A simple positive state observer for multidimensional Goodwin’s oscillator
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Abstract— Periodic phenomena and oscillations are funda-
mental characteristics of the dynamics of living systems at all
levels of organization, from a single cell to complex organisms.
In spite of the recent progress in understanding biological
oscillators and clocks, most of the aspects of their control,
observation, and identification still remain nearly unexplored.
In this paper, we address the problem of observer design for
Goodwin’s oscillator that stands as a prototypic model of a
biological rhythm and has been used to portray e.g. genetic
oscillators, metabolic pathways, and hormonal axes. We show
that, despite its nonlinear dynamics, Goodwin’s oscillator ad-
mits a simple Luenberger-type observer that preserves positivity
of solutions and is free of many flaws of the standard high-
gain state reconstruction, such as the peaking phenomenon
and noise amplification. These improvements are achieved
through exploiting the properties of the plant model rather than
canceling the nonlinear dynamics by means of a high observer
gain. The results are illustrated by numerical simulations for
the third-order Goodwin model with a Hill nonlinearity.

I. INTRODUCTION

The literature on nonlinear observers is extensive and
virtually impossible to review in a brief format. We refer
instead to popular books devoted to this important and
compelling research area [1], [2]. Two recent special is-
sues of IEEE Control Systems Magazine (June and July
2017) also cover applications of nonlinear observers to a
number of timely engineering problems. Nonlinear observers
specifically intended for use in chemical applications are
reviewed in [3]. Unlike linear time-invariant systems theory,
where observability and unobservability are global properties
of the system and independent of a specific trajectory,
the observability in nonlinear systems has usually to be
addressed with respect to a particular solution. Systems with
complex nonlinear dynamics can seldom be handled by a
single observer design [?].

Periodical and non-periodical (i.e. chaotic and quasi-
periodic) oscillators are used to model ubiquitous biological
cycles across the whole scale of living systems from a
single cell to complete organisms [4]. In practice, sustained
oscillation is an inherently nonlinear phenomenon since
linear oscillators do not produce orbitally stable solutions. A
wide class of nonlinear oscillators relies on the mechanism of
Andronov-Hopf bifurcation rendering the system equilibrium
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unstable. This is in contrast with oscillators possessing
locally stable equilibria and hidden attractors [5].

A standard strategy to deal with state observation in
nonlinear systems is to linearize the plant model in a vicinity
of an equilibrium to guarantee local stability of the state
estimation error of a nonlinear observer. While this design
principle works well for plants operating around an equilib-
rium, e.g. being controlled to it by a stabilizing feedback,
periodic solutions of oscillators do not need to lie near an
equilibrium and their location in the phase space is defined
by the initial conditions on the plant. Therefore, the accuracy
of linearization is compromized and a linear model cannot
serve as a credible ground for observer design. Linearizing
the plant dynamics along a trajectory is more accurate, but
needs the knowledge of the complete plant solution which
contradicts the very purpose of state reconstruction.

Goodwin’s oscillator [6] is an archetypal model of periodic
phenomena in biology and has been mostly studied in context
of biophysics and system biology [7]-[9]. Some considera-
tion to stability properties of and positivity of solutions to
Goodwin’s oscillator has been given in realm of automatic
control [10]-[15]. Yet, control and state reconstruction in
Goodwin’s oscillator have not so far been dealt with. The
state reconstruction in an oscillator can be recast as a
“master-slave” synchronization problem comprising the plant
and the observer that incorporates an explicit plant model.
This approach is, in principle, less restrictive in assuming
observability of the plant solutions and has been successfully
applied to the design of observers for a generalization of
Goodwin’s oscillator to impulsive systems [16]. However,
the existing works on synchronization of Goodwin’s oscil-
lators [17]-[19] consider oscillators coupled over balanced
graphs, remaining the state estimation problem uncovered.

This paper proposes a simple state observer for an n-
dimensional Goodwin’s oscillator that guarantees positivity
of the state estimates. The states of Goodwin’s oscillator
are often interpreted as concentrations of chemical sub-
stances and negative transients in the state estimates have
to therefore be avoided. Also, measuring concentrations in
medical applications is costly and often impossible for ethical
reasons. Thus reconstructing unavailable concentrations from
the measurable ones offers an attractive and inexpensive
alternative. Another conceivable application of the proposed
observer is fault detection in biomedical applications.

The observer structure is akin to that of the Luenberger
observer and exploits the nonlinear dynamics of Goodwin’s
oscillator for achieving positivity of the state estimates as
well as an effective filtering of the output estimation error
instead of canceling the nonlinear dynamics, as in conven-



tional high-gain observers. A price to pay for that is a limited
control of the state estimate convergence rate.

The rest of the paper is organized as follows. After
some preliminaries in Section II, the equations of Goodwin’s
oscillator are recapitulated in Section III. The state estima-
tion problem in Goodwin’s oscillator is formulated and a
particular observer for solving it is introduced. Positivity and
convergence properties of the proposed observer are studied,
with and without measurement disturbance. The obtained
results are illustrated by a numerical example in Section IV.
Section V, concluding the paper, is followed by an appendix
with technical proofs.

II. PRELIMINARIES AND NOTATION

Unless otherwise stated, all vectors in this paper belong to
the vector space R™ = {x = (x1,...,2,) " }. The Euclidean
norm of a vector z is denoted || 2 VzTz and || oo 2
max; |z;|. The operator norms of a matrix A, induced by
|-] and |- |, are || Al| and ||A[|, respectively. We use R’}
to denote the non-negative orthant of this space Ry 2 {z:
x; > 0,Vi}. R¥>*™ denotes the set of real k x m matrices. We
also introduce the coordinate basis of R, i.e. vectors e; =
(1,0,...,0)",...,e, = (0,0,...,1)T. The set {1,...,n}
is denoted 1, n for brevity.

ITI. GOODWIN’S OSCILLATOR AND ITS OBSERVER

The classical Goodwin’s model describes a simple reaction
network involving three chemicals (e.g. a gene, a protein, and
an intermediate enzyme [6]). Henceforth, we consider a more
general system with n > 3 chemicals, whose concentrations
obey the cyclic feedback system as follows

&1(t) = h(x,(t)) — bz (1),
To(t) = gra1(t) — bawa(t),

ey
Tp(t) = gno1Tn-1(t) — bpxn(l),
)
o(t) = f(2(t)), f(x) 2 Az +h(z)er, (@)
where b;, g; > 0, Vi. Therefore,
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is a two-diagonal matrix that is both Hurwitz and Metzler.
Goodwin-type model (1) naturally arises in modeling of
endocrine regulation [20]-[22], metabolic pathways [23],
[24], and genetic oscillators (e.g. circadian clocks) [7], [25].
The decreasing nonlinear function h(y), characterizing the
feedback loop, is often chosen to be the Hill nonlinearity [8]
a

hy) = ———
(y) T Ky

We do not restrict here the feedback function h(-) to be a
Hill function, adopting however the following assumption.

a, K,;m > 0. @)

Assumption 1: The function h(-) is non-negative, non-
increasing, and Lipschitz with the constant 7 > 0 on the
interval [0, 0c0). In particular, ~(0) > h(y) > 0, Vy > 0.

Assumption 1 is satisfied by e.g. Hill function (4) with
H = max,>o(—h/(y)). It also allows various piecewise-
smooth functions that arise as approximations of the feed-
back nonlinearities in Goodwin-like models [20], [26], [27].

Since A is Metzler and h(y) > 0,Vy > 0 by Assump-
tion 1, it can be easily shown that the positive orthant R} is
invariant, i.e. Goodwin’s oscillator is a positive system. We
are interested only in such nonnegative solutions. Since for
any nonnegative solution one has h(y(t)) < h(0) and the
matrix A is Hurwitz, all such solutions are bounded.

In this paper, we are concerned with the problem of
observer design for Goodwin’s oscillator (1). This problem
is sensible since some of the concentrations z; cannot
typically be measured for physiological or ethical reasons.
For instance, some endocrine regulation loops (“‘axes”) are
controlled by dedicated centers in the hypothalamus that
release special neurohormones, serving as messengers be-
tween the hypothalamus and the pituitary gland (e.g. the
gonadothropin or the cortisol-releasing hormone). Their half-
life times are short, which implies the necessity of fast sam-
pling, and measuring the releasing hormone concentrations
is troublesome due to the poor accessibility of the anatomic
location.

Assume that the only available measurement is the concen-
tration x,.(t) (with 1 < r < m) corrupted by a disturbance

2(t) = = (t) + (1) (5)

We assume that the disturbance signal 7)(¢) is bounded and
does not lead to negative values of z(t) (otherwise, the
measurement can be saturated at 0).

Assumption 2: There exists a constant M, > 0 such that

max(—,(t), ~M,) < n(t) < M,

Our goal is to design an observer, that is, a non-

anticipatory operator z(-) — Z(-) reconstructing the state

vector from the output measurements z(¢). In the absence of

disturbances, it should asymptotically eliminate the observa-
tion error

o(t) ==x(t) —&(t) —— 0. (6)
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A. The proposed observer’s structure

In this paper, we advocate the following simple high-gain
observer structure

B(t) = F(@(0) +7(=(t) - 2 (1)e, )

where f(-) is defined in (2) and v > 0 is the observer
gain, which has to be chosen sufficiently large. Equivalently,
Eq. (7) can be rewritten as

i(t) = (A —vere])i(t) + vz(t)e, + h(dn(t))er.  (8)
The observation error §(t) defined in (6) evolves as

3(t) = (A —vere,)d(t) — yn(t)e,+

) — BGaOYer.



B. Main Results

It may seem that the presence of a high gain v inevitably
leads to large “peaks” in some components of the state
estimation error vector d;(t) (see the discussion below). The
principal difference of (7) from the conventional high-gain
observers is that such peaks are, however, not only uniformly
bounded, but, in fact, keep the state estimate Z(t) in the
positive orthant. We formulate the following lemma.

Lemma 1: For any' v > 0, the algorithm (7) provides
the following properties:

(a) Positivity. If 2(0) € R, then Z(t) € R} ,Vt > 0;
(b) Uniform boundedness. The estimation error and the
estimated state satisfy the inequalities

[6(t)|0o < e16710(0)]oc + c2My + c3h(0),

(10)

where the constants c;,« > 0 are independent of .
To formulate the main result of the paper, establishing the
robust convergence of the state estimate for large gains, we
introduce the gain threshold
n+1
) . (11

Here H is the Lipschitz constant from Assumption 1.

The following theorem establishes the properties of ob-
server (7).

Theorem 1: Suppose that v > ~,.. Then, in the absence
of disturbance (i.e. M,, = 0, n = 0), the state estimation
error §(t) vanishes asymptotically, c.f. (6). In general, when
1 # 0, the stationary state estimation error is bounded by

12)

A

Ve = br+

9192 - gn—1H ( T
COS
bn,

b1-~-br—1br+1--- TL+1

tli?n |6(t)] < min(cayM,, coM,, + c3h(0)),

where ¢4 > 0 is independent of v and cs, c3 are the same as
in (10).

Proofs of Lemma 1 and Theorem 1 are provided in
Appendix. One way to prove Theorem 1 is to use the idea
of feedback incremental passivity, elaborated in [18], [19] to
cope with network of diffusively coupled oscillators. We give
a simpler proof, based on the “secant criterion” for stability
of cyclic matrices [15], [28].

C. Observer (7) vs. classical observers

Note that Theorem 1 formally resembles many existing
results on observers for nonlinear systems; at the same time,
it is different in several important ways:

o Unlike the existing high-gain and LMI-based observers
for nonlinear systems [29]-[35], our algorithm enjoys
the positivity property. Positive observers are known
only for very special types of nonlinear systems [36];

e Our observer inherits the structure of the classical
Luenberger’s observer, however, its design does not
require solving LMIs as in [32], [33];

o The standard drawback of high-gain observers is the
presence of peaks in the estimate Z(¢) and amplification
of noises [2]; these effects can be visibly mitigated [31],

lFormally, for v = 0, (7) is not an observer, since it uses no information
about the measurements and the estimate does not converge.

[33] but not avoided completely. Observer (7) is “self-
saturating” and the peaks (inevitable in high-gain ob-
servation schemes) cannot grow infinitely as v — oo;

o The price to pay for the appealing properties above
is a limitation in assigning an arbitrary convergence
rate, which is in contrast enabled by the high-gain
observers [29]).

D. Extensions

We briefly mention two ways to extend the main result.

1) The case of uncertain nonlinearity: ldentification of
nonlinear interactions between hormones (or other chem-
icals) is an independent problem that is not considered
here. For this reason, assuming exact knowledge of the
feedback nonlinearity h(y) may seem restrictive. However,
if an approximation for this function A(-) is known such that
h(y) > 0 and the deviation »(y) = h(y) — h(y) is bounded
|>¢(y)| < M, Vy > 0, one may replace the observer (7) by

2(t) = f(@(t) +v(=(t) — &o(1))er,

o ] (13)
f(z) = Az + h(z.,)er.
The equation for the observation error becomes
5(t) = (A —yere])d(t) +yn(t)e, + »(t)e a4

+[h(zn(t)) — h(Zn(t))]er.

Here, with some abuse of notation, s(t) £ (2 (t)), which
function can be considered as another bounded disturbance in
the system. Examining the proof of Theorem 1 in Appendix,
it can be noticed that the error §(¢) is robust against this
uncertainty, i.e., for v > -,, one has

tm 16(t)] < min(cay M, +cyM,., coMy+ch M, +c3h(0)).
— 00

In other words, replacing the nonlinearity h(y) by a suf-
ficiently close approximation (by e.g. polynomial func-
tions [37]), the observation performance is preserved.

2) Towards reduction of the conservatism: It can be
noted that the derivative’s maximal value H in (17) can
be replaced by a smaller constant, using asymptotic prop-
erties of the Goodwin system. It can be easily shown that
Goodwin’s oscillator has a compact invariant set, attracting
all non-negative solutions. An elegant approximation of this
set was found in [38], [39]. As shown in these papers,
there exist constants z,.,%, (depending on the system’s

parameters, namely, the properties of the mapping ¥(y) =
91---Gn-1h(y)/(b1 ...by)) such that

z, < lim z,(t) < lim z,(t) < T,.
t—o0 t—ro0
A simple modification of the techniques from [38], [39]
allows to get a similar estimate for the observer’s solution
2, < lim &,(t) < lim &,(t) < 2.
t—o0 t—o0
Using these refined estimates, one shgws that, as t —
oo the estimate |h(z,) — h(2,)| < Hl|z, — 2,| holds,
where H is the maximum of (—h’) on the interval



[max(z,., &,), min(Z,, &,)]. Analysis of the proof of The-
orem | shows that H can actually be replaced by H, which
can appear to be much smaller.

IV. NUMERICAL SIMULATIONS

A standard third-order Goodwin’s oscillator, i.e. z € R3 is
selected for numerical illustration. The plant parameters are
bl = 0.4, b2 = 0.5, b3 = 0.3, g1 = 2.0, gs = 0.5, a = 100,
K =0.1 and n = 9 to obtain sustained oscillations.

For Hill function (4), we have

m—1

—aKmy
(1+ Kym™)?*’

and 7/(0) = 0, limy o h'(y) = 0, as well as h/(y) < 0,y >
0. The minimum of A’(y) is achieved at

(y) =

m—1 m
min — i h/ = E Y

and, therefore, referring to Assumption 1,

2 _
H = —minh'(y) = a(m”—1)

15
Yy 4AMYmin {as)

The dependence of H on the Hill function parameters m and
K is shown in Fig. 3. Clearly, the value of H increases with
increasing m and falling K.

Observer (7) is implemented for state estimation. The last
element in the state vector is assumed to be measurable
r = 3. The initial conditions on the observer are selected
as £(0) = [0.3800 2.3195 5.3880] while the initial con-
ditions for Goodwin’s oscillator are set to result in a stable
periodical solution as z(0) = [0.2000 1.2208 2.8358].
The observer gain v controls the convergence rate of the
observer, as seen in Fig. 1. Being initialized at a point in
the positive orthant, the observer produces positive state
estimates, see Fig. 2. The gain threshold value is

ngQH( 7r)4
—) =48.4
biby Cos4 8.4336,

illustrating the degree of conservatism in Theorem 1 intro-
duced due to the general form of the considered nonlinearity
and lack of localization of the plant states. As Fig. 2 shows,
good observer convergence is already achieved for v = 3.
To illustrate the impact of measurement disturbance, the
plant output is corrupted by random noise 7 uniformly
distributed in the interval (0,1.5). The time evolution of the
state estimation error for different values of the observer
gain vy is depicted in Fig. 4. As pointed out before, the
observer performs well with a low gain (e.g. v = 3) and
the performance actually deteriorates for a high gain. Yet, no
peaking phenomena typical to high-gain observers occurs.

T = —bs +

V. CONCLUSION

In this paper, we propose a Luenberger-type observer for
the n-dimensional Goodwin’s oscillator. This state recon-
struction algorithm exploits the properties of the nonlinear
plant instead of canceling the nonlinearity by means of a
high feedback gain. For this reason, our algorithm appears

Observer's state estimate error norm

Fig. 1. Euclidean norm of the state estimation error as a function of time
for different values of the observer gain .

Goodwin's oscillator state estimates.

Fig. 2. The observer state estimates function of time (solid lines) compared
to the actual states of Goodwin’s oscillator (dashed lines). The observer gain
v = 3. Notice the positivity of the observer estimates.

to be free of many flaws inherent to standard high-gain and
LMI-based observers (e.g. exaggerated peaks in the state
estimation error). The results are illustrated by numerical

simulation for a classical third-order model.
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APPENDIX

To prove the main results, we use the seminal “secant
criterion” [15] ensuring stability of circular matrices of

certain structure. Suppose that the constants aq,...,a, >
0,61,...,08, >0 are given and let
—an [ —B,0
M(9) 2 5_1 R : . 0>0. (16)

Lemma 2: [15], [28] The matrix M (6) is Hurwitz when-
ever 6 > 0 is sufficiently small, namely

Pr...Bab < (sec %)n

a1 ...0p,

a7

Furthermore, (17) guarantees diagonal stability: there exists a
diagonal matrix Dy > 0 such that Dy M (6)+M T (6)Dg > 0.



Obviously, for § = 0 the matrix M () is also Hurwitz,
although formally this situation is uncovered by the secant
criterion. More important, the secant criterion remains instru-
mental at proving stability for systems with a time-varying
parameter 6(t), with the only difference that (17) should be
replaced by a stronger inequality.

Corollary 1: For each Lebesgue measurable function 6 :
[0, 00) — [0, 8], where the constant @ satisfies the inequality

Bi...Bn0 ( 7 >"+1
— < | sec ,
n+1

Q1 ...0p

(18)

the time-varying system as follows is exponentially stable

#(t) = M(0(t))x(t). (19)

Furthermore, (19) is “uniformly diagonally” stable, that is, it
admits a quadratic Lyapunov function V (z) = 2" Dz, where
the diagonal matrix D > 0 depends only on o, 3;, @ (but not
on a specific function 6(+), which can be uncertain).

Proof: Consider a cyclic (n + 1) x (n + 1) matrix

—Q Ocevennnnn, 76n
B, —az, .
O .ﬂ’ﬂfl _gn N
0 6 -1

Thanks to Lemma 2, a diagonal matrix D > 0 and a constant
€ > 0 exist such that DM +M "D < —¢l,, 1. Let D > 0 be
n x n upper left submatrix of D (also diagonal) and V (z) =
2T Dz. With the column vector Z(t) = (z7,0(t)z, ()T,
the following inequalities hold

—elz|? > —¢|z|®> > 22" DMz = 22T DM (0)x+
+2dy 41 (02 Tny1 — 22 1) > 22 DM(0)x >
d
> — t)).
> Ly (a()

We used the fact that § > 6 and Oz, 1 = 0022 > %22 =
z2 ;. Hence |z(t)| vanishes exponentially as ¢t — co. M

A. Proof of Lemma 1

Statement (a) is immediate from (8), since v > 0, h(y) >
0, Vy > 0 and the matrix A, 24 ve,.e,| is Metzler.

To prove (b), notice first that e — e*4~ is a non-negative
matrix for any v > 0 (and both exponentials are positive
matrices). Indeed, consider a nonnegative vector pg € R’}.
Then fi(t) = ey € R’} obeys the differential equation

() = A,u(t) < Apft),

and therefore’ () < e'“pug. Since g is arbitrary, the
matrix e*4 — e*4~ is nonnegative. In particular, ||e*47 ||, <
letoo < cre™?, where c1,a > 0 depend only on A,

1(0) = po,

2 Although the comparison lemma does not hold, in general, for vector
differential inequalities, it can be used for the positive LTI system at hand.
Since f1(t) = Ap(t) — p(t), where p(t) > 0, the Cauchy formula entails
that p(t) = et4pug — fot e(t=5)Ap(s)ds < et pg.

but not on . Furthermore, A; Lis a negative matrix. A
straightforward computation allows to compute the vectors:

() = -
which are given by (;(y) = 0 for i < r, {.(y) = v/(br +
v) < 1, G;(v) = G-1(7)gi—1/b; for i > r and thus are
uniformly bounded in vy > 0. Similarly, it can be checked
that —A; Le; is a bounded function of v > 0.

Let £(t) = &(t]€o, M1, My) stand for the solution to

£(t) = A E(t) + vMie, + Maeq, £(0) = &o.

where M;, My > 0 are constants and &, € R". Using the
Cauchy formula, one arrives at

gy < &(t€o, My, M) = &+
t
—1—/65‘4” (yMie, + Moey) ds =
0
=etgy — ’YMlA.;ler - M2A;le1+
+ A;letA'Y (yMler + Mgel) —

*yA;ler, v >0,

2L

(22)

<0
1€(t[€o, My, M2)|oo < c1e™&o|oo + caMi + c3 Mo,

where c¢;,« > 0 are independent of v > 0, M; and Ms.
Recalling that n(t) < M, and 0 < h(y) < h(0) for any
y > 0, (10) follows from (14). Indeed, let M; = M, and
My = h(0). Since §(t) < A,d+~vM,e,+ Mye;, one obtains
that 0(¢) < &£(t6(0), My, Ms). For the same reason, —§(¢t) <
&(t] —0(0), =My, —My3) due to (14). By noting that |§|ec =
max{d;, —d;,7 € 1,n} and using (22), (10) is immediate.

B. Proof of Theorem 1

To show the first statement, consider Eq. (14) with n =0
and notice that due to Assumption 1 h(z,(t)) — h(2,(t)) =
—6(t)0,(t), where 6(t) € [0,H] depends on x,(t) and
2, (t). Hence 6(t) is a solution to (19), where M (0) is
defined in (16), § = H, o; = b; for 4 £7r, o =b. + 7,
B; = g; for i < n and B, = 1. In view of (11), v > .
is equivalent to (18). The first statement of Theorem 1
now follows from Corollary 1. In presence of disturbance
n(t) # 0, (14) implies that

o(t) = M(8(1))8(t) +~ern (1),

where 6(t) € [0, H] is another function, depending on z(t)
and z,(t). Since the quadratic Lyapunov function V(z) =
"Dz from Corollary 1 is independent of the specific
function 6(-) and DM () + M(§)" D < —el,, for some
constants €,£o > 0 (independent of 6(-)), one has
d < ,.YQM2
—V(6) < —¢ldfP +70m < —=[5P + —2L <
gV (0) < =€l + 70 < =S o] + —— <
2M2
< V() + 1 .
Hence, for a properly chosen constant ¢4 > 0, one has
limy o0 |[0(t)| < cayM,,. Combining this with (10), inequal-
ity (12) follows straightforwardly.




