing, when protecting an application, an holistic approach is necessary: structure
of the application and of the assets that must be protected, security requirements that must be
preserved, possible attacks that can endanger them, the pros and cons of the available protection
techniques, and the interactions among them must all be taken into account, in order to obtain
an application that is secure, trying to leave user experience untouched. With this approach
in mind, a set of algorithms have been devised to automate this cumbersome process, with the
rather ambitious goal of modelling the mental processes of an expert in the act of protecting an
application. The automated workflow may be useful for software security experts in protecting
applications, presenting them with a protection solution they can further refine instead of starting
from scratch, but also for software developers, allowing them to protect their applications without
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being versed in software security.
Using a divide and conquer approach, this complex problem has been subdivided into two
smaller ones, each solved by a different ESP component:

the identification of the protections that are able to protect an asset security requirement,
being capable of blocking at least one attack endangering the requirement; this problem is
solved by the Protection Enumerator;

the inferral of protection solutions for the target application, able to safeguard all the security
requirements of all the assets comprised in the application, leaving the business logic of the
application untouched, and avoiding to introduce too much overhead in the application
execution; the algorithms automating this process are comprised in the Risk Mitigation
Engine.

This reasoning processes are a fundamental part of the ESP workflow, enabling it to infer the
a-posteriori classes of the protection meta-model detailed in Section 3.3, and ultimately leading to
the individuation of the most suitable combination of protections that, if deployed on the program
source code with the Solution Deployer, is able to safeguard the user-defined security requirements
of a target application assets. To correctly infer the suitable combination for a specific target
application, the Protection Enumerator and Risk Mitigation Engine need a Knowledge Base
containing the following information:

generic software protection knowledge gathered from software protection experts, i.e., the
a-priori information in the software protection meta-model presented in Chapter 3;

a list of assets and security requirements, manually specified by the target application devel-
oper, either by annotating the code as presented in Section A.3, or using the User Interface;

a user-defined set of maximum application performance overheads (see Section 5.4.3) that a
solution can cause after being deployed on the target application with the Solution Deployer;

structure and software metrics of the unprotected application source code, obtained re-
spectively from the automatic analysis executed by the Source Code Analyzer via CDT
(Appendix A) and the Metrics Framework via the ACTC (Section 5.4), i.e., a completely
inferred application meta-model (Section 3.2);

APs discovered by the Risk Assessment Engine against user-defined assets security require-
ments, i.e., a completely inferred attack meta-model (Section 3.4);

optionally, a set of user-defined constraints to avoid the evaluation of all possible solutions
by the Risk Mitigation Engine: the user can specify a time limit, or a maximum number of
evaluated solutions.

This chapter is organized as follows:

in Section 5.1, the ESP workflow that leads to the identification of the best protection
solution for a given application is presented;

Section 5.2 elaborates on how the Protection Enumerator builds the DPIs used by the fol-
lowing steps of the workflow, identifying, for each asset security requirement, ESP supported
APIs that are suitable to safeguard the aforementioned requirements;

in Section 5.3, the Risk Mitigation Engine solution walker is presented, i.e., the algorithm
used by the Risk Mitigation Engine to compute all the feasible combinations of DPIs pre-
viously built by the Protection Enumerator;

71



5 — Asset protection

e Section 5.4 lists the quantitative software metrics evaluated on the target application that
are taken into account by ESP, with a brief description of the algorithms used to produce
them;

e Section 5.5 details the Risk Mitigation Engine solution solver, i.e., the algorithm used by
the Risk Mitigation Engine to find, among the feasible solutions identified by the Risk
Mitigation Engine solution walker, the one that can best safeguard the application assets
against the attacks discovered by the Risk Assessment Engine (see Chapter 4);

e Section 5.6 validates the asset protection decision processes w.r.t. the ESP requisites defined
in 2.1.

5.1 Protection decision workflow

This section presents the workflow followed by ESP to infer appropriate protection solutions
for a target application: each solution is associated with a score, which indicates the effectiveness
in slowing an attacker executing the APs previously built by the Risk Assessment Engine. Among
the found solutions, the best ones will be shown to the ESP user?, so that he or she can select
one of them to be deployed on the application code via the Solution Deployer, which will produce
a binary protected with the DPIs comprised in the chosen solution.

Figure 5.1 depicts the aforementioned workflow, highlighting the involved ESP components,
along with calls among them, the meta-model objects they use, and the meta-model classes
inferred in the various steps of the workflow (indicated with a circled red number), which are the
following:

1. ESP calls the Protection Enumerator which, for each specific asset security requirement
(also called Protection Objective (PO)) previously defined by the user, enumerates the PIs
that can defer at least one of the APs that endanger the PO, thus building and saving in
the Knowledge Base a set of DPIs for each PO;

2. ESP calls the Risk Mitigation Engine: in the following workflow steps, its two sub-components,
the solution walker and the solution solver, will find the protection solutions, i.e., combi-
nations of DPIs found in the previous steps, which will be shown to the user in the last
workflow step; this step is further detailed in Section 5.2;

3. the Risk Mitigation Engine calls its first sub-component, the solution solver;

4. the solution solver calls the solution walker, which reads from the Knowledge Base the previ-
ously built DPI set, and generates a solution (i.e., a subset of DPIs from the aforementioned
set, organized in an ordered sequence of DPIs) that is both correct and effective, i.e., if de-
ployed on the target application, produces a protected binary that behaves correctly during
execution, and protects all the POs in the application; this reasoning process is presented
in Section 5.3; then, the walker returns the solution to the solver;

5. each time the walker generates a valid solution, the solver calculates the score of such solution
with a game-theoretic approach detailed in Section 5.5, using the metrics predicted by the
Metrics Framework and the APs inferred by the Risk Assessment Engine; then, if all the
possible solutions have been evaluated, or if at least one of the user-defined conditions for
Risk Mitigation Engine termination has been met (e.g., maximum execution time or number

2The number of solutions shown to the ESP user can be set by him or her in the User Interface.
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of evaluated solutions), the solution solver terminates, otherwise another solution is asked
to the walker (i.e., the workflow returns to step 4);

6. having added the inferred solutions to the Knowledge Base, the Risk Mitigation Engine can
halt its execution, returning control to ESP;

7. ESP gathers the inferred solutions from the Knowledge Base, and presents them to the user.
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Protection Security

Asset :

Instance requirement M

Deployed Protection @
Pl enumerator
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Solution « Risk Mitigation

Solution :
solver Engine
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Solution
walker

Figure 5.1: ESP protection decision process, with main software protection meta-model classes
and ESP components involved in the process.

When presented with the inferred solutions, the user can select one of them and can alterna-
tively:

e deploy the selected solution on the target application, obtaining the protected binary: in
this case, ESP will call the Solution Deployer, described in Appendix A.3;

o further refine the chosen solution with additional protections on non-asset APs, in order to
increase the effort needed by the attacker to locate the protected assets; with this choice, ESP
will give the selected solution in input to the Asset Hiding Engine, presented in Chapter 6.

5.2 Deployed protection instances enumeration

This section details the internal processes of the Protection Enumerator, corresponding to step
2 of the protection decision workflow (Section 5.1). The main task of this component is instancing
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in the Knowledge Base the DPIs that can safeguard one or more security requirements of an asset
in the target application. In general, given a PO, i.e., the security requirement of a specific
asset, the Protection Enumerator infers that deploying the considered PI on the aforementioned
asset can be useful if (as specified by the expert a-priori knowledge in the Knowledge Base) the
protection implemented by the PI is in general able to safeguard the PO security requirement: in
this case, a new DPI is instanced in the Knowledge Base, related to the asset and PI taken into
account.

First of all, the Protection Enumerator needs to enumerate the Pls available in the system
running ESP. As detailed in Section 3.3, a PI represents a specific protection technique implemen-
tation, stating the tool that must be used to deploy the technique, along with its configuration
parameters: for example, the remote attestation technique may be deployed by ESP using the
ASPIRE implementation of such technique (Section 1.1.3), specifying the algorithm that must
be used to compute the hashes of attested regions (e.g., Blake, SHA1). In particular, the Pro-
tection Enumerator parses a set of eXtensible Mark-up Language (XML) files, contained in the
Knowledge Base source code folder (see Appendix A), specifying for each PI:

1. the PI name;
2. the name in the Knowledge Base of the implemented protection;

3. the name in the Knowledge Base of the protection tool that must be used by the Solution
Deployer to deploy the protection (e.g., Tigress or ACTC);

4. the protection tool parameters values characterizing the PI; for protections deployed by the
ACTC, this is represented by the related ASPIRE annotation (see Section A.3), while for
Tigress techniques implementation the options that must be included in the command line?;

5. the formulas to compute the introduced overhead if the PI is deployed on a code region,
depending on the metrics of the latter (see Section 5.4.3).

The parsed Pls are therefore saved in the Knowledge Base: the user can disable one or more
PIs, using the User Interface. Note that Pls are not hard-coded in the Pls as a-priori information,
in order to ease the addition of other PIs by the user, which simply needs to add a new XML
file (or edit an existing one) adding the requested information for the new PI. For example, this
is useful to drive DIABLO, since it has a parameter that specifies the percentage of basic blocks
to which the binary code obfuscations (Section 1.1.2) must be applied: a higher value for this
parameter means a more thorough obfuscation, at the expense of an increased overhead. The
default XML file contains a set of Pls for each binary code obfuscation, with different values for
this parameter: however, a user can edit the related XML file easily to specify its set of parameter
values.

Subsequently, the Protection Enumerator can infer the DPIs that are suitable to protect an
application, and that must be considered by the Risk Mitigation Engine when finding the possible
protection solutions; for each PO, a DPI, representing the deployment of the PI on the asset
constituting the PO, is added to the Knowledge Base if:

e from the a-priori expert knowledge in the Knowledge Base, the protection technique imple-
mented by the PI enforces the PO security requirement;

3 As specified in the section "Options" for each transformation page in the Tigress website; for example, http:
//tigress.cs.arizona.edu/transformPage/docs/flatten/index.html#options lists the command-line options for
the flattening transformation.
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o the PI is applicable to the considered asset type; for example, Tigress variable obfuscation
(Section 1.1.2) is applicable only to integer variables;

« specific requirements of the considered PI are fulfilled; for example, the ASPIRE implemen-
tation of code mobility (Section 1.1.3) can be applied exclusively to whole functions, so, if
an asset is only a region of a function, the Protection Enumerator builds a DPI related to
the code region representing the whole function comprising the asset.

Also, the user can set the following constraints to limit the number of DPIs inferred by the
Protection Enumerator, such as a minimum Level that a Mitigation of a Protection must have to be
deemed useful in deferring an AP. Finally, the DPIs fulfilling the aforementioned requirements
and user-defined constraints are added to Knowledge Base, and will be considered by the Risk
Mitigation Engine for inclusion in the produced protection solutions, as reported in the following
sections.

5.3 Inference of valid solutions

This section details the solution walker algorithm, part of the Risk Mitigation Engine, tasked
with steps 4 and 5 of the protection decision workflow presented in Section 5.1. While the
Protection Enumerator is able to build a set of DPIs by analyzing each asset in isolation, finding
the PIs that are suitable to defer the attacks found by the Risk Assessment Engine against
the asset security requirement, the solution walker considers the application as a whole, taking
into account the complete code structure and the relationships among the various code regions
constituting the application: the goal of this algorithm is to produce a comprehensive protection
solution, combining a subset of the DPIs inferred by the Protection Enumerator, able to protect
the application from all the possible attacks against all the assets comprised in the target program.
In doing so, the solution walker considers the interactions among the protections included in the
solution, in order to avoid the introduction of inconsistencies that may alter the business logic of
the application or even lead to a non-working protected binary. Also, the overhead introduced
by the protections comprised in the built solution is taken into account: the ESP user can set
limits to the global overheads (detailed in Section 5.4.3) introduced by the application, and the
solution walker will output only solutions that stay below this user-defined upper bounds, thus
producing a combination of protections that preserve the application user experience (clearly, if
global overhead limits set by the user are correct). So, since the ordering among protections is
important, the problem the solution walker aims to solve is finding a protection solution, i.e., an
ordered set of DPIs, with at least one DPI safeguarding a PO, to protect the whole application, and
with an order among DPIs that does not introduce any inconsistencies in the resulting protected
binary.

First of all, given the application code structure, and the available DPIs, the algorithm com-
putes the code correlation sets: two code regions are if they share at least one line of code. This is
necessary, since, as stated in the introduction of this chapter, the relationships among assets must
be taken into account, to avoid possible inconsistencies in the resulting solution that may lead to
an application not behaving correctly, like in the case of the containment relationship. Another
relationship that must be considered is the use of a variable or constant by a code region: for
example, if a code region is protected with anti-debugging (see Section 1.1.4), and its execution
depends on the value of a string literal that has been encoded with Tigress literals obfuscation
(Section 1.1.2), every time that the code moved into the debugger has to access the constant
value, a call to the encoder function outside the debugger will be needed to obtain the literal; this
will lead to a context switch for each call, which, while not posing a threat for the correctness
of application execution, can lead to an unbearable overhead for the application, if the number
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of calls is conspicuous, and it is therefore advisable to protect also the string encoder with anti-
debugging. Also, using code correlation sets can speed up the solution walker algorithm, since
it reduces the number of crosschecks among DPIs in the same solution needed to avoid possible
incompatibilities among them. Code correlation sets are built by the solution walker recursively
following such relationships among code regions and data: these are found automatically in the
first step of the ESP workflow, i.e., with the source code analysis executed by the Source Code
Analyzer via CDT (Appendix A). Thus, the problem of finding a suitable ordered combination
of protections for all the application assets is divided in finding one ordered combination for each
code correlation set: the solution can be therefore redefined as a partially ordered set of DPIs,
since only the ordering of DPIs applied to assets in the same code correlation set is important.

In the second step of the workflow, the solution walker chooses, for each PO, the number of
DPIs tasked to protect it: a different tuple of integers is generated every time this step is executed,
until all the possible tuples are considered. At least one DPI for each PO must be included in
the solution, in order to provide at least a minimum protection for each asset in the program. To
speed up the computation, the solution space can be reduced by setting a maximum number of
DPIs for each PO.

Then, for each tuple of integers, the solution walker executes the third step in its workflow,
first building for each PO all the possible sets of DPIs with the length specified for the related
PO in the tuple, and then building all the possible combinations of these sets of DPIs, with one
set for each PO. Every time this workflow step is executed, one of these combinations of DPI
sets is built, and the next step in the workflow is called, until all the possible combinations have
been considered. It should be noted that certain protections are singletons, i.e., can be applied
only once to an asset: an example of singleton protection is code mobility (Section 1.1.3), which
protects a code by moving it to a remote server, an operation that obviously can be done only
once. Thus, if a DPI employs a singleton protection, the solution walker will apply it at most one
time on each asset: this means checking that this DPI is included at most one time among all
the sets targeting the POs related to the same asset. To do so, also the containment relationships
must be considered, since if for example anti-debugging is used to protect a whole function, also
all the code regions contained in it will be moved in the self-debugger: thus, is not possible to
apply the same technique on contained code regions, if the container function has been already
protected with the same technique.

Then, the solution walker executes the last step in its workflow: given a combination of DPIs
protecting all the POs of the application, the solution walker generates all the admissible orderings
of for the DPIs, excluding the ones containing forbidden precedences, which is cases when applying
one protection technique on an application part already protected with another one will lead to a
non-working protected binary, such as in the example presented before of the obfuscation of a code
already monitored by remote attestation. To reduce the number of different orders that must be
considered by the walker, the latter can be instructed to avoid also discouraged precedences, i.e.,
cases when applying one protection to a code or datum already protected by another technique,
while not leading to an inconsistency in the resulting binary, will likely have some unwanted
effect: for example, obfuscating a code that will be then protected with code mobility is not only
completely useless from a security point of view, since the code will be moved to a trusted remote
server, but it is also detrimental for the server performances, since the obfuscation will slow down
the execution of the moved code. As already explained before, to check that the ordering does
not contain any forbidden precedences (and discouraged precedences, if the walker is instructed
by the user to do so), the walker needs to verify all the precedences among all the DPIs protecting
assets in the same code correlation set. The walker will produce all the possible orderings for the
given combination of DPIs; then, the walker will return to the previous step, generating another
combination of DPIs to be ordered.

Summarizing, the final result of the walker is a set of valid solutions, able to offer at least
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some degree of protection to each PO in the application, and that, if deployed, produce a working
protected binary. However, this is not sufficient to deem a solution as effectively being usable
to protect the application, since the solution must not penalize excessively the protected appli-
cation performances. However, the performance overhead introduced deploying a protection on
an application asset do not depend solely on the technique used and, but also on the specific
characteristic of the protected asset. For example, if the integrity of a code area is safeguarded
using remote attestation, the effort needed to compute its hashes, i.e., the additional instructions
that must be executed by the CPU of the device running the application due to the deployment
of this technique, will be directly dependent on the size of the protected code.

So, to solve both problems, a quantitative measure of the characteristics of the assets is needed,
in order to both assess the solution effectiveness in complicating the execution of attacks, and the
overhead introduced in the application. ESP solves this problem by using a set of software metrics,
presented in Section 5.4, evaluated by the Metrics Framework using DTABLO. The solution walker,
after building a solution, calls the Metrics Framework to obtain the global overhead introduced
in the application; these will be evaluated by the Metrics Framework using a set of Pl-specific
formulas (Section 5.4.3) based on the values of the aforementioned metrics.

5.4 Software metrics

This section provides insights on the evaluation of software complexity metrics done by the
Metrics Framework, and their subsequent use by the Risk Mitigation Engine. Software metrics can
be defined as an “attempt to quantify aspects of a software system” [22]: in particular, complexity
metrics try to grasp the difficulty of carrying out tasks on software, for example maintenance,
debugging, testing or applying modifications [76]. Indeed, one of those tasks can be attacking a
software: therefore, increasing the complexity of a protected program is a desirable result. There
are various attempts in literature to leverage complexity measures in order to assess a protection
efficacy in defying attacks on a given function or code snippet: a notable example is the potency,
defined by Collberg in [37], which is a measure of effectiveness for code obfuscation techniques
(see Section 1.1.2). Given an obfuscation technique 7 that, when applied to a specific program P,
produces an obfuscated version P’ of the latter, the potency 7,0, (P) of 7 in protecting P against
reverse engineering can be evaluated with the following formula:

E(P)
E(P)

Where FE(P) is a complexity measure evaluated on the original program P, and E(P’) is the same
measure computed on the obfuscated program P’. Indeed, an obfuscation technique is effective
when E(P’) > E(P), since it produces a more complex program that is more difficult to reverse
engineer by an attacker w.r.t. the original application. In the aforementioned paper, Collberg
proposes seven complexity measures (e.g., size of the program, nesting level of conditional and
looping constructs) to evaluate the potency of a transformation; other appropriate measures have
been proposed by Tonella et al. in [118] (e.g., call graph and data dependency graph size).

As elaborated in Section 5.5.1, the Risk Mitigation Engine leverages the concept of potency to
evaluate the effectiveness of a solution in countering the attacks inferred by the Risk Assessment
Engine. To evaluate metrics on the unprotected binary involved in the solution assessment, as
already reported in Section A.1, the Metrics Framework relies on DIABLO: such metrics on the
unprotected program are obtained by calling DIABLO via the ACTC, without applying any
protection.

The remainder of this section is organized as follows:

Tpot (P) =

1 (5.1)

e Section 5.4.1 lists the metrics evaluated by the Metrics Framework on the target application
and on its functions;
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e Section 5.4.2, mainly derived from the publication “Estimating Software Obfuscation Po-
tency with Artificial Neural Networks” [29], explains how the Metrics Framework predicts
values assumed by a function or snippet metrics after the deployment of a specific sequence
of protections, without actually applying such transformations to the code;

e Section 5.4.3 presents how the Risk Mitigation Engine, when generating a solution, estimates
the impact of chosen protections on the target application performances, should the assessed
solution be deployed on the application;

5.4.1 Software protection complexity metrics

ESP supports 21 complexity metrics, as reported in Table 5.1. DTABLO can analyze a binary
to calculate metrics on the whole application and for each code region: for ESP, especially the
latter kind of metrics are interesting, e.g., to evaluate the effectiveness of a protection applied to
a specific asset, taking into account how the asset metrics are changed by the assessed protection.
Among those metrics, 18 express generic information about code complexity, while the other five
metrics are devised to express the result of specific protections after their deployment to the
evaluated code. Also, depending on whether the evaluation of the metrics involves running the
program, the following three types of metrics can be identified:

o static metrics: computed without executing the binary;

e dynamic coverage metrics: computed executing the binary, identifying the basic blocks
executed, and considering only them in the evaluation of the metrics;

e dynamic size metrics: computed as the coverage metrics, but taking also into account the
number of time each basic block is executed.

Metric Protection Static Dyn. Size Dyn. Coverage
No. of assembler instructions All Yes Yes Yes
No. of source operands All Yes Yes Yes
No. of destination operands All Yes Yes Yes
Halstead’s Length (HL) All Yes Yes Yes
No. of edges in the CFG All Yes Yes Yes
Cyclomatic Complexity (CC) All Yes Yes Yes
Control flow indirection metric All Yes Yes Yes
No. of mobile blocks Code mobility Yes No No
Total size of mobile basic blocks Code mobility Yes No No
Size of attestation data Remote attestation Yes No No
No. of attested basic blocks Remote attestation Yes No No
Size of attested basic blocks Remote attestation Yes No No

Table 5.1: Software complexity metrics supported by ESP.

Unfortunately, at the time of writing, ESP supports only static metrics to evaluate the overhead
and the protection level introduced by the deployment of a PI on a specific code region or datum
in the target application. A first problem for the use of dynamic metrics is that, for DIABLO
being able to evaluate dynamic metrics, an example use case of the application is needed from the
user: it should resemble as much as possible the expected usage of the application by its users,
and should be specified in the ACTC configuration file. ESP is currently not able to automatically
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infer the inputs needed for executing the target application: theoretically, it would be possible to
integrate in ESP a fuzzer to execute the application various time, and subsequently compute an
average of the obtained dynamic metrics; however, there is no guarantee that this random input
execution would summarize the typical application usage. This first problem could be nonetheless
partially solved by tasking the ESP user to manually specify a use case in the ACTC configuration
file. A second problem and still not completely solved, is that, to obtain the metrics of a protected
code, the solution must be actually deployed, obtaining the protected binary, so that DIABLO
can be launched on it to compute the metrics: this involves applying the protection and compiling
the code every time the overhead and the score of a solution must be evaluated: this, especially
for large application, cannot be done in a reasonable time, since the number of solutions can be
high and the time needed to compile the application is not negligible. Furthermore, the evaluation
of dynamic metrics involves the execution of the protected application: again, is not feasible to
execute the application every time a solution must be assessed. A partial solution to this problem,
presented in Section 5.4.2, is the use of a machine learning approach to estimate the metrics of
the protected application, instead of evaluating them via an actual deployment of the protections.
However, this approach has been proved effective only to predict static metrics, thus ESP, at least
for now, bases its reasoning processes only on static metrics; however, as detailed in Section 2.4,
this limitation has not impeded ESP to perform well in protecting real applications.

In the following, details about the specific metrics used are given, starting from protection-
independent ones. The number of assembler instruction indicates the actual size in the binary
corresponding to a code region: for example, this information is useful to indicate the amount of
code that an attacker should analyze to understand an asset that should remain unintelligible.
The total number of source and destination operands represent the amount of different register,
memory locations and constants that are respectively read or written by the code: these metrics
give another measure of the code complexity, since, to comprehend a code, an attacker should
understand the purpose of all the operands involved in the code execution. Halstead’s Length
(HL) [62] is the arithmetic sum of the three preceding metrics.

Other interesting complexity metrics can be evaluated taking into account the analyzed code
region CFG. A first measure is the number of edges comprised in the aforementioned graph, since
it corresponds to the number of jumps comprised in the examined code, which should be taken into
account when trying to reconstruct the code flow to comprehend its purpose. Similarly, McCabe’s
Cyclomatic Complexity (CC) [88] measures the number of linearly independent paths, from each
entry point to each exit point, in the analyzed code region: each path represent a possible different
execution of the code region, which an attacker must analyze to ultimately understand the code.
Another metric computed on the CFG is the control flow indirection metric: it measures the
number of indirect edges in the CFG, i.e., the number of jumps whose target is evaluated at
run-time as a result of previous calculation in the code (e.g., a jump with the target address in
memory written in a CPU register), thus being difficult to be evaluated by an attacker without
executing the program.

Regarding protection-dependent techniques, ESP supports five of them. Two are related to
the code mobility technique (see Section 1.1.3), and measure the amount of code that is moved
to the server, measured either in number of basic blocks or in Bytes (Total size of mobile basic
blocks): since this code is not available in the binary, being download with a per-needed basis at
run-time, these metrics indicate the amount of code the attacker will be able to analyze only dur-
ing execution. The last three metrics are related to remote attestation, an on-line anti-tampering
technique described in Section 1.1.3. The size of attestation data indicates the size of the attesta-
tion measurements evaluated by the technique on the protected code: it has little use for security
purposes, but is indeed useful to evaluate the increase in application memory usage caused by the
deployment of this technique. The remaining two metrics measure the amount of code monitored
by the technique, indicating the amount of code, expressed either as a number of attested basic
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block or with the total number of Bytes monitored (size of attested basic blocks): this measures are
interesting from a security point of view, since they express the amount of code that an attacker
cannot tamper with, without the technique identifying such changes and executing the proper
reaction to modification.

5.4.2 Complexity metrics prediction

When evaluating the effect of a protection solution, both Risk Mitigation Engine and Asset
Hiding Engine need to make calculations based on metrics of the code regions protected by the
solution: it is needed in particular to evaluate the solution score (see Section 5.5.1 for the score
calculated by the Risk Mitigation Engine) and the overhead introduced by the solution (see
Section 5.4).

Obviously, the Metrics Framework can evaluate such metrics by actually applying the solution
to the code via the Solution Deployer, and subsequently obtaining the metrics on the protected
code by calling DTIABLO via the ACTC, as it does for the unprotected code metrics: this means
compiling the program to obtain the binary on which the static metrics must be evaluated. The
Metrics Framework is tasked to do so every time a solution is evaluated; however, all the metrics on
all the code regions could be obtained with the above method, testing each possible combination
(setting a maximum length) of protections by applying it an all the application code region. Given
a program P, and a number n,,; of PIs (see Section 3.3) supported by ESP, the time t;es; (i, L)
that, using this approach, would be needed to obtain metrics values of all the code regions (see
Section 3.2) in each of the possible programs, resulting from the deployment of all the possible
combinations of protections comb(np;, L) comprising at most L protections.

Liest (npi7 L) = (tcomp(P) + tmetr(P)) : Comb(npia L) (52)

Where teomp(P) and t,e-(P) are the times needed to respectively compile and evaluate all the
metrics on the given program P. The following rough estimation of the number of combinations is
evaluated assuming that all the PIs taken into account can be present only once in the combination,
and that all orders of protections in the combination are acceptable?:

comb(nyi, L) ~ lz: ((”;) .u) = ZL: (TLP”'P'U .u> (5.3)

=1

Considering only the code protections developed in ASPIRE, ESP supports 13 different PIs, which
is the value assumed by n,; in the above equation; if the maximum length of combination L is
set to three, the number of possible combination of PIs comb(ny;, L) can be estimated as 455;
if the time to compile the program and calculate the metrics is estimated in one minute (which
would make P a rather simple program), it would take approximately more than seven hours to
evaluate all the metrics for all the possible combinations; the needed time increases to almost five
days with L set to four.

Therefore, evaluating all the possible metrics with the aforementioned approach is not feasible.
To overcome this problem, the Metrics Framework implements an approach based on Machine
Learning (ML), a branch of Artificial Intelligence (AI) that encompasses techniques to build
applications that can be trained to perform specific tasks, by feeding them with examples of
execution of such tasks. More formally, “a computer program is said to learn from experience

4Neither of the assumptions hold in reality: some protections, e.g., binary code obfuscations, can be applied
more than once to the same code, and there are order of applications of protections that lead to incorrect results
(e.g., applying remote attestation and then a protection that changes the attested code would lead the appraiser
to believe that the code has been tampered with).
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FE with respect to some class of tasks T" and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E” [91]. The Metrics Framework, in order to
predict the metrics, uses a Machine Learning (ML) technique known as Artificial Neural Network
(ANN). Essentially, an Artificial Neural Network (ANN) is a directed and weighted graph, with
its nodes (called artificial neurons) organized in layers of nodes. In general, each neuron receives
a set of inputs, multiplies each of them with a set of neuron-specific weight, giving the result to
a neuron-specific activation function that produces the neuron output. The ANN inputs are feed
to neurons in the first layer, which will produce their output with the activation function; such
outputs will be given to as input to neurons in the next layer, with the computation continuing
until the final layer is reached, which typically contains only one neuron whose output will be
the ANN one. An ANN can be trained to perform a task with a training algorithm (e.g., the
backpropagation algorithm [128]), which, given a set of solved instances of the task, i.e., a set of
inputs and expected outputs typically called training set, is able to adjust the input weights of
the ANN neurons and their activation functions. The performances of the trained ANN can be
assessed using another set of solved instances, called test set, comparing, for each instance of the
task, the output produced by the ANN with the expected one.

To solve the metrics prediction problem, the Metrics Framework uses a set of ANNs; each
of them is able to predict a specific metric, given all the metrics on a code region, after the
application of a specific PI on the given code region. Formally, the prediction of one of these
ANNSs can be expressed with the following formula, where ¢ is the unprotected code region, c?
is the same code region protected with the PI p, and m;(c) is i-th metric in the set of n available
metrics M, evaluated on the code region c:

fip(Mw) =~ m;(c?), Mo = mo(c®), m1(c°),...my,(c°) (5.4)

In this way, the effect of a single DPI on the metrics of code region can be assessed. However, a
solution may contain more than one DPI applied to the same code region: in this case, the global
effect of the solution on the metrics of a code region can be assessed by serially connecting the
appropriate ANNs. For example, if a code region c is protected with a PI p;, and then with a PI
P2, a metric m;(cPP2) can be predicted as follows:

Jip(MZy) = my(cPrP2), MY, ~ mo(cPr), my(cP), ... my () (5.5)

With the metrics in the set M}, given in input to the ANN, have been predicted in turn with
the appropriate ANNs with the unprotected ¢ metrics given in input:

M:m = fO,p(Mco)vfl,p(Mco)a---fn,p(Mco) (56)

Each ANN has been trained with metrics evaluated by DIABLO on all code regions in the source
code of 21 FOSS packages in the Linux Debian® distribution repository, listed in Table 5.2,
obtaining all the metric before and after the application of each PI on all the available code
regions. DTABLO has been called on the object files of such program, previously compiled with
GCC configured with three different optimization levels (-0s, -02, -00). In particular, the obtained
code regions where 35510, of which 90% has been used for training the ANN, and the remaining
10% to test them.

The obtained ANNs perform well, with a coefficient of determination® R? over 90% for every
protection technique. For example, Figure 5.2 shows the error plot for the predictions, on all

Shttps://www.debian.org/

Shttps://it.mathworks.com/help/stats/coefficient-of-determination-r-squared.html
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PACKET VERSION CODE REGIONS

-0s -02 -00 TOTAL
be 1.06.95 495 462 520 1477
bzip2 1.0.6 186 165 225 576
cerypt 1.10 158 140 156 454
dash 0.5.8 1171 1079 1229 3479
ed 1.10 226 205 245 676
findutils 4.7.0 1165 1178 1393 3736
flex 2.6.1 965 859 1041 2865
libdvdread 5.0.3 524 481 553 1558
libjpeg 8d 1041 851 1571 3463
libnet 1.1.6 576 586 563 1725
libstarlink-pal ~ 0.5.0 1137 1144 1265 3546
netcat 1.10 71 61 60 192
qmail 1.06 149 131 122 402
time 1.7 38 31 41 110
udo 6.4.1 2243 1998 2273 6514
unrtf 0.21.9 455 437 459 1351
vnstat 1.15 420 348 417 1185
watchdog 5.15 282 244 293 819
whbox 5 81 86 95 262
whitedb 0.7.3 154 123 155 432
zenlisp 2013.11.22 247 191 250 688
TOTAL 11784 10800 12926 35510

Table 5.2: Code regions in the metrics prediction data set.
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Figure 5.2: CC and HL predictions for “branch functions, high overhead” PI.

available code region in the test set (ordered by metric unprotected value), of the CC and HL
metrics after the application of branch functions with DIABLO (see Section 1.1.2). It is interesting
noticing that the line related to the real HL metrics values line show a numerous number of spikes,
which are well approximated by the predicted values line.

5.4.3 Protection overhead estimation

When protecting a software, the detrimental effect of the applied techniques on its perfor-
mances must be taken into account, in order to obtain a software that, while exposing a good
resistance against possible threats to its asset, has still an acceptable user experience. Indeed,
since in general protection techniques add instructions, increase the complexity of a program CFG
with convoluted code constructs (e.g., the large number of jumps needed to flatten a code), or
exchange messages over the Internet (e.g., remote attestation requests and responses), a certain
performance decrease is an inevitable effect of software protection.

Measuring the overhead of a solution is therefore essential for the Risk Mitigation Engine:
while it may be great in protecting the application assets against the attacks inferred by the Risk
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Assessment Engine, its deployment by the Solution Deployer could result in a protected binary
whose execution is practically unfeasible, being too slow, or occupying too much memory on the
device used do run the program. The same problem is faced by the Asset Hiding Engine, which
deploys protection on non-asset code regions: it could theoretically protect the whole program,
but is constrained in the number of applicable protection by the overhead introduced by the latter.

To evaluate the overhead caused by the deployment of a protection on a specific code region,
the Metrics Framework uses a set of protection-specific formulas, obtained during the ASPIRE
project by the protection techniques developers. The formulas are essentially linear combinations
of complexity metrics evaluated after the deployment of the specific protection. When assessing
the overhead introduced by a solution, ESP evaluates it for each code region protected by the
solution. In particular, ESP takes into account five types of overhead:

o client CPU overhead: the percentage of additional instructions executed by the client device
CPU when executing the protected code region, compared with the instructions executed
by the same device CPU when running the original code;

o server CPU overhead: the percentage of additional instructions, constituting the routines
of the assessed protection in the ASCL (see Section 1.1.3), executed by the server CPU
in order to service the requests made by the client due to the deployment of an on-line
protection, w.r.t. the number of ASCL instruction executed without servicing any client
protection requests (i.e., with no on-line protections deployed to the server);

e client memory overhead: the amount of the client device memory needed to store the data
needed by the protection, measured in Bytes;

e service memory overhead: the amount of the server memory needed to store the data needed
by the protection service routines in the ASCL, measured in Bytes;

o network overhead: the average amount of bandwidth occupied on the client device Internet
connection, during the application execution, due to messages exchanged by the on-line
protection technique with the ASCL.

In the protection decision workflow (Section 5.1), the Metrics Framework is tasked to assess
the global overheads introduced into the target application by a solution, after its deployment
on the target: this is needed to ensure that such overheads are limited”, so that the produced
binary does not present a performance degradation so conspicuous that the application becomes
unusable. The Metrics Framework can predict the metrics of the assets, which are modified by
the deployment of the solution, using the neural networks described in Section 5.4.2, and use
such predictions to estimate the values of the overheads, by feeding the predicted metrics to the
overhead formulas presented above in this section. This leads to the estimation of overheads
for each asset: however, a global overhead value is needed, summarizing the medium slow-down
introduced by the protections, in order to assess the feasibility of the solution. The Metrics
Framework obtains a global value for each kind of overhead, combining the relative overhead values
computed on each function comprised in the application source, using the following weighted sum
where each overhead is first multiplied to a weight, indicating the percentage of instructions of the
related function w.r.t. the total number of instructions constituting the application code. It should
be noted that also the overheads introduced by protections on variables are considered: since
these protections introduce more code in the function containing the protected variable, such as
for example the additional instructions needed to decode variables obfuscated with the technique

"The overhead global limits for the protected target application must be set by the ESP user.
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described in Section 1.1.2, the metrics of the function will be impacted by such protections, and
can be used to assess the overhead introduced by such techniques as it is done for their code
counterparts.

5.5 Asset protection solution inference

This section presents the solution solver algorithm, which is tasked to decide, among the asset
protection solutions inferred by the solution walker algorithm (see Section 5.3), the ones that
are best suitable to deferring the possible APs that can endanger the POs, i.e., the user-defined
security requirements of the application assets. In doing so, the solver assigns to each evaluated
solution a score, called protection index, whose computation is described in Section 5.5.1.

As already described in the introduction of this chapter, this problem is not trivial: the
relationships between the protected assets code structure and security requirements, the possible
attacks against them, the deployed protections with the interactions among them must all be
modelled in order to find a quantitative way to score the solutions, so that they can be compared
and the best solutions, i.e., the ones with most chances to effectively defer the attacker, can be
presented to the user for subsequent deployment on the target application. The basic idea behind
the solution to this problem is modelling the protection decision process in a MATE scenario as
a game, with characteristics similar to chess. The checkerboard is the application code, the white
player (who moves first) is the defender tasked to produce a protected version of the application
that must be publicly released afterwards, and the black player is the attacker that must breach
at least an asset security requirement. The defender moves its pieces, i.e., the protections, by
deploying them on the application; the attacker moves are instead executions of attack paths
against the protected application. It should be noted that, due to the characteristics of the MATE
scenario, there is one fundamental difference between the chess and the protection decision game:
in chess, player moves are alternated, while in a MATE scenario, the defender has the first move,
protecting the application before its release, but afterwards the attacker has theoretically infinite
moves. Thus, at the protection decision game the defender wins if it defers as much as possible the
breaching of assets security requirements, choosing the combination of protections most effective
in increasing the effort needed to carry out successful attacks: since perfect protections do not
exist (this has been proven formally for obfuscation techniques by Barak et al. [11]), an attacker
with infinite time (and subsequently moves) will, in the end, be able to break all the protections
chosen by the defender. However, a well-protected application may cause the attacker to throw
in the towel after some failed attack attempts. Also, the economic model behind the attacker
willingness to breach the application may, in fact, limit the time: for example, an attacker may
want to break a licensing scheme of a commercial application, in order to build a crack to use it
without a proper license, and thus sell the crack on the black market; however, if a new version
of the application is released before the attacker can succeed in building the crack, even if it in
the ends succeeds in creating the crack, it would be incompatible with new application version,
and thus would not have any value on the black market (or at least a greatly reduced one).

Using this parallel with chess, all the abundant research on the automation of this game can
be adapted for protection decision purposes. This research has its roots in the broader field
of game theory, which, as defined by Myerson in [93], is “the study of mathematical models of
strategic interaction between rational decision-makers”, and has been applied to solve problems in
many fields, for example in economy, e.g., to model strategies of companies [110], or for military
purposes, e.g., to analyze possible choices for nuclear deterrence during the cold war [25]. Indeed,
research has been also on possible applications of game theory for cybersecurity, as presented in
a recent survey [43] by Cuong et al.: reviewed works include uses of game theory to model attack
and defence of smart grid systems, computer networks and cryptographic schemes.

Building computer programs able to play chess, a problem known as chess programming, has
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been first introduced by Shannon in 1949 [34]. In this seminal paper, two of the core concepts
of chess programming are applied to this problem for the first time: the mini-max algorithm
(presented in 1928 by Borel in [24]), used to model the evolution of a game in various states (e.g.,
different disposition of pieces on the checkerboard) through moves of the players, and the use of
an evaluation function, i.e., an heuristic to estimate the probability of a player winning a game in
a specified state. These concepts are still at the base of modern chess engines, such as IBM Deep
Blue [28], a special-purpose computer that in 1996 was the first one able to win a chess game
against a human chess world champion, Garry Kasparov, and Stockfish®, an open-source engine
which at the time of writing is at the top of the CCRL 40/4 chess engine ratings’.

For zero-sum games like chess, where the gain resulting from one player’s move is exactly the
same as the damage for the other player (so that their sum is zero), a single score for a position
can be used, ranging between —1 (black player’s checkmate) and +1 (white player’s checkmate).
Thus, given a game state, if it is the white player turn to move, it will try to find a move that
leads to another game state with a score higher than the precedent one; the opposite applies if
it is the black player’s turn. The same holds for the protection decision game: the defender’s
protections will increase the score, while the attacker will execute APs to decrease it. For chess,
the score of a state is linked to various factors, for example the number of pieces still in game
for each player, their location on the chessboard, and if the players have performed castling. In
Shannon’s paper, the following example evaluation function is provided, in order to evaluate the
likelihood of a white player winning a chess game in a state P:

f(P) =200(K — K') +9(Q — Q") +5(R— R') +3(B— B + N — N')

5.7
+(P-P)-05D—-D'+S—-858+I-I)+01(M—M)+ .. (5.7)

in which K,Q,R,B,B,P indicate respectively the number of white kings, queens, rooks, bishops,
knights and pawns still in play; D,S,I are penalties for doubled, backward and isolated white
pawns; M is a bonus for the mobility of white pieces, i.e., the number of legal moves available
to the white player; the primed versions of this variables indicate their relative black pieces
counterparts.

The mini-max algorithm implements a worst-case analysis: when the opponent has to move,
it will always choose the best move, i.e., the one that, given the current state, will lead to a new
state that is the most favorable for him or her; translated to chess, if the opponent is the black
player, he will choose every time the move that leads to the state with the lowest score possible.
Thus, since the opponent will choose, among the moves available, the ones that maximize the loss
for the player, the mini-max algorithm chooses the move that leads, after the opponent move, to
the minimum of the losses maximized by the opponent. Figure 5.3 sketches the reasoning process
of a mini-max algorithm, trying to find the best move for a player that must maximize the score;
due to computational limitations, the algorithm is able to foresee only the possible outcomes after
two moves, the one made by the algorithm and the next move made by the opponent. The figure
renders the mini-max reasoning process using a tree: each node is a game state, with the root the
initial one, while the edges are the possible moves, each one leading from one state to another. The
algorithm starts to compute the scores associated with the possible outcomes. Then, it assigns
a score to each node in the layer immediately above the leaves (Figure 5.3a): having the nodes
only three layers, these are the possible states in which the opponent must move, immediately
after the player move that is subject to evaluation by the mini-max algorithm. Using a worst-case
analysis, the algorithm infers that the opponent will choose the move that minimizes at most
the score: so, each node in the opponent layer will be associated with the lowest score among

8https://stockfishchess.org/

9http://ccrl.chessdom. com/ccrl/404/
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Figure 5.3: Example execution of a mini-max algorithm.

its immediate successors (Figure 5.3b), which means assigning 3 to the left node in the second
layer, and 4 to the right node. Then, the process is repeated, but this time the player must move,
so each node (in the figure only the root) will be assigned with the maximum of the scores of
its children (Figure 5.3c). In this way, the move is made taking into account also the reaction
of the opponent; clearly, the number of forecast moves can be higher, with various alternating
minimizing and maximizing phases, but the principle behind the algorithm holds.

The mini-max algorithm and the evaluation functions are the foundations on which the solution
solver algorithm is built.

5.5.1 Protection index

To build the solution solver mini-max algorithm, first a score for its states must be defined. As
said before, the protection decision process is modelled as a zero-sum game: there is a unique score
for the states in the mini-max tree, representing the global level of security of the application,
i.e., the effort needed by an attacker to breach the user-defined security requirement of the assets
in the application. Indeed, modelling this effort is not trivial, since it depends on a series of
factors. First, the profile of the attacker must be taken into account: for example, a seasoned
attacker, proficient in the assembly language, will need considerably less effort to understand the
purpose of an algorithm in the binary, in respect with a newbie that has never seen assembly
before. However, if an attack simply involves using an automated attack tool, the effect of the
attacker profile on the difficulty of carrying out the attack may be less broad. Also, the inherent
characteristics of the assets must be taken into account, but also the relationships among them:
intuitively, comprehending a code with a complex CFG is harder than understanding a simple
code with few basic blocks; however, this holds also when an attacker wants to understand the
purpose of a local variable in a function, a task that will be considerably harder if the variable
is accessed in various points of a complex function comprising many instructions in a convoluted
CFG.

Thus, a set of measures to model the security level of the application are needed, in order to
grasp all these nuances. Protections deployed on the application must increase at least one of the
measures, while successful attacks will decrease one or more measures. The solution solver, to
evaluate the protection inder, i.e., the score of mini-max tree leaves, uses the following measures,
computed for each asset:

e uncertainty: the confusion an attacker feels when trying to understand the purpose and
logic of an asset, for example an obfuscated one (Section 1.1.2);

e remote instructions: the increased difficulty an attacker encounters, when parts of the target
application code are not under his control, having been moved to a safe remote location,
e.g., using code mobility (Section 1.1.3);
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o alteration detection: the capability of a protected application to detect when the attacker
is attempting to tamper with it, increasing the difficulty of these types of attacks, since the
attacker must tamper the protected assets without tripping off any alarm, e.g., avoiding the
detection enforced by remote attestation (Section 1.1.3);

e alteration avoidance: the ability of a protected application to negate a modification, for
example blocking tools used by the attacker to tamper with the application code, as it is
done by the anti-debugging technique (Section 1.1.4).

The attacker will try to lower the protection index, by executing attacks that impact one or more
of these measures. For example, an attacker that sniffs the traffic of an application protected with
code mobility, has a good chance to identify the remote instructions downloaded by the applica-
tion: thus, if an AP containing a sniffing Attack Step (AS) is played by the attacker, the remote
instructions metrics is lowered accordingly. Indeed, the profile of the attacker has an impact
on the probability of success of this attack: while sniffing the traffic is not complicated (using
for example a free tool like Wireshark'?), understanding that the application is downloading the
instructions, and consequently identify them in the traffic captures, is definitely more difficult,
and requires knowledge of the protection technique by the attacker. Another example is trying to
understand of an obfuscated asset code, thus having an high uncertainty measure: the attacker
may resort to static or dynamic analysis tools, in order to obtain more understandable represen-
tation of the code (e.g., CFG, execution traces), which will, in turn, decrease the uncertainty of
the attacker regarding the logic of the asset code. The attacker expertise can be set by the user
via the User Interface. Indeed, knowing the possible type of attacker is fundamental when the
protections are decided: if the target program is a mobile app, sold for a low price, protecting
it with heavy measures is useless, since the reward of breaking the application will be probably
not enough to interest an experienced attacker; the only result would be an unnecessarily slow
application, and, if proprietary protections are taken into account, the cost of their licenses could
exceed the profits gained with application sales.

Attacks and protections try respectively to breach and defend the assets security requirement:
this link is embedded also in the measures: each of them specifies also the risk of the attacker being
able to breach a specific security requirement. Uncertainty is strictly related to confidentiality,
since for example an attacker that becomes certain of the logic of a code has succeeded in reverse
engineering it. Similarly, remote instructions of a code, moved to a trusted server out of the
attacker reach, have more possibility to remain confidential. Alteration detection and alteration
avoidance are clearly related to integrity and execution correctness'!, since they express the
capability of an application to detect or stop attacker attempts to tamper with the protected
assets.

Also, as explained before, these measures must be linked to the characteristics of the asset
code: therefore, they are linked to the software metrics (Section 5.4) of the asset. In particular,
the initial values of these measures, after the single defender move (e.g., the deployment of one of
the solutions found by the walker) are evaluated as weighted sums of the software metrics. Thus,
the protections increase the protection index because they increase the metrics: this behaviour
takes its roots from the concept of transformation potency proposed by Collberg, as explained in
Section 5.4. For example, the uncertainty measure of an asset is based on the HL and CC of its
code, two measures that are increased by code obfuscation techniques (e.g., the CFF technique

Onttps://wiw.wireshark.org/

1 The execution correctness is a stronger form of integrity for code, leading to complex attack paths that require
more effort for the attacker, as explained in Chapter 4.
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presented in Section 1.1.2 increases the CC, since the resulting CFG contains a high number of
parallel paths).

Given a target application A, its global protection index P(A) in a state of the mini-max
algorithm is evaluated by the solution solver using the following formula:

#assets #measures

P(A) = Z w; - Z Bj-sij—L-lij (5.8)

where w; is a user-defined weight representing the importance of the i-th asset, s;j is the value of
the j-th security measure evaluated on the i-th asset, and j; is a user-defined coefficient for the
j-th security measure. The attacker succeeds in violating the i-th asset if at least one measure,
after the successful execution of one or more APs against the asset, goes below a user-defined
constant threshold T'; this is expressed in the formula with a user-defined constant L and the [;;
boolean variable, evaluated as following:

lij = {1’ i <.T (5.9)
0, otherwise

Since the attacker wins if he succeeds in breaching at least one security measure (i.e., one asset
security requirement), the L constant should be set to a very big value, so that the mini-max
algorithm will avoid selecting moves that lead to such losing states. Also, if the user has not set
a security requirement for an asset (e.g., it is not important that a function is understood by
an attacker, as long as is not able to modify it), the related measures s;; are excluded from the
formula.

Finally, a way to quantify the impact of successful APs on security measures is needed, so
that the mini-max algorithm can update the score accordingly. This impact of an AP is assessed
taking into account the inherent difficulty of ASs constituting the AP and the probability, given
the attacker expertise, of successfully execute such ASs, but also the ability of protections in
thwarting specific types of attack tools, and the increased resistance against specific AS due to
synergies among protections. All this information, stored in Knowledge Base, derive from experts
knowledge gathered during the ASPIRE project. When the attacker plays an AP, each of the
constituting AS is executed following the order specified by the AP, updating the measures of the
affected asset. In particular, after the execution of the k-th AS in the played AP, targeting the
i-th asset, the j-th measure will take the following value:

sij = (1= (mi - (1= wi) - X)) - i (5.10)
where:

e s;5 and sgj are the impacted measure values, respectively before and after the assessed attack
step execution;

e« 0 <m <1 is the attacker probability of successfully execute the k-th AS, depending from
the type of AS and the selected attacker expertise;

e 0 < A <1 assesses the impact of the AS type against the security measure (e.g., dynamic
analysis, carried out for example using a debugger, as an high impact on the confusion
measure);

e 0 < wg <1 represent the mitigation effect of protections applied on the i-th asset against
the type of AS.
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The global mitigation effect wy of the DPIs applied on the i-th asset against the k-th AS in
the assessed AP, used to evaluate s;j, can be obtained by combining the mitigation effects of each
DPI applied to the i-th asset, as in the following formulas:

#DPIs on i-th asset

wp=1-— > (1—wiyp) (5.11)

p

The protection mitigation effect wy must take into account also the ordering of protections in
the solution played by the defender, with a bonus for encouraged precedences and a malus for
discouraged ones (Section 5.3), and is obtained by combining the mitigation effects of each DPI
applied to the i-th asset. Given the p-th DPI applied on an asset endangered by the k-th AS in
the AP, the relative wy , mitigation effect is obtained with the following formula:

wm:1—u—n%g-8:§; (5.12)

where:

e 0 <my,p <1 is the level of mitigation introduced by the p-th protection against the k-th
AS, if p is the only protection applied to the endangered asset;

e 0<FE<1land0< D <1 arerespectively the user-defined bonus for encouraged precedences
and malus for discouraged ones;

e ¢ and d are respectively the number of encouraged and discouraged precedences, i.e., the
number of DPIs, applied on the same asset as the p-th one, preceding the latter in the
solution, which are respectively favoured or hindered by the deployment of the p-th DPI.

Default values for the various constants used by the solution solvers have been found em-
pirically, assessing the solutions found by the Risk Mitigation Engine on the ASPIRE use-case
applications w.r.t. solutions devised manually on such applications by experts of the software
security companies involved in the aforementioned project (Section 2.4).

5.5.2 Solution solver mini-max algorithm

The solution solver uses a mini-max algorithm in order to find the score for each solution
built by the walker (Section 5.3), assessed in a worst-case scenario, i.e., when the attacker chooses
the best AP to breach at least one security requirement of an asset in the lowest possible time.
Figure 5.4 sketches a mini-max tree built by the solution solver: the root represents the best
solution score found so far, the first layer contains the solutions built by the walker, and the
remaining layers the possible AP mounted by the attacker against the application assets, given
the solution chosen by the defender. It should be noted that an AP can be repeated an infinite
number of times by an attacker (i.e., an attacker can concentrate on a specific attack for a longer
time), thus the tree is theoretically infinite: the mini-max algorithm stops after a user-defined
number of layers in the mini-max tree, i.e., number of APs tried by the attacker, such as a chess
engine forecasts a limited number of moves; clearly, a deep search will result in more precise
scores, but will take a longer time for the solver to produce them. More precisely, the time needed
for the execution of the solver grows exponentially with the number of layers in the tree: if the
Risk Assessment Engine infers a APs against the application assets, the user sets a number [ of
mini-max tree layers, and the solution walker builds s different solutions, the mini-max tree will
contain s - a! states, whose score must be evaluated using the formulas described in Section 5.5.1.
Thus, times needed to evaluate the solution scores can become unfeasible for bigger applications,
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Figure 5.4: Example of a mini-max tree built by the solution solver.

attack attack

containing many assets: the solution walker mini-max implementation uses a set of strategies to
reduce the number of the states that must be evaluated; in fact, the tree in figure is unbalanced,
since some of the possible states are not considered due do these strategies. First of all, the code
correlation sets, described in Section 5.3, are used to split the trees: since an AP against an asset
can impact only the measures of the targeted assets, and of the other ones contained in the same
correlation set (e.g., if the attacker debugs a function, it does automatically the same for all the
code region contained in the function), a separate smaller tree can be used to model sequences
of APs targeting the same code correlation set; due to the exponential nature of the mini-max
algorithm, this greatly reduces the computation time.

Also, the following standard enhancement strategies, typical of chess programming (used by
all the modern chess engines), are implemented to further speed-up the solution solver:

o Alpha-Beta pruning: a branch-and-bound technique, where o and § are respectively a lower
and higher bound; if a move leads to a state with a score lower than « or higher than 3, it
is considered respectively too bad (a better move surely exists) or too good to be true (due
to the worst-case scenario considered, the attacker will never choose the moves that lead
to this state), thus the mini-max does not consider it anymore, pruning from the tree this
state and all its children;

e Reduction: a technique that avoids further analyzing a state, if the outcome of the sub-
sequent moves is already clear; for example, if a state contains a security measure that is
almost broken, it is clear that the attacker will succeed in breaking with few more APs,
thus winning the game, and therefore the solution solver will deem the state as undesirable
without further searches (i.e., not considering possible children);

o Transposition table: a large hash table, containing information about a state already en-
countered before, but with another sequence of moves (a transposition, in chess jargon).
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This techniques need a set of user-defined parameters (e.g., @ and 8 for pruning), whose value
can greatly affect the quality of the found solution, but are difficult to find: however, the user can
launch the mini-max algorithm with a shallow depth, obtaining a solution in no time, in order
to assess a medium value for the solution score, and base the parameters on this medium value.
For example, the optimal solution score must be comprised between a and 3 for the mini-max
algorithm being able to find it: so, if a fast execution leads to a best solution with score 50,
probably the optimal solution score will be near that value, thus o and 5 can be set accordingly,
e.g., to 40 and 60. Then, the solution solver can be launched with a deep search, which will lead
to the optimal solution (or at least to an approximation of it).

5.6 Validation

This section compares the asset protection methodologies described in this chapter with the
ESP requirements detailed in Section 2.1.

Regarding the risk framing requirements (see Section 2.1.1), they are completely satisfied by
the ESP asset protection phase. First, attacker skills are taken into account in the solution score
computed by the solution solver algorithm (see Section 5.5). Also, the protection solutions are
presented to the user in a detailed and human-readable format, specifying for each user-defined
asset the protection techniques that must be used to safeguard each of its security requirements,
the protection tool that must be used to deploy the technique to the asset, along with the config-
uration parameters needed to drive the tool in this process, and the order of application of each
protection to the asset. Finally, the algorithms that implement the asset protection methodolo-
gies described in this chapter can be fully customized by the user, with a set of parameters that
influence the time needed to execute them, and the accuracy of the produced results. A deep
exploration of the solution space may be performed prior to the distribution of the application
to the public, thus obtaining a solution near the optimum. Conversely, a fast solution search
may be performed each time a patch for the software must be released, when time is an issue,
thus refining the existing protection solution with additional protections to defer possible attacks
enabled by the introduction or modification of code performed by the patch. Thus, the asset
protection phases adapt to the software life-cycle.

Regarding the risk mitigation requirements (see Section 2.1.3), they are satisfied by the
methodologies presented in this chapter. The main objective, deferring the possible attacks against
the application assets, is completely accomplished, covering all the attack paths inferred during
the risk assessment phase of ESP (see Chapter 4). The protection solutions are obtained taking
into account the application structure and the complexity metrics of the code comprising the
user-defined assets. Furthermore, ESP supports automated protection tools for each of the tech-
niques employed in the asset protection phase, thus the deployment of the obtained protection
solutions can be completely automated. Overheads are also taken into account when the solutions
are inferred, thus the user experienced is not hampered, with protected binaries obtained after
the deployment of such solutions still responsive to the user.

Requirements related to risk monitoring (Section 2.1.3) are respected, since the solution score
is evaluated by the solution solver (see Section 5.5) simulating a penetration testing on the ap-
plication protected with the evaluated solution, with a game-theoretic approach that employs
the attack paths inferred in ESP risk assessment phase to evaluate the resistance against threats
gained by assets after the deployment of the protection in the evaluated solution on the target
application.

In the validation phase of the ASPIRE project, the experts analyzed the protection solutions
inferred by ESP in this phase on the project use-case applications. They were pleased by such solu-
tions, deeming their deployment to the applications effective in deferring possible attacks against
the comprised assets. Furthermore, they evaluated the solution as free from inconsistencies that
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would lead to non-working applications. The overheads introduced were considered acceptable,
with a limited impact of the protections employed on user experience.
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Chapter 6

Asset hiding

All warfare is based on deception.

Sun Tzu

This section describes the ESP asset hiding phase. Its main objective is to mitigate a side-
effect of software protections, the introduction of fingerprints. This term encompasses various
characteristics of protected code that an attacker can identify in the binary, thus being able to
quickly find the assets in the application. The asset hiding phase refines the protection solution,
i.e., the combination of protections, inferred in the ESP risk mitigation phase, deploying additional
protections on areas of code not marked as assets by the user, thus aiming to confuse the attacker
and leading him or her to focus its attack on these code areas that are not sensitive from a security
point of view.

Additional protections are inferred by ESP with the following workflow:

1. MILP model instantiation: given an asset protection solution (see Section 5.5) and the
target application source code structure (see Section 3.2), ESP infers a Mixed Integer-Linear
Programming (MILP) problem tailored for the aforementioned code structure, modelling the
attacker confusion due to the additional asset hiding protections;

2. MILP model solving: an external MILP solver (at the time of writing, ESP supports IBM
ILOG CPlex! and Ipsolve?) is tasked with the solution of the model built in the previous
phase of the workflow;

3. MILP solution translation: given the model solution obtained in the previous phase, the
corresponding additional protection solutions are inferred and used to refine the original
asset protection solution.

This chapter is a reworked version of the publication “Towards Optimally Hiding Protected
Assets in Software Applications” [105], and is structured in the following sections:

e Section 6.1 presents the concept of protection fingerprints, describing also the characteristics
of the fingerprints introduced by the protection techniques supported by ESP;

Thttps://www.ibm.com/analytics/cplex-optimizer

2http://1psolve.sourceforge.net/
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e Section 6.2 contains an high-level description of the strategies employed by ESP to decide
the additional protections aiming to hide the asset protection fingerprints;

e Section 6.3 details the MILP problem that formalizes the decision process of the additional
asset hiding protections;

e Section 6.4 describes how ESP generates a refined protection solution, starting from a MILP
problem instance solution;

e Section 6.5 reports on how this additional phase of the ESP workflow addresses the related
security requirements detailed in Section 2.1.

6.1 Protection fingerprints

One of the first activities performed by attackers, when they target an application, is identi-
fying the assets in the application binary, in order to focus their attacks on smaller areas of code.
This attacker behaviour has been verified empirically, with a study performed on attack reports
of professional white-hat hackers [31].

A protection fingerprint is a peculiar characteristic assumed by a code area of the application,
after the deployment of one or more protection techniques to it, which can reduce the effort needed
by the attacker to locate the protected code area in the binary. Thus, when an attacker targets
a protected application, he or she can look for such fingerprints, and can consequently find the
assets in the application. In this way, the attacker can focus his or her efforts on the assets code.

Fingerprints can be subdivided among static and dynamic ones. The first kind of fingerprint
can be observed by an attacker using static code analysis tools and code representations, e.g., the
CFG of the disassembled application. The second kind of fingerprint is instead noticeable by the
attacker during the application execution, examining the latter with a debugger or by analyzing
execution traces, collected during execution, after the program termination.

A first example of static fingerprint is the one introduced into the CFG of code areas protected
with Control Flow Flattening, a code obfuscation technique described in Section 1.1.2. Indeed,
the protected CFG assumes a peculiar structure, with a loop with a nested switch statement,
with a high number of parallel paths in the CFG. A depiction of a CFG protected with CFF is
depicted in Fig. 6.1.

[Variables declaration]

|

[caser[caselj[case?j[case?»]

(

Figure 6.1: Control flow graph before and after the control flow flattening obfuscation.

Another kind of technique that exposes an evident static fingerprint is virtualization obfus-
cation, described in Sec. 1.1.2. This technique is based on the translation of the code that must
be protected into a bytecode, interpreted and executed by a virtual machine specially designed
for the protection. Static analysis technique may fail when applied to code protected with such
techniques: for example, opcodes of the virtual machine instructions may be invalid for the CPU

94



6 — Asset hiding

technique replication enlargement shadowing

anti-debugging HIGH HIGH -

branch functions LOW HIGH control flow flattening (HIGH), opaque
predicates (LOW)

code mobility HIGH HIGH anti-debugging (HIGH), branch func-

tions (LOW), control flow flattening
(HIGH), opaque predicates (LOW), vir-
tualization obfuscation (HIGH)

control flow flattening HIGH HIGH opaque predicates (LOW)
opaque predicates HIGH HIGH control flow flattening (HIGH)
virtualization obfuscation LOW LOW anti-debugging (HIGH), branch func-

tions (LOW), control flow flattening
(HIGH), opaque predicates (LOW), vir-
tualization obfuscation (HIGH)

static remote attestation LOW HIGH -

Table 6.1: Asset hiding strategies for the protection techniques employed by ESP.

architecture, thus leading a disassembler to produce invalid instructions for the code areas pro-
tected by the technique. This failure may arise suspect in the attacker, which may be lead to
further investigate such protected areas.

Finally, protections that introduce calls to external libraries can be suspicious for the attacker.
For example, on-line protection techniques, such as the one described in 1.1.3, need to either use
external network APIs or the native socket system calls of the OS. In both cases, the attacker
may recognize such calls: especially for applications that do not need a network connection for
their business logic, this may lead the attacker to analyze these protected areas of code. Being
observable by analyzing the application binary code, fingerprints of this kind are static.

However, due to the remote connections established at run-time, the on-line protection tech-
niques exhibit also dynamic fingerprints. For example, applications protected with code mobility
(see Section 1.1.3), when their execution flow reaches a code area moved to the remote server em-
ployed by the protection technique, need to download such code from the aforementioned server:
also in this case, the opening of such connections, again especially in applications that would not
need a remote connection, if not protected with this technique, can raise suspicion in the attacker,
and may lead him or her to analyze the code opening such connection in more detail. Also, the
attacker may try to eavesdrop the suspicious traffic, thus recovering the asset code moved to the
server, if an encrypted connection is not employed.

Also, code obfuscation techniques introduce dynamic fingerprints on protected code. For
example, opaque predicates (see Section 1.1.2) may introduce paths in the CFG that are never
traversed by the program flow. An attacker performing a dynamic analysis of the binary, for
example with code coverage tools, may identify such paths never taken, and may analyze them,
finding the embedded opaque predicates. A methodology for automatically identify and remove
opaque predicates in code have been proposed by Dalla Preda et al. [45].

6.2 Asset hiding strategies
As reported by software security experts involved in the ASPIRE project, the main solution

in the software protection industry to defer the identification of assets by attackers is applying
obfuscation to a large part of the program code, protecting also areas of code that do not contain
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assets. However, this process is performed manually and can be time-consuming. The protected
application must be tested to ensure that the additional obfuscation of code has not introduced
an excessive overhead in the application, thus the obfuscation and application testing process can
be repeated multiple times, until an optimal trade-off between security and overhead is reached.
Thus, automating this process, by designing ad-hoc strategies to hide the location of the assets
in the binary from attackers, could be useful for security experts.

This section presents the three asset hiding strategies designed for this purpose: fingerprint
replication, enlargement and shadowing.

The fingerprint replication involves the insertion in the application of additional fingerprints,
devised to have a similar structure to the ones introduced in the ESP asset protection phase.
In practice, this is obtained by applying the same protections used in the aforementioned phase
on code areas not containing assets. This strategy aims at delaying the attacker, increasing the
number of code areas that he or she has to analyze, and potentially making he or she lose time
in the analysis of code not holding any value security-wise.

The fingerprint enlargement strategy is based on the extension of the scope of protections
deployed on the asset protection phase, deploying them also on code areas adjacent to the assets.
In this way, the attacker that finds the location of an asset has to analyze a higher amount of code,
thus increasing the time needed to breach the asset security requirements. Finally, the fingerprint
shadowing strategy conceals the fingerprints introduced in the code during the asset protection
phase, deploying other protections on top the ones deployed on assets in the aforementioned phase.

For each asset hiding strategy, the effectiveness in hiding the fingerprints introduced by the
protection techniques employed by ESP has been evaluated by the software security experts
involved in the ASPIRE project, leading to the results reported in Table 6.1. The application of
each strategy for each protection technique is rated HIGH when it can be very effective in hiding
the fingerprint introduced by the technique, or LOW when applying the strategy for the protection
may lead to minimal results.

For some protection techniques, not all the available strategies are appropriate. For instance,
static remote attestation (see Section 1.1.3) is not suitable to shadow any kind of fingerprint,
since it does not modify the code on which is deployed, but enforces checks on its integrity using
ad-hoc external functions typically running on separate threads, as in the case of the implemen-
tation of this technique supported by ESP. Instead, different binary obfuscation techniques (see
Section 1.1.2) may be effectively combined to obtain less noticeable fingerprints. An example is
the insertion of opaque predicates in a code region previously protected with CFF, since this may
alter the typical CFG resulting from this technique, depicted in Figure 6.1.

Indeed, there are protections for which the application of some asset hiding strategies may have
the undesired effect of decreasing the global security level of the application. For example, this
happens if virtualization obfuscations fingerprints (see Section 1.1.2) are replicated or enlarged
throughout the code. Such fingerprints are evident for the attacker, as stated in the previous
section, due to the custom VM bytecode introduced in the application binary, and the replication
and enlargement techniques would be suitable to hide the location of the assets safeguarded
by this technique. However, protecting a large amount of code with virtualizations obfuscation
may reduce the effort needed by the attacker to reconstruct the mapping between the bytecode
instructions and the assembler ones, since he or she would have more bytecode that can be
analyzed for this purpose. Thus, the use of this technique in the asset hiding phase must be
limited.

Also, another factor that must be taken into account, when assessing the suitability of a
strategy for a protection technique, is the effect of the application of the strategy to the application
performances. For example, the system calls introduced in protected code by anti-debugging
techniques (see Section 1.1.4) may be easily recognizable by an attacker (e.g., using tools like
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strace® in Linux). Thus, using the replication strategy to introduce additional debugging system
calls can lead the attacker to analyze non-critical code. Conversely, anti-debugging has non-
negligible overhead due to the debugger-debuggee context switches, thus replicating too much
this technique fingerprints may lead to an unusable protected application.

Summarizing, the following factors must be taken into account when deciding the asset hiding
additional protections:

o effectiveness of each strategy in hiding the protection fingerprints introduced in the asset
protection phase;

o decreased efficacy of some protections techniques in securing the assets, when treated with
specific asset hiding strategies;

o application performance overheads introduced by the asset hiding protections;

o forbidden precedences among protections, which, as in the asset protection phase (see Sec-
tion 5.3), must not be introduced in the protection solution, since they would lead to a
non-working protected application.

Indeed, computing a good asset hiding solution is not a trivial task, due to the high number
of factors influencing the decision of additional protections used for this purpose.

6.3 Mixed Integer-Linear Programming model

This section presents the MILP problem that has been devised to model the process of deciding
the additional protections that must be used to refine the solution inferred by ESP in the asset
protection phase (see Chapter 5).

Mixed Integer-Linear Programming is a branch of operation research, encompassing optimiza-
tion problems that contain variables constrained to integer values. While there are no previous
applications of MILP problems to IT security in literature, decision-making processes in other
fields of IT have been often modelled with this optimization technique, especially to tackle re-
source allocation problems. Indeed, the asset hiding decision process is a problem of this kind,
since the overhead introduced by the additional protection constrains the generation of the asset
hiding solution. For example, Metwally et al. use MILP problems in cloud IaaS scenarios to effi-
ciently allocate resources in data centers[89]. Also, the book by Sankaralingam et al. on computer
architectures [107] contains various applications of MILP problems in this field, for example the
efficient generation of instruction sets for application-specific processors. Furthermore, various
decision processes in the telecommunications field are solved using this optimization technique
[21, 83].

6.3.1 Application structure and protections

This section reports on how the data contained in the ESP Knowledge Base needed to drive
the asset hiding phase, in particular the target application code structure and the protection
techniques supported by ESP, is formalized in mathematically in order to employ it in the MILP
problem. ESP can analyze code written in the C and C++ programming languages.

Shttps://www.systutorials.com/docs/linux/man/1-strace/
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1 if (y == 7)
2 n = 1;
3 else
4 {
5 r=7+1y;
6 x = FALSE;
7 yt+;
8 n <<= 3;
9 ¥
10 n--;
(a) C source code. (b) code region tree.

Figure 6.2: Code regions tree representing a C source code.

Code Regions

A code region, denoted in the with ¢, is a piece of code that is syntactically valid if parsed
in isolation, and is individuated by specifying the source code file containing it, the starting and
ending lines of the code comprised in the code region. The functions source(c), sl(c) and el(c)
return respectively a reference to the source file (e.g., a path or an ID), the starting and ending
line of a code region c. All the code regions that can be defined in the source code of the target
application form the code region space C, while the ones that are taken into account to carry out
the asset hiding phase form the reduced code region space C* C C'. All the code regions protected
after the asset protection phase belong to C*, since they constitute the starting point for the asset
hiding phase.

A code region may contain another one, thus a containment relation is needed in the code
region space. A code region ¢; strictly contains ¢; if source(c;) = source(c;) A sl(e;) < sl(e;) A
el(c;) > el(ej) A (sl(e;) < sl(ey) Vel(e;) > el(cj)), ie., if they are comprised in the same source
file and ¢; includes the lines of code constituting the c¢;. Thus, this relation allows to represent
the code region comprised in a source code file with a tree-like structure, with non overlapping
siblings nodes, and ancestor nodes strictly containing their descendants. Thus, a function or class
method is represented as a code region completely wrapping its body. Similarly, an application
is a forest of code region trees, each of them representing one of the application source code files.
An example of code region tree, obtained from a C snippet, is depicted in Fig. 6.2.

A partial order among code regions in the same tree can also be established. A code region
¢; precedes (or follows) the code region ¢; iff source(c;) = source(c;) A parent(c;) = parent(c;) A
el(c;) <sl(cj). These relationships are indicated with the notation ¢; < ¢; (or ¢; > ¢; ).

Also, a way to tell if two code regions are adjacent is needed, when deciding if the enlargement
technique can be deployed, since two adjacent code regions can be merged and protected with the
same pass. The function adj(c;, ¢;) € {0,1} is used for this purpose:

1 if (¢, <¢j) A (Fek : ci =< cp <¢j)
0 otherwise

adj(c;, ¢j) = {

Protections

Protections and their application to code regions must be formally modelled, since asset hiding
strategies are implemented by applying protections to the code. First, the symbol P; denotes a
protection technique, while a protection instance (a protection with all the related configuration
parameters, see Section 3.3) is represented with the symbol p;; thus, p; € P;. The function
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protection(p;) = P; returns the protection technique implemented by the protection instance p;.
The protection instantiation space P is the set of all the PIs contained in, which is P = J, ;.
The symbol P|sp indicates the restriction of P to the PIs only used in the asset protection phase.
Finally, the notation p/c indicates an Deployed Protection Instance (DPI), representing the use
of a PI p to protect the code region c.

An asset protection solution is the output of the asset protection phase, and is defined formally
as a poset of deployed PIs (see Chapter 5). The order of two deployed Pls p;/c; and pi/c
only matters if ¢; and ¢; share at least one line of code, i.e., ¢; = ¢, ¢ € ancestors(c;) or
¢; € descendants(c;). Similarly, the asset hiding solution is the poset of deployed Pls generated
by the asset hiding phase, refining the asset protection solution. To ease comprehension of the
model, two helper functions are introduced. AP(p/c) € {0,1} verifies if p/c is in the asset
protection solution. AP*(p/c) € {0,1} checks if p is deployed to some code regions contained in
¢, i.e., code regions that are descendants of c.

AP(pe) =41 T p/c is in the asset protection solution
P ~ 10 otherwise
1 if J¢; € descendants(c) : AP(p/c¢;) =1

0 otherwise

AP (p/c) = {

Also, a distinction must be made between horizontal and vertical enlargement. The first is
enforced enlarging a DPI in the asset protection solution to contiguous code regions, e.g., referring
to the code depicted to Fig. 6.2, if the DPI p; /¢7 is enlarged to the code regions cg, cg or ¢g. Vertical
enlargement instead happens when a DPI is enlarged to a code region that contains it, e.g., in
Fig. 6.2, if p;/cy is enlarged to c¢s, ¢o or 1.

Dependencies Among Protections

As already detailed in Section 5.3, some orderings among the protections in a protection
solution are not valid, since applying protections using such orderings would lead to a non-working
application. Thus, a partial ordering is needed among protections P;. Formally, a protection P;
is a forbidden precedence of another protection P; if p;/c; cannot be present before p;/c¢; in a
valid solution, for all the intersecting code regions ¢, and ¢;. Also, a singleton protection (see
Section 5.3) cannot be deployed more than once to the same code region. An example of this kind
of protection is code mobility (see Section 1.1.3), since code can be moved to the trusted server
only once.

Regarding the protection overheads, they are computed by ESP for all the code regions ¢ € C*
during the generation of the model, using the formulas described in Section 5.4.3, and in the
model are comprised in the set ¢;. Given a DPI p/c, €;(p/c, Mi(c), Ma(c),...) indicates that
0; computation is based on the metrics M (c), Ms(c),... computed on c¢. Since overheads
are precomputed prior to model generation, and their dependency to metrics is not needed in
the definition of the model, the compact notation &;(p/c) will be used in the remainder of the
chapter for the sake of readability.

6.3.2 Domain Parameters

The MILP model is built taking into account the reduced code region space C* = {c1,ca, ...}
and the PI set used in the asset protection solution P|sp = {p1,p2,... }.

The constant I' specifies the maximum number of times a PI can be deployed on the same
code region. The symbol €2; indicates the user-defined upper bound for the i-th overhead type.
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The MILP model goal is maximizing the delay introduced by the asset hiding solution to tasks
performed by the attacker. Thus, a way to estimate the delay introduced by every DPI is needed.
The confusion index is introduced for this purpose. It is a parameter built to be proportional to
the delay, but it is not intended to estimate the actual time needed by an attacker to find the
application assets. In other words, while increasing the confusion index induces an increase in
time needed by the attacker, other properties, e.g., a formula to translate it into a measure of
attacker time, cannot be deduced. This represents a limitation of the current model. However, a
mapping could be devised in the future, executing empirical assessments of the time needed by
an attacker to find the assets in a protected application.

The set T contains the asset hiding strategies, i.e., T = {R,£,S} where R is fingerprint
replication, &£ is fingerprint enlargement, and S is fingerprint shadowing. A strategy-specific
formula returns, for each DPI, the confusion index. The latter is dependent from the code region
complexity metrics (see Section 5.4.1). The confusion indices associated to each deployed PI are
used in the objective function as multiplicative factors, also called bonuses in the remainder of
the chapter.

Strategy formulas can be unary, such as cnfr ,, (Mi(c), Mz(c),...) and enfe . (M1(c), Ma(c), ...

which return the confusion index introduced by applying p;/c to enforce the strategy s € {R,E}.
Alternatively, formulas may be binary. For example fingerprint shadowing is associated with this
kind of formulas, where cnfs ;, ;. (M1(c), Ma(c),...) returns the confusion index introduced by
shadowing the p;/c fingerprint, using the DPI p;/c. cnfs p, ». (Mi(c), Ma(c),...) are bounded
between 0 and 1: cnfs p, , (Mi(c), Ma(c),...) = 1, if applying p;/c on top of p;/c completely
masks the fingerprint of p;/c, and cnfs j, ,, (Mi(c), Ma(c),...) = 0 implies that applying p;/c
on top of p;/c have not effect in masking the p;/c fingerprint. Confusion indices are computed
during the MILP model generation phase, thus the simplified notation cnfz (p;/c), enfe(p;/c) and
enfs(p;/c,p;/c) will be used when the reference to metrics of code region ¢ is not needed.

6.3.3 Linear Problem

In this section, the Mixed Integer-Linear Programming (MILP) problem to decide the asset
hiding protection is defined. Its goal is the maximization of the confusion index using the strategies
in the set T. The model is a specialization of the well-known Knapsack Problem (KP), using
multiple capacity constraints to limit the introduced overhead. The examples provided in the
model presentation are referred to the code region tree in Figure 6.2.

Variables

First, the MILP variables are introduced. The variable z,, /.. € {0,1} is set to 1 iff the PI
p; will be deployed either directly to the code region c;, or to another that contains it, i.e., in
cr € ancestors(c;). For instance, if 2, /., = 1, then the asset hiding solution either contains p;/cz,
or p;/c1, since a protection deployed on a code region is implicitly deployed to all the code regions
inside it.

The ordering between two PIs deployed to the same code region is modelled using the binary
variable ye, p. py.s 1-€., Ye, p; pp = 1 iff p; and py are both deployed on ¢; and in this order. It is zero
if the protections are deployed in the reverse order or if either z, /., = 0 or x,, /., = 0. Clearly,
it is not possible for two inverse variables yc, ,. p, and Y., p, p, to be both equal to 1. Referring
to the example code, given x,, /., = 1 and x,, /., = 1, if the y, p, », = 1 then p; will be deployed
to ¢; before pa, and vy, p, p, Will be forced to 0.

This behavior is imposed introducing the following constraints, i.e., if both z,, /.. and }, /c,
are equal to 1, only one of the two variables yc, p. p, and ye, p, p; must be equal to 1, otherwise

100



6 — Asset hiding

both ye, p; p, and ye, p, p, must be equal to 0:
0< _zycz‘,pjmk - 2y5i’pk7pj + Lp;/e; + Lpy, /c; <1,Vi,j,k

A second set of constraints avoid the insertion of cycles in the ordering of protections deployed
to the same code region (for more than three protections). In other words, loops like y¢, p, p, =
Yei prpr = Yesp;m = 1 are avoided. This is obtained with the following constraints:

Yeipioe = Yeipe,pt — Yeips o < -1L,Vi g,k l:j 7£ k # !

Also, the model forces yc, p; p, = 0 if p; is a forbidden precedence for py.

The binary variables gc, c; p,, which are defined only for adjacent code regions c¢; and c;,
are used to decide if two code regions must be merged when deploying protections (horizontal
enlargement). If g, c; p, = 0 and ,, /o, = T}, /o, = 1, two separate DPIs py/c; and py/c; will
be comprised in the asset hiding solution. If gc, ¢; », = 1, the asset hiding solution will contain a
DPI py/ci;, where ¢; comprises the union of code regions ¢; and ¢;. In the example, if p1/cr is in
the asset protection solution and g4 ¢, p, = 1, then the asset hiding solution will contain p; /c1o,
where ¢y is a code region cg U c7. If, otherwise, g, c,,p, = 0, then the asset hiding solution will
contain py /cg and p;y/cz.

Furthermore, gc, ¢; p, = 1 implies
constraints:

pi/ei = Tpje; = 1, obtained imposing the following set of

29 cipn = Tprjer — Tprje; <0, Vi gk adj(ci, ¢j) =1

Some other variables are needed to correctly process the bonuses used in the objective function.
Replications must be avoided, i.e., since the same operation can be interpreted as a consequence
of more strategies, e.g., enlargement and shadowing. Furthermore, containment relations must
be managed, so that while z,, ., =1 forces = = 1 for all its descendants ¢y, the bonus is
considered only for the larger code region.

Thus, the additional binary variables e, ; », € {0,1} are introduced, representing enlarge-
ments spanning both horizontally and vertically to increase the code that must be protected.
To compute the bonuses of descendants in a proper way, the e, . », keep track of protections
deployed due to enlargements. An example can be made considering a deployed PI py/c7 in the
asset protection solution, which, during the asset hiding phase, is first vertically enlarged to cs;
then, cs is enlarged to c4. In this case e, ¢, p, = 1, since p; has been deployed to c4 to enlarge
the asset protection DPI p;/c7, and ¢y is a sibling of ¢, which contains the originally protected
code region c;. Generalizing, the variable €c;c;,pr S€t to 1 means that the asset hiding solution
contains a PI p; deployed to a code region containing both ¢; and ¢;, due to an enlargement of
the PI py that in the asset protection solution was originally deployed either to c; or one of its
descendants.

The e, ; p, summarizes complex enlargements, thus they can be obtained as composition of
the ge, c; p., Which define simple enlargements:

pi/ck

€eipejpr = /\ Jer,em,p (6.1)

Yey,em vy, GGCi,Cj,:Dk

where G, ¢, p, reports the individual g. ., affected by the complex enlargement:
*
Geicyon = Gerempr * AP (pr/ci) AN (ci 2a<em=ej Ve 2 <cm =)} (6.2)

For example, if p;/cs is in the asset protection solution and p;/cg is the consequence of two
enlargements, first from c¢ to ¢7 (geg,cr,pr = 1) and then from ¢z to cs (gey,c5.p, = 1), this leads

to GCG,CS,Pl = {966767,171’957,587171} and 656708’171 = 906,07,;01 A 967;08,131 =1
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It is also necessary to identify if a DPI derives from an enlargement or replication, in order
to compute the bonuses properly, because these two techniques are mutually exclusive. To this
purpose, the auxiliary binary variables z,, /.. are introduced in order to identify which z,, /. are set
to 1 in the asset hiding model solution due to fingerprint enlargements. We have 2, ;.. =1 when
p; has been deployed to c; for enlarging an DPI in the asset protection solution or 0 if another
technique has been used, which is

Zpifc; = \/ €cj.cr.p (63)

€cjieppi €Lp;/c;

where E,, /.. includes the variables that may indicate if PIs deployed to the siblings ¢ of c; are
consequence of complex enlargements.

By e; =1 ecjenp: AP"(p;/cx) = 1 A parent(c;) = parent(cy,) }

Fingerprint shadowing and replication (or enlargement) are not mutually exclusive, thus when
enlarging or replicating a DPI a fingerprint of another DPI may be shadowed. In this case,
replicating the bonuses cannot happen, thus is not needed to this case not need to manage this
case explicitly.

Objective Function

The following objective function is used by the MILP model, aiming to maximize the confusion
index:

ot (58 ot

¢ €C* p;EP|ap

Z Z ng/ciAP*(pj/Ci)xpj/c,i+

¢, €C* p;eP|ap

Z Z Z pgj/ciecivckijJr

¢, €C* p;EP|ap c €EC*

> X

c;€C* p;eP

The first summation takes into account the replication strategy and it uses the p;i Jei factor.
As anticipated, the z,, /., variables distinguish if enlargement or replication have been deployed.
Subtracting the z,, /., ensures that replication contributions are properly computed. The bonus
is computed recursively on each code region tree:

P jei = enfr(pj/ci) — Z P e

cr €Edescendants(c;)

It should be noted that confusion indices of all the descendant code regions are subtracted to
avoid duplications, since the summation in the objective function will consider them because it
spans over all the code regions.

The second and third summations respectively report the contribution of the vertical and
horizontal enlargement. The enlargement bonus pz‘fj Je; Must ensure that only the deployed PIs
that are consequence of some enlargement of deployed Pls in the asset protection solution are
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considered. To this purpose, the vertical enlargement uses the AP*(pj /ci) as an explicit multi-
plying factor. The horizontal enlargement uses the e, c, p, variables, which have been defined
ad hoc. As before, the enlargement bonus is computed recursively and the confusion indices are
subtracted:
£ £
Pp;/e: = enfe(pj/ci) — Z Pp;/ex

¢ €descendants(c; )

Finally, the fourth summation takes into account the fingerprint shadowing, and similarly to
the other summations use a shadowing bonus pgj Jeir The pgj Jes bonus indicates how well the
p;/c; fingerprint is masked by the protections deployed on top of it. As for enfs(pr/ci,pj/ci),
the pz‘fj Jes bonuses are in [0,1], where pfj Jei = 1 means that the fingerprint of p;/c; is completely
masked and p;?j /e, = 0 means no shadowing at all. Since the value of pﬁj
it is ensured that when a fingerprint has been already completely masked, no additional bonus is
given if protections are added.

The bonus pS ,  is evaluated by summing up the cnfs(py/c;, p;/c;) of all the py/c; deployed
Pp,/e; g j Y

Je; 18 between 0 and 1,

to shadow p;/c;, which are recognized because yc, p, », = 1. If the summation exceeds 1, the
bonus pgj/ci is set to 1.

Since ng ., Increases the objective function value, its evaluation is obtained by introducing
the following set of constraints:

S
0 < pgj/ci < 1
ppj/ci < Zpk cP cnfg (pk/ciapj/ci) “Yeipjipr

Simply increasing the bonuses, assets and strategies may be prioritized, e.g. by weighting
the objective function summations or by using multiplicative factors that take into account the
importance of the asset.

Finally, the ec, ¢, p, (defined in Equation 6.1) and 2,, /., (defined in Equation 6.3) are linearized
as follows:

Z 9epem g
gcl,cm,pkEGci,cj,pk .
€civespr < Gerreron if |Gc7:70_7‘7pk| >0
SR
€cirespn = 0 otherwise
ecy,em,p €F i/cs LemoPy .
Zpife; = o PilYy if ‘E ./CA’ >0
T J |Ep’/C' K3 J
i/¢j5
Zp;je; = 0 otherwise

Additional Constraints

As described in Chapter 1, the asset hiding solution must not exceed the user-defined over-
heads. Therefore a set of inequalities are introduced, constituting the KP-problem capacity con-
straints:

Z Z Tp, /e; Wo(Pi/Cj) < o, Vo
c; €C* p;eP|ap
where w,(p;/c;) is a constant defined as:

wo(pi/c;) = Oo(pifc;) — > wo(pi/ck)

cr €descendants(c;)
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It should be noted that also in this case, the code regions’ overheads added by the descendants
must be subtracted, since they would be counted more than once during the double summation.

Containment among code regions may also have consequences on the order and applicability
of protections. First, if the set of protection deployed to a code region is different from the ones
deployed to its parent, then the deployed protections associated with the child but not to the
parent must be deployed before the protections that are deployed to both. Second, if a set of
PIs is deployed to a code region, the same set of PIs must be deployed to all its descendant code
regions and in the same order.

Consequently, the MILP model contains three additional sets of constraints, which use the
following set of variables that regulate the possibility to merge adjacent code regions:

Yy, /e; = Ge,erps * Parent(cy) = parent(c;) = ¢; }

The first set of constraints ensures that deployed a PI to a code region implies that it must
be deployed to all the merged children code regions, and formally, they are the AND of variables
n W,

‘\Ilpi/cj|$p1,/cj - Z ng,Cz,pi é 07Vivjakvl

ey ,cp,pq eq’m/cj'

That is, z,, /., = 1 forces the g, ¢, p, =1 for all the adjacent children ¢, and ¢; of ¢;.
The second set of constraints guarantees that if two Pls are deployed to a code region, they
are deployed in the same order to all the children code regions, which is:

Yeipj.pw < ychpj@kvvz'vj’ k,l: parent(cl) =G

Finally, the third set ensures that, when merging adjacent code regions PIs must be deployed
in the same order, which is:

((gci’cf’pk - 1) A Weiprpr = 1)) -

For the sake of readability, the last constraints contains the traditional logical operators A and
—. Such expressions can be easily linearized via standard techniques.

6.4 Translation algorithm

The translation algorithm generates the final asset hiding solution, which is, the ordered list
of protections to apply on every code region. It takes as input the values assumed by the x, /.,
Yeipype a0 Ge; ¢, p, variables, whose values have been obtained by solving the MILP problem
presented in Section 3. These variables express the protections that must be deployed on every
code region, the order of deployment, and if the protections need to be deployed on adjacent code
region as a whole or as individual applications of the same protection. For instance, variables cor-
responding to protections that are enabled on ancestors need to be enabled for all the descendants
as well. However, in practice, they must be deployed only once on the ancestor.

Moreover, code regions that are non-overlapping (sibling of the same ancestors, which may be
adjacent or not) need to be merged according to the gc, ¢, p, variables.

In order to globally determine the protections that must be deployed, the translation algorithm
has been developed to perform:

o generate lists, every code region is associated with a set of protections z,, /., that needs to
be deployed on it. However, protections must be deployed according to the order given by
the ye, p, p, variables. The algorithm transforms the information in these variables into a
list of deployed Pls associated to each node.
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o remove duplicate, if a protection is deployed to an ancestor, the protection is removed from
the list of PIs deployed to each of its descendants.

e horizontal enlargement, if a protection needs to be deployed to two or more adjacent code
regions (because of the x,, /.;) and can be merged (due to gc, ., p, values), a new code
region is generated that spans all the adjacent code regions to merge. This node becomes
an intermediate ancestor, i.e., a child of the original parent and the parent of all the merged
node.

After these operations are completed, the translation algorithm outputs the asset hiding so-
lution, i.e., a coherent set of lists of protections to apply on every code region, i.e., a poset of
PIs.

6.5 Validation

In this section, the asset hiding phase described in this chapter is compared with ESP requisites
listed in Section 2.1.

Requisites for the ESP usage scenario, defined in Section 2.1.1, are mostly respected by the
asset hiding phase. First, the time needed to execute this phase can be influenced with a set of
configuration parameters: a hard time limit, and a maximum number of non-asset code regions
taken into account when generating the MILP model. A longer execution of the algorithm may
be adopted prior to the target application release, in order to find a better hiding solution, while
shorter times are suitable when patches are released and time is an issue. Thus, the asset hiding
phase can adapt to the target application life-cycle. Also, asset hiding solutions are human-
readable, being presented with the same format of asset protection ones; furthermore, for each
DPT added in the solution, ESP presents the user with the strategy (or strategies) for which the
DPI has been chosen.

A limitation of the current approach is that the attacker skills are not taken into account
when the additional protections are decided. This is due to the lack of experimental assessments
of the asset identification capabilities of the attackers, which the authors intend to execute in the
future. After this assessments, the data needed to take into account the attacker profile in the
asset hiding decision process would be obtained, and furthermore, a method to obtain an actual
estimation of the time needed to find the assets could be devised.

Regarding the requirements for the risk mitigation phase (Section 2.1.3), ESP respects them.
First, since the identification of the assets is a necessary preliminary step for attacks, the asset
hiding phase defers the attacks, hiding the fingerprints of the asset protection phase that ease the
detection assets by attackers. Furthermore, the asset hiding protections are chosen to maximize
the confusion induced by them in the attacker, which is evaluated through formulas that are
dependent on the metrics of the code regions on which the formulas are deployed. Overheads
are taken into account in this phase, inferring solutions that, when deployed, lead to protected
binaries that are still usable. Finally, as the asset protection phase, all the protection techniques
used in this phase are implemented by automatic protection tools, so also this phase is completely
automated.

Finally, in the ASPIRE project validation phase [13] the asset hiding phase was deemed as a
useful addition to the ESP workflow. The experts validated the additional protections inferred in
this phase, stating that the proposed solutions for the ESP use cases were free from inconsistencies,
and would be useful to defer an attacker in the process of finding the protected assets in the target
application binary. Furthermore, they considered it an advancement in respect with the current
way of handling fingerprints by software security practitioners, which is essentially based on
various obfuscation attempts on the application binary, a time-consuming process that is needed
to find a good trade-off between asset concealment and introduced overhead.
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Chapter 7

Conclusions and future work

No book can ever be finished. While
working on it we learn just enough to
find it immature the moment we turn
away from it.

Karl Popper

This thesis has presented ESP, an expert system able to automatically protect the assets
comprised in an application code. With the implemented workflow, it mimics the mental processes
of a software security expert, tasked with the protection of an application. Given the source code
of a program that must be protected, ESP is able to produce a binary program, protected with
a comprehensive set of software security techniques against the possible attacks that can be
mounted to endanger the application assets. Due to its high degree of automation, requiring
from the user only the definition of a set of security requirements for the application assets that
must be safeguarded from possible threats, it can be easily adopted by a developer, without any
prior experience in software security, which wants to protect its application. Furthermore, its
results can be leveraged by security experts, which can analyze the inferred attacks against the
application, and the protection techniques deemed suitable to defer such attacks, to evaluate the
proposed security solution, and manually refine it, if not completely satisfied with the proposed
results.

ESP development resulted in various advancement of the state of the art in the field of software
security, described in the following. First, a comprehensive meta-model (Chapter 3) for software
security has been defined, able to formalize all the concepts involved in the application protection
process, including the characteristics of the components of the application code that must be
protected, the assets and their security requirements, the possible attacks that can be mounted
against them, and the protection techniques that can be deployed on the application code to defer
such assets. Then, a comprehensive set of software risk management methodologies have been
presented, organized in a complete workflow for securing applications (Chapter 2). The workflow
starts with a risk assessment phase (Chapter 4), inferring, from a set of abstract simple attacker
tasks, complete attack graphs modelling the possible courses of actions that an attacker may carry
out to breach the assets security requirements. Then, a risk mitigation phase (Chapter 5) decides,
among all the available protection techniques, the best combination of them that can be deployed
on each asset code to defer, for as long as possible, the successful execution of the attacks inferred
in the previous phase. In doing so, this phase mimics not only the protection decision process of
the security expert, but also, using a game-theoretic approach, the subsequent assessment of the
effectiveness of such protections, which is typically undertook in software security companies by
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skilled white-hat hackers, trying the resistance of the protected application against attacks on the
field. Finally, the concept of protection fingerprint is introduced (Chapter 6), i.e., peculiar forms
taken by code or run-time behaviours assumed by the application after deployment of protections,
which can be leveraged by an attacker to identify the valuable assets inside the application binary.
The risk management methodology responds to this problem with an additional asset hiding phase,
which, with the deployment of protections on areas of code that are not security-sensitive, is able
to confuse the attacker, which can be lead to concentrate its attacks on code that has no value for
him. Finally, leveraging a set of automatic protection tools (Section 1.1.1), ESP is able to actually
apply the inferred best protection solution to the application source code, building a protected
program binary, thus completely automating the software protection process.

Software security experts have assessed the quality of results produced by ESP: while judging
it not ready for actual use by software security companies, they deemed the system promising.
Indeed, the author intends to further improve the devised methodologies for application risk
management, with the final objective of making ESP a professional tool that can be used by
experts to simplify their work. First, more attack steps need to be modelled, in order to infer
attack paths that better approximate the attacker courses of action. Also, due to the recent
introduction of frameworks able to automatize the execution of attacks on application, for example
angr!, the mitigation phase can be further improved by actually testing the protected binary with
attacks carried out with this tool, thus better assessing the effectiveness of protections in deferring
such attacks. Finally, a comprehensive set of empirical assessments of the results produced by
ESP must be undertaken: the author has already participated in experiments devised to assess
the effectiveness of specific software protections [123], and intends to devise new experiments to
better tune the ESP decision processes.

Concluding, the presented software security workflow, and the included risk management
methodologies, can be a starting point towards the complete automation of software protection
processes, with results comparable to the manual protection of applications by experts in the field,
but also reducing the risk of vulnerabilities introduced by errors, always looming when humans
are engaged in the execution of such complex processes.

Thttps://github.com/angr
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Appendix A

ESP implementation

This appendix reports the main information about the actual implementation of the ESP,
whose source code is released with an Eclipse Public License 1.0, and is available on a GitHub
repository?.

A.1 Main ESP components
The ESP is implemented as a set of Eclipse Platform? plug-ins, written in the Java program-
ming language. The ESP code is organized in the following Java packages®:

e esp: the ESP main package, coordinating other packages methods to implement the workflow
described in Section 2.2.5;

e esp.attacks: implements the Risk Assessment Engine reasoning process, described in Chap-
ter 4;

e esp.connector: contains methods for connecting the ESP with external tools, presented later
in this section, needed by the Source Code Analyzer, Protection Tools Connector and Solu-
tion Deployer;

e esp.11p: implements the Risk Mitigation Engine, described in Chapter 5;
e esp.12p: comprises the code for Asset Hiding Engine reasoning process, outlined in Chapter 6;

e esp.metrics: contains the Metrics Framework code, used to evaluate complexity metrics on
the application binary, with the methodologies described in Section 5.4;

e esp.optimizationAPI: implements a compatibility layer to abstract the APIs of external MILP
solvers, needed by the Asset Hiding Engine, supporting at time of writing IBM ILOG CPlex
Optimizer® and lp_ solve®;

Thttps://www.eclipse.org/legal/epl-v10.html
2https://github.com/daniele-canavese/esp
Shttps://www.eclipse.org/eclipse/eclipse-charter.php

4All packages are comprised in the it.polito.security root package, which is not included in the following
package names for the sake of readability.

Shttps://www.ibm.com/it-1it/analytics/cplex-optimizer

Shttp://1psolve.sourceforge.net/
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esp.protections: contains the Protection Enumerator code, detailed in Section 5.2;

esp.kb: implements the Knowledge Base, with the meta-model a-priori information (see
Chapter 3) gathered from the software security experts during the ASPIRE project;

esp.ui: implements the User Interface, based on the Eclipse Platform UI;

esp.util: contains a set of helper methods shared among the other plug-ins.

A.2 ESP workflow

The ESP workflow, used to generate the application protected binary starting from the appli-
cation source code, can be subdivided in the following main phases:

1.

source code parsing (Section A.1): the Source Code Analyzer produces a description of the
code structure (e.g., functions, variables, CFG), while the Metrics Framework obtains the
software metrics, both program-wide and function-wide; the result is adding to Knowledge
Base an instance of the core application meta-model described in Section 3.2;

vulnerability analysis (Chapter 4): the Risk Assessment Engine, for each security require-
ment of each asset, infers the possible attacks that can endanger the requirement; such
attacks are saved in the Knowledge Base, thus instancing the attack meta-model depicted
in Section 3.4;

protections enumeration (Section 5.2): the Protection Enumerator selects the protections
for each asset that can be useful to delay the attacks found during the vulnerability analysis,
adding to the Knowledge Base an instance of the protection meta-model detailed in 3.3;

protections decision (Chapter 5): the Risk Mitigation Engine, given the suitable protections
selected by the Protection Enumerator, finds the combination of protections, also called
protection solution, which protects the application from the attacks found in the vulnerability
analysis phase; the Risk Mitigation Engine assess the score of a solution, i.e., the efficacy
of the solution in protecting the application, in function of the metrics evaluated on the
binary protected with the solution; as described in Section 5.4, the protected binary metrics
are predicted by the Metrics Framework for each considered solution, since deploying with
the Solution Deployer all the solutions generated by the Risk Mitigation Engine would take
an unfeasible time; this phase enriches the protection meta-model instance generated in the
protections enumeration phase, adding the evaluated solutions with their score;

asset hiding (Chapter 6): the Asset Hiding Engine, given a solution (e.g., the one with
the highest score), can enrich it with additional protections applied not only on assets,
but also on other functions or snippets, in order to slow down the identification of assets
by the attacker; the Asset Hiding Engine decides the additional protection generating a
MILP optimization problem [19], feeding it to an external solver (e.g., IBM ILOG CPLEX
Optimizer®, whose result will be translated by the Asset Hiding Engine in a new solution
in the Knowledge Base with the asset hiding additional protections; this phase is optional,
and the ESP can be configured to skip it;

"https://uww.eclipse.org/eclipse/platform-ui/

8https://www.ibm.com/it-1it/analytics/cplex-optimizer
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6. solution deployment (Section A.3): the Solution Deployer, given the solution selected by
the user (with or without the asset hiding additional protections), executes the external
protection tools configured accordingly to enforce the protections constituting the selected
solution.

Following this workflow, the ESP is able to generate an application binary, (hopefully) pro-
tected against known attacks, basing its decision both on expert knowledge and on the specific
characteristics of the application source code, with minimal user interaction: in the end, it mimics
the mental processes of a software protection expert tasked to protect an application.

In the various phases of its workflow, the ESP relies on the following external tools and
libraries:

o the ACTC, detailed in Section 1.1.1, called by the Metrics Framework to obtain metrics on
the target application code, and by the Solution Deployer to deploy the chosen solution in
order to obtain the protected binary;

« the Eclipse CDT, which parses the target application source code and produces an AST [79]
representing its structure; this AST is used by the Source Code Analyzer to automatically
instantiate the application meta-model described in Section 3.2;

« Swi-Prolog?, an implementation of the Prolog language, used by the Risk Assessment Engine
to execute the rules, written in the aforementioned language, which build the AP against
the assets in the target application, as reported in Chapter 4;

o ecither IBM ILOG CPlex Optimizer or Ip_solve, which are used by the Asset Hiding Engine
to solve a MILP problem: the latter is defined by the Asset Hiding Engine to decide the
additional protections that must be deployed to the target application in order to hide its
protected assets from the attacker, as detailed in Chapter 6.

The ESP has been designed with a modular approach, in order to be easily extensible. New
features can be added to the ESP implementing them as Eclipse Platform Plug-ins, and including
them in the Manifest'? file of the main package. Also, the external tools can be easily substituted
with other equivalents, since the communication between each tool and the ESP is governed by
an ad-hoc connector class, comprised in the Protection Tools Connector plug-in. For example,
Eclipse CDT may be substituted with another C code parsing tool (e.g., a commercial one such
as GrammaTech CodeSonar!!) by simply implementing the connector class and substituting it
to the CDT one. Also, to solve the MILP problem generated by the Asset Hiding Engine, any
optimization solver can be used, by simply writing a class that implements a generic interface
that abstracts optimizers APIs.

A.3 Solution deployment
This section describes how an ESP solution, built by the Risk Mitigation Engine (and option-

ally the Asset Hiding Engine), can be deployed by the Solution Deployer, ultimately obtaining a
protected binary from the target application source code.

9http://www.swi-prolog.org/features.html
Ohttps://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html

Hhttps://www.grammatech. com/products/source-code-analysis
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The protections supported by the ESP can be applied to the target code calling the automated
software protection tools described in Section 1.1.1 via the Protection Tools Connector. In partic-
ular, protections developed during the ASPIRE project can be deployed using the ACTC, while
a set of source-to-source code and variable obfuscation techniques are deployed using Tigress.

First, the Solution Deployer gathers all the DPI that must be applied to the source code using
Tigress, which is called accordingly, and produces the protected source code files: by comparing
these with the original ones, a GNU patch!? file is produced.

Then, the Solution Deployer gathers the DPI related to ASPIRE protection techniques, and
adds to the patch file the annotations that drive the ACTC. It should be noted that the ESP
supports a similar set of annotations as a comfortable way for the target application software
developer to mark the assets and to specify their security requirements (see Section 3.2); in
the following example, the code comprised between the pragma directives has been marked by its
developer as an asset whose confidentiality must be preserved:

1 #include <stdio.h>

2 #include <string.h>

3

4 char pwd[] = ;

5

6 int main ()

7 Ao

8 char temp [20] = ;

9

10 _Pragma ( confidentiality
11 Insert password:

12

13 %20s

14

15

16 Correct password!\n
17

18 Wrong password!\n
19 ASPIRE end

20
21
22

In this case, the Solution Deployer will replace such annotations in the patch file with the ones,
described in Section 1.1.1, used to drive the ACTC, specifying the actual protections that the
ESP has decided to apply in order to preserve the abstract asset security requirement specified by
the user. Also, the developer may explicitly ask the ESP to protect a code region with a specific
protection, manually writing the related ACTC annotation in the code: in this case, the ESP will
respect the user will, inserting the manually defined protection in all the solutions inferred by the
Risk Mitigation Engine and Asset Hiding Engine.

2http://savannah.gnu.org/projects/patch/
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Acronyms

ACCL ASPIRE Client-side Communication Logic. 22, 24, 25

ACTC ASPIRE Compiler Tool Chain. 8, 22, 42, 71, 74, 77-80, 110, 111
AT Artificial Intelligence. 80

ANN Artificial Neural Network. 81

AP Attack Path. 49, 71-73, 75, 84, 85, 87-90, 110

APIT Application Programming Interface. 9, 71, 95, 108, 110

AS Attack Step. 87-89

ASCL ASPIRE Server-side Communication Logic. 22, 24, 25, 83

ASPIRE Advanced Software Protection: Integration, Research and Exploitation. vi, 4, 5, 8, 9,
22,24, 25, 27, 33, 39, 41-44, 48, 49, 52, 59, 67, 68, 74, 75, 80, 83, 88, 89, 91, 95, 96, 105,
109, 111, 112

AST Abstract Syntax Tree. 40, 110

AudES Expert System for security Auditing. 31

BSA BSA | The Software Alliance. 1, 2
BYOD Bring Your Own Device. 1

CAMEL Cloud Application Modelling & Execution Language. 60

CC Cyclomatic Complexity. vii, 78, 79, 82, 87, 88

CDT C/C++ Development Tooling. 40, 71, 76, 110

CFF Control Flow Flattening. 7, 8, 11, 12, 38, 69, 70, 87, 94, 96

CFG Control Flow Graph. 11, 12, 18, 36, 38, 52, 69, 70, 78, 79, 82, 86-88, 94-96, 109
CIL C Intermediate Language. 9

CPU Central Processing Unit. 4, 8, 9, 17, 42, 77, 79, 83, 94

CVE Common Vulnerabilities and Exposures. 39, 50

CWE Common Weakness Enumeration. 39, 50
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CySeMoL Cyber Security Modeling Language. 60

DDoS Distributed Denial of Service. 22, 35

DEC Digital Equipment Corporation. 30, 31

DENDRAL DENDritic ALgorithm. 30

DIABLO Diablo Is A Better Link-time Optimizer. 8, 9, 11, 14-16, 23, 27, 37, 42, 43, 74, 77-82
DLL Dynamic-Link Library. 23

DPI Deployed Protection Instance. 42, 43, 47, 54-56, 71, 72, 74-76, 81, 89, 99-102, 105, 111
DRM Digital Rights Management. 49

ESP Expert system for Software Protection. vi, vii, 3-11, 17, 19, 22, 24, 27, 33-64, 6669, 71-80,
83, 91, 93-97, 99, 105-111

FOSS Free and Open Source Software. 21, 26, 81

GCC GNU C Compiler. 40, 81

GDB GNU DeBugger. 26

GNU GNU is Not Unix. 40, 50, 111, 113
GUI Graphical User Interface. 37

HL Halstead’s Length. vii, 78, 79, 82, 87

IDES Intrusion Detection Expert System. 31
IDS Intrusion Detection System. 31

IP Intellectual Property. 2
LISP LISt Processor. 30

MATE man-at-the-end. 3, 26, 34-36, 38, 39, 41, 43, 53, 84

MILP Mixed Integer-Linear Programming. 44, 93, 94, 97, 100, 102, 104, 105, 108-110
MITM man-in-the-middle. 22

ML Machine Learning. 80, 81

NADIR Network Anomaly Detection and Intrusion Reporter. 31
NIDES Next-generation Intrusion Detection Expert System. 31
NIDX Network Intrusion Detection eXpert system. 31

NIST National Institute of Standards and Technology. 34, 35, 68
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OS Operating System. 4, 8, 23, 24, 26, 95
OTP One-Time Password. 66

OWL Web Ontology Language. 28, 114
OWL2 Web Ontology Language 2. 28, 40

PI Protection Instance. vii, 42, 50, 51, 54, 56, 72, 74, 75, 77, 78, 80, 81, 99-102, 104, 105
PO Protection Objective. 72, 74-77, 84

RAT Remote Access Trojan. 2, 21

SGX Software Guard Extensions. 24
SLOC Source Lines Of Code. vi, 49, 50
SMB Server Message Block. 10

SOM Self-Organizing Maps. 31

TCG Trusted Computing Group. 24
TPM Trusted Platform Module. 24

TXT Trusted eXecution Technology. 24
VAX Virtual Address eXtension. 30

XCON eXpert CONfigurer. 30, 31
XML eXtensible Mark-up Language. 74

114



Bibliography

105th United States Congress. “Digital Millennium Copyright Act (Pub. L. No. 105-304)”.
In: United States Statutes At Large 112 (Oct. 1998), pp. 2860-2918. URL: https://www.
govinfo.gov/content/pkg/STATUTE-112/pdf/STATUTE-112-Pg2860. pdf.

Martin Abadi et al. “Control-flow integrity: Principles, implementations, and applications”.
In: ACM Trans. Inf. Syst. Secur. 13 (Oct. 2009). DOI: 10.1145/1609956. 1609960.

Bert Abrath et al. “Tightly-coupled Self-debugging Software Protection”. In: Proceedings
of the 6th Workshop on Software Security, Protection, and Reverse Engineering. SSPREW
"16. Los Angeles, California, USA: ACM, 2016, 7:1-7:10. 1SBN: 978-1-4503-4841-6. DOI:
10.1145/3015135.3015142. URL: http://doi.acm.org/10.1145/3015135.3015142.

Mohsen Ahmadvand, Alexander Pretschner, and Florian Kelbert. “A Taxonomy of Soft-
ware Integrity Protection Techniques”. In: Advances in Computers (2018).

Rajendra Akerkar and Priti Sajja. “Components of KBS”. In: Knowledge-based systems.
Jones & Bartlett Publishers, 2010. Chap. 1.7, pp. 19-20.

Debra Anderson, Thane Frivold, and Alfonso Valdes. Next-generation Intrusion Detection
Ezxpert System (NIDES) — A Summary. Tech. rep. Menlo Park, CA, USA: SRI Interna-
tional, June 1995.

Brad Arkin, Scott Stender, and Gary McGraw. “Software penetration testing”. In: IEEE
Security € Privacy 3.1 (2005), pp. 84-87.

Frederik Armknecht et al. “A security framework for the analysis and design of software
attestation”. In: Nov. 2013, pp. 1-12. DOI: 10.1145/2508859.2516650.

David Aucsmith. “Tamper resistant software: An implementation”. In: International Work-
shop on Information Hiding. Springer. 1996, pp. 317-333.

Jean-Philippe Aumasson et al. “BLAKE2: simpler, smaller, fast as MD5”. In: International
Conference on Applied Cryptography and Network Security. Springer. 2013, pp. 119-135.

Boaz Barak et al. “On the (Im)possibility of Obfuscating Programs”. In: Advances in Cryp-
tology — CRYPTO 2001. Ed. by Joe Kilian. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 1-18. 1SBN: 978-3-540-44647-7.

Cataldo Basile, ed. ASPIRE Framework Report. Oct. 2016. URL: https://aspire-£p7.
eu/sites/default/files/D5.11-ASPIRE-Framework-Report.pdf.

Cataldo Basile, Daniele Canavese, and Leonardo Regano. “ADSS Validation”. In: ASPIRE
Project Deliverable 1.06: ASPIRE Validation. Jan. 2016, pp. 50-61. URL: https://aspire-
fp7.eu/sites/default/files/D1.06-ASPIRE-Validation-v1.01.pdf.

Cataldo Basile, Alberto Cappadonia, and Antonio Lioy. “Network-level access control pol-
icy analysis and transformation”. In: IEEE/ACM Transactions on Networking (TON) 20.4
(2012), pp. 985-998.

115


https://www.govinfo.gov/content/pkg/STATUTE-112/pdf/STATUTE-112-Pg2860.pdf
https://www.govinfo.gov/content/pkg/STATUTE-112/pdf/STATUTE-112-Pg2860.pdf
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/3015135.3015142
http://doi.acm.org/10.1145/3015135.3015142
https://doi.org/10.1145/2508859.2516650
https://aspire-fp7.eu/sites/default/files/D5.11-ASPIRE-Framework-Report.pdf
https://aspire-fp7.eu/sites/default/files/D5.11-ASPIRE-Framework-Report.pdf
https://aspire-fp7.eu/sites/default/files/D1.06-ASPIRE-Validation-v1.01.pdf
https://aspire-fp7.eu/sites/default/files/D1.06-ASPIRE-Validation-v1.01.pdf

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

28]

[29]

Cataldo Basile et al. “A meta-model for software protections and reverse engineering at-
tacks”. In: Journal of Systems and Software 150 (2019), pp. 3-21.

Cataldo Basile et al. “Automatic Discovery of Software Attacks via Backward Reasoning”.
In: Proceedings of the 1st International Workshop on Software Protection. SPRO ’15. Flo-
rence, Italy: IEEE Press, 2015, pp. 52-58. URL: http://dl.acm.org/citation.cfm?id=
2821429.2821443.

Cataldo Basile et al. “On the impossibility of effectively using likely-invariants for software
attestation purposes”. In: 2 (June 2018), pp. 1-25. DOI: 10.22667/J0WUA.2018.06.30.001.

D. Bauer and M. Koblentz. “NIDX-an expert system for real-time network intrusion detec-
tion”. In: 1988 Computer Networking Symposium. Vol. 1. Los Alamitos, CA, USA: IEEE
Computer Society, Apr. 1988, pp. 98-106. DOI: 10.1109/CNS.1988.4983. URL: https:
//wwu . computer.org/csdl/proceedings-article/cns/1988/00004983/120mNAkWvIU.

Pietro Belotti et al. “Mixed-integer nonlinear optimization”. In: Acta Numerica 22 (2013),
pp. 1-131. DOI: 10.1017/50962492913000032.

Tim Berners-Lee et al. “World Wide Web”. In: Computers in Physics 8.3 (1994), pp. 298—
299.

A. Bezzina et al. “A fair cluster-based resource and power allocation scheme for two-
tier LTE femtocell networks”. In: 2016 Global Information Infrastructure and Networking
Symposium (GIIS). Oct. 2016, pp. 1-6. DOL: 10.1109/GIIS.2016.7814945.

David Binkley and Dawn Lawrie. “Development: Information Retrieval Applications”.
In: Encyclopedia of Software Engineering. Ed. by Philip A. Laplante. CRC Press, 2010,
pp- 231-307.

Sue Black. “The Role of Ripple Effect in Software Evolution”. In: June 2006, pp. 249-268.
ISBN: 9780470871829. DOI: 10.1002/0470871822.ch12.

Emile Borel. “La théorie du jeu et les equation intégrales a noyau symétrique gauche.”
comptes Rendus de I’Académie des sciences, 173: 1304-08. Translated by LJ Savage in”.
In: Econometrica 21 (1921), pp. 97-100.

Jerome Bracken and Martin Shubik. “Worldwide Nuclear Coalition Games: A Valuation of
Strategic Offensive and Defensive Forces”. In: Operations Research 41.4 (1993), pp. 655—
668. DOIL: 10.1287/opre.41.4.655. URL: https://doi.org/10.1287/opre.41.4.655.

Colin Bradley and Bernadette Currie. “Advances in the Field of Reverse Engineering”. In:
Computer-Aided Design and Applications 2.5 (Aug. 2005), pp. 697-706. DOI: 10.1080/
16864360.2005.10739029.

Alessandro Cabutto et al. “Software Protection with Code Mobility”. In: Proceedings of
the Second ACM Workshop on Moving Target Defense. MTD ’15. Denver, Colorado, USA:
ACM, 2015, pp. 95-103. 1SBN: 978-1-4503-3823-3. DOL: 10.1145/2808475.2808481. URL:
http://doi.acm.org/10.1145/2808475.2808481.

Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu. “Deep Blue”. In: Artif.
Intell. 134.1-2 (Jan. 2002), pp. 57-83. 1SSN: 0004-3702. DOI: 10.1016/S0004~-3702(01)
00129-1. URL: http://dx.doi.org/10.1016/S0004-3702(01)00129-1.

Daniele Canavese et al. “Estimating Software Obfuscation Potency with Artificial Neural
Networks”. In: International Workshop on Security and Trust Management. Springer. 2017,
pp. 193-202.

116


http://dl.acm.org/citation.cfm?id=2821429.2821443
http://dl.acm.org/citation.cfm?id=2821429.2821443
https://doi.org/10.22667/JOWUA.2018.06.30.001
https://doi.org/10.1109/CNS.1988.4983
https://www.computer.org/csdl/proceedings-article/cns/1988/00004983/12OmNAkWvIU
https://www.computer.org/csdl/proceedings-article/cns/1988/00004983/12OmNAkWvIU
https://doi.org/10.1017/S0962492913000032
https://doi.org/10.1109/GIIS.2016.7814945
https://doi.org/10.1002/0470871822.ch12
https://doi.org/10.1287/opre.41.4.655
https://doi.org/10.1287/opre.41.4.655
https://doi.org/10.1080/16864360.2005.10739029
https://doi.org/10.1080/16864360.2005.10739029
https://doi.org/10.1145/2808475.2808481
http://doi.acm.org/10.1145/2808475.2808481
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1016/S0004-3702(01)00129-1
http://dx.doi.org/10.1016/S0004-3702(01)00129-1

BIBLIOGRAPHY

[30]

[38]

Carlos Carrillo and Rafael Capilla. “Ripple Effect to Evaluate the Impact of Changes
in Architectural Design Decisions”. In: Proceedings of the 12th European Conference on
Software Architecture: Companion Proceedings. ECSA ’18. Madrid, Spain: ACM, 2018,
41:1-41:8. 1SBN: 978-1-4503-6483-6. DOI: 10.1145/3241403.3241446. URL: http://doi.
acm.org/10.1145/3241403.3241446.

M. Ceccato et al. “How Professional Hackers Understand Protected Code while Performing
Attack Tasks”. In: 2017 IEEE/ACM 25th International Conference on Program Compre-
hension (ICPC). May 2017, pp. 154-164. pDO1: 10.1109/ICPC.2017.2.

Hoi Chang and Mikhail Atallah. “Protecting Software Code by Guards”. In: Nov. 2001,
pp- 160-175. DOI: 10.1007/3-540-47870-1_10.

Stanley Chow et al. “White-box cryptography and an AES implementation”. In: Interna-
tional Workshop on Selected Areas in Cryptography. Springer. 2002, pp. 250-270.

Shannon Claude. “Programming a Computer for Playing Chess”. In: Philosophical Maga-
zine, Ser 7.41 (1950), p. 314.

Frederick B Cohen. “Operating system protection through program evolution”. In: Com-
puters and Security 12.6 (1993), pp. 565-584.

George Coker et al. “Principles of remote attestation”. In: Int. J. Inf. Sec. 10 (June 2011),
pp. 63-81. DOI: 10.1007/510207-011-0124-7.

Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating trans-
formations. Computer Science Technical Reports 148. Department of Computer Science,
The University of Auckland, New Zealand, July 1997. URL: http://hdl.handle.net/
2292/3491.

Christian Collberg, Clark Thomborson, and Douglas Low. “Manufacturing Cheap, Re-
silient, and Stealthy Opaque Constructs”. In: Conference Record of the Annual ACM Sym-
posium on Principles of Programming Languages 184-196 (Nov. 1997). poI: 10. 1145/
268946 .268962.

Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: JACR Cryptology ePrint
Archive 2016 (2016), p. 86.

Council of the European Union. “Council Directive 91/250/EEC of 14 May 1991 on the
legal protection of computer programs”. In: Official Journal L 122 (May 1991), pp. 42—-46.
ISSN: 0378-6978. URL: https://publications.europa.eu/en/publication-detail/-
/publication/92d68447-ea%9a-4554-9540-de517984c310%22.

Marie E. Csete and John C. Doyle. “Reverse Engineering of Biological Complexity”. In:
Science 295.5560 (2002), pp. 1664-1669. 1SsN: 0036-8075. DOIL: 10.1126/science.1069981.

Christian Cudonnec, Philippe Jutel, and Paul Hariyanto. “Reaction”. In: ASPIRE Project
Deliverable 3.06: Remote Attestation and Server Mobile Code Report. June 2016, pp. 12—
22. URL: https://aspire-fp7.eu/sites/default/files/D3.06-Remote-Attestation-
and-Server-Mobile-Code-Report.pdf.

Do Cuong et al. “Game Theory for Cyber Security and Privacy”. In: ACM Computing
Surveys 50 (May 2017), pp. 1-37. DOIL: 10.1145/3057268.

Michael A. Cusumano. “The Apple-Samsung Lawsuits”. In: Commun. ACM 56.1 (Jan.
2013), pp. 28-31. 1SSN: 0001-0782. DOI: 10.1145/2398356.2398366. URL: http://doi.
acm.org/10.1145/2398356.2398366.

Mila Dalla Preda et al. “Opaque Predicates Detection by Abstract Interpretation”. In:
Algebraic Methodology and Software Technology. Ed. by Michael Johnson and Varmo Vene.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 81-95. 1SBN: 978-3-540-35636-3.

117


https://doi.org/10.1145/3241403.3241446
http://doi.acm.org/10.1145/3241403.3241446
http://doi.acm.org/10.1145/3241403.3241446
https://doi.org/10.1109/ICPC.2017.2
https://doi.org/10.1007/3-540-47870-1_10
https://doi.org/10.1007/s10207-011-0124-7
http://hdl.handle.net/2292/3491
http://hdl.handle.net/2292/3491
https://doi.org/10.1145/268946.268962
https://doi.org/10.1145/268946.268962
https://publications.europa.eu/en/publication-detail/-/publication/92d68447-ea9a-4554-9540-de517984c310%22
https://publications.europa.eu/en/publication-detail/-/publication/92d68447-ea9a-4554-9540-de517984c310%22
https://doi.org/10.1126/science.1069981
https://aspire-fp7.eu/sites/default/files/D3.06-Remote-Attestation-and-Server-Mobile-Code-Report.pdf
https://aspire-fp7.eu/sites/default/files/D3.06-Remote-Attestation-and-Server-Mobile-Code-Report.pdf
https://doi.org/10.1145/3057268
https://doi.org/10.1145/2398356.2398366
http://doi.acm.org/10.1145/2398356.2398366
http://doi.acm.org/10.1145/2398356.2398366

BIBLIOGRAPHY

[51]

[52]

[53]

Quynh H Dang. “Secure hash standard”. In: Federal Information Processing Standard 180-4
(Aug. 2015). Ed. by National Institute of Standards and Technology.

Tobias Dantzig. Number: the Language of Science. New York, NY, US, 1930.

Bjorn De Sutter and Bart Coppens. “Anti-callback Stack Checks”. In: ASPIRE Project
Deliverable 2.08: Offline Code Protection Report. Nov. 2015, pp. 46-47. URL: https://
aspire-fp7.eu/sites/default/files/D2.08-ASPIRE-0ffline-Code-Protection-
Report.pdf.

Dorothy Denning and Peter G. Neumann. Requirements and model for IDES — a real-time
intrusion-detection expert system. Tech. rep. Menlo Park, CA, USA: SRI International,
Aug. 1985.

Ozgur Depren et al. “An intelligent intrusion detection system (IDS) for anomaly and
misuse detection in computer networks”. In: Expert Systems with Applications 29.4 (2005),
pp. 713-722. 18SN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2005.05.002.
URL: http://www.sciencedirect.com/science/article/pii/S0957417405000989.

Eldad Eilam. Reversing: Secrets of Reverse Engineering. Wiley, 2011. 1SBN: 978-1-118-
07976-8. URL: https://www.wiley.com/en-us/Reversing},3A+Secrets+of+Reverse+
Engineering+-p-9780764574818.

Andreas Ekelhart, Stefan Fenz, and Thomas Neubauer. “Ontology-based decision support
for information security risk management”. In: 2009 Fourth International Conference on
Systems. IEEE. 2009, pp. 80-85.

Pasi Eronen and Jukka Zitting. “An expert system for analyzing firewall rules”. In: Pro-
ceedings of the 6th Nordic Workshop on Secure IT Systems (NordSec 2001). Nov. 2001,
pp- 100-107.

Hui Fang et al. “Multi-stage Binary Code Obfuscation Using Improved Virtual Machine”.
In: Information Security. Ed. by Xuejia Lai, Jianying Zhou, and Hui Li. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 168-181. 1SBN: 978-3-642-24861-0.

Edward A Feigenbaum and Bruce G Buchanan. “DENDRAL and Meta-DENDRAL: roots
of knowledge systems and expert system applications”. In: Artificial Intelligence 59.1-2
(1993), pp. 233-240.

Stefan Fenz et al. “FORISK: Formalizing information security risk and compliance manage-
ment”. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks
Workshop (DSN-W). IEEE. 2013, pp. 1-4.

M. L. Fredman et al. “Storing a sparse table with O(1) worst case access time”. In: 23rd
Annual Symposium on Foundations of Computer Science (sfcs 1982). Nov. 1982, pp. 165
169. por: 10.1109/SFCS.1982.39.

Bill Gates et al. “An open letter to hobbyists”. In: Homebrew Computer Club Newsletter
2.1 (1976), p. 2.

Oded Goldreich and Rafail Ostrovsky. “Software protection and simulation on oblivious
RAMs”. In: Journal of the ACM (JACM) 43.3 (1996), pp. 431-473.

James R. Gosler. “Software Protection: Myth or Reality?” In: Advances in Cryptology —
CRYPTO ’85 Proceedings. Ed. by Hugh C. Williams. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1986, pp. 140-157. 1SBN: 978-3-540-39799-1.

Amar Gupta and H-MD Toong. “The first decade of personal computers”. In: Proceedings
of the IEEE 72.3 (1984), pp. 246-258.

Maurice Howard Halstead. Elements of Software Science. Ed. by Elsevier. 1977. 1SBN: 0-
444-00205-7.

118


https://aspire-fp7.eu/sites/default/files/D2.08-ASPIRE-Offline-Code-Protection-Report.pdf
https://aspire-fp7.eu/sites/default/files/D2.08-ASPIRE-Offline-Code-Protection-Report.pdf
https://aspire-fp7.eu/sites/default/files/D2.08-ASPIRE-Offline-Code-Protection-Report.pdf
https://doi.org/https://doi.org/10.1016/j.eswa.2005.05.002
http://www.sciencedirect.com/science/article/pii/S0957417405000989
https://www.wiley.com/en-us/Reversing%3A+Secrets+of+Reverse+Engineering+-p-9780764574818
https://www.wiley.com/en-us/Reversing%3A+Secrets+of+Reverse+Engineering+-p-9780764574818
https://doi.org/10.1109/SFCS.1982.39

BIBLIOGRAPHY

[63]

[64]
[65]

[66]

[73]

[74]

[78]

Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat. Building Expert Sys-
tems. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1983. 1SBN: 0-
201-10686-8.

Lance J Hoffman. “Risk analysis and computer security: bridging the cultural gaps”. In:
Proceedings of the 9th National Computer Security Conference. 1986, pp. 156-161.

Alfred Horn. “On sentences which are true of direct unions of algebras”. In: Journal of
Symbolic Logic 16.1 (1951), pp. 14-21. DOI: 10.2307/2268661.

Shih-Kun Huang et al. “Software Crash Analysis for Automatic Exploit Generation on
Binary Programs”. In: Reliability, IEEE Transactions on 63 (Mar. 2014), pp. 270-289.
DOI: 10.1109/TR.2014.2299198.

Information technology — Programming languages — Prolog — Part 1: General core. Standard
ISO/IEC 13211-1:1995. Geneva, CH: International Organization for Standardization and
International Electrotechnical Commission, June 1995.

Joint Task Force Transformation Initiative. SP 800-39. Managing Information Security
Risk: Organization, Mission, and Information System View. Tech. rep. Gaithersburg, MD,
United States, 2011.

K.A. Jackson, D.H. Dubois, and C.A. Stallings. “An expert system application for network
intrusion detection”. In: (Jan. 1991).

Peter Jackson. Introduction to Expert Systems. 3rd. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1998. 1sSBN: 0201876868.

J. Jaffar and J.-L. Lassez. “Constraint Logic Programming”. In: Proceedings of the 1jth
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages. POPL
'87. Munich, West Germany: ACM, 1987, pp. 111-119. 1SBN: 0-89791-215-2. DOI: 10 .
1145/41625.41635. URL: http://doi.acm.org/10.1145/41625.41635.

M. Jang, H. Kim, and Y. Yun. “Detection of DLL Inserted by Windows Malicious Code”.
In: 2007 International Conference on Convergence Information Technology (ICCIT 2007).
Nov. 2007, pp. 1059-1064. por: 10.1109/ICCIT.2007.320.

Lalana Kagal et al. A security architecture based on trust management for pervasive com-
puting systems. Tech. rep. MARYLAND UNIV BALTIMORE DEPT OF COMPUTER
SCIENCE and ELECTRICAL ENGINEERING, 2005.

Markus Kammerstetter, Christian Platzer, and Gilbert Wondracek. “Vanity, Cracks and
Malware: Insights into the Anti-copy Protection Ecosystem”. In: Proceedings of the 2012
ACM Conference on Computer and Communications Security. CCS '12. Raleigh, North
Carolina, USA: ACM, 2012, pp. 809-820. 1SBN: 978-1-4503-1651-4. DO1: 10.1145/2382196.
2382282. URL: http://doi.acm.org/10.1145/2382196.2382282.

Arun Narayanan Kandanchatha and Yongxin Zhou. “System and method for obscuring
bit-wise and two’s complement integer computations in software”. US Patent 7966499.
July 2005. URL: https://patents.google.com/patent/US7966499.

Joseph P Kearney et al. “Software complexity measurement”. In: Communications of the
ACM 29.11 (1986), pp. 1044-1050.

Jung-Sun Kim, Minsoo Kim, and Bong-Nam Noh. “A Fuzzy Expert System for Network
Forensics”. In: Computational Science and Its Applications — ICCSA 200/. Ed. by Antonio
Lagand et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 175-182. ISBN:
978-3-540-24707-4.

Allan R Klumpp. “Apollo lunar descent guidance”. In: Automatica 10.2 (1974), pp. 133—
146.

119


https://doi.org/10.2307/2268661
https://doi.org/10.1109/TR.2014.2299198
https://doi.org/10.1145/41625.41635
https://doi.org/10.1145/41625.41635
http://doi.acm.org/10.1145/41625.41635
https://doi.org/10.1109/ICCIT.2007.320
https://doi.org/10.1145/2382196.2382282
https://doi.org/10.1145/2382196.2382282
http://doi.acm.org/10.1145/2382196.2382282
https://patents.google.com/patent/US7966499

BIBLIOGRAPHY

[81]

[82]

[83]

[84]

[85]

Donald E Knuth. “Semantics of context-free languages”. In: Mathematical systems theory
2.2 (1968), pp. 127-145.

Kyriakos Kritikos and Philippe Massonet. “An Integrated Meta-model for Cloud Appli-
cation Security Modelling”. In: Procedia Computer Science 97 (2016). 2nd International
Conference on Cloud Forward: From Distributed to Complete Computing, pp. 84-93. 1SSN:
1877-0509.

S. Kumar et al. “Malware in Pirated Software: Case Study of Malware Encounters in
Personal Computers”. In: 2016 11th International Conference on Awvailability, Reliability
and Security (ARES). Aug. 2016, pp. 423-427. pDO1: 10.1109/ARES.2016.101.

Timea Lészl6 and Akos Kiss. “Obfuscating C++ Programs via Control Flow Flattening”.
In: Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae. Sec-
tio Computatorica 30 (June 2007).

B. Liand Y. C. Kim. “Efficient routing and spectrum allocation considering QoT in elastic
optical networks”. In: 2015 38th International Conference on Telecommunications and
Signal Processing (TSP). July 2015, pp. 109-112. poI: 10.1109/TSP.2015.7296233.

Niandong Liao, Shengfeng Tian, and Tinghua Wang. “Network Forensics Based on Fuzzy
Logic and Expert System”. In: Comput. Commun. 32.17 (Nov. 2009), pp. 1881-1892. ISSN:
0140-3664. poI1: 10.1016/j . comcom.2009.07.013. URL: http://dx.doi.org/10.1016/
j.comcom.2009.07.013.

Clifford Liem, Yuan Xiang Gu, and Harold Johnson. “A Compiler-based Infrastructure
for Software-protection”. In: Proceedings of the Third ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security. PLAS ’08. Tucson, AZ, USA: ACM, 2008,
pp. 33—44. 1SBN: 978-1-59593-936-4. DOI: 10.1145/1375696.1375702. URL: http://doi.
acm.org/10.1145/1375696.1375702.

Cullen Linn and Saumya Debray. “Obfuscation of executable code to improve resistance
to static disassembly”. In: Proceedings of the 10th ACM conference on Computer and
communications security. ACM. 2003, pp. 290-299.

T. F. Lunt et al. “IDES: a progress report (Intrusion-Detection Expert System)”. In:
Proceedings of the Sixth Annual Computer Security Applications Conference. Dec. 1990,
pp- 273-285. DOI: 10.1109/CSAC.1990.143786.

Thomas J McCabe. “A complexity measure”. In: IEEE Transactions on software Engi-
neering 4 (1976), pp. 308-320.

K. Metwally, A. Jarray, and A. Karmouch. “MILP-Based Approach for Efficient Cloud IaaS
Resource Allocation”. In: 2015 IEEFE 8th International Conference on Cloud Computing.
June 2015, pp. 1058-1062. DOI: 10.1109/CLOUD.2015. 152.

Jelena Mirkovic and Peter Reiher. “A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms”. In: SIGCOMM Comput. Commun. Rev. 34.2 (Apr. 2004), pp. 39-53. ISSN:
0146-4833. DOI: 10.1145/997150.997156. URL: http://doi.acm.org/10.1145/997150.
997156.

Tom M Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, Mar. 1997.
ISBN: 0-070-42807-7.

T. Mouelhiv, F. Fleurey, and B. Baudry. “A Generic Metamodel For Security Policies
Mutation”. In: 2008 IEEE International Conference on Software Testing Verification and
Validation Workshop. Apr. 2008, pp. 278-286.

Roger B. Myerson. Game theory - Analysis of Conflict. Harvard University Press, 1997.
ISBN: 978-0-674-34116-6. URL: http://www.hup.harvard.edu/catalog/MYEGAM. html.

120


https://doi.org/10.1109/ARES.2016.101
https://doi.org/10.1109/TSP.2015.7296233
https://doi.org/10.1016/j.comcom.2009.07.013
http://dx.doi.org/10.1016/j.comcom.2009.07.013
http://dx.doi.org/10.1016/j.comcom.2009.07.013
https://doi.org/10.1145/1375696.1375702
http://doi.acm.org/10.1145/1375696.1375702
http://doi.acm.org/10.1145/1375696.1375702
https://doi.org/10.1109/CSAC.1990.143786
https://doi.org/10.1109/CLOUD.2015.152
https://doi.org/10.1145/997150.997156
http://doi.acm.org/10.1145/997150.997156
http://doi.acm.org/10.1145/997150.997156
http://www.hup.harvard.edu/catalog/MYEGAM.html

BIBLIOGRAPHY

[99]

[100]

[101]
[102]

[103]

[104]

[105]

[106]

[107]

[108]

Arthur N. Rasmussen, John F. Muratore, and Troy A. Heindel. “The INCO Expert System
Project: CLIPS in Shuttle mission control”. In: First CLIPS Conference Proceedings. Vol. 1.
Feb. 1990, pp. 305-319.

George C. Necula et al. “CIL: Intermediate Language and Tools for Analysis and Trans-
formation of C Programs”. In: Compiler Construction. Ed. by R. Nigel Horspool. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 213-228. 1SBN: 978-3-540-45937-8.

Michael L. Nelson. A Survey of Reverse Engineering and Program Comprehension. Tech.
rep. ¢s.SE/0503068. European Organization for Nuclear Research (CERN), Mar. 2005.
URL: http://cds.cern.ch/record/829443.

Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. “MulVAL: A Logic-based
Network Security Analyzer.” In: USENIX security symposium. Vol. 8. Baltimore, MD.
2005, pp. 113-128.

Stephen F. Owens and Reuven R. Levary. “An Adaptive Expert System Approach for
Intrusion Detection”. In: Int. J. Secur. Netw. 1.3/4 (Dec. 2006), pp. 206-217. 1SSN: 1747-
8405. DOI: 10.1504/IJSN.2006.011780. URL: http://dx.doi.org/10.1504/IJSN.2006.
011780.

OWL 2 Web Ontology Language New Features and Rationale (Second Edition). W3C Rec-
ommendation. Cambridge, MA, US: World Wide Web Consortium (W3C), Dec. 2012. URL:
https://wuw.w3.org/TR/owl2-new-features/.

Zhi Song Pan et al. “An integrated model of intrusion detection based on neural net-
work and expert system”. In: 17th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’05). Nov. 2005, pp. 672-673. DOI: 10.1109/ICTAI.2005. 36.

Karl Pearson. “The problem of the random walk”. In: Nature 72.1867 (1905), p. 342.

J Pournelle. Zenith Z-100, Epson QX-10, software licensing, and the software piracy prob-
lem. 1983.

Todd A. Proebsting. “Optimizing an ANSI C Interpreter with Superoperators”. In: Pro-
ceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’95. San Francisco, California, USA: ACM, 1995, pp. 322-332. ISBN:
0-89791-692-1. DOI: 10.1145/199448.199526. URL: http://doi.acm.org/10.1145/
199448 .199526.

Leonardo Regano et al. “Towards Automatic Risk Analysis and Mitigation of Software Ap-
plications”. In: IFIP International Conference on Information Security Theory and Prac-
tice. Springer. 2016, pp. 120-135.

Leonardo Regano et al. “Towards Optimally Hiding Protected Assets in Software Ap-
plications”. In: 2017 IEEE International Conference on Software Quality, Reliability and
Security (QRS). IEEE. 2017, pp. 374-385.

Rolf Rolles. “Unpacking Virtualization Obfuscators”. In: Proceedings of the 3rd USENIX
Conference on Offensive Technologies. WOOT’09. Montreal, Canada: USENIX Associa-
tion, 2009, pp. 1-1. URL: http://dl.acm.org/citation.cfm?id=1855876.1855877.

Karu Sankaralingam et al. Optimization and Mathematical Modeling in Computer Ar-
chitecture. Morgan & Claypool, 2013, pp. 144—. 1sBN: 9781627052108. DOI: 10 . 2200/
S00531ED1V01Y201308CACO26.

Sebastian Schrittwieser et al. “Protecting Software Through Obfuscation: Can It Keep Pace
with Progress in Code Analysis?” In: ACM Comput. Surv. 49.1 (Apr. 2016), 4:1-4:37.

121


http://cds.cern.ch/record/829443
https://doi.org/10.1504/IJSN.2006.011780
http://dx.doi.org/10.1504/IJSN.2006.011780
http://dx.doi.org/10.1504/IJSN.2006.011780
https://www.w3.org/TR/owl2-new-features/
https://doi.org/10.1109/ICTAI.2005.36
https://doi.org/10.1145/199448.199526
http://doi.acm.org/10.1145/199448.199526
http://doi.acm.org/10.1145/199448.199526
http://dl.acm.org/citation.cfm?id=1855876.1855877
https://doi.org/10.2200/S00531ED1V01Y201308CAC026
https://doi.org/10.2200/S00531ED1V01Y201308CAC026

BIBLIOGRAPHY

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]
[117]

18]

[119]

[120]

[121]

[122]

[123]

Ehab S Al-Shaer and Hazem H Hamed. “Management and translation of filtering security
policies”. In: IEEFE International Conference on Communications, 2003. ICC’03. Vol. 1.
IEEE. 2003, pp. 256-260.

Carl Shapiro. “The theory of business strategy”. In: The Rand journal of economics 20.1
(1989), pp. 125-137.

Edward H. Shortliffe and Bruce G. Buchanan. “A model of inexact reasoning in medicine”.
In: Mathematical Biosciences 23.3 (1975), pp. 351-379. 1SsN: 0025-5564. DOL: https://
doi.org/10.1016/0025-5564(75) 90047 -4. URL: http://www.sciencedirect.com/
science/article/pii/0025556475900474.

Yan Shoshitaishvili et al. “SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis”. In: IEEE Symposium on Security and Privacy. 2016.

S. E. Smaha. “Haystack: an intrusion detection system”. In: [Proceedings 1988] Fourth
Aerospace Computer Security Applications. Sept. 1988, pp. 37—44. DOI: 10.1109/ACSAC.
1988.113412.

T. Sommestad, M. Ekstedt, and H. Holm. “The Cyber Security Modeling Language: A
Tool for Assessing the Vulnerability of Enterprise System Architectures”. In: IEEFE Systems
Journal 7.3 (Sept. 2013), pp. 363-373. 1sSN: 1932-8184.

John F. Sowa. “Top-level ontological categories”. In: International Journal of Human-
Computer Studies 43.5 (1995), pp. 669-685. 1sSN: 1071-5819. DOI: https://doi.org/10.
1006/1ijhc.1995.1068. URL: http://www.sciencedirect.com/science/article/pii/
S51071581985710683.

Lance Spitzner. Honeypots: tracking hackers. Vol. 1. Addison-Wesley Reading, 2003.

Laura P Swiler and Cynthia Phillips. A graph-based system for network-vulnerability anal-
ysis. Tech. rep. Sandia National Labs., Albuquerque, NM (United States), 1998.

Paolo Tonella et al. “POSTER: A Measurement Framework to Quantify Software Protec-
tions”. In: Proceedings of the 2014, ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS '14. Scottsdale, Arizona, USA: ACM, 2014, pp. 1505-1507. ISBN:
978-1-4503-2957-6. DOIL: 10.1145/2660267 . 2662360. URL: http://doi.acm.org/10.
1145/2660267 .2662360.

Gene Tsudik and Rita C. Summers. “AudES - An Expert System for Security Auditing”.
In: Proceedings of the The Second Conference on Innovative Applications of Artificial In-
telligence. TAAT ’90. AAAI Press, 1991, pp. 221-232. 1SBN: 0-262-68068-8. URL: http:
//dl.acm.org/citation.cfm?1d=645450.653063.

United States Department of Defense. US Army Reverse Engineering Handbook (Guidelines
and Procedures). 2016. URL: https ://quicksearch.dla.mil/qgsDocDetails . aspx?
ident_number=53897.

M. Vilja et al. “Integrated Metamodel for Security Analysis”. In: 48th Hawaii Int’l Conf.
on System Sciences. Jan. 2015, pp. 5192-5200.

L. Van Put et al. “DIABLO: a reliable, retargetable and extensible link-time rewriting
framework”. In: Proceedings of the Fifth IEEE International Symposium on Signal Pro-
cessing and Information Technology, 2005. Dec. 2005, pp. 7-12. DOI: 10.1109/ISSPIT.
2005.1577061.

Alessio Viticchié et al. “Assessment of source code obfuscation techniques”. In: 2016
IEEE 16th International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE. 2016, pp. 11-20.

122


https://doi.org/https://doi.org/10.1016/0025-5564(75)90047-4
https://doi.org/https://doi.org/10.1016/0025-5564(75)90047-4
http://www.sciencedirect.com/science/article/pii/0025556475900474
http://www.sciencedirect.com/science/article/pii/0025556475900474
https://doi.org/10.1109/ACSAC.1988.113412
https://doi.org/10.1109/ACSAC.1988.113412
https://doi.org/https://doi.org/10.1006/ijhc.1995.1068
https://doi.org/https://doi.org/10.1006/ijhc.1995.1068
http://www.sciencedirect.com/science/article/pii/S1071581985710683
http://www.sciencedirect.com/science/article/pii/S1071581985710683
https://doi.org/10.1145/2660267.2662360
http://doi.acm.org/10.1145/2660267.2662360
http://doi.acm.org/10.1145/2660267.2662360
http://dl.acm.org/citation.cfm?id=645450.653063
http://dl.acm.org/citation.cfm?id=645450.653063
https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=53897
https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=53897
https://doi.org/10.1109/ISSPIT.2005.1577061
https://doi.org/10.1109/ISSPIT.2005.1577061

BIBLIOGRAPHY

[124]

[125]
[126]

[127]

[128]

[129]

[130]

[131]

[132]

Alessio Viticchié et al. “Reactive attestation: Automatic detection and reaction to software
tampering attacks”. In: Proceedings of the 2016 ACM Workshop on Software PROtection.
ACM. 2016, pp. 73-84.

Stijn Volckaert, Bjorn De Sutter, and Bert Abrath. “Self-debugging”. EU Patent 3330859.
June 2018. URL: https://patents.google.com/patent/EP3330859.

Chenxi Wang et al. Software Tamper Resistance: Obstructing Static Analysis of Programs.
Tech. rep. Charlottesville, VA, USA, 2000.

Richard Wartell et al. “Differentiating Code from Data in x86 Binaries”. In: Machine
Learning and Knowledge Discovery in Databases. Ed. by Dimitrios Gunopulos et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 522-536. ISBN: 978-3-642-23808-6.

Paul J Werbos. “Applications of advances in nonlinear sensitivity analysis”. In: System
modeling and optimization. Springer, 1982, pp. 762—770.

P. H. Winston and K. A. Prendergast. “XCON: An Expert Configuration System at Digital
Equipment Corporation”. In: The AI Business: Commercial Uses of Artificial Intelligence.
MITP, 1986. 1SBN: 9780262257220. URL: https://ieeexplore. ieee . org/document /
6284805.

JM Wuerth. “The evolution of Minuteman guidance and control”. In: Navigation 23 (1976),
pp. 64-75.

Brecht Wyseur. “ASPIRE Protocol”. In: ASPIRE Project Deliverable 1.04: Reference Ar-
chitecture. Aug. 2014, pp. 9-15. URL: https://aspire-fp7.eu/sites/default/files/
D1.04-ASPIRE-Reference-Architecture-v2.1.pdf.

Yongxin Zhou et al. “Information Hiding in Software with Mixed Boolean-Arithmetic
Transforms”. In: Information Security Applications. Ed. by Sehun Kim, Moti Yung, and
Hyung-Woo Lee. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 61-75. ISBN:
978-3-540-77535-5.

123


https://patents.google.com/patent/EP3330859
https://ieeexplore.ieee.org/document/6284805
https://ieeexplore.ieee.org/document/6284805
https://aspire-fp7.eu/sites/default/files/D1.04-ASPIRE-Reference-Architecture-v2.1.pdf
https://aspire-fp7.eu/sites/default/files/D1.04-ASPIRE-Reference-Architecture-v2.1.pdf

	List of Tables
	List of Figures
	Background
	Software protection
	Automated protection tools
	Anti-reverse engineering techniques
	Anti-tampering techniques
	Anti-debugging

	Knowledge-based and expert systems
	Knowledge bases and ontologies
	Inference engines
	Expert systems


	Decision support system for software protection
	Problem statement
	Risk framing
	Risk assessment
	Risk mitigation
	Risk monitoring

	Automated workflow for software protection
	Software protection meta-model
	Risk assessment phase
	Asset protection phase
	Asset hiding phase
	Complete workflow

	Workflow execution example
	Validation
	Qualitative evaluation
	Experimental assessment


	Software security meta-model
	Core meta-model
	Application meta-model
	Protection meta-model
	Attack meta-model
	Meta-model validation

	Risk assessment
	Application structure modeling
	Attacker goals modeling
	Attack steps and paths modeling
	Risk probability
	Validation

	Asset protection
	Protection decision workflow
	Deployed protection instances enumeration
	Inference of valid solutions
	Software metrics
	Software protection complexity metrics
	Complexity metrics prediction
	Protection overhead estimation

	Asset protection solution inference
	Protection index
	Solution solver mini-max algorithm

	Validation

	Asset hiding
	Protection fingerprints
	Asset hiding strategies
	Mixed Integer-Linear Programming model
	Application structure and protections
	Domain Parameters
	Linear Problem

	Translation algorithm
	Validation

	Conclusions and future work
	ESP implementation
	Main ESP components
	ESP workflow
	Solution deployment

	Bibliography

