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Abstract

Recent studies on laser-matter interaction have been demonstrated the possibility to
expel all the electrons, leaving an ion cloud which can expand due to the Coulomb
explosion phenomenon. In order to exploit this mechanism in different fields as
hadron-therapy or fusion research, the quality and the small spread of energy of the
ion beam spectrum are essential. However, to achieve properly peak energy of the
ions, different laser targets can be tested, changing their geometry and composition.
In this thesis, two different type of targets have been examined: spherical nano-
clusters or cylindrical targets, composed by one or two ion species. In case of
spherical symmetry a semi-analytical model is presented, to describe the dynamics
of an expanding heterogeneous cluster, coupled with a numerical model, the so-
called shell method, useful when the hypothesis of the theoretical model are not still
valid. In order to describe cylindrical targets three different numerical models were
developed:

1. the Soft-Spheres method, a 3D N-Body algorithm, without hypothesis on the
symmetry of the system

2. the EXPICYL method, a 2D axial symmetric PIC code, without a fixed com-
putational grid to follow properly expansion phenomena

3. the ring method, a gridless 2D model, where the computational particle is
schematized as a circular torus.

All the numerical models were validated in referring geometries, generally where
the analytical comparison is available. Several different configurations were tested,
varying the characteristic parameters of heterogeneous mixtures, as the fraction of
the two species on the total and the mass-to-charge ratio of the ions, or the initial
density distribution of the ions, with the aim of finding the suitable conditions for
the hardening of the energy spectrum and the increase of the energy peak. In future,
it could be interesting a more accurate study on the quality of the ion beams in terms
of efficiency of the acceleration mechanism and stability, tailored for the demanded
applications.
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Chapter 1

Introduction

Intense laser pulses interacting with matter may induce the formation of plasma
and a consequent rapid expansion into the vacuum, as studied since 1962 by J.
Dawson (Dawson, 1962). Depending on different laser and target characteristics,
a lot of phenomena could take place, starting from a quasi-neutral plasma expan-
sion (Krainov and Roshchupkin, 2001) or reaching the Coulomb explosion condition
(Boella et al., 2016; Peano et al., 2006). In case of very intense laser pulses (pulse
t < 1 ps and intensity I > 1016 W/cm2), the energy driven on the matter is sufficient
to expel all the electrons from their respective atoms, leaving behind an ion cloud
lacking of all the inter-molecular chemical bonds, and quite instantly the strong
positive force between the ions induces a rapid explosion at high velocities (Dit-
mire et al., 1996). This process of acceleration is a well known phenomenon called
Coulomb explosion (Ditmire et al., 1997), with many potential applications ranging
from fusion research (Last and Jortner, 2001a; Ditmire et al., 1999) to biomolec-
ular imaging (Neutze et al., 2000) and hadron therapy in oncology (Karsch et al.,
2017; Bulanov et al., 2009, 2002), depending on the energies reached by the ions
of the target. The study of the Coulomb explosion mechanism is relatively simple
when the time scales of the ionization processes are some order of magnitude shorter
than the time scale of the expansion: the conditions of the so-called cluster vertical
ionization (CVI) are verified. Typically, the CVI phenomenon prevails in case of
high laser intensities (1018

< I < 1020 W/cm2) and in this case cluster Coulomb
expansion can be assimilated as a system consisting only of ions, which are initially
located with the same distribution of the atoms in the neutral cluster. Moreover,
the direct effect of the laser electric field on ion dynamics is negligible, simplifying
the theoretical treatment of the Coulomb explosion significantly. Ion acceleration to
high energies is conventionally realized by accelerators as synchrotron or cyclotron,
while laser-driven ion acceleration could be an exciting alternative to realize compact
devices with the clear advantage of exploiting the strong electric field generated by
the break of quasi-neutrality of the target. On the contrary, several issues need to
be overcome to consider this technology exploitable in practical terms: the efficiency
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1 – Introduction

of acceleration mechanism and its stability, the quality of the ion beam produced
and the spread of the energy spectrum. In particular, almost all the above men-
tioned applications require an ion beam with a small energy spread �E/E  2%.
On the one hand, if we consider hadrontherapy, this condition is essential to save
healthy tissues and deliver high doses to the tumor; on the other hand in case of
fast-ignition, the proton spectra needed is quasi-monoenergetic (Roth et al., 2001).
Those are the reasons why laser-matter interaction is an essential field of research
and several theoretical, numerical and experimental essays have been succeeded in
order to understand the physics behind this ions acceleration mechanism.

The first type of targets tested were low-density gases (⇢ < 1019 atoms/cm3),
but the fraction of laser energy absorbed in this case is very low (< 1%). Consid-
ering solid targets (⇢ ⇠= 1023 atoms/cm3), the deposition rate of the laser energy
is quite high, close to 80%. Then spherical atomic nanoclusters were examined:
macro-aggregate of atoms bonded by Van der Waals forces and composed of a vari-
able number of atoms (102

< N < 109). In particular, those targets are interesting
because they combine properties typical of solid matter and gases and a simple adi-
abatic expansion of a dense gas flux in the vacuum is sufficient to produce them. A
progressively cooling process due to the conversion of the thermal energy in kinetic
energy is able to assemble solid droplets at high densities. The resulting nanocluster
is capable of collecting almost entirely the laser radiation and can be accelerated
up to energies some order of magnitude higher than the one achieved during the
explosion of small molecules (Ditmire et al., 1997). Initially, only homogeneous
clusters made by one ion species were studied and it has been verified that the en-
ergy spectrum produced has a very broad shape (Last and Jortner, 2001a; Krainov
and Roshchupkin, 2001). Recently, it has been demonstrated that the presence of
ion mixtures can lead to a quasi-monoenergetic distribution of the species with the
larger charge-to-mass ratio (Last and Jortner, 2001b, 2005; Hohenberger et al., 2005;
Murakami and Tanaka, 2008; Andreev et al., 2010), under particular conditions of
interest. The increasing potential due to the multicharged ions presence boosts the
energy of the light ions inside the cluster. Different initial densities have been tested,
connecting the distribution of the ions with the ion energy spectrum (Bychenkov
and Kovalev, 2005b). Moreover, a strong relationship between the presence of over-
takings in the fast species and a narrow profile of the energy spectrum has been
verified with numerical simulations (Boella et al., 2016). Therefore, the mechanism
of formation of shock shells during the expansion of the cluster takes an essential
role in the investigation of the energy spectra (Popov et al., 2010; Li et al., 2007).

Also other types of targets have been studied, such as double-layer targets
(Esirkepov et al., 2002; Bychenkov et al., 2004), made by the superposition of two
thin foils of different materials, in order to achieve higher peak energies and a longer
acceleration of the fast species, (Morita et al., 2012). In the interaction between
laser pulses and a thin solid slab, the electrons of the foil could be heated up to
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1.1 – Structure of the thesis

MeV energies, spreading out in a broad halo near the ion core: this vacuum region
triggers plasma expansion. With the ability to improve the intensity contrast ratio
of laser pulses and advancing technologies available in the production of high-quality
ultrathin plane targets (thickness 100 � 1000 Å), a very strong laser field is even
capable of laying out all the electrons from a thin target, causing a Coulomb explo-
sion (Bychenkov and Kovalev, 2005a). Therefore, two possible regimes of expansion
can rise, depending on the electron temperature. In particular, if the electron Debye
length, �DE, is comparable with the thickness of the slab, the Coulomb explosion
limit is reached; on the contrary, if the target foil is thicker than �DE, a quasi-neutral
expansion with charge separation effects can occur (Mora, 2003). In case of very
high intensities of the laser, not only can the ultra-short pulse expel all the electrons
from the correspondent irradiated area of the foil, but it also pushes the remaining
ions, with a direction of propagation parallel to the laser one. In this regime of ex-
pansion both direct Coulomb explosion and the radiation pressure phenomena are
dominant (Esirkepov et al., 2004). In case of very thin targets, the laser is only able
to knock out all the electrons from the focal spot, without accelerating the foil and
the only mechanism of acceleration is the Coulomb explosion. When we consider
thicker targets, the light of the laser is reflected inside their thickness and the radia-
tion pressure regime is achieved, as a sum of the incident, transmitted and reflected
electromagnetic wave momentum fluxes. Numerical simulations confirm that the
radiation pressure regime remains dominant in the ultra-relativistic case (Bulanov
et al., 2008), while in some range of ion energies both regimes can coexist. Only
when the radiation pressure of the laser is present, in a first phase ions are pushed
by a strong one-dimensional electric field in the laser direction of propagation, but
as the expansion evolves 3D effects become predominant and are not negligible. On
the other hand, in case of pure Coulomb explosion in the first stages too, of the
expansion both species of ions propagate in 2D (or 3D). Another crucial question is
the dynamics of the slower species, with the lower charge to mass ratio. If the dif-
ference between the two masses is large enough, in the first transient of acceleration
slow ions can be considered at rest, with the result of a time-independent electric
field and a stationary, but inhomogeneous in space, acceleration of the fast species.
In reality, it has been shown that the fast species dynamic is quite long and the
propagation of the slow ions make the electric field time-dependent (Fourkal et al.,
2005).

1.1 Structure of the thesis

This thesis investigates the phenomenon of pure Coulomb explosion in different
geometries, with homogeneous or heterogeneous targets. In case of the presence
of two species, the dynamic of both fast and slow ions is considered. Chapter 2
analyses the expansion of spherical nanoclusters from a theoretical point of view;

3



1 – Introduction

starting from a homogeneous target we demonstrate numerically how the shape of
the energy spectrum is poor of quality, with a considerable energy spread around
the peak. Consequently, an analytical model to study the expansion of composite
cluster is proposed, connecting the rise of shock shells with a narrow behavior of the
kinetic energy spectrum of the fast species. The existence of a limit value on one of
the mixture parameters is retrieved and rigorously demonstrated to determine the
presence of overtakings between fast ions. In this case, the theoretical model is no
longer valid and a numerical method is developed to study the spherical explosion,
the so-called shell method. The problem is essentially one dimensional, computa-
tional particles are in the shape of spherical shells and by using the Gauss’s formula,
the electric field is readily evaluated. Different results are presented in Chapter 4
in case of spherical clusters made by two ion species, varying the charge-to-mass
ratio and the composition of the mixture. Then, cylindrical targets are considered,
firstly using gridless particle techniques (Dawson, 1962; Eldridge and Feix, 1962)
and then introducing an in-house two-dimensional PIC code. Numerical methods
without a computational grid are useful in situations, in which the physical domain
occupied by the particles increases rapidly in time (as for plasma expansion and
explosion). In this framework, in general situations one could employ a set of com-
putational particles and directly calculate the electric field acting on each of them,
as the sum of the contribution of the other particles. This requires an extremely
high computational effort unless the problem under exam presents some symmetry.
The three-dimensional Soft-Spheres method was developed to this purpose, it is
an N-body technique useful if a hypothesis on the symmetry of the system cannot
be made. Whenever an axial symmetry is present, as in cylindrical targets, the
EXPICYL PIC code can be used to simulate the expansion. EXPICYL is a two-
dimensional PIC code without a fixed computational domain to follow expansion
phenomena correctly.Finally, another tool was developed by the group: the ring
method. This is a gridless N-body method and here the particles are modeled as
thin circular rings, which are characterized by their radii and their axial coordinates.
In this case, the evolution of the force acting on each particle necessarily requires
the calculation of the sum of contributions due to the other particles. All the details
of the numerical methods are explained in Chapter 3, combined with the validation
of the codes in reference cases for which the analytic solution is available. Different
results are presented in case of homogeneous cylindrical targets, heterogeneous slab
made by two ion species or double layer targets, (Chapter 5). In Chapter 6 a brief
overview of the results presented in the thesis is exposed, with some considerations
on possible future developments.

The papers published by the author and cited in the thesis are reported in the
annexes, at the end of the thesis. Then, the text of a submitted paper on a side
activity of the PhD is appended.
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Chapter 2

Coulomb explosion of spherical
clusters

In this chapter, the dynamic of Coulomb explosion in uniform and composite
clusters is analyzed. The first section presents a brief introduction to the expansion
of a cluster with an initial uniform charge density and composed by one ion species
only. In this case, the analytic solution is available and the aim is the calculation
of the kinetic energy spectrum in order to demonstrate that its shape and spread
of energy is not suitable for practical applications. Section 2.2 presents a detailed
theoretical analysis of the expansion of spherical clusters made by a mixture of two
species, investigating the conditions required to harden the energy spectra. The
ion dynamic is described in the two concentric regions formed during the evolution
of the explosion. In particular, the ions with the largest charge-to-mass ratio take
higher velocities and are called fast ions, while the slow ions make the other species.
Therefore, when the cluster starts to expand, in the inner region we can find a mix-
ture of slow and fast ions, while in the outer region only fast ions are present, with
two different trends of the electric field. Two parameters characterize the dynamics
of the mixture expansion: µ, which depends on the masses and charges of the two
species, and ↵, which is the fraction of fast ions on the total. The influence of the
value of ↵ on the possible rise of shock shells and the correlation with the hardening
of the kinetic energy spectrum is demonstrated rigorously. It has been found nu-
merically that for typical values of ↵, called ↵crit, the energy spread in the spectrum
is mainly contained, as showed in a previous work (Li et al., 2007). We demonstrate
that this value depends only on the charges, and not on the masses, of the ions,
and we obtain the expression of ↵crit theoretically for each type of mixture, starting
from the limit case of slow ions with infinite mass, consequently at rest, and then
adapting the dissertation also in the case of slow ions with finite mass. Whenever
the hypothesis of the theoretical model are supported, the properties of the explo-
sion are deduced analytically; unlikely, the study is completed numerically with the
so-called “shell method” (Boella et al., 2011; D’Angola et al., 2014), described in
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2 – Coulomb explosion of spherical clusters

details in Sec. 2.3. The mentioned method gives extremely precise results by taking
advantage of the spherical symmetry of the problem.

Declarations Part of the work described in this Chapter was also previously pub-
lished in the following publications, further reported in Appendix of this thesis: 1)
E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O. Silva and G. Coppa, Study on
Coulomb explosions of ion mixtures, Journal of Plasma Physics 82 (2016) 905820110,
2) B. Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa, Gridless simulation
of collisionless systems with high degree of symmetry, Computer Physics Commu-
nications, 2017.

2.1 Expansion of a sphere with uniform density

The Coulomb explosion of a sphere of initial radius R, made by one ion species,
is here presented from a theoretical point of view, as a reference. The ions are
considered initially at rest and the charge density distribution is uniform inside
the sphere, consequently the electric field is linear with the radius inside the initial
cluster. The presence of Coulomb repulsive forces between the ions triggers the start
of the expansion. The hypothesis of absence of overtakings between ions is proposed:
if the charge density remains constant during the expansion and the electric field
lasts as a linear function of the radius, inner ions cannot be accelerated more than
the outer ones and will not reach them. The motion equation for one ion inside
the initial sphere of radius R accelerated by the Coulombian force and written in
Gaussian units, is given by

8
>>>>>>><

>>>>>>>:

d2
r

dt2
=

q

m
E(r, t),

dr

dt
(0, r0) = 0,

r(0, r0) = r0,

(2.1)

where q is the charge of one ion, m its mass, E(r, t) the electric field at a radius
r < R(t) and r(t, r0) will be the radial position of a particle at time t, which has
started its trajectory at radius r0. The system in Eq. (2.1) is valid for each ion of
the cluster during the expansion since overtakings between ions do not occur. The
electric field at a radius r < R(t) can be calculated applying Gauss’s law as

E(r, t) =
Q(r, t)

r2
=

4

3
⇡qnr, (2.2)
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2.1 – Expansion of a sphere with uniform density

being Q(r, t) the total charge inside a sphere of radius r < R(t) and n the density
inside the sphere, both expressed at time t. Defining the dimensionless variable

⇠ =
r

r0
, (2.3)

and the modified charge

Q̃ =
qQ(r, t)

m
, (2.4)

the system (2.1) becomes 8
>>>>>>><

>>>>>>>:

d2
⇠

dt2
=

Q̃

⇠2r3
0

,

d⇠

dt
(0) = 0,

⇠(0) = 1.

(2.5)

To solve this type of differential equation one of the methods starts integrating one
time respect to the time variable t, obtaining

1

2

✓
d⇠

dt

◆2

+
Q̃(r, t)

⇠r3
o

= K, (2.6)

being K a constant given by the initial condition inside the cluster. If the hypothesis
of no overtakings between ions during the expansion is valid, the term Q̃(r, t) can
be calculated considering that it will remain constant in time since the start of the
expansion

Q̃(r, t) = Q̃0(r0,0) = Q̃0, (2.7)

substituting in (2.6)
1

2

✓
d⇠

dt

◆2

+
Q̃0

⇠r
3
0

=
Q̃0

r
3
0

, (2.8)

and consequently Eq. (2.8) can be written as

✓
d⇠

dt

◆
=

s

2
Q̃0

r
3
0

✓
1 � 1

⇠

◆
; (2.9)

splitting the variables and integrating the second member respect to the time vari-
able, we obtain

Z
⇠

1

s
⇠

0

1 � ⇠0 d⇠
0 =

s

2
Q̃0

r
3
0

t, (2.10)
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2 – Coulomb explosion of spherical clusters

rewriting and defining the function F (⇠) the first member of the Eq. (2.10) becomes

F (⇠) =

Z
⇠

1

s
⇠

0

1 � ⇠0 d⇠
0 =
p

⇠(⇠ � 1) + log(
p

⇠ +
p

⇠ � 1). (2.11)

The evolution of the trajectory is obtained in an implicit expression as

F

✓
r(t)

r0

◆
=

s

2
Q̃0

r
3
0

t. (2.12)

From Eq. (2.9) the velocity of the particle is

v(r0, t) = r0
d⇠

dt
=

s

2
Q̃0

r
3
0

✓
1 � 1

⇠

◆
, (2.13)

substituting the definition of ⇠ the expression for the velocity becomes

v(r0, t) =
q

2Q̃0

s
1

r0
� 1

r(t)
. (2.14)

Finally, the Eqs. (2.14) and (2.12) describe the velocity and the trajectory of a
particle that takes part in a Coulomb explosion of a cluster made by one ion species,
with the hypothesis of no overtakings between the ions during the expansion.

Figure 2.1 displays a typical energy spectrum, when only one species is present in
the spherical plasma. The energy distribution is spread without favoring one specific
interval of values and this configuration is not suitable for practical applications.
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Figure 2.1: Energy spectrum for a uniform spherical plasma, made by one ion
species.

2.2 Expansion of a sphere made by an ion mixture

of two species

In this section, the expansion of spherical nanoplasmas composed by more than
one ion species is examined. In particular, a mixture of two types of ions uniformly
distributed is considered; the mixture is characterized by the parameter µ defined
as

µ =
qs/ms

qf/mf

< 1, (2.15)

where ms, mf and s qs, qf are, respectively, the masses and the electric charges of
the two species of ions. The ions are supposed initially at rest when the influence
of their repulsive forces starts to move them. Obviously, the species which moves
faster is the one with the higher charge-to-mass ratio; consequently, two regions
develop with spherical shape, called Sf and Ss, having radius Rf (t) and Rs(t), with
Rs 6 Rf . The two spheres are concentric. On the one hand, in the sphere Ss fast
and slow particles are present and Rs depicts the frontline of the slow ions; on the
other hand, only fast particles would be in the spherical shell Sf , outside Ss. The
ion dynamics are different in the inner and outer region, and they will be studied in
detail in the following section.

9



2 – Coulomb explosion of spherical clusters

2.2.1 Mathematical model of the expansion dynamics

In the beginning, the distribution of all the ions is uniform inside a sphere of
radius R. Consequently, the charge density is constant and the radial electric field is
linear. The influence of the repulsive forces starts the expansion, and both slow and
fast ions begin to move uniformly generating an inner sphere, Ss, where the charge
density remains constant, producing a linear behavior of the electric field again.

Then, at any time, the electric field inside Ss remains a linear function of the
radius r and can be described as:

E(r, t) = A(t)r for r 6 Rs(t). (2.16)

Exploiting this hypothesis, the equations of motion for both the fast and the slow
ions inside Ss are deduced easily. The uniform expansion can be depicted by intro-
ducing two functions, ⇠s(t) and ⇠f (t), describing the dynamics of slow and fast ions:
an ion initially at r = r0 at time t will be at r = r0⇠s(t) or r = r0⇠f (t). In this way,
⇠s(t) and ⇠f (t) do not depend on the initial position of the ions. Besides, we define
ns,0 and nf,0 as the initial densities of the two species and their evolution in time is
given by

ns(t) =
ns,0

⇠3
s
(t)

, nf (t) =
nf,0

⇠
3
f
(t)

. (2.17)

Applying Gauss’s law, inside the sphere Ss the electric field can be written as:

E(r, t) =
4⇡

3

 
qfnf,0

⇠
3
f
(t)

+
qsns,0

⇠3
s
(t)

!
r (2.18)

which has the same dependence on r hypothesized in Eq. (2.16). In the end, the
expression (2.18) is introduced into the equations of the motion for fast and slow
ions. Being the electric field linear on r0 and expressing the acceleration of the ions
of the two species as r0d

2
⇠f/dt

2 and r0d
2
⇠s/dt

2, we obtain

8
>>>>>><

>>>>>>:

d2
⇠f

dt2
=

4⇡

3

qf

mf

 
qfnf,0

⇠
3
f

+
qsns,0

⇠3
s

!
⇠f ,

d2
⇠s

dt2
=

4⇡

3

qs

ms

 
qfnf,0

⇠
3
f

+
qsns,0

⇠3
s

!
⇠s ,

(2.19)

where there is no more dependence on r0. Equations (2.19) can be reworked in a
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2.2 – Expansion of a sphere made by an ion mixture of two species

more compact way, as
8
>>>>>><

>>>>>>:

d2
⇠f

dt2
= ⌫

2

 
↵

⇠
3
f

+
�(1 � ↵)

⇠3
s

!
⇠f , ⇠f (0) = 1,

d⇠f

dt
(0) = 0

d2
⇠s

dt2
= ⌫

2
µ

 
↵

⇠
3
f

+
�(1 � ↵)

⇠3
s

!
⇠s, ⇠s(0) = 1,

d⇠s

dt
(0) = 0

(2.20)

being

⌫ =


4⇡q

2
f
(nf,0 + ns,0)

3mf

�1/2

, ↵ =
nf,0

nf,0 + ns,0
, � =

qs

qf

. (2.21)

The variable ⌫ can be interpreted as a characteristic frequency for the fast ion
expansion, while ↵ is the number of fast ions on the total number of ions in the
cluster.

During the whole explosion, the motion of slow ions is described at any time by
the system (2.20). Otherwise, for the dynamics of fast ions the system (2.20) is valid
only since they are inside Ss. A fast ion, starting its expansion at r = r0  R, gets
to the frontline of the inner region when r0⇠f (t) = R⇠s (t). ⌧ (r0) in the following
becomes is defined as the time the ion passes over the sphere Ss and it is retrieved
by solving the equation

⇠s(⌧)

⇠f (⌧)
=

r0

R
. (2.22)

If we consider a fast ion originally at r0, the electric field for r > Rs can be formulated
as Q (r, t) /r

2, where Q (r, t) is the charge in the sphere of radius r at time t; since
overtakings between fast ions do not take place, Q (r, t) is calculated as the sum of
the total charge of the slow ions and the charge of fast ions initially inside a sphere
of radius r0:

Q (r, t) = Q(r0, t) =
4⇡

3

�
qsns,0R

3 + qfnf,0r
3
0

�
. (2.23)

Therefore, for t > ⌧(r0), for a fast ion outside Ss the equation of motion is

mf

d2
r

dt2
= � @

@r

✓
qfQ(r0)

r

◆
, r(⌧) = ⇠f (⌧)r0,

dr

dt
(⌧) =

d⇠f

dt
(⌧)r0. (2.24)

If we want to deduce the asymptotic kinetic energy of the fast ions, ✏1, Eq. (2.24)
can be integrated as

✏1 =
1

2
mf

⇢
d⇠f

dt
(⌧ (r0)) r0

�2

+
qfQ(r0)

⇠f (⌧)r0
. (2.25)

We define the energy spectrum of the fast ions, ⇢✏, as

⇢✏ =
1

Nf

dNf

d✏1
(2.26)
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2 – Coulomb explosion of spherical clusters

where Nf represents the total number of fast ions, while dNf is the number of ions
taking asymptotic energy in the interval d✏1. Making use of Eqs. (2.22) and (2.25),
the spectrum can be made explicit as a parametric function of ⌧ , as:

⇢✏ =
4⇡r

2
0nf,0

Nf

dr0/d⌧

d✏1/d⌧
. (2.27)

The analysis of the presence of overtakings between fast ions is of crucial importance:
in this case, Eq. (2.25) is no longer valid and it is not helpful to deduce the energy
spectrum of fast ions, while their dynamics can be depicted only numerically. The
presence of shock shells occurs when the fraction of fast ions, ↵, is smaller than
a critical value, ↵crit. As an example, Fig. 2.2 shows the phase-space of the fast
ions at different times, when shock shells are not present. Otherwise, when two fast
ions have radii r1 < r2 and reach velocities v1 > v2 the formation of shock shells
begins, as shown in Fig. 2.3 There is an easy way to understand if shock shells will
appear in a Coulomb explosion, without requiring a full numerical simulation of the
phenomenon. The derivative of ✏1 is calculated with in relation to r0, using Eq.
(2.25), which is valid only in the absence of shocks. If the condition

d✏1

dr0
> 0 (2.28)

is valid for each r0 2 [0, R], the ions in the inner zones gain slower velocity compared
to outer ones and cannot reach them; in this case, no overtaking occurs. Alterna-
tively, if d✏1/dr0 takes negative values for some r0, overtakings between fast ions will
take place. Following this rule, the presence of a limit value for ↵ can be promptly
confirmed. Generally, if ↵ > ↵crit the derivative d✏1/dr0 is positive and no shock
arises; for ↵ < ↵crit, d✏1/dr0 changes its sign, suggesting that the fast particles
overtake each other, with the formation of shock shells.

The phenomenon of the formation of shock shells is crucial also because of its
strong connection with the monochromaticity of the ion spectrum. This relation has
been studied with a detailed analytic analysis, demonstrating that the width of the
asymptotic energy spectrum can assume a very narrow profile. In particular, under
certain conditions all the ions may have almost the same kinetic energy, indicating
a multi-valued ion phase space.

12



2.2 – Expansion of a sphere made by an ion mixture of two species
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Figure 2.2: Phase space for a mixture C
+
H

+ with ↵ = 0.4 > ↵crit, no formation
of shock shells. Adapted from: E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O.
Silva and G. Coppa, Journal of Plasma Physics 82 (2016).
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Figure 2.3: Phase space for a mixture C
+
H

+ with ↵ = 0.2 < ↵crit, shock shells are
present. Adapted from: E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O. Silva
and G. Coppa, Journal of Plasma Physics 82 (2016)
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2.2 – Expansion of a sphere made by an ion mixture of two species

2.2.2 The theoretical derivation of ↵crit

In the following section, the value of ↵crit is theoretically deduced, starting from
the limit case of slow ions at rest (ms ! 1) and then generalizing the result for
all the other situations when ms takes a finite value. Finally, it is demonstrated
rigorously that the arise of shocks depends only on the ratio between the total
charge of the fast ions with respect to the one of the slow ions, and not on their
masses. We start defining the two quantities Qs and Qf as the total charge of slow
and fast ions, and then calculating the Hamiltonian of the fast ions dynamics, in
the case of absence of shocks

H (r, pr; r0) =
p

2
r

2mf

+
qfQf

r

⇣
r0

R

⌘3

+ qf�s(r, Rs(t)), (2.29)

being r0 the initial position of a fast ion. �s(r, ⇢) is the electrostatic potential at
radius r generated by fixed ions with a uniform charge distribution inside a sphere
of radius ⇢:

�s(r, ⇢) =

8
>>><

>>>:

3Qs

2⇢
� Qsr

2

2⇢3
for r 6 ⇢,

Qs

r
for r > ⇢.

(2.30)

In the limit situation with ms ! +1, Rs(t) is constant and Rs = R; it means that
H has no explicit dependence on time and it is a constant of motion. Consequently,
the asymptotic energy ✏1 can be rewritten readily as a function of r0

✏1(r0) = qf


Qf � Qs/2

R3
r
2
0 +

3Qs

2R

�
(2.31)

from which the energy spectrum can be easily deduced (Li et al., 2007).
Depending on the sing of the term Qf � Qs/2, two different situations can take

place, as shown in Fig. 2.4. On one hand when Qf > Qs/2, according to Eq. (2.31),
✏1 is an increasing function of r0, then there is no presence of overtakings between
fast ions and the spectrum deduced analytically is correct (Fig. 2.5 curves a, b, c).
On the other hand if Qf < Qs/2, the ion velocity is a decreasing function of r0, and
this fact suggests that the inner ions of the cluster are headed to overtake the ions
close to the fast frontline. Consequently, the hypothesis of no overtakings and Eq.
(2.31) are no longer valid. In this case, the spectrum can be deduced numerically,
as shown in Fig. 2.5, curves e, f, g, where the energy spectra have been calculated
using the shell method, see Sec. 2.3. In the limit case when Qf = Qs/2 (Fig. 2.5,
curve d) Eq. (2.31) can still be used, considering Qf � Qs/2 ! 0+. In this abstract
configuration, the spectrum is perfectly monoenergetic.
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2 – Coulomb explosion of spherical clusters
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Figure 2.4: Situation with slow ions at rest, ✏1 as a function of r0: when Qf > Qs/2
inner fast ions have lower asymptotic energies, on the contrary when Qf < Qs/2 the
outer ions are the less energetic and overtakings can take place.

Generally, the mass of slow ions is finite and in this case their motion must be
considered. Then, the potential of the slow ions, �s, present in the Hamiltonian, is
a function of time, Eq. (2.29), as the frontline Rs(t) is no more fixed. Finally, H is
not constant in time:

dH

dt
=

@H

@t
= qf

@�s

@Rs

dRs

dt
. (2.32)

Theoretically, the value of the asymptotic energy can be deduced integrating Eq.
(2.32) respect to the time t:

✏1 = H (t ! +1) = H (t = 0) + qf

Z
⌧(r0)

0

@�s

@Rs

(r(t), Rs(t))
dRs

dt
dt (2.33)

where the upper integration limit can be established equal to ⌧(r0), because for a
time t > ⌧ the considered ion will be outside Ss(t) and the term @�s/@Rs goes to
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2.2 – Expansion of a sphere made by an ion mixture of two species
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Figure 2.5: Energy spectra of a mixture with slow ions at rest (ms ! +1) and
Hydrogen fast ions, for different value of ↵ in the range [0.2, 0.5]. Curves a, b and c
depict mixtures with ↵ > ↵crit; in this case shocks are not present and the numerical
spectra are equal to the analytic curve. Curve d shows the limit case of ↵ = ↵crit,
where the energy spectrum is singular. Curves e, f and g represent situations with
↵ > ↵crit, for which the spectra have been computed using the shell method, see
Sec. 2.3. Adapted from: E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O. Silva
and G. Coppa, Journal of Plasma Physics 82 (2016).

zero. We can notice the correspondence between H (t = 0) and the asymptotic
energy for fixed slow ions (Eq. (2.29)), and rewriting r(t) and Rs(t) as functions of
⇠f and ⇠s, we finally obtain

✏1 = qf


Qf � Qs/2

R3
r
2
0 +

3Qs

2R

�
� 3Qsqf

2R
I(r0) (2.34)
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2 – Coulomb explosion of spherical clusters

where I(r0) is defined as

I(r0) =

Z
⌧(r0)

0

"
1 �

✓
r0⇠f (t)

R⇠s(t)

◆2
#

⇠
0
s
(t)

⇠2
s
(t)

dt. (2.35)

It is interesting to highlight that the integral I is always non negative and it is
because the motion of slow ions takes some energy away from the fast ones.

Now we can examine the condition d✏1/dr0 > 0 for r0 2 [0, R]. Starting from
Eq. (2.35), we obtain:

dI

dr0
=

⇠
0
s
(⌧)

⇠s(⌧)2

✓
1 � r

2
0⇠f (⌧)2

R2⇠s(⌧)2

◆
d⌧

dr0
�
Z

⌧(r0)

0

2r0⇠
2
f
⇠

0
s

R2⇠4
s

dt. (2.36)

From this formula, considering that d⌧/dr0 < 0, we have

dI

dr0
(r0) 6 0 8r0 2 [0, R],

dI

dr0
(R) = 0; (2.37)

being
d✏1

dr0
= 2qf

Qf � Qs/2

R3
r0 � 3Qsqf

2R

dI

dr0
, (2.38)

if Qf > Qs/2 the derivative d✏1/dr0 is always positive, as the sum of two non-
negative quantities, as shown as an example in Fig. 2.7. Consequently, ✏1 is an
increasing function (Fig. 2.6) and no overtakings can occur. Instead, if Qf < Qs/2
the quantity d✏1/dr0 is somewhere negative (Fig. 2.9) and ✏1 has some decreasing
region (Fig. 2.8), then shock shells are present.

At the end, we have obtained that the limit value Qf = Qs/2 can be used in
any case to distinguish explosion with or without shocks. In a previous paper (Li
et al., 2007) this typical property of the Coulomb explosions of spherical clusters
was obtained numerically and here rigorously proofed. From the discriminant on
the total charges, the critical value of ↵ is gained:

↵crit =
�

2 + �
. (2.39)

It is very interesting to denote the only dependence on the charge ratio of ↵crit,
without any dependence on the ions masses. For example, ↵crit = 1/3 for all the
following mixtures HD, HT , DT and HC

+, where the value changes if we consider
a mixture with another charge of the carbon as HC

2+, HC
3+. The expansion of

these types of mixtures will be performed and analyzed in Chapter 4 of this thesis.
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2.2 – Expansion of a sphere made by an ion mixture of two species
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Figure 2.6: ✏1 as a function of r0, in a mixture
with a value of the parameter ↵ > ↵crit. Com-
parison between the case of ms ! 1 and finite
mass of slow ions. ✏1 is an increasing function in
case of slow ions at rest or not.
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Figure 2.7: Derivative of ✏1 as a function of
r0, comparison between the case of ms ! 1 and
finite mass of slow ions, ↵ > ↵crit. The derivative
of ✏1 is always positive, no overtakings can occur.
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Figure 2.8: Same as Fig. 2.6, but with ↵ <

↵crit. In both cases there is a region where the
function is decreasing and overtakings can occur.
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Figure 2.9: Same as Fig. 2.9, but with ↵ <

↵crit. In both cases there is a region in which the
derivative is negative.
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2 – Coulomb explosion of spherical clusters

2.3 The shell method

In this section, the numerical method used to simulate the expansion in spherical
geometry is presented, completely and rigorously. Other Authors introduced and
applied the same method, with other formulations, (in particular, in refs. (Daw-
son, 1962; Eldridge and Feix, 1962; Popov et al., 2010)). Three formulations are
presented, depending on the variables and coordinates used in the different frame-
works.

First formulation We start considering a set of N computational particles. Their
coordinates xi and momenta pi are initialized, and the particles are put in order
following the value of their radial coordinates ri = |xi|, so that rj > ri if j > i.
According to their radial position, the electric field acting on each shell is estimated
as:

Ei =

 
i�1X

j=1

qj + 1
2qi

!
xi

r
3
i

, (2.40)

by using the Gauss’s formula and making use of the spherical symmetry of the
problem. The factor 1

2 present in Eq. (2.40) may be explained simply considering
that, for r = ri � ✏ (✏ ! 0+) qi does not contribute to the electric field, while for
r = ri + ✏ the total charge to be evaluated is

P
i

j=1 qj. Therefore, a linear behavior
of E is supposed at the interface and the factor 1

2 gives the precise value of the field
(Sect. 2.4 presents a rigorous proof of the formula above). The equation of motion
can be written, knowing the electric field E on each computational particle:

8
><

>:

dxi

dt
= pi

mi
,

dpi

dt
= qiEi (x1,x2, ...,xN).

(2.41)

The solution of the system (2.41) can be retrieved using the proper numerical tech-
nique (e.g., the leapfrog or the Runge-Kutta method), with a suitable time step,
smaller respect to the inverse of the plasma frequency.

Second formulation The above formulation is straightforward, but excessively
memory and time consuming to be implemented, considering that a further simpli-
fication may be done. In this type of geometry, each particle moves on a plane due
to the presence of a central field of force; indeed a new formulation of the method is
suggested, taking advantage on this fact. The initial coordinates xi and momenta
pi of the system are generated on a 3D plane, and then the 2D coordinates Xi and
Pi are set as (

Xi = (ri,0), i = 1,2, ..., N,

Pi =
⇣
pi · xi

ri
,

���pi �
⇣
pi · xi

ri

⌘
xi

ri

���
⌘

.
(2.42)
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2.3 – The shell method

Apart from that, the method is identical to the previous formulation, but it
adopts only 2D vectors. In particular, the radial position of the particles is calculated
as Ri = |Xi| and the particles are ordered according to this variable. The electric
field takes the value

Ei =

 
i�1X

j=1

qj + 1
2qi

!
Xi

R
3
i

, (2.43)

and the evolution of the system is represented by the equations
8
><

>:

dXi

dt
= Pi

mi
,

dPi

dt
= qiEi (X1,X2, ...,XN).

(2.44)

Third formulation The third formulation of the method starts with the definition
of the Lagrangian for a single particle

L (r, ', ṙ, '̇, t) =
m

2

�
ṙ
2 + r

2
'̇

2
�

� q� (r, t) , (2.45)

� is a central potential and depends on t due to the interaction with the other
particles of the plasma. From Eq. 2.45 we can write the Hamiltonian

H (r, ', pr, p', t) =
1

2m

✓
p

2
r
+

p
2
'

r2

◆
+ q� (r, t) , (2.46)

and the motion equations
8
><

>:

dr

dt
= pr

m
,

d'

dt
=

p'

mr
2 ,

dpr

dt
= �q

@�
@r

+
p

2
'

mr
3 ,

dp'

dt
= 0.

(2.47)

Finally, as it is well known, the axial angular momentum, p', is a constant of the
motion for a central potential and in radial direction the motion is mostly one-
dimensional. This fact implies the possibility of studying the dynamics of these
systems in a third way. Starting again from the set {xi,pi} we can calculate

ri = |xi|, pr,i = pi · xi

ri

, p',i = ri

����pi � pr,i

xi

ri

���� . (2.48)

Then, it is possible to calculate the radial electric field as

Er,i =

 
i�1X

j=1

qj + 1
2qi

!
1

r
2
i

(2.49)
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2 – Coulomb explosion of spherical clusters

where particles are sorted according to ri. The equations of the motion become:
8
><

>:

dri

dt
=

pr,i

mi
,

dpr,i

dt
= qiEr,i(r1, r2, ..., rN) +

p
2
',i

mir
3
i

,

(2.50)

in which the p',i’s are constants of the motion and the initial conditions fix them.
Implementing this last formulation of the method the memory used and the compu-
tational effort are lower, compared to the other formulations. Nevertheless, special
attention must be paid to the term p

2
'
/(mr

3) in Eqs. (2.50), when r ! 0. Generally,
the second formulation is the most used because it represents a good compromise
concerning computational efficiency and simplicity.

Interaction between shells The problem under consideration has obviously
spherical symmetry and it follows the choice of a spherical surface (a “shell") as a
computational particle. The electric charge on the surface of the shell is distributed
uniformly and the points on the surface move according to different trajectories, all
of them with the same radial coordinate, r(t), and the same angular momentum p'.
We start by considering only a system made of two shells (having charge q1 and q2

and radii r1 and r2, with r1 < r2). The electric field in this case is

E(r) =

8
>><

>>:

0, r < r1,
q1

r2
, r1 < r < r2,

q1 + q2

r2
, r > r2,

(2.51)

and the electrostatic energy U can be readily computed, as

U(r1, r2) =

Z

R3

E
2

8⇡
d3 x =

q
2
1

2r1
+

q
2
2 + 2q1q2

2r2
. (2.52)

If there is a variation �r1 on r1, the change of energy ��U is evaluated as the work
qE1 · �r1 of the field on the shell itself. In other terms, we have:

E1 = � 1

q1

@U

@r1
=

1
2q1

r
2
1

. (2.53)

Similarly, the electric field acting on the second shell can be computed as

E2 = � 1

q2

@U

@r2
=

q1 + 1
2q2

r
2
2

. (2.54)

In both cases, the value of the electric field respects the rule “
i�1P
j=1

qj + 1
2qi", previously

introduced in the formulation of the method.
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2.3 – The shell method

Now let’s consider the dynamics of the two shells: if r1 remains smaller than r2 it
means that there is no crossing (i.e., no collisions) between shells. In this case

dp1

dt
= q1

1
2q1

r
2
1

,
dp2

dt
= q2

q1 + 1
2q2

r
2
2

, (2.55)

where we consider radial motion as the only possibility for the shells (i.e., p',i = 0).
The two equations (2.55) are rewritten as

8
>><

>>:

dp1

dt
= � @

@r1

✓ 1
2q

2
1

r1

◆
,

dp2

dt
= � @

@r2

✓
q1q2 + 1

2q
2
2

r2

◆
,

(2.56)

from which we immediately obtain
8
>><

>>:

p
2
1

2m1
+

1
2q

2
1

r1
= Const,

p
2
2

2m2
+

q1q2 + 1
2q

2
2

r2
= Const.

(2.57)

Therefore, following the expansion of the two shells, the asymptotic kinetic energy
for t ! +1, E(+1), can be readily computed, as

8
>><

>>:

E1(+1) = E1(0) +
1
2q

2
1

r1(0)
,

E2(+1) = E2(0) +
q1q2 + 1

2q
2
2

r2(0)
.

(2.58)

Let’s now consider the case of collision instead. Defining t = tc as the instant when
r1(tc) = r2(tc) = rc, for t > tc the shell #1 overtakes the shell #2. Therefore, Eqs.
(2.55-2.57) are valid only for t < tc. For t > tc, Eqs. (2.55) must be replaced by

8
>><

>>:

dp1

dt
= q1

q2 + 1
2q1

r
2
1

,

dp2

dt
= q2

1
2q2

r
2
2

,

(2.59)

simply exchanging indices 1 and 2, from which we finally obtain
8
>><

>>:

p
2
1

2m1
+

q1q2 + 1
2q

2
1

r1
= Const,

p
2
2

2m2
+

1
2q

2
2

r2
= Const.

(2.60)

23



2 – Coulomb explosion of spherical clusters

In order to evaluate the new asymptotic energy when we have a collision, E0(+1),
both Eqs. (2.57) (for t < tc) and Eqs. (2.60) must be taken into account:
8
>>>><

>>>>:

E0
1(tc) = E1(0) +

1
2q

2
1

r1
�

1
2q

2
1

rc

= E1(+1) �
1
2q

2
1

rc

,

E0
2(tc) = E2(0) +

q1q2 + 1
2q

2
2

r2
�

q1q2 + 1
2q

2
2

rc

= E2(+1) �
q1q2 + 1

2q
2
2

rc

,

(2.61)

and 8
>><

>>:

E0
1(+1) = E0

1(tc) +
q1q2 + 1

2q
2
1

rc

= E1(+1) +
q1q2

rc

,

E0
2(+1) = E0

2(tc) +
1
2q

2
2

rc

= E2(+1) � q1q2

rc

.

(2.62)

It means that when a collision takes place, an increase �E = q1q2/rc in the energy of
the shell #1 is produced, and it corresponds in a decrease ��E for the shell #2. In a
typical case of plasma expansion, the energy E of a shell stays in the order of qQ/R,
being Q the total charge and R the initial plasma radius. So, with �E ⇠ q

2
/R for a

single collision, we can conclude that the “plasma parameter" �E/E for a set on N

shells will be of the order of q/Q = 1/N . Finally, for typical values of the number
of computational particles, the system can always be considered collisionless.

Validation of the code To test the reliability of the numerical method a simple
case of electrons expansion in a spherical plasma is introduced, considering the
ions at rest during all the transient. Both electrons and positive ions are initially
distributed uniformly in a sphere of radius R and at t = 0 electrons have Maxwellian
velocity distribution with temperature T . Reference results have been obtained
running the simulation with a very high number of shells (N ' 106) and then a
comparison with the solution using a reduced (N ' 103) number of particles has
been performed. Since the initial distribution of electrons in terms of positions and
velocities was generated using random numbers, for a small number of shells the
results will depend on the particular choice of the phase spaces. It follows that the
same calculation has been repeated for 300 times (with different initial conditions,
all corresponding to the same physical situation) in order to compute the mean
behavior and the distribution of the physical quantities (as performed in (D’Angola
et al., 2014)). In Figs. 2.10 and 2.11 are reported respectively the time evolution of
the number of electrons inside the ion sphere (i.e., with r  R) and of the fraction
of trapped electrons (i.e., with total energy p

2

2m
� e�(r)  0). As we can observe,

the shell method provides excellent results, even with a reduced set of particles.
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Figure 2.10: Time evolution of the fraction of electrons inside the ion sphere for two
different normalized temperature, T = 0.0431, 0.431. For each value of T , ensemble
averages (full black line) and standard deviation ranges (dashed black lines) are
reported for N = 103 shells and 300 simulations with different initial conditions,
together with reference results provided by a simulation with N = 106 shells (dashed
red line). Adapted from B. Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa,
Computer Physics Communications, 2017.
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Figure 2.11: Time evolution of the fraction of trapped electrons for the same case
of Fig. 2.10. Adapted from B. Peiretti Paradisi, E. Boella, A. D’Angola and G.
Coppa, Computer Physics Communications, 2017.
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Chapter 3

Coulomb explosion of cylindrical
targets

The aim of the present chapter is the presentation and explanation in details
of the three numerical methods developed to study the expansion of a thin slab,
in case of uniform charge density or heterogeneous double layer targets. Numerical
simulations are needed to investigate the phenomenon in this geometry because a
theoretical model is not possible. The first approach was a 3D N-body algorithm,
the so-called Soft-Spheres method, which is necessary when there is no possibility of
making assumptions on the geometry of the system, see in Sec. 3.1. We developed
two other methods useful in case the original system presents some symmetries. For
example, when a laser pulse ionizes the considered slab with a circular spot, the area
interested by the mechanism of Coulomb explosion will be cylindrical. The geometry
of the system presents an axial symmetry and we decide to develop another N-body
method: the ring method, Sec. 3.2. Here computational particles are rings which
are coaxial with the system symmetry axis; they change radial and axial position
during the simulation, conserving their annular shape. In the end, a 2D Particle-In-
Cell (PIC) code was developed to follow the expansion in cylindrical coordinates,
all details in Sec. 3.3. In particular, the in-house code has a grid which enlarges in
time to properly study the phenomenon. In the following chapter, the methods are
validated in simple geometries (spherical systems) by comparison with the analytic
solution, giving an excellent agreement.

Declarations Part of the work described in this Chapter was also previously pub-
lished in the following publication, further reported in Appendix of this thesis: B.
Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa, Gridless simulation of colli-
sionless systems with high degree of symmetry, Computer Physics Communications,
2017.
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3 – Coulomb explosion of cylindrical targets

3.1 The Soft-Spheres method

The soft-spheres method is an N-body algorithm, which can simulate a 3D sys-
tem, without any hypothesis on the symmetry of the real situation. The number
of computational particles used, Np, is much order of magnitude smaller than the
number of real particles, N0, but the collisionless of the system must be maintained.
The coupling parameter, "p, of two point-like computational particles both of charge
q and mass m presents the same structure of the one for a real plasma, ", and can
be written as:

"p =
q
2
/d̄p

mv2
, (3.1)

where v is the mean velocity between two particles. In Eq. (3.1), d̄p = d̄N
1/3

is the mean distance between computational particles (while d̄ is the distance be-
tween real particles) and N = N0/Np is the number of real particles constituting a
computational one. Equation (3.1) becomes "p = " · (N0/Np)2/3 showing that the
collisionality increases dramatically if the number of computational particles is too
low. To solve this issue soft-spheres have a finite radius rs to ensure a limited value
of electrostatic potential when r < rs. In this case, the coupling parameter is

"p = "V(d̄p)Nd̄, (3.2)

being V the new potential energy of interaction between two soft-spheres, for unitary
charges. In particular, to ensure that the system is collisionless, the worst case is
examined: two completely overlapped soft-spheres, i.e., with V = V(0). Therefore
the function V must have a structure such that the condition below is respected

V(0)Nd̄ . 1. (3.3)

The interaction energy U12 = Vq
2 between two spheres of uniform charge density is

a function of the distance between the centers:

U12(r) =
1

2

Z
d3

x
0 q

4
3⇡r3

s

�s(|x � x’|); (3.4)

where �s is the electrostatic potential generated by a sphere uniformly charged:

�S(r) =

8
>>>><

>>>>:

q

rs

"
3

2
� 1

2

✓
r

rs

◆2
#

, r < rs

q

r
, r > rs.

(3.5)
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3.1 – The Soft-Spheres method

Finally, after calculating the integral in Eq. (3.4) (the end of the section reports all
the details), one obtains

U12(r) = q
2

8
>>>><

>>>>:

1

rs

"
6

5
� 1

2

✓
r

rs

◆2

+
3

16

✓
r

rs

◆3

� 1

160

✓
r

rs

◆5
#

, r < 2rs

1

r
, r > 2rs.

(3.6)

Obviously, U12(r) for r < 2rs is different from q�S, which is the energy of a sphere
interacting with a point charge, as shown in Fig.(3.1a), where q�S and U12 are
compared. The two functions coincide when the two particles do not overlap each
others, r > 2rs. Then from Eq.(3.6) the Coulomb force between two soft-spheres is
obtained, as:

F12(r) = �@U12

@r
er = q

2

8
>>>><

>>>>:

1

r2
s

"
r

rs

� 9

16

✓
r

rs

◆2

� 1

32

✓
r

rs

◆4
#

er, r < rs

1

r2
er, r > 2rs;

(3.7)

the force F12 is compared with qEs in Fig. (3.1b). Taking into account the potential
energy of the soft-spheres (from Eq. 3.6), in case of r = 0, V(0) = 6/(5rs) and the
constraint on the collisionality of the computational system reduces to

N0d̄

Nprs

. 1. (3.8)

Details of the numerical method In the present method, the center of each
sphere has three degrees of freedom for moving, while the radius rs remains constant
and it is the same for each computational particle. The appropriate choice of rs is
fundamental, in order to respect the condition on the collisionality (Eq.3.8) of the
original system. At the beginning of the simulation, Np computational particles are
created with different positions and velocity {xp,vp} in a way that reconstructs the
initial density. The charge-to-mass ratio of a computational particle is the same
as the real one and also systems composed by mixtures of different species can be
analyzed. At each time step, the equations of motion are discretized with a Runge-
Kutta method of fourth order and the velocity and the center of each sphere are
updated. Equations of motion for the soft sphere are

8
>>><

>>>:

dxp

d t
=

p
p

m

dp
p

d t
= qE(xp),

(3.9)
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Figure 3.1: a) Comparison between the interaction potential energy U12 (Eq. 3.6)
of two soft-spheres (black curve) unitary charged and the electrostatic potential of
one sphere (red curve). b) Radial Coulomb force between two soft-spheres (Eq.
3.7, black curve) compared with the electric field of one sphere unitary charged (red
curve). In both cases, the two curves coincide when the distance between the centers
of the two soft-spheres is r > 2rs (no overlapping between the two spheres).

and the electric field acting on the i-th sphere is

E(xp) =
X

j /=i

Ep0(xp); (3.10)

where Ep0(xp) is given by

Ep0(xp) =

8
>>>><

>>>>:

qp0

r3
s

"
1 � 9

16

rpp0

rs

� 1
32

✓
rpp0

rs

◆3
#

(xp � xp0), rpp0 < 2rs

qp0

r
3
pp0

(xp � xp0), rpp0 > 2rs;

(3.11)

being qp0 the charge of the sphere interacting with i-th sphere and rpp0 the distance
between the centers of the two spheres.

30



3.1 – The Soft-Spheres method

Energy and momentum conservation The soft-spheres algorithm is a mass
conserving model, and also the conservation of energy and momentum of the system
is respected. In particular, Fig. 3.2 shows the evolution of the total kinetic (red
line) and potential energy (blue line) of the system, at different time steps, for a
sampling spherical cluster composed by Hydrogen and Deuterium. The total energy
(black line) of the system remains constant, respecting the conservation of energy.
The conservation of momentum on the three directions, for a mixture of two species,
should be:

p =
NsX

i=1

pi +

NfX

j=1

pj = 0, (3.12)

being Ns and Nf the number of slow and fast spheres, constituting the system.

t
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Figure 3.2: Evolution of total energies of the system, for a spherical cluster composed
by Hydrogen and Deuterium. The kinetic energy is in red and potential energy in
blue; the mechanical energy (black line) remains constant, being the method energy
conserving.

Computing the evolution in time of the momentum, p↵, in the three directions, it
has some fluctuations around the zero. To estimate if the variations of the function
are small enough, verifying the conservation of momentum, a comparison is needed.
An average momentum is computed, on the ↵ � th component, as:

< p↵ >=
1

Np

0

@
NsX

i=1

pi,↵ +

NfX

j=1

pj,↵

1

A ; (3.13)
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3 – Coulomb explosion of cylindrical targets

thus, the modulus of the average momentum is simply

< p >=

vuut
3X

↵=1

< p↵ >2. (3.14)

The average total momentum < p > is compared with a modified average kinetic
energy of the system, < Ke >, defined as:

< Ke >=
2(Nsms + Nfmf )

Np

0

@
NsX

i=1

|pi|2

2ms

+

NfX

j=1

|pj|2

2mf

1

A . (3.15)

In order to respect the conservation of momentum, the square of the average kinetic
energy should be much larger respect to the average momentum:

< p > ⌧
p

< Ke >; (3.16)

Figure (3.3) shows that the inequality in Eq. (3.16) is satisfied at each time step of
the simulation.
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Figure 3.3: Comparison between the total average momentum < p > (blue line) and
the function

p
< Ke > (red line). The momentum remains many order of magnitude

lower than the square of the average kinetic energy.
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3.1 – The Soft-Spheres method

Validation of the code in spherical geometry To proof the validity of the
method, soft-spheres have been used in a simple spherical geometry, showing perfect
agreement with the analytic solution. The expansion of a spherical cluster with
uniform initial charge density is considered, as theoretically described in Sec. 2.1.
One of the aims is also the comparison between two different initial particle loading:

1. the particles are loaded equally spaced in a cube, with the side corresponding
to the diameter of the sphere. Then, the particles outside the sphere of initial
radius R are rejected,

2. the particles are randomly loaded inside the sphere, always respecting the
uniformity of the charge distribution;

in both cases, the initial velocities of the ions are set as zero.
The first test consists in the discrete calculation of the initial potential energy of

the sphere, considering an increasing number of particles, with both particle loading
methods. The electrostatic energy, Us, of a sphere of charge Q and radius R is given
by

Us =
3

5

Q
2

R
(3.17)

where in case of unitary charge and radius, we simply obtain the value Us = 3/5.
Starting from this value it is possible to compare the result obtained from the N-
body method, to clarify the accuracy of depicting the initial charge density and
set a suitable number of computational particles. In Fig. 3.4 the two particle
loading methods are compared and we can notice that the error on the calculation
of the electrostatic energy is negligible also with a few numbers of particle, while the
random method gives the best result. Once the initial particle loadings are tested,
the expansion of a uniform spherical cluster is presented; in this example, we try to
use a small number of soft-spheres to balance the computational cost of the method.
The simulation runs with only 5000 soft-spheres and the radius of each soft-sphere
is fixed as a fraction of the radius of the cluster: rs = R/20, respecting Eq. (3.8).
The initial radius R, total charge Q and mass M of the cluster are fixed at unitary
values. Fig. 3.5, shows the phase space at different times, multiples of the plasma
period Tp defined as

Tp =
2⇡

!p

=

r
m⇡

nq
(3.18)

being q the charge of a single sphere, m its mass and n the initial density. Fig.
3.7 shows the kinetic energy spectrum of the ions, in case of equally spaced parti-
cles on the initial axial sections of the sphere. On the other hand, Figs. 3.6 and
3.8 present the same situation with ions randomly distributed on the initial volume
of the sphere. All the results are in perfect agreement with the analytic solution,
(Boella et al., 2016), even if in the case of ions randomly distributed the histogram

33



3 – Coulomb explosion of cylindrical targets

0 1 2 3 4 5 6Np 104

0.586

0.588

0.59

0.592

0.594

0.596

0.598

0.6

0.602

0.604

U

Figure 3.4: Initial potential energy in a spherical cluster with uniform charge density,
calculated with a different number of computational particles and the two loading
methods. Random (red line), equally spaced (blue line).

used to depict the spectrum is more precise.
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Figure 3.5: Phase space evolution for a spherical cluster at different times [Tp, 2Tp, 3Tp, 4Tp]
with initial particle loading equally spaced. Results from the Soft-spheres method (blue dots) are
compared with the analytic solution (red line).
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Figure 3.6: Same of Fig. 3.5 but with ions randomly distributed at t = 0. Results from the
Soft-spheres method (blue dots) are compared with the analytic solution (red line).
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Figure 3.7: Kinetic energy spectrum of the ions inside the same sphere of Fig. 3.5, the histogram
in blue represents the result of the Soft-spheres method compared with the analytic solution (red
line).

0 0.2 0.4 0.6 0.8 1
E

0

0.5

1

1.5

2

2.5

dN
/d
E

Figure 3.8: Kinetic energy spectrum of the ions inside the same sphere of Fig. 3.6, the histogram
in blue represents the result of the Soft-spheres method compared with the analytic solution (red
line).
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3 – Coulomb explosion of cylindrical targets

3.1.1 Interaction potential energy between two
soft spheres

This section treats the derivation of the potential energy, U12, between two soft
spheres, uniformly charged, both with radius rs. The definition in polar coordinates
is

U12(d) = ⇢

Z
rs

0

r
2 d r

Z 1

�1

d µ

Z 2⇡

0

�S1(r12) d � (3.19)

being ⇢ the charge density, r12 = (d2 + r
2 � 2µrd)1/2 the generic distance between

the center of the sphere S1 and a point P inside S2, d the centers’ distance, r the
distance between P and the center of S2 and µ = cos(✓) the cosine of the angle
between d and r, as can be seen in Figs 3.10 and 3.9. The potential �S(r12) is the
potential of a charged sphere, given by Eq. (3.5). When d > 2rs, �S1 = q/r12

and Eq. (3.19) reduces to the potential energy of interaction between two point
particles: U12 = q

2
/d. When the two spheres start overlapping, it is necessary to

split the integral (3.19), depending on the position of the fraction of S2 respect to
S1, inside or outside it.

Case rs < d < 2rs

As the two spheres partially overlapping, two zone are considered, delimited by
the critical radius r = d � rs (Fig. 3.9). In this case, the integral is split as:

U12 = 2⇡⇢

Z
d�rs

0

r
2 d r

Z 1

�1

d µ�S1(r12) +

Z
rs

d�rs

r
2 d r

Z 1

�1

d µ�S1(r12)

�
. (3.20)

In a zone with r < d�rs, for each angle ✓, the point P is outside S1 and consequently,
r12 > rs: the potential is simply �S1 = q/r12. On the other hand, if P is in the
portion of S2 with r > d � rs the integral with respect to µ has also to be split,
because if ✓ > ✓̃ (green zone Fig.3.9) one has r > rs, vice-versa with ✓ < ✓̃. In
summary, Eq. (3.20) becomes

U12 = 2⇡⇢q

⇢Z
d�rs

0

r
2 d r

Z 1

�1

d µ

(d2 + r2 � 2µrd)1/2
+ (3.21)

+

Z
rs

d�rs

r
2 d r

Z
µ̃

�1

d µ

(d2 + r2 � 2µrd)1/2
+

Z 1

µ̃

3r2
s
� d

2 � r
2 + 2µrd

2r3
s

d µ

��

being

µ̃ = cos ✓̃ =
d

2 + r
2 � r

2
s

2rd
, (3.22)

(the angle ✓̃ is such that r12 = rs).
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Figure 3.9: Overlapping of two soft spheres, with the centers’ distance respecting
the following condition rs < d < 2rs. Both spheres have radius rs.

Case d < rs

In this case, the center of S2 is inside S1, as shown in Fig. 3.10 and the critical
radius on which the integral is split becomes r = rs � d

U12 = 2⇡⇢

Z
rs�d

0

r
2 d r

Z 1

�1

d µ�S1(r12) +

Z
rs

rs�d

r
2 d r

Z 1

�1

d µ�S1(r12)

�
, (3.23)

where in the case r < rs � d, for each angle ✓, r12 < rs then the potential �S1 is
the inner one of the system (3.5). On the contrary, with r > rs � d, the integral
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Figure 3.10: Same configuration of Fig. 3.9, but with d < rs.

splits also on the angle. In particular, for ✓ < ✓̃ (red zone in Fig.3.10) S2 overlaps
S1, vice-versa for ✓ < ✓̃ (green zone Fig.3.10). Consequently, the integral becomes

U12 = 2⇡⇢q

⇢Z
rs�d

0

r
2 d r

Z 1

�1

✓
3

2rs

� d
2 + r

2 � 2µrd

2r3
s

◆
d µ+ (3.24)

+

Z
rs

rs�d

r
2 d r

Z
µ̃

�1

d µ

(d2 + r2 � 2µrd)1/2
+

Z 1

µ̃

3r2
s
� d

2 � r
2 + 2µrd

2r3
s

d µ

��
.

In both cases (3.21) e (3.24), also with different integrals, the solution is the same

U12(d) =
q
2

rs

"
6

5
� 1

2

✓
d

rs

◆2

+
3

16

✓
d

rs

◆3

� 1

160

✓
d

rs

◆5
#

. (3.25)

Eq. (3.25) is finally the interaction potential energy between two soft spheres, in
function of the distance d between the two centers.
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3.2 – The ring method

3.2 The ring method

Developing an N -body code, in case of axial symmetry, the computational par-
ticle used has the shape of a ring. More precisely, we consider a torus having a
circular cross-section (of radius a). All the tori are constructed around the same
axis of symmetry, which is the z-axis, and their position is defined by a radius, Ri,
and an axial coordinate, zi (as in Fig. 3.11). When we take into account N tori,
the electrostatic energy of the system can be written as:

U = 1
2

X

i /=j

qiqj'ring(Ri, Rj, zi � zj) +
NX

i=1

q
2
i
Utorus(Ri, a), (3.26)

where we have

• qi as the total charge of a torus

• 'ring(r, R, z) as the potential generated by a unit charge distributed on a torus
with a = 0, that we call ring, of radius R laying on the xy plane in a point of
polar coordinates (r, z),

• Utorus(R, a) as the potential energy of a torus of unitary charge.

We start evaluating the potential of an infinitesimal ring defined by its total charge
q and radius R, acting on a generic point P (x, y, z). A fraction of the ring has
infinitesimal charge dq = q/(2⇡)d✓; therefore the potential on P is

�ring!P =

Z

V ol

q

rPP 0

d ✓

2⇡
. (3.27)

Fig. 3.12 displays the symmetry of the problem: in this case, the point P can be
taken for simplicity with the coordinates P = (r,0, z) and the potential created by
the ring will be the same for each point with coordinates (r sin ✓, r cos ✓, z) for a
generic angle ✓ and fixed r, z. One point of the ring, called P

0, has coordinates
P

0 = (R sin ✓, R cos ✓,0) and the distance rPP 0 is made explicit as

rPP 0 = (r2 + R
2 + z

2 � 2rR cos ✓)1/2
. (3.28)

At this point, our idea is to lead back to a known function for the calculus of the
integral (3.27); expressing cos ✓ in function of ↵ = ✓

2 � ⇡

2 , the integral becomes

�ring =
q

s(r, R, z)

Z
⇡/2

0

d ↵

(1 � ⇠ sin2
↵)1/2

, (3.29)

where ⇠ and s are defined as

⇠ =
4Rr

s2(r, R, z)
e s = [(r + R)2 + z

2]1/2
. (3.30)
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Finally, the ring potential is expressed as

�ring(r, R, z) =
2q

⇡

K[⇠]

s(r, R, z)
, (3.31)

being K[⇠] the complete elliptic integral of the first kind

K[⇠] =

Z
⇡/2

0

d ↵

(1 � ⇠ sin2
↵)1/2

. (3.32)

The following section reports in details the calculation of Utorus(R, a), but for the

y 

x 

a 

z 

Ri 

z = zi 

Figure 3.11: Scheme of a torus. Adapted from B. Peiretti Paradisi, E. Boella, A.
D’Angola and G. Coppa, Computer Physics Communications, 2017.

case of interest in which a ⌧ R, we obtain:

Utorus(R, a) ⇠ � 1

2⇡R


log
⇣

a

8R

⌘
� 1

4

�
. (3.33)

When we refer to a ring with a ! 0 it can be noticed that the expression in Eq.(3.33)
diverges and this is the reason why computational particles are chosen as tori and
not simply rings. On the other hand, when we calculate the interaction energy
between tori, we use the value of 'ring, as we suppose that in the case a ⌧ R the
energy of two tori or two rings is necessarily the same.
Now, we derive the equations of the motion for the set of rings. The kinetic energy
of the system is considered

NX

i=1

mi

2

⇣
Ṙ

2
i
+ ż

2
i

+ R
2
i
'̇

2
i

⌘
, (3.34)
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3.2 – The ring method

Figure 3.12: Geometry to solve the integral. Adapted from B. Peiretti Paradisi, E.
Boella, A. D’Angola and G. Coppa, Computer Physics Communications, 2017.

in order to derive the Lagrangian. By introducing the momenta pR,i, pz,i, and p',i:

pR,i = miṘi, pz,i = miżi, p',i = miR
2
i
'̇i, (3.35)

we finally obtain the Hamiltonian H of the N interacting rings as:

H =
NX

i=1

1

2mi

✓
p

2
R,i

+ p
2
z,i

+
p

2
',i

R
2
i

◆
+

+
1

2

X

i /=j

qiqj'ring(Ri, Rj, zi � zj) +
NX

i=1

q
2
i
Utorus(Ri, a), (3.36)
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and the equations of the motion are:
8
>>>>>>>>>>><

>>>>>>>>>>>:
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=
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=
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=
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@R↵

Utorus(R↵; a),

d pz,↵

d t
= �

P
� /=↵

q↵q�

@

@z↵

'ring(R↵, R�, z↵ � z�).

(3.37)
We notice that the angular momenta p',↵ are constants of the motion. The partial
derivatives of 'ring can be readily computed using the expression for the derivative
of the elliptic integral of first kind K[x]:

d K[x]

d x
=

E[x] � (1 � x)K[x]

2x(1 � x)
, (3.38)

being E[x] =
R

⇡/2

0 (1�x sin2
↵)1/2d↵ the complete elliptic integral of the second kind

(Abramowitz and Stegun, 1965).

Validation of the code in spherical geometry To test its reliability and ac-
curacy, we employ the ring method to simulate the expansion of an ion sphere of
uniform density, for which we have available the analytic solution. The physical
quantities are always normalized to obtain a total radius of the sphere R = 1 and
total unitary charge and mass. The initial distribution of the rings with coordinates
{Ri, zi} has been conceived in two different ways, considering that the initial domain
[R, z] is a half circle of radius R0:

1. the initial domain is divided into a number N of small squares, each corre-
sponding to the cross-section of a ring,

2. taking a set of {Ri, zi} in a random way, but in order to obtain a uniform
charge density.

The radius ai of the section of each torus has been determined as proportional to
Ri, i.e., ai = k · Ri. We choose the constant k by imposing the potential energy of
the set of the rings equal to the exact value of the energy of the sphere. Figures
3.13, 3.14 and 3.15, 3.16 refer to method 1 and method 2, for ring loading, respec-
tively. Figs. 3.13 and 3.14 show the time evolution of the phase-space distribution,
comparing the results from the ring method with the analytical behavior. Figures
3.15 and 3.16 display the evolution in time of the total kinetic energy of the ions,
E =

P
N

i=1
mi
2 v2

i
(t); in addition, the behavior of [E(t) � Er(t)]/E is also depicted,
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Figure 3.13: Phase-space distribution at different times (t = 4 ÷ 36) of a spherical ion plasma
in the case of ring-loading with method 1. Results obtained with the ring method (red dots) are
compared with the analytic solution (blue lines). Adapted from B. Peiretti Paradisi, E. Boella, A.
D’Angola and G. Coppa, Computer Physics Communications, 2017.

where Er(t) =
P

N

i=1
mi
2 [v2

i
(t) · er,i(t)] is the kinetic energy due to the motion in ra-

dial direction. Obviously, in the exact solution Er(t) ⌘ E(t), so we expect a value
of
��E�Er(t)

E

��⌧ 1. All the numerical results obtained are in excellent agreement with
the theory.
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Figure 3.14: Same as Fig. 3.13 in the case of ring loading with method 2 (t = 4 ÷ 36). Results
obtained with the ring method (red dots) are compared with the analytic solutions (blue lines).
Adapted from B. Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer Physics
Communications, 2017.

3.2.1 Electrostatic energy of a torus with a ⌧ R

To calculate the electrostatic energy of a torus, we start by dividing the cross-
section S in a large number of subdomains, as in Fig. 3.17. Each of them acted an
electrostatic potential that we approximate as the one of a ring. Calling �qi the
discrete charge of the i-th subdomain and by 'ring(xi;xj) the potential in xi due to
a unitary charge in xj, the energy of the torus is given by

U ' 1

2

X

i /=j

�qi�qj'ring(xi,xj). (3.39)

Taking the limit case, when the size of the subdomains tends to zero, the sum
becomes an integral

U =

Z

S

d2
xQ

Z

S

d2
xP �(xQ)�(xP )'ring(xP ,xQ), (3.40)

where �(x) represents the charge density for a unit cross-section. Supposing that
the torus is uniformly charged and in the particular case with a ⌧ R, we can assume

� ' q

⇡a2
= Const. (3.41)
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Figure 3.15: Time evolution of the total kinetic energy of the ions (blue line) and of the fraction
of the perpendicular kinetic energy (red line) obtained with the ring method for the same case of
Fig. 3.13 (method 1 for ring loading). Results obtained with the ring method are compared with
the analytic solutions (black stars). Adapted from B. Peiretti Paradisi, E. Boella, A. D’Angola
and G. Coppa, Computer Physics Communications, 2017.
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Figure 3.16: Same as Fig. 3.15, using method 2 for ring loading. Excellent agreement between
the ring method (solid lines) and the analytic solution (black stars). Adapted from B. Peiretti
Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer Physics Communications, 2017.
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3 – Coulomb explosion of cylindrical targets

Figure 3.17: Cross section of a torus and coordinates employed in the calculation.
Adapted from B. Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer
Physics Communications, 2017.

In order to evaluate 'ring(xP ,xQ), the parameters s and ⇠, defined in Eq. (3.30),
must be rewritten in this case. One has:

⇠ =
4(R + x1,P )(R + x1,Q)

s2
,

s =
⇥
(R + x1,P + R + x1,Q)2 + (x2,P � x2,Q)2

⇤1/2
. (3.42)

Introducing the quantity ⌘ = R + x1,P +x1,Q

2 , such that R + x1,P = ⌘ + x1,P �x1,Q

2 ,
R + x1,Q = ⌘ � x1,P �x1,Q

2 , the variable ⇠ can be written as:

⇠ =
1 �

⇣
x1,P �x1,Q

2⌘

⌘2

1 +
⇣

x2,P �x2,Q

2⌘

⌘2 ' 1 �
⇣

rPQ

2R

⌘2

, (3.43)

with r
2
PQ

= (xP � xQ)2. Indeed, ⌘ is much larger with respect to the quantity
|x2,P � x2,Q|  a, so the approximation 1

1+✏
' 1 � ✏ can be used; moreover, ⌘ can be

approximated by R. We introduce the approximation for the asymptotic behavior
of K[⇠] when ⇠ ! 1:

K[⇠] ⇠
⇠!1

�1

2
log(1 � ⇠) + log 4, (3.44)
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3.2 – The ring method

and assuming that s ' 2R, the following expression for 'ring(xP ,xQ) is finally
obtained:

'ring(xP ,xQ) = � 1

⇡R
log
⇣

rPQ

8R

⌘
. (3.45)

Equation (3.45) can be substituted in Eq. (3.39), which can be rewritten as

U =
�

2

2

Z

S

d2
xQ'torus(xQ), (3.46)

being
'torus(xQ) = � 1

⇡R

Z

S

d2
xP log

⇣
rPQ

8R

⌘
. (3.47)

In the case of xQ = 0, 'torus is easily evaluated:

'torus(0) = � 1

⇡R

Z
a

0

2⇡rdr log
⇣

r

8R

⌘
= �a

2

R


log
⇣

a

8R

⌘
� 1

2

�
. (3.48)

To calculate 'torus for a generic xQ 2 S, we can start by highlighting that log(rPQ)
is proportional to the Green function for the two-dimensional Poisson’s equation:

r2
Q

log rPQ = 2⇡� (xQ � xP ) . (3.49)

So, by applying the Laplacian operator r2
Q

to Eq. (3.47), we obtain

r2
Q
'torus = � 1

⇡R

Z

S

d2
xP · 2⇡� (xP � xQ) = � 2

R
. (3.50)

In the particular symmetry of the problem, 'torus is a function of rQ = |xQ|, and
the Laplacian operator becomes r2

Q
= 1

rQ

d
d rQ

rQ
d

d rQ
. Therefore, Eq. (3.50) can be

readily solved, so obtaining

'torus(rQ) = 'torus(0) �
r
2
Q

2R
. (3.51)

In the end, the energy of the torus can be calculated solving the integral in Eq.
(3.46):

U =
q
2

2⇡2a4
· 2⇡

Z
a

0

rQdrQ


'torus(0) �

r
2
Q

2R

�
= � q

2

2⇡R


log
⇣

a

8R

⌘
� 1

4

�
. (3.52)

Equation (3.52) provides very accurate results in the case a ⌧ R. Making a com-
parison between Eq. (3.52) and the value of U obtained from numerical integration
of Eq. (3.39), the relative error obtained is less than 0.5% for a/R < 0.2. A similar
formula (except for the term -1/4) has been deduced in a concise, brilliant way in
(Landau and Lifshitz, 1984) by using the technique of asymptotic matching.
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3 – Coulomb explosion of cylindrical targets

3.3 EXPICYL: the PIC method for expansions

A two-dimensional cylindric (r, z) Particle-In-Cell has been developed and used
to describe the rapid expansion of plasmas due to the interaction of a high-power
laser pulse with solid targets. Thus, the computational domain has not a fixed size,
but it follows the expansion, increasing its dimensions. The method is a 2D model,
with axial symmetry, and each cell has an annular shape with size �r and �z, in
cylindrical coordinates. The grid starts with an initial radius R0 and initial height
H0, containing all the computational particles. Fig. 3.18 presents an example of a
typical initial grid. At each time step, because of the expansion mechanism, some
particles take values of rj, zj larger than the domain limits, which are recomputed.
The number of grid cell (Nr, Nz) remains constant and the new size of the domain,
and of each cell, becomes:

Rnew = max(ri)
Hnew = max(zi)

�rnew = Rnew/Nr

�znew = Hnew/Nz.

(3.53)

There are some particular situations in which a particle takes a high value of ac-
celeration during one-time step will also be pushed so far from the other ones and,
respecting Eqs. (3.53), the risk is to have a vast new grid, with a lot of empty
cells near the boundaries of the domain. In this case, there is the possibility to
exclude from the simulation the small fraction of particles so far from the center of
the domain, because it does not influence the electrostatic potential of the system.
Thus, Eq. (3.53) is replaced, excluding from the domain the particles with a radial
or axial position greater than a calculated limit. In the radial direction, the limit is
calculated as Rnew = Re + N�E�E, being Re and �E the average and the standard
deviation of the radial distribution of the computational particles and N�E a real
factor such as N�E  [max(rj)�Re]/�E. The same criterion is adopted for the axial
direction, calculating Hnew and the new origin of the cylinder.

3.3.1 Poisson solver
To solve Poisson equation, the finite volume method is used, in cylindrical coor-

dinates with axial symmetry; the aim is to obtain the value of the electric potential
on the center of each grid cell. Here we have Poisson’s equation in Gaussian unit

r2� = �4⇡⇢, (3.54)

being ⇢ the charge density and stating @�/@✓ = 0 in cylindrical coordinates, we
obtain

1

r

@�

@r
+

@
2�

@r2
+

@
2�

@z2
= �4⇡⇢Q. (3.55)
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3.3 – EXPICYL: the PIC method for expansions

Figure 3.18: Schematic representation of the grid for the EXPICYL method, with
a center cell j and a boundary cell i highlighted.

Integrating the general form (3.54) on a volume of interest and applying the diver-
gence theorem

R
V

r ·FdV =
H

@V
F · dS at the left-hand side of the equation, we get

as a result I

S

r�dS = �4⇡⇢̃�V ; (3.56)

considering an average value of density, ⇢̃, on the right-hand side and being �V

the elementary volume of a grid cell. In the finite volume method, the integral is
approximated as a sum

6X

i=1

(r�)i · (n̂dA)i = �4⇡⇢̃�V, (3.57)

and applying the obtained result on a central grid cell, as in Fig. 3.19, we obtain

�N � �O

�z
SN +

�S � �O

�z
SS +

�W � �O

�r
SW +

�E � �O

�r
SE = �4⇡⇢̃O�V. (3.58)

We can rewrite Eq. (3.58) making explicit the expression of the surface and the
volume of the cell in the cylinder, obtaining in matrix notation

�i�1,j2rj�r
2 + �i+1,j2rj�r

2 + �i,j�12(rj � �r/2)�z
2 + (3.59)

+�i,j+12(rj + �r/2)�z
2 + �i,j(�4rj(�r

2 + �z
2)) = �8⇡⇢̃i,jrj�r

2�z
2
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3 – Coulomb explosion of cylindrical targets

Figure 3.19: Central elementary cell of the domain.

valid for a central cell of the domain with distance rj from the cylinder axis. Re-
ferring at the boundary conditions, we have two different situations: on three sides
of the domain the grid has external cells, but on one side we are on the cylinder
axis and a hypothesis on the symmetry of the electric field must be applied as a
boundary condition. Regarding the external cells, the electrostatic potential �(r, z)
has been obtained by the superposition of the analytical potentials generated by
charged particles distributed on rings (Boella et al., 2018). In fact, the electrostatic
potential is calculated at the boundaries of the computational domain by summing
the contributions due to all the rings, each of them represented by a computational
cell, centered in (rj, zj) and with charge density obtained with weighted particle-grid
projection; in this way, “exact” boundary conditions are provided for the solver of
the Poisson’s equation. In particular, the exact electric potential on a ring is given
by two contributions (see Chapter 3.2):

�a =
NaX

k=0,k /=a

�k!a + �a!a, (3.60)

being �k!a the potential of an infinitesimal ring of radius rk = Rk acting on another
ring of radius ra:

�k!a =
2q

⇡

K[m]

[(ra + Rk)2 + (za � zk)2]1/2
e m =

4Rkra

(ra + Rk)2 + �z2
(3.61)

with K[m] complete elliptic integral of the first kind. �a!a is the potential actuated
by the ring on itself and it has been obtained considering the average potential of a
torus of charge q, with radius ra and radius of the circular section a:

�a!a = � q

2⇡ra


log

✓
a

2ra

◆
� 1

4

�
. (3.62)
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3.3 – EXPICYL: the PIC method for expansions

On the cylinder axis, we have mentioned that the hypothesis is that the electric
field vanishes. In this case, the balance given by Eq. 3.60, will be slightly different
because referring to Fig. 3.20, �W � �O = 0.

Figure 3.20: Grid cell on the axis of the cylinder, symmetry condition of the electric
field.

The balance on the grid cell becomes

�i�1,j2rj�r
2 + �i+1,j2rj�r

2 + �i,j+12(rj + �r/2)�z
2 (3.63)

+�i,j(�4rj�r
2 � 2(rj + �r/2)�z

2)) = �8⇡⇢̃i,jrj�r
2�z

2
.
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Validation of the code To test the convergence of the algorithm a comparison
with the analytic solution for the expansion of a spherical Hydrogen cluster (R = 1
and Q = 1) is made. The relative error in the computation of the final kinetic
energy is evaluated, varying some characteristic parameters of the model, as the
total number of cells and the number of computational particles. Tab. 3.1 shows
the standard deviation of the energy spectra, �E, respect to the analytic value, in
function of Np, with two different grid configurations. When the grid is sharper �E

is smaller, but in both cases it remains under 3%, with Np > 1e5. In Tab. 3.1 also
simulations times are shown, in function of the number of computational particles.

Grid cells: Nr = 50 and Nz = 80
Np �E(t = tf ) tsim[s]
1e4 0.1115 542
5e5 0.0601 550
1e5 0.0293 590
5e5 0.0222 1070
1e6 0.0200 1719
Grid cells: Nr = 100 and Nz = 130
Np �E(t = tf ) tsim[s]
1e4 0.0790 2015
5e5 0.0428 2020
1e5 0.0299 2051
5e5 0.0151 2547
1e6 0.0103 3129

Table 3.1: Simulation times and standard deviation on the energy spectra, computed
in comparison with the analytic solution, in function of the number of computational
particles Np, with different grid configurations.

In order to compare results obtained by using the PIC code with the corre-
sponding reference solutions of the Vlasov-Poisson model, the electron expansion
in a spherical plasma (Peano et al., 2006) is studied. Reference solutions of the
Vlasov-Poisson model are obtained by using the shell method presented in Sec. 2.3,
and results are compared with calculations performed by using a high number of
particles (N ' 106) and averaging over different initial conditions (all corresponding
to the same physical situation (D’Angola et al., 2014)). In particular, initial electron
positions and velocities (rp0, vp0) are assigned by using pseudorandom numbers to
simulate a uniform spatial distribution inside a sphere of radius R and a Gaussian
distribution in velocity with a variance (kBT )1/2. Positive ions are initially dis-
tributed uniformly in the sphere and considered at rest during all the transient. In
all the calculations, the total charge, the total mass of the plasma and the initial ra-
dius R are all equal to 1 by using a suitable normalization. In Figures 3.21 the time
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3.3 – EXPICYL: the PIC method for expansions

evolution of the number of electrons inside the ion sphere (i.e., with r  R) are re-
ported, for three different electron initial velocities, showing the excellent agreement
between the PIC and the shell method.
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Figure 3.21: Time evolution of the fraction of electrons inside the ion sphere for
three initial normalized temperature, T = 0.1,0.5,0.7. Results obtained by the PIC
code with Np = 2 · 105 (red dotted line) are compared with the reference solution
provided by the shell method (full blue line).
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3.4 Coulomb explosion of a thin slab

In this section, a simplified analysis of the expansion of a cylindrical slab made
by two ion species is considered, with the approximation of no overtakings between
particles of the same type. All the parameters characteristic of the mixture are
defined as in Chapter 2.2. Figure 3.22 displays the ideal situation of a slab made
by a mixture of two species during the expansion at a generic t = t

0, considering
as direction of motion only the z-axis, perpendicular to the surface of the slab.
Inside the region delimited by the axial coordinate [�Fs, Fs] we can find a mixture
of the two species and the electric field has a linear behavior. On the other hand,
in the region between the two frontlines, Fs < z < Ff , only the light/fast species is
present. The 1D approximation, which was perfectly suitable in the spherical cluster
configuration, must be tested in case of the slab. The results of our 3D N-body
method (Soft-spheres) are compared with the ones of the PIC code, which supposes
an axial symmetry. The soft-spheres method is used to simulate the expansion of
a target composed by a mixture with ↵ = 0.5 and µ = 0.5, using Ns = 2500 soft-
spheres. In the case of the PIC method, Np = 5e5 particles are used. The initial
aspect ratio of the slab is H/R = 0.1. Fig. 3.23 depicts the positions of slow and
fast ions at different times, compared with the initial slab. An excellent agreement
of the two techniques suggests that a 2D approximation, with the PIC code, may
be done. On the contrary, as can be seen in the evolution of the expansion, the
motion on the direction parallel to the slab surface cannot be neglected, even if the
velocities vz are larger respect to vx, Fig. 3.24. Finally, Fig. 3.25 depicts the kinetic
energy spectrum at t = Tp of the fast species, showing a narrow peak of energy,
as in the case of the mixture expansion of a spherical cluster. All calculations are
performed normalizing the initial total charge, mass and radius of the slab.
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3.4 – Coulomb explosion of a thin slab

Figure 3.22: Expansion of an heterogeneous slab, made by two ions species, suppos-
ing only an expansion perpendicular to the surface of the slab.

Figure 3.23: Evolution of the positions of fast and slow ions inside a slab made
by a mixture of two type of ions (↵ = 0.5 and µ = 0.5), depicted with the Soft-
Spheres method (red dots) in comparison with the PIC code (blue dots). Time of
the pictures 1/4Tp, 1/2Tp, 3/4Tp, Tp. Inside the dotted white lines, all the slow ions
are confined.
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3 – Coulomb explosion of cylindrical targets

Figure 3.24: Velocities at different time steps (1/4Tp, 1/2Tp, 3/4Tp, Tp) of fast and
slow ions, depicted with the Soft-Spheres method (red dots) in comparison with the
PIC code (blue dots). Same slab of Fig. 3.23. .
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Figure 3.25: Kinetic energy spectrum of fast ions, same slab of Fig. 3.23. Blue
histogram for the Soft-spheres method and red line for the PIC code.
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Chapter 4

Results for spherical clusters

In the following chapter, some typical results are reported, regarding the expan-
sion of spherical clusters. Firstly the phenomenon of shock formation is analyzed
(Section 4.1), starting from a spherical nano-plasma, made by one ion species, with
a non-uniform initial charge density (Peano et al., 2005). In this case, there is a
maximum of the electric field inside the plasma region and overtakings between ions
can occur. The shell method simulates this situation comparing results obtained
with a high and low number of computational particles, to test the algorithm also
in a case where the density could rise dramatically. Then, the Coulomb explosion
of mixtures composed by two types of atoms is described (Boella et al., 2016), com-
paring results from the numerical method and the analytic solution, when available.
Firstly, in Sec. 4.2 a Hydrogen-Deuterium mixture is considered, comparing the
kinetic energy spectra obtained with the shell method and the soft-spheres, and by
varying the parameter ↵ also for values where the theoretical model is not applicable,
for the presence of overtakings between fast ions. Secondly, a Deuterium-Tritium
mixture is inspected (Section 4.3), with a value of the parameter ↵ > ↵crit to have
the possibility of comparison with the analytic solution. Then, a test on the kinetic
energy spectrum is completed with the shell method, varying the parameter ↵ also
where the analytic solution is no more valid. The expansion of the same mixture is
also performed with the soft-spheres method, in order to to test two different initial
configurations of the ions to describe the initial uniform charge density of the sphere.
The choice is between a random initial distribution and equally spaced coordinates
of the particles on the section of the sphere. At the end in Sec. 4.4, the behavior of
different Carbon-Hydrogen mixtures is simulated with the shell method, varying the
positive charge of the carbon ion and, consequently, the parameter µ of the mixture.
A detailed analysis is done on the changes of the asymptotic energy of the fast ions,
varying the parameter ↵. The possibility of a linear dependence of the function
< ✏1(↵) > is initially supposed and analyzed with numerical simulations. A sim-
plified theoretic calculation is also proposed to verify or not this feature. Since not
indicated differently, a suitable normalization for the physical quantities has been
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used such that the total charge, the total mass of the plasma and the initial radius
R are all equal to 1.

Declarations Part of the work described in this Chapter was also previously pub-
lished in the following publications, further reported in Appendix of this thesis: 1)
E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O. Silva and G. Coppa, Study on
coulomb explosions of ion mixtures, Journal of Plasma Physics 82 (2016) 905820110,
2) B. Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa, Gridless simulation
of collisionless systems with high degree of symmetry, Computer Physics Commu-
nications, 2017.
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4.1 – Shock formation phenomena described with the shell method

4.1 Shock formation phenomena described with the

shell method

In this section, the possibility of arising of shock shells is analyzed, in case of a
pure Coulomb explosion (Peano et al., 2006, 2007). When only one ion species is
present, to obtain overtakings the initial ion density must be not uniform and the
inner density of the cluster must be larger than the outer one. In this condition, a
maximum of the electric field E appears inside the plasma region and E is no more
a linear function of r, as in the case of uniform initial density. Consequently, the
inner particles gain higher velocities and kinetic energies than the outer ones and
overtakings can occur. Figs. 4.1 and 4.2 show the situation of an ion plasma made
by only one ion species, with two regions of different initial densities. In particular,
n(r,0) = n1 when r < R/3 and n2 when r 2

⇥
R

3 , R
⇤
, with n1/n2 = 8. In Fig. 4.1

the value of the radial coordinate, r(r0, t), of the particles is plotted as a function
of their initial radius r0, at different times. In the inner region the dependence of r

on r0 remains linear because the density is constant.
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Figure 4.1: Radial coordinate, r, at different times (t = 0 ÷ 1.47) as a function of their initial
position, r0, for a single-species ion plasma with a non uniform initial density distribution. Results
for 104 shells (blue dots) are compared with those obtained with 106 shells (red line). Adapted from
B. Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer Physics Communications,
2017.

Therefore, at the inner boundary of the outer region a portion of ions is less
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Figure 4.2: Ion phase-space distribution at different times (t = 0 ÷ 1.47) for the same case of
Fig. 4.1. Results for 104 shells (blue dots) are compared with those obtained with 106 shells (red
line). Adapted from B. Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer Physics
Communications, 2017.

accelerated than the inner ones, and halfway through the simulation, the function
r(r0, t) highlights the phenomenon of overtakings, near the boundary of the two
plasma regions. If two ions start their expansion at radii r0,1 > r0,2 and then during
the expansion they reach a radial position r2 > r1, we can see the presence of
overtakings. Fig. 4.2 reports the evolution of phase-space distribution and similar
considerations can be achieved. When two ions with radii r1 and r2, gain velocities
v1 < v2 at a distance r1 > r2, overtakings can finally occur. In the simulation, the
total charge and mass considered are normalized at 1, as well as the initial radius of
the cluster. Despite the particular phenomenon analyzed, the results here reported
show the capacity of the shell method to simulate cases in which the density, in
theory, may become infinite in some points. A reference result obtained with a
huge number of shells (106) is compared with a simulation with a low number of
computational particles (104), and they are in perfect agreement.
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4.2 Comparison between Soft-Spheres and shell method:

expansion of a HD nanocluster

The first set of results, in the case of a mixture expansion, considers the Coulomb
explosion of a spherical cluster, made by an ion mixture Hydrogen-Deuterium; Ta-
ble 4.1 shows the values of the parameters for this type of mixture. Both the shell

qf , qs qf = qs = 1

mf , ms ms = 2mf

µ =
qsmf

qfms

1

2

↵crit =
qs

2qf + qs

1

3

Table 4.1: Simulation parameters.

and soft-spheres method were used to simulate the explosion, with the following
computational parameters: Ns = 5000 Soft-Spheres with a finite radius of the par-
ticle r0 = 0.01 and Nc = 105 shells. The final time of the simulation is tf = Tp,
being Tp the plasma period for the mixture. Ions are always supposed initially at
rest and they start to be accelerated by electrostatic repulsion. In both the com-
putational methods, particles are initially randomly distributed inside the cluster,
always guaranteeing a uniform charge distribution of both ion species. At the end
of the simulation, when the total kinetic energy of the plasma is considered quite
constant, the normalized energy spectra for the fast ions is calculated numerically.
Fig. 4.3 presents the results obtained by varying the parameter ↵ = [0.2 ÷ 0.8],
comparing the ones by the Soft-Spheres and the shell method. An analytic solution
is not available for all the values of ↵, because we are crossing the limit of the pres-
ence of overtakings. Results from the shell method are in total agreement with the
ones from the Soft-Spheres, while the spectrum of the 3D approach is noisy, due to
the small number of computational particles used to simulate the expansion. We
can see that the most energetic mixture is the one with the lower value of ↵, below
the limit given by ↵crit, where overtakings are present. For this value of ↵ also the
spread of energy is limited and the peak is very narrow.
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Figure 4.3: Kinetic energy spectrum of the fast ions for a mixture of HD, results
for the shell method (red lines) compared with results from the Soft-Spheres (red
lines).

4.3 Expansion of a DT mixture: the Soft-Spheres,

the shell and the analytic solution

The second set of results (Figs. 4.4-4.6) displays the acceleration of an ion
plasma made by a mixture of two different species, depicted with the shell method.
The two species here considered present the mixture parameters in Tab.4.2, which
could represent a mixture of Deuterium and Tritium. Choosing a proper value of the
parameter ↵ > ↵crit (for Fig. 4.4 and 4.5 ↵ = 0.5), analytic solutions for the problem
are available (Boella et al., 2016) and can be used as a reference. The final time of
the simulation is fixed at two plasma periods, tf = 2Tp. Fig. 4.4 compares the phase-
space distribution for the two species at different times, calculated with the shell
method and analytic results. Only 103 shells are sufficient to depict the situation
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qf , qs qf = qs = 1

mf , ms ms = 3/2mf

µ =
qsmf

qfms

2

3

↵crit =
qs

2qf + qs

1

3

Table 4.2: Simulation parameters.

correctly. The slow species shows a linear behavior of the phase space during all
the evolution, being the electric field linear with the radius inside the slow species
sphere Ss (see Sec. 2.2.1). On the contrary, the fast species across all the plasma
region is accelerated by a non-uniform electric field, with a peak at the boundary
of Ss. Figure 4.5 presents E(t ! +1)/m of the light ions as a function of their
initial radial coordinate, r = r0. This function is important in order to calculate
the asymptotic energy spectrum, d N

dE
, of the ions (considering that �E = dE

d r0
�r0

and �N = 4⇡r
2
0n0�r0). The two figures show the excellent agreement between

numerical and analytic results. Finally, the kinetic energy spectrum of the fast ions
is calculated with the shell method, not only for ↵ = 0.5, but by varying its value
in the range [0.1 ÷ 0.9], also for values of ↵ where analytic results are not reliable,
due to the presence of overtakings. In this case, results are shown in elettronVolt,
to highlight the range of energies reached by the explosion of this type of mixture.
The initial radius of the cluster is R = 6.5nm and the final time of the simulation
is a multiple of the plasma period Tp = 2⇡/!p, where the plasma frequency of the
mixture is defined as !p =

p
(4⇡nqfqs)/mf .

The third set of results (Figs. 4.7-4.10) presents the same mixture expansion
(µ = 2/3 and ↵ = 0.5), simulated for comparison with the Soft-Spheres method,
with the two initial particle loading techniques described in Sec. 3.1. In this case,
the simulation was stopped at tf = Tp to follow the initial transient. Both simula-
tions are run with 25000 soft-spheres and the radius of each soft-sphere is fixed as
rs = R0/20, respecting Eq. (3.8). In particular, Fig. 4.7, shows the phase space
at different times and Fig. 4.8 the kinetic energy spectrum of the fast ions with
soft-spheres equally spaced on the section at the initial time. On the other hand,
Figs. 4.9 and 4.10 present the same situation with ions randomly distributed on
the volume of the sphere. All the results are in perfect agreement with the ana-
lytic solution, (Boella et al., 2016). We can notice that in Fig. 4.9 the particles are
spread a little more around the analytic solution, especially at the initial stage of the
expansion, compared to the equally spaced particle loading, 4.7. A small number
of computational particles depicts the expansion correctly, while the distribution of
positions and velocities during the simulation is affected by a more regular initial
distribution. In case of random initial positions an ensemble average on different
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Figure 4.4: Phase-space distributions of a mixture with m1/m2 = 2/3 and q1 = q2

at different times (t = 3 ÷ 31). Results obtained with the shell method (blue dots)
are compared with the analytic solution (red solid lines). Adapted from B. Peiretti
Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer Physics Communications,
2017.

sets of initial loadings could be impressive to perform. On the contrary, regarding
the energy spectrum, the situation is different, and the 2nd particle loading method
gives a more accurate outcome. In any case, the differences between the analytic
solution and the numerical one are negligible.
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Figure 4.5: E(t ! +1)/m of the light ions as a function of their initial radial
coordinate, r0, for the case of Fig. 4.4. Results obtained with the shell method (blue
dots) are compared with the analytic solution (red line). Adapted from B. Peiretti
Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer Physics Communications,
2017.
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Figure 4.6: Enlargement of the normalized kinetic energy spectrum for the fast
ions, in a spherical cluster composed by the same mixture of Fig. 4.4, varying the
parameter ↵ in the range [0.1 ÷ 0.9], the mentioned case of ↵ = 0.5 is highlighted
in red.
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Figure 4.7: Phase space at different times, for a hetero-nuclear spherical cluster (µ = 2/3 and
↵ = 0.5) depicted with the soft-spheres (blue points) in comparison with the theoretical model
(red lines). The computational objects are loaded with equally spaced initial coordinates.
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Figure 4.8: Energy spectrum in the same configuration of Fig. 4.7. Histogram in blue for the
Soft-spheres method and red line for the analytic solution.
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Figure 4.9: Phase space at different times for an expansion of an hetero-nuclear spherical cluster
(µ = 2/3 and ↵ = 0.5) with the soft-spheres (blue points) in comparison with the theoretical model
(red lines). The computational objects are loaded with random initial positions.
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Figure 4.10: Energy spectrum in the same configuration of Fig. 4.9. Histogram in blue for the
Soft-spheres method and red line for the analytic solution.
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4.4 Numerical and semi-analytical approaches for

the energy spectra of CH composite cluster

In Chapter 2, the theoretical analysis of the expansion of composite clusters
demonstrates the presence of a particularly attractive value for the mixture pa-
rameter ↵, for which fast ion spectra could be particularly narrow. A full set of
calculations has been carried out to investigate that fact numerically for the mix-
tures C

+
H

+, C
2+

H
+, C

3+
H

+ and C
4+

H
+, using the shell method to simulate the

Coulomb explosion (Tab. 4.3).

C
+
H

+
C

2+
H

+
C

3+
H

+
C

4+
H

+

qf , qs qs = qf qs = 2qf qs = 3qf qs = 4qf

mf , ms ms = 12mf ms = 12mf ms = 12mf ms = 12mf

µ =
qsmf

qfms

1

12

1

6

1

4

1

3

↵crit =
qs

2qf + qs

1

3

1

2

3

5

2

3

Table 4.3: Simulation parameters.

Firstly, we depict in Fig. 4.11 the mean value of the energy for each type of
mixture for ↵ 2 [0,1] and h✏1i, as a function of ↵, seems to be linear. To examine
this behavior, we start writing the total kinetic energy of the fast ions, Ef , as the
difference between the total potential energy at t = 0 and the total kinetic energy
of the slow ions

Ef = U(t = 0) � Es =
3(Qs + Qf )2

2R
� 3

5
Ns

ms

2
[R⇠

0
s
(+1)]2, (4.1)

being the mean kinetic energy simply h✏1i = Ef/Nf . The term to pay attention
to, looking for linear dependence of the parameter ↵, is the only one that changes
with the mixture composition: [⇠0

s
(+1)]2. As shown in Fig. 4.12, the trend of

the kinetic energy of the slow species, [⇠0
s
(+1)]2, in function of the parameter ↵,

seems to be linear. However, looking at the behavior of [⇠0
f
(+1)]2, in function

of ↵ (Fig. 4.13), it is clearly not linear. This particular trend of the square of
⇠

0
f

and ⇠
0
s
, has been examined. To achieve precise values of ⇠

0
s
(+1) and ⇠

0
f
(+1),

instead of taking enormous values for T and instead of approximating ⇠
0
s
(+1) ⇠=

⇠
0
s
(T ), an extrapolation technique has been employed. In fact, the value of ⇠

0
s
(+1)

progressively changes with the final time of the simulation and it tends to a constant
value very slowly, Fig. 4.14. However, we can extrapolate the value of [⇠0

s
(+1)]2

with high precision, applying the conservation of energy on the slow species, and
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Figure 4.11: Mean value of the asymptotic energy for different mixtures Carbon-
Hydrogen, as a function of the fraction of fast ions. Adapted from: E. Boella, B.
Peiretti Paradisi, A. D’Angola, L. O. Silva and G. Coppa, Journal of Plasma Physics
82 (2016).

knowing the exact value of the kinetic and potential energy at a particular time step
⌧ , as:

[⇠0
s
(⌧)]2 + 2U(⇠s(⌧)) = [⇠0

s
(+1)]2 (4.2)

being the potential energy zero when t ! +1. In particular, the numerical solution
of the system (2.19), gives the value of ⇠

0
s
(t) at each time step, and to calculate the

expression of the potential energy in function of ⇠
0
s
(t), we hypothesize a relationship

between the two functions
⇠f (t) ' p⇠s(t) + q, (4.3)

and for sufficiently high simulation time the approximation ⇠f/⇠s ⇠ p is valid. Eq.
(4.3) is supported by results of numerical simulations, as can be seen in Fig. 4.15.
The equation for ⇠s(t) becomes

d2
⇠s

d t2
' µ

⇠2
s

✓
↵

p3
+ ↵̄

◆
, (4.4)
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Figure 4.12: [⇠0
s
(+1)]2 at different µ, in function of ↵.

being ⇠
00
s

= �@U/@S, the expression of U , integrated between t = 0 and t = ⌧ , is

U =
µ

⇠s

✓
↵

p3
+ ↵̄

◆
. (4.5)

In the end, the value of [⇠0
s
(+1)]2 is calculated as

[⇠0
s
(+1)]2 = [⇠0

s
(⌧)]2 +

2µ

⇠s(⌧)

✓
↵

p3
+ ↵̄

◆
, (4.6)

and it can be demonstrated that the trend of the asymptotic kinetic energy is not
really linear in function of ↵. Fig. 4.16 depicts the standard deviation of the
spectrum, �✏, calculated for the four types of mixture. There is a minimum value
of ↵, which is close to ↵crit when (ms/qs)/(mf/qf ) � 1. In fact, for ↵ ' ↵crit

the spectrum has a large plateau and a sharp peak. Probably the plateau gives a
non-negligible contribution to �✏, while for practical applications the presence of the
peak and its energy spread are more critical.

For the same mixtures considered in the calculation of the mean energy (Tab 4.3
gives characteristic parameters), in Figs. (4.17-4.20) the shapes of the energy spectra
for different values of ↵ are presented, highlighting the ones with the ↵ closest to
↵crit. Approaching the value of ↵crit, the spectrum becomes narrower and narrower,
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Figure 4.15: Evolution of the ratio ⇠f/⇠s for sufficiently high simulation times; vary-
ing the parameter ↵, it tends to a constant value.

confirming the minimum on the standard deviation of the energy (Fig. 4.16). In
this case, results are shown in dimensioned units: the initial radius of the cluster is
R = 6.5 nm and the final time of the simulation is a multiple of the plasma period
Tp = 2⇡/!p (in the range 90 ÷ 400 fs), where the plasma frequency of the mixture
is defined as !p =

p
(4⇡nqfqs)/mf . As can be seen, the peak energies reached by

the fast species are in the range 25 ÷ 50 keV.
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Figure 4.16: Standard deviation of the energy spectra as a function of the fraction
of fast ions, for different mixtures Carbon-Hydrogen. Adapted from: E. Boella, B.
Peiretti Paradisi, A. D’Angola, L. O. Silva and G. Coppa, Journal of Plasma Physics
82 (2016).
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Figure 4.17: Energy spectra of a mixture C
+
H

+ with different values of ↵ in the range [0.2, 0.4].
Adapted from: E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O. Silva and G. Coppa, Journal of
Plasma Physics 82 (2016).

01 [keV]
20 25 30 35 40 45 50

;
0  

[k
eV

-1
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.18: Energy spectra of a mixture C
2+

H
+ with different values of ↵ in the range [0.3, 0.5].

Adapted from: E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O. Silva and G. Coppa, Journal of
Plasma Physics 82 (2016).
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Figure 4.19: Energy spectra of a mixture C
3+

H
+ with different values of ↵ in the range

[0.45, 0.65]. Adapted from: E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O. Silva and G.
Coppa, Journal of Plasma Physics 82 (2016).
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Figure 4.20: Energy spectra of a mixture C
4+

H
+ with different values of ↵ in the range [0.7, 0.9].

Adapted from: E. Boella, B. Peiretti Paradisi, A. D’Angola, L. O. Silva and G. Coppa, Journal of
Plasma Physics 82 (2016).
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Chapter 5

Results for cylindrical targets

In the present chapter, the dynamics of ions acceleration by a Coulomb explosion
of a thin slab is investigated, employing the EXPYCIL PIC code, the soft-spheres
and the ring method. In the first set of results, a cylindrical plasma made by one ion
species is considered, following the expansion of some sample particles and varying
the initial aspect ratio of the target, Sec. 5.1. The angular distribution of the energy
is also calculated, to inspect the presence of a common direction of expansion. All
the comparisons between the ring method and the PIC code return an excellent
agreement and both methods are able to depict the considered phenomena correctly.
Section 5.2 presents an interesting estimation on the expansion dynamics of a slab,
in comparison with the one of a sphere with the same initial potential energy. In
the second part of the chapter, both homogeneous mixture and double-layer targets
are examined. In particular, multi-layer targets have been used to increase the
conversion efficiency of the laser energy into plasma (Fourkal et al., 2005). In fact,
the use of targets made by two different ion species, changing initial aspect ratios
and compositions, opens up new opportunities for controlling and optimizing the
parameters of the fast proton beam, such as its energy spectrum and the size of the
region where the beam deposits its energy. On this purpose, the fast kinetic energy
spectra in case of an heterogeneous slab are calculated, using the PIC code and
the Soft-Spheres method, varying all the possible parameters of the mixture: the
fraction of fast ions ↵, the initial aspect ratio H/R and the mixture parameter µ,
showing compelling trends on the narrowing of the spectrum, Sec. 5.3. Therefore,
the heterogeneous slab geometry is compared with the double-layer target in terms
of velocities and positions distribution and kinetic spectrum of the fast species,
through the PIC code, Sec. 5.4. Finally, the possibility of a different initial charge
density inside the target is considered, compared with the standard case of uniform
charge density of the two species, Sec. 5.5. The laser pulse has a Gaussian spatial
profile, due to this fact also the distribution of the ionization inside the target can
be spatially Gaussian, both for the fast and the slow species, (Bulanov et al., 2008).
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5.1 – Expansion of a homogeneous cylindrical slab

5.1 Expansion of a homogeneous cylindrical slab

The Coulomb explosion of a homogeneous cylinder is firstly considered, here
simulated with two techniques: the ring method and the PIC code. Firstly the
evolution of the electric field inside the plasma region is presented, starting from the
time t = 0, in Fig. 5.1 and after five plasma period, Fig. 5.2. The area considered
in the two figures is the computational domain, where ions are present. At t = 0 it
coincides with the initial area of the slab and at the end of the simulation the initial
area of the slab is highlighted in red in the picture.
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Figure 5.1: Electric field obtained with the PIC method by solving the Poisson’s equation with
boundary conditions (Eq. 3.26) at t = 0, inside a slab with uniform charge distribution and aspect
ratio H/R = 1.

Figs. 5.3-5.6 present the expansion dynamic; two sets of results are provided,
in which the cylinder has different aspect ratios. This is a case of practical inter-
est, as it simulates the ion acceleration of the positive ions of a thin solid target
after interaction with an ultraintense laser pulse. Figures 5.3 and 5.4 show the
trajectories of the ions and the angular distribution of the kinetic energies for a
cylinder with initial aspect ratio H/R = 0.1 . Figures 5.5 and 5.6 present the same
physical quantities for a cylinder with H/R = 1. In the Figures, the results of the
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Figure 5.2: Electric field after five plasma period, the boundary of the initial slab is depicted in
red.

ring method are compared with those obtained by using the EXPICYL PIC code.
The agreement between the two techniques is excellent. Looking at the trajectories
evolution for sample particles we can notice that when the slab has a more compact
aspect ratio (H/R = 1, Fig. 5.5) also the particles near the cylinder center have a
non negligible acceleration on the radial direction, while in case of a thinner slab
(H/R = 0.1, Fig. 5.3) the acceleration for the central particles is predominant on
the axial direction. Some tests reducing the thickness of the slab could be done to
investigate this behavior, which is fundamental for practical application, where a
predominant direction of propagation is needed. The same considerations could be
done looking at the energy angular distributions.
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Figure 5.3: Particle trajectories for the Coulomb explosion of an ion plasma having initially a
cylindrical shape (H/R = 0.1) for t = 0÷4. Results obtained with the ring method (blue lines) are
compared with those obtained with the PIC method (red dotted lines). Adapted from B. Peiretti
Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer Physics Communications, 2017.
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with the ring method (blue lines) are compared with those obtained with the PIC method (red
dotted lines). Adapted from B. Peiretti Paradisi, E. Boella, A. D’Angola and G. Coppa, Computer
Physics Communications, 2017. 83
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Figure 5.5: Same as Fig. 5.3, but for a cylinder with H/R = 1 for t = 0÷10. Results
obtained with the ring method (blue lines) are compared with those obtained with
the PIC method (red dotted lines). Adapted from B. Peiretti Paradisi, E. Boella,
A. D’Angola and G. Coppa, Computer Physics Communications, 2017.
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5.2 Expansion of a cylinder compared with a sphere

with same initial potential energy

In the following section, an interesting comparison is made, between the expan-
sion of a cylinder with initial aspect ratio H/R = 0.1, made by one ion species, and
of a sphere with the same total potential energy. The simulations are made using
the PIC code, to study the different evolutions of the expansion. Simulations are
performed by using Np = 2 · 106 computational particles, to guarantee a very high
order of precision.

0 0.5 1
r

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

z

t=0

0 2 4
r

-4

-3

-2

-1

0

1

2

3

4

z

t=Tp

0 5 10
r

-8

-6

-4

-2

0

2

4

6

8

z

t=2 Tp

Figure 5.7: Distribution of ions in the (r, z) plane for a cylindrical target made by
a single ion species (blue dots), compared with the evolution of the expansion of a
sphere with the same initial potential energy (red dots). Results obtained with the
PIC method at different t (0, Tp, 2Tp).

Figure 5.7 depicts the positions distribution at different times, showing that also
starting with different geometries, if the radial dimension of the slab is comparable
with the radius of the sphere, after some plasma periods the two expansions progress
similarly. This is since, for the thin slab, initially the acceleration on the axial
direction is very high and in a short time a spherical shape is reached during the
expansion. Fig. 5.8 shows the energy spectra, which are comparable regarding peak
energy and energy spread, because the initial potential energy was the same, also
with two different initial geometries.
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Figure 5.8: Energy spectra of the same case of Fig. 5.7, blue line for the cylindrical
slab and red line for the sphere.

5.3 Expansion of a heterogeneous slab, made by two

ion species

The following set of results considers a slab made by a mixture of two types of
ions. In this case, to have an idea of the energy reached by the fast species in this
configuration the PIC code simulates a realistic situation of a slab with initial total
density n = 1022cm�3 and initial height and radius H = 0.5µm, R = 5µm, the
species considered are Hydrogen and Deuterium. The parameter ↵ of the mixture is
varied, to investigate the influence on the behavior of the kinetic energy spectrum.
We can see in Fig. 5.9 how in this configuration the fast species gain interesting peak
energy, on the order of hundred of MeVs, with a very narrow peak for ↵ = 0.3. A
dimensionless version of the code analyzes the same mixture with two initial aspect
ratio of the slab. Table 5.1 shows the choice of the characteristic mixture parameters.
The kinetic energy spectra for the fast ions have been calculated, both with the PIC
method and the soft-spheres, to have a comparison. Fig. 5.10 shows the results for
a slab with initial aspect ratio H/R = 0.1, while in Fig. 5.10 is shown the case with
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Figure 5.9: Energy spectra of the Hydrogen ions in a real slab, with initial density
n = 1022cm�3 and initial aspect ratio H/R = 0.1, varying the ↵ parameter.

Case 1 Case 2

↵ [0.3 ÷ 0.7] [0.3 ÷ 0.7]

µ =
qsmf

qfms

1

2

1

2

H/R 0.1 0.01

Table 5.1: Simulation parameters

H/R = 0.01. All the energy spectra are here normalized, considering a slab with
unitary charge and mass. The comparison between the two techniques displays the
ability to depict the phenomenon correctly with both the computational methods.
The Soft-Spheres method is more noisy respect to the PIC method, due to the small
number of particles used to simulate the expansion. To mitigate the noise effect in
some simulation an ensemble average on different initial distributions was done.
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Figure 5.10: Kinetic energy spectra for the fast ions, cylindrical hetero-nuclear target
(µ = 1/2), varying the parameter ↵. Initial aspect ratio H/R = 0.1. Red line results
from the PIC method, compared with the Soft-Spheres ones (dotted lined).

Finally, we have considered a situation with the same initial slab, in dimension-
less units, varying only the parameter µ of the mixture, considering also heavier
slow ions. The three values considered are µ = 1/12 which can depict a situation
Hydrogen-Carbon, µ = 1/200 as a mixture Hydrogen-Platinum and a central value,
µ = 1/100. In Fig. 5.12 the Hydrogen energy spectra are presented, for the three
chosen value of µ. The evident trend is increasing value of the peak energy and a
larger plateau with heavier slow ions.
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Figure 5.11: Same as Fig. 5.10 with initial aspect ratio H/R = 0.01. Red line
results from the PIC method, compared with the Soft-Spheres ones (dotted lined).
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Figure 5.12: Energy spectra of the fast species for a heterogeneous slab, varying the
parameter µ of the mixture. The results are presented in dimensionless units.
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5.4 Comparison of a heterogeneous slab and a double-

layer target

As seen in the previous sections, to achieve energies in the order of MeV and
peaked energy spectra, a cylindrical configuration with a single ion species is not
suitable. Therefore, two configurations with more than one ion species have been
tested: a cylindrical plasma made by a mixture of two species and a double layer
target. The second geometry is commonly the more used since it is the easiest to
design and be produced practically. The following parameters have been chosen
for this set of results, Tab.5.2, varying the initial aspect ratio of the slab; the total

Single slab Double-layer
with mixture target

↵ 0.5 0.5

µ =
qsmf

qfms

0.01 0.01

H/R [0.5, 0.1, 0.01] [0.25, 0.05, 0.005]
each slab

Table 5.2: Simulation parameters.

aspect ratio in case of the double layer targets, obtained summing the aspect ratio
of the layer made by the fast species and the ones of the slow species, corresponds
to the aspect ratio in case of the single slab made by a mixture. Considering the
same value of ↵, the density of both species is the same in the two geometries. The
PIC method was used to obtain all the results in this section. Figures 5.13-5.18
compare the phase space distribution of the two initial geometries. In particular, in
Figs. 5.13, 5.15 and 5.17, the evolution of the phase space distribution is obtained
in the radial direction, for the three values of initial aspect ratio, and we can see a
similar global trend in the radial position evolution and values of the velocities. On
the contrary, it is interesting to highlight from Figs. 5.14, 5.16 and 5.18 how the
fast species propagates only on one side of the slab in the case of the double layer
targets, due to the presence of the compact slow species layer on the other side. All
the values of speeds are comparable for the two initial configurations, while there are
some changes varying the initial aspect ratio. A discrete increase on the maximum
reached by the velocities in radial and axial direction is noticeable passing from the
case of H/R = 0.5 to H/R = 0.1, while there isn’t a significant difference between
the two cases H/R = 0.1 and H/R = 0.01, in terms of maximum speeds. Figs. 5.19-
5.22 show the kinetic energy spectra obtained for the fast species, varying the initial
aspect ratio. In particular, the energy spectra is calculated in both the directions of
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5 – Results for cylindrical targets

propagation of the ions, axial and radial. As we can see as a common trend the peak
of energy at high values is given mainly by the kinetic energy in the radial direction.
Figure 5.23 show the total kinetic spectra, comparing results for both the geometries.
The trend is increasing value of the peak energy decreasing the thickness of the slab
and a more narrow peak in case of heterogeneous slab, respect to a double-layer.
Otherwise, we have to consider that the use of a heterogeneous thin slab could be
difficult and the double layer target is more accessible to be produced and managed.
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Figure 5.13: Phase space evolution on radial direction for an hetero-nuclear made by an ion
mixture (µ = 0.01, ↵ = 0.5) cylindrical target with initial aspect ratio H/R = 1/2 (red dots), in
comparison with a double layer target (blue dots). Results obtained with the PIC code.
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Figure 5.14: Phase space evolution on the axial direction for the same slab of Fig. 5.13.
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Figure 5.15: Same as Fig. 5.13 but with initial aspect ratio H/R = 0.1.
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Figure 5.16: Same as Fig. 5.14 but with initial aspect ratio H/R = 0.1.
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Figure 5.17: Same as Fig. 5.13 but with initial aspect ratio H/R = 0.01.
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Figure 5.18: Same as Fig. 5.14 but with initial aspect ratio H/R = 0.01.
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Figure 5.19: Kinetic energy spectra on the radial direction for an hetero-nuclear
slab made by an ion mixture µ = 0.01 and varying the initial aspect ratio, results
obtained with the PIC code.
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Figure 5.20: Kinetic energy spectra on the axial direction for an hetero-nuclear
slab made by an ion mixture µ = 0.01 and varying the initial aspect ratio, results
obtained with the PIC code.
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Figure 5.21: Kinetic energy spectra on the radial direction for a double layer target
(µ = 0.01) and varying the initial aspect ratio.
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Figure 5.22: Kinetic energy spectra on the axial direction for a double layer target
(µ = 0.01) and varying the initial aspect ratio, as in Fig. 5.21.
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Figure 5.23: Total kinetic energy spectra for the same cylindrical targets of Figs.
5.19, 5.20, 5.21, 5.22. Solid lines for one slab with a mixture and dotted lines for a
double-layer target. Results obtained with the PIC code.
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5.5 Gaussian and uniform initial distribution

In this last section, we have considered a heterogeneous slab composed by a
mixture of two types of ions (µ = 0.01, ↵ = 0.5) with two different initial radial
space distributions: uniform and Gaussian. The standard deviation of the Gaussian
distribution is set in a way that reconstructs a slab with the same initial potential
energy of the uniform target. The initial aspect ratio considered is H/R = 0.1 and
the two species are considered initially at rest. All the simulations were performed
with the PIC code in dimensionless units. In Fig. 5.25 the evolution of the positions
of the fast species is followed, in a 3D representation, in the case of Gaussian initial
distribution, at different times t = 1/4Tp, 1/2Tp, 3/4Tp, Tp. Figure 5.26 presents
the same distribution for a slab with uniform initial distribution. Figs. 5.27, 5.28
depict the velocity distribution of the fast species at t = 1/2Tp and t = Tp super-
posing results from the Gaussian and uniform initial distribution. We can highlight
how the situation is very similar in both cases and the evolution of the expansion
does not present huge differences. The evidence of this result is given also by the
fast energy spectra 5.24.
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Figure 5.24: Kinetic energy spectra of the fast species for the same slab of Figs.
5.25 5.26, comparing results obtained with two different initial distributions of the
ions (Gaussian and uniform).
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Figure 5.25: Evolution of the positions in a 3D representation for the light particles
in a slab with Gaussian initial distribution, results obtained with the PIC code.
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Figure 5.26: Evolution of the positions in a 3D representation for the light particles
in a slab with uniform charge inside, results obtained with the PIC code.
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Figure 5.27: Comparison of the velocities distribution of the light species at t = Tp/2 for the
slab with initial Gaussian distribution, (blue dots) and uniform initial distribution (red dots).
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Figure 5.28: Comparison of the velocities distribution of the light species at t = Tp for the slab
with initial Gaussian distribution, (blue dots) and uniform initial distribution (red dots).
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Chapter 6

Conclusions

In the present thesis, the dynamics of particles during the Coulomb explosion of
single ion species and ion mixtures has been examined, paying particular attention
to the energy spectrum of the component with the highest charge-to-mass ratio. We
consider two possible configurations of the target: spherical nanoclusters and thin
cylindrical targets.

In the first case, a theoretical model was developed, due to the radial direction
of the motion and the possibility to approximate as a 1D phenomenon. Therefore,
a simple way to detect the occurrence of overtakings between fast ions during the
expansion was discussed, validating the existence, empirically deduced in a previ-
ous work (Li et al., 2007), of a limit value for the fast ions fraction, ↵crit, under
which shocks are present during the expansion. The analysis started with the limit
situation of ms ! +1 and the calculation of the Hamiltonian of fast particles,
rigorously demonstrating the existence of ↵crit. A discriminant condition was pro-
posed on the derivative of the fast ions asymptotic energy, ✏1, with respect to the
initial ion position r0: when this quantity is negative for some r0, the hypothesis
of no overtaking is no longer valid. When the value ↵ reaches ↵crit the spectrum
becomes narrower and narrower, meaning that the ions tend to acquire very similar
velocities, since the spectrum is mono-energetic. The condition ↵ = ↵crit becomes
also the limit situation for the appearing of shock shells. We have demonstrated
that most of these considerations are valid also for the general case in which ms is
finite and, in particular, the value of ↵crit is determinant in the shock rising. The
important conclusion gained by this study is that a very narrow energy spectrum
drives the occurring of shock shells and not vice versa. Another important feature
of nanocluster expansions has been discussed: the mean value of asymptotic en-
ergy for the fast species seems to have a linear behavior in function of ↵. Using an
extrapolation technique, we demonstrated numerically that this function is not per-
fectly linear. Whenever a theoretical analysis was not possible, for the presence of
overtakings, the shell method was successfully used to depict the expansion and the
shock shells presence. The shell method provides exact results also in the presence
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of shock shells, when in theory the density could become infinite in some points.
The method was very useful in spherical symmetry to investigate the behavior of
different mixtures, changing some characteristic parameters as the charge-to-mass
ratio of both species and the fraction of fast particles, ↵. Different mixtures have
been tested as H

+
D

+, D
+
T

+ and H
+
C

n+; despite the high-quality energy spec-
trum obtained by the fast species (�E/E very low), the peak energy reached is not
sufficient in case of practical applications as hadrontherapy, where proton beam at
hundred of MeVs are required.

In the second part of the thesis, another type of targets has been studied: thin
slab made by ion mixtures or double layer targets. The purpose was to simulate
very thin cylindrical slab, with the radius correspondent to the focal spot of the laser
which ionize the matter. In the case of cylindrical targets, a theoretical model is not
applicable, but an axial symmetry has been supposed and proved to compare results
by the three numerical methods developed: a 2D PIC code, a 3D N body algorithm
(the Soft-Spheres method) and the 2D ring method. All the tests performed have
been proved the effectiveness of the three computational techniques here proposed.
In the Soft-Spheres method we do not consider point-like particles: the center of
each sphere has tree degrees of freedom for moving, with a fixed value of the radius
rs. The number of soft-spheres used in the method is some order of magnitude
smaller than the real particles number, but the formulation of the potential energy
interaction between two soft-spheres, which can mutually interpenetrate, guarantees
the non collisionality of the system. Despite of the high computational cost of the
3D method, it was advantageous when no hypothesis on the symmetry of the system
could be made. In case of the necessity to use a gridless technique in a 2D approach
the ring method was beneficial. The method could be completely deduced using
a Hamiltonian approach and all the physical quantities (e.g., momentum, energy
and angular momentum) are conserved exactly: the only errors are due to time
discretization. In particular, the ring method can be very useful to obtain interesting
results making use of a simple, easy-to-implement code, valid also when the physical
region occupied by the plasma grows dramatically during the simulation. For these
reasons, the method can be regarded as a useful tool, in particular to study laser-
plasma interactions and to test ore complex codes. Finally, the EXPICYL PIC code
was developed; to follow Coulomb explosion phenomena correctly in its formulation
an expanding grid is considered and exact boundary conditions on the Poisson solver
are imposed. The three numerical techniques were used to simulate different type of
cylindrical slab expansions. Homogeneous targets have been considered modifying
the aspect ratio of the initial slab, and demonstrating that in the case of thinner
slab the preferential direction of expansion is parallel to the axis symmetry of the
cylinder. Then, the Coulomb explosion of a homogeneous sphere was compared with
the expansion of a cylinder with the same initial potential energy, seeing that after
some plasma periods the velocities and positions distributions are similar. The same
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result has been obtained for the kinetic energy spectrum. The analysis then focuses
on heterogeneous cylindrical targets, made by a mixture of two types of ions. The
initial aspect ratio and the fraction of fast particles on the total have been varied,
comparing results by the 3D tool and the PIC method. Also in case of cylindrical
slab decreasing the parameter ↵ the spectrum becomes narrower. Then the ratio
µ, between the two charge-to-mass ratios, was changed, achieving a higher energy
peak of the spectrum when µ decreases, probably due to the enhanced acceleration
of fast particles in case of heaviest slow ions. The single slab made by an ion mixture
was compared with the double-layer target configuration, varying the initial aspect
ratio. Results have shown a more peaked behavior of the kinetic energy spectrum
in case of an ion mixture, while those types of targets are technologically more
difficult to be produced. Finally, the possibility of a different initial charge density
was considered, basing on the fact that the laser spot has a Gaussian distribution
in space. Therefore, a Gaussian profile of the ions was simulated inside the initial
slab. Regarding the kinetic energy spectrum, differences between the peak energy
or the energy spread were not relevant.

In future investigations, it can be interesting to include in the analysis also the
electron dynamics and the laser cluster interaction mechanism, to have a clearer
picture of the explosion.
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Abstract

The paper presents a theoretical work on the dynamics of Coulomb
explosion for spherical nanoplasmas composed by two di�erent ion species.
Particular attention has been dedicated to study the energy spectra of the
ions with the larger charge-to-mass ratio. The connection between the
formation of shock shells and the energy spread of the ions has been the
object of a detailed analysis, showing that under particular conditions the
width of the asymptotic energy spectrum tends to become very narrow,
which leads to a multi-valued ion phase-space. The conditions to generate
a quasi mono-energetic ion spectrum have been rigorously demonstrated
and verified by numerical simulations, using a technique that, exploiting
the spherical symmetry of the problem, allows one to obtain very accurate
and precise results.

1 Introduction

The interaction between su�ciently intense laser pulses and spherical nan-
oclusters can lead to the complete expulsion of all the electrons from the cluster,
as discussed in (Ditmire et al., 1996; Murakami & Mima, 2009; Coppa et al.,
2011), and to a consequently rapid explosion of the left-behind ion cloud. The
process is a well known mechanism of ion acceleration (Ditmire et al., 1997)
with many potential applications, ranging from fusion research (Ditmire et al.,
1999) to biomolecular imaging (Neutze et al., 2000). While the explosion of a
single species ion plasma leads to a broad energy spectrum (Last & Jortner,
2001a; Krainov & Roshchupkin, 2001), it has been verified that in the presence
of ion mixtures conditions exist producing a quasi-monoenergetic distribution of
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the species having the larger charge-to-mass ratio (Last & Jortner, 2001b, 2005;
Hohenberger et al., 2005; Murakami & Tanaka, 2008; Andreev et al., 2010; Last
et al., 2009, 2010b). Numerical simulations also pointed out a connection be-
tween the monochromaticity of the spectrum and the occurrence of overtakings
among faster ions, leading to the formation of shock shells (Popov et al., 2010;
Li et al., 2007; Last et al., 2010a).

The present work investigates in detail and from a theoretical point of view
the energy spectrum of charged particles accelerated during the Coulomb ex-
plosion of ion mixtures. In particular, a mixture composed by two types of ions
uniformly distributed is considered. The ions of the two species have masses
ms, mf and electric charges qs, qf , with

� =
qs/ms

qf/mf
< 1 . (1)

The ions, which are initially at rest, start moving under the influence of the
repulsive electrostatic forces, and the species with a larger charge-to-mass ratio
moves faster. In this way, two concentric spherical regions, Sf and Ss, are
created having radius Rf (t) and Rs(t) respectively, with Rs 6 Rf . The sphere
Ss contains fast and slow particles and Rs represents the frontline of the slow
ions; instead, the spherical shell in Sf outside Ss contains only fast particles.
The ion dynamics is di�erent in these two regions, and it is studied in detail
in Sect. 2 (inner region) and in Sect. 3 (outer region). The dynamics of
the explosion depends strongly on the presence of shock shells. It is proved
rigorously that the appearance of shocks depends only on the ratio between
the total charge of the fast ions and the one of the slow ions, and not on their
masses (Sect. 4). In Sect. 5, by using a Hamiltonian approach the properties
of the energy spectra are studied analytically. In particular, a rigorous proof
is provided for the existence of a threshold for the generation of shock shells
(previously this proof was known only for the limit situation of ms ! +1 (Li
et al., 2007)), so confirming the results of numerical simulations (Murakami &
Mima, 2009). Finally, some conclusions are reported in Sect. 6.

Whenever possible, the properties of the explosions have been deduced ana-
lytically, otherwise the study has been performed numerically with the so called
“shell method” (Boella et al., 2011; D’Angola et al., 2014), which provides ex-
tremely precise results by exploiting the spherical symmetry of the problem.

2 Ion expansion in the inner zone

Initially, all the ions are uniformly distributed inside a sphere of radius R.
As the charge density is constant, the radial electric field is linear. Therefore,
there will be a uniform expansion for both slow and fast ions, and consequently
the charge density will remain constant inside the sphere Ss, producing again
a linear behaviour of the electric field. From this consideration, one can infer
that the electric field inside Ss remains a linear function of the radius r at any

2
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time:
E(r, t) = A(t)r for r 6 Rs(t). (2)

Under this assumption, the equations of motion for the fast and the slow ions
inside Ss can be written in a simple way. The uniform expansion can be de-
scribed by introducing two functions, �s(t) and �f (t), such that slow ions and
fast ions initially at r = r0 are moved at time t to r = r0�s(t) and r = r0�f (t),
respectively. Moreover, the initial densities of the two species, ns,0 and nf,0,
evolve in time as

ns(t) =
ns,0

�3
s (t)

, nf (t) =
nf,0

�
3
f (t)

. (3)

Using Gauss’s law, the electric field inside the sphere Ss can be written as:

E(r, t) =
4�

3

 
qfnf,0

�
3
f (t)

+
qsns,0

�3
s (t)

!
r, (4)

which has the correct dependence on r, as in Eq. (2). After introducing ex-
pression (4) into the equations of the motion for fast and slow ions, by writing
the acceleration of the ions of the two species as r0d

2
�f/dt

2 and r0d
2
�s/dt

2, one
finally obtains

8
>>>>>><

>>>>>>:

d2
�f

dt2
=

4�

3

qf

mf

 
qfnf,0

�
3
f

+
qsns,0

�3
s

!
�f ,

d2
�s

dt2
=

4�

3

qs

ms

 
qfnf,0

�
3
f

+
qsns,0

�3
s

!
�s ,

(5)

in which r0 does not appear.
Equations (5) can be rewritten in a more compact way, as

8
>>>>>><

>>>>>>:

d2
�f

dt2
= �

2

 
↵

�
3
f

+
�(1 � ↵)

�3
s

!
�f , �f (0) = 1,

d�f

dt
(0) = 0

d2
�s

dt2
= �

2
�

 
↵

�
3
f

+
�(1 � ↵)

�3
s

!
�s, �s(0) = 1,

d�s

dt
(0) = 0

(6)

being

� =

"
4�q

2
f (nf,0 + ns,0)

3mf

#1/2

, ↵ =
nf,0

nf,0 + ns,0
, � =

qs

qf
. (7)

The quantity � represents a characteristic frequency for the fast ion expansion,
while ↵ 2 (0, 1) is the fraction of fast ions in the cluster.
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3 Expansion in the outer zone and shock shells

The system of equations (6) describes the dynamics of slow ions during the
whole explosion and the motion of fast ions as long as they are inside Ss. A
fast ion, initially at r = r0  R, reaches the border of the inner region when
r0�f (t) = R�s (t). The time the ion crosses the sphere Ss, indicated in the
following as � (r0), is obtained by solving the equation

�s(�)

�f (�)
=

r0

R
. (8)

Considering a fast ion initially at r0, the electric field for r > Rs can be written
as Q (r, t) /r

2, where Q (r, t) is the charge in the sphere of radius r at time t;
as long as overtakings between fast ions do not occur, Q (r, t) is the sum of the
total charge of slow ions and the charge of the fast ions initially inside a sphere
of radius r0:

Q (r, t) = Q(r0, t) =
4�

3

�
qsns,0R

3 + qfnf,0r
3
0

�
. (9)

Consequently, for t > �(r0), the equation of motion for a fast ion outside Ss is

mf
d2

r

dt2
= � �

�r

✓
qfQ(r0)

r

◆
, r(�) = �f (�)r0,

dr

dt
(�) =

d�f

dt
(�)r0. (10)

Equation (10) can be integrated in order to obtain the asymptotic kinetic energy
of the fast ions, ✏1, as

✏1 =
1

2
mf

⇢
d�f

dt
(� (r0)) r0

�2

+
qfQ(r0)

�f (�)r0
. (11)

The energy spectrum of the fast ions, ��, can be written as

�� =
1

Nf

dNf

d✏1
(12)

where Nf is the total number of fast ions, while dNf represents the number of
ions having asymptotic energy in the interval d✏1. Making use of Eqs. (8) and
(11), the spectrum can be expressed parametrically as a function of � , as:

��(✏1(�)) =
4�r

2
0(�)nf,0

Nf

dr0/d�

d✏1/d�
. (13)

As pointed out in a previous work (Li et al., 2007), shock shells arise when
the fraction of fast ions, ↵, is smaller than a critical value, ↵crit. Typical phase-
space evolutions of the fast ions are showed in Fig. 1 for ↵ > ↵crit and in Fig. 2
for ↵ < ↵crit. In particular, the curves in Fig. 2 show the typical wave-breaking
behaviour that indicates the presence of a shock (Kaplan et al., 2003).
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Figure 1: Time evolution of the
phase space distribution of fast ions
in a mixture C

+
H

+ with ↵ = 0.4,
for t in the range 15-43 fs. A clus-
ter with ion density nf,0+ns,0=1023

cm�3 and R = 6.5 nm has been con-
sidered.
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Figure 2: Time evolution of the
phase space distribution of fast ions
in a mixture C

+
H

+ with ↵ = 0.2,
for t in the range 12-57 fs. A clus-
ter with ion density nf,0+ns,0=1023

cm�3 and R = 6.5 nm has been con-
sidered.

In fact, there is a simple way to discriminate Coulomb explosions without
shocks from the ones in which this phenomenon appears without requiring a
full numerical simulation of the explosion. Starting from Eq. (11), which, in
principle, is valid only when shocks are absent, the derivative of ✏1 with respect
to r0 is calculated. If the condition

d✏1
dr0

> 0 (14)

is verified for every r0 2 [0, R], inner ions take a slower velocity respect to the
ones in the outer zones and cannot reach them. In this case, no overtaking is
present. Instead, if d✏1/dr0 is negative for some r0, in principle there will be
overtakings. Of course, Eq. (11) is no longer valid in this case and it cannot
be used to calculate the energy spectrum of fast ions, whose dynamics can be
solved only numerically. Using this criterion, the existence of a limit value for
↵ can be readily verified numerically. In general, if ↵ 2 (↵crit, 1) the derivative
d✏1/dr0 remains positive and no shock is formed; for ↵ 2 (0, ↵crit), d✏1/dr0

changes its sign, meaning that the fast particles overtake each other, giving rise
to shock shells. The calculations show that ↵crit depends only on the ratio
between the ions charges and it is independent of their masses (Li et al., 2007).
In particular, ↵crit = 1/3 for mixtures HD, HT , DT and HC

+.
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4 Theoretical derivation of ↵crit

Starting with the case of no shock, by indicating with Qs and Qf the total
charge of slow and fast ions, the dynamics of a fast ion initially at r = r0 is
governed by the Hamiltonian

H (r, pr; r0) =
p
2
r

2mf
+

qfQf

r

⇣
r0

R

⌘3
+ qf�s(r, Rs(t)), (15)

where �s(r, �) is the electrostatic potential in r due to fixed ions uniformly
distributed in a sphere of radius �:

�s(r, �) =

8
>>><

>>>:

3Qs

2�
� Qsr

2

2�3
for r 6 �,

Qs

r
for r > �.

(16)

In the limit situation ms ! +1, Rs(t) is constant and equal to R. Conse-
quently, as H does not depend explicitly on time, it is a constant of motion,
and the asymptotic energy ✏1 expressed as a function of r0 can be written
immediately as

✏1(r0) = qf


Qf � Qs/2

R3
r
2
0 +

3Qs

2R

�
, (17)

from which the energy spectrum can be readily calculated (Li et al., 2007; Mu-
rakami & Mima, 2009).

Two situations can occur, depending on the sign of Qf �Qs/2. If Qf > Qs/2
the ion velocity is an increasing function of r0, so overtakings do not occur, and
the analytic spectrum is correct, as shown in Fig. 3, curves a, b, c. When
Qf < Qs/2, according to Eq. (17), ✏1 is a decreasing function of r0, but this
implies that the ions closer to the center of the cluster are bound to overtake
the ions close to the border of the sphere. In other words, the hypothesis of no
overtakings, and consequently Eq. (17), are no longer valid. In Fig. 3, curves
e, f, g, the energy spectra have been calculated correctly by using the shell
method. The case Qf = Qs/2 (Fig. 3, curve d) can be considered as a limit for
Qf � Qs/2 ! 0+ and, consequently, Eq. (17) can still be used. In the general
case, where the mass of slow ions is finite, in the Hamiltonian (15) the potential
due to slow ions, �s, is a function of time, as it depends on the frontline Rs(t),
and H is no longer a constant of motion:

dH

dt
=

�H

�t
= qf

��s

�Rs

dRs

dt
. (18)

In principle, the value of the asymptotic energy can be obtained by integrating
Eq. (18) in time:

✏1 = H (t ! +1) = H (t = 0) + qf

Z �(r0)

0

��s

�Rs
(r(t), Rs(t))

dRs

dt
dt (19)
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Figure 3: Energy spectra of a mixture with slow ions at rest (ms ! +1) and
Hydrogen ions, for di�erent value of ↵ in the range [0.2, 0.5]. The same initial
density and radius as in Fig. 1 have been considered. Curves a, b and c represent
mixtures with ↵ > ↵crit; in absence of shocks the numerical spectra correspond
to the analytic curve. The limit case of ↵ = ↵crit is shown in curve d, where the
energy spectra is singular. Curves e, f and g display situations with ↵ > ↵crit,
for which the spectra have been computed by means of the shell method.
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where the upper integration limit can be set equal to �(r0), as for t > � the
ion is outside Ss(t) and the term ��s/�Rs vanishes. Noticing that H (t = 0)
is equal to the asymptotic energy for fixed slow ions, Eq. (15), and expressing
r(t) and Rs(t) as functions of �f and �s, one finally obtains

✏1 = qf


Qf � Qs/2

R3
r
2
0 +

3Qs

2R

�
� 3Qsqf

2R
I(r0) (20)

where I(r0) is defined as

I(r0) =

Z �(r0)

0

"
1 �

✓
r0�f (t)

R�s(t)

◆2
#

�
�
s(t)

�2
s (t)

dt. (21)

The quantity I is always non negative, and, in fact, the motion of slow ions
takes some energy away from the fast ones.

The condition d✏1/dr0 > 0 for r0 2 [0, R] is now investigated. Starting from
Eq. (21), one obtains:

dI

dr0
=

�
�
s(�)

�s(�)2

✓
1 � r

2
0�f (�)2

R2�s(�)2

◆
d�

dr0
�
Z �(r0)

0

2r0�
2
f�

�
s

R2�4
s

dt. (22)

From this formula, considering that d�/dr0 < 0, one has

dI

dr0
(r0) 6 0 8r0 2 [0, R],

dI

dr0
(R) = 0. (23)

Being
d✏1
dr0

= 2qf
Qf � Qs/2

R3
r0 � 3Qsqf

2R

dI

dr0
, (24)

if Qf > Qs/2 the derivative d✏1/dr0 is always non negative, as it is the sum of
two non-negative quantities. Instead, if Qf < Qs/2 a sum of a negative term
and a non negative term is present in (24), and in principle nothing can be
said about the sign of d✏1/dr0 for a generic r0. However, dI/dr0 vanishes for
r0 = R, and therefore d✏1/dr0(R) must be negative; consequently, in this case
there are overtakings.

In summary, the condition Qf = Qs/2 is valid in any case and can be used
in order to discriminate between explosions with and without shocks. This is
the rigorous proof of a property of the Coulomb explosions of mixtures that was
found numerically in a previous work (Li et al., 2007). The condition Qf = Qs/2
provides the critical value of ↵:

↵crit =
�

2 + �
, (25)

which depends only on the charge ratio.
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5 Energy spectrum of the fast ions

The analysis performed for the simplified situation of ms ! +1 suggest that
fast ion spectra could be particularly narrow when ↵ approaches ↵crit. To con-
firm that, a full set of calculations has been carried out for the mixtures C

+
H

+,
C

2+
H

+, C
3+

H
+ and C

4+
H

+. Clusters with ion density nf,0 +ns,0=1023 cm�3

and R = 6.5 nm (as in Figs. 1-3) have been considered. In Figs. 4 and 5 the
mean value of the energy and the energy spread have been calculated for each
type of mixture for ↵ 2 (0, 1). Moreover, in Figs. 6-9 the energy spectra are
reported for each mixture for ↵ close to ↵crit. All the calculations have been
performed with the shell method.

The plots of the mean ion energy, h✏1i =
R +1
0 ✏��(✏)d✏, as function of ↵,

show a linear behaviour. In fact, the total kinetic energy of the fast ions, Ef ,
can be written as the di�erence between the potential energy at t = 0 ad the
total kinetic energy of the slow ions

Ef = U(t = 0) � Es =
3(Qs + Qf )2

2R
� 3

5
Ns

ms

2
[R�

�
s(+1)]2 (26)

and, therefore, it does not depend on the possible presence of shocks.
From the numerical solution of system (5), it has been found out that

[��
s(+1)]2 depends linearly on ↵, and using this result the average kinetic energy

h✏1i = Ef/Nf becomes a linear function of ↵.

The standard deviation of the energy of fast ions, �� = [
R +1
0 (✏�h✏1i)2��d✏]1/2,

presents a minimum for a value of ↵ which is close to ↵crit when (ms/qs)/(mf/qf ) �
1. In fact, for ↵ ' ↵crit the spectrum has a large plateau and a sharp peak.
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Probably, the plateau gives a non negligible contribution to ��, while for prac-
tical applications the presence of the peak and its energy spread are more im-
portant.

6 Summary

In the paper, the dynamics of particles during the Coulomb explosion of
ion mixtures has been investigated, with particular interest to the energy spec-
trum of the component with the larger charge-to-mass ratio. Exploiting the
hypothesis of no overtakings among ions of the same species and the new ap-
proach based on the linear behavior for the electric field inside the inner sphere,
Ss, containing both slow and fast ions, analytical formulas describing the ac-
celeration both inside and outside Ss (where only fast ions are present), have
been derived together with the energy spectrum. For the first time (at least to
the Authors’ knowledge), a simple way to deduce if overtakings between fast
ions will take place during the expansion is presented and discussed, confirm-
ing the existence, empirically deduced in a previous work by using numerical
simulations (Li et al., 2007), of a limit value for the mixture composition, ↵crit,
above which no shocks are forming. The analysis here proposed is based on the
calculation of the derivative of ✏1 with respect to the initial ion position r0:
when this quantity is negative for some r0, the hypothesis of no overtaking is
no longer valid. Moreover, making use of the Hamiltonian of fast particles and
starting with the simple case where the mass of the slow species is considered
infinite, a rigorous proof of the existence of ↵crit, which is valid for every value
of mf and ms, has been obtained. In the limit situation of ms ! +1, when
↵ > ↵crit approaches the critical value, the energy spectrum becomes narrower
and narrower, meaning that the ions tend to acquire very similar velocities, and
for ↵ = ↵crit the spectrum becomes monoenergetic. On the other hand, the
condition ↵ = ↵crit is the limit situation for the rising of shock shells. As most
of these considerations are valid also for the general case in which ms is finite,
one can conclude that the rising of shock shells is induced by a very narrow
energy spectrum, and not vice versa.

In conclusion, conditions to obtain nearly monoenergetic ions from Coulomb
explosions of heteronuclear clusters have been individuated and supported by a
rigorous theoretical analysis. The analysis has been carried out supposing that
the electrons are completely expelled from the cluster; also in order to explain
recent experimental results (Hohenberger et al., 2005; Iwan et al., 2012), future
investigation should take into proper account also the electron dynamics and
the laser-cluster interaction in order to have a clearer picture of the phenomenon.

This work was partially supported by the European Research Council (ERC-
2010-AdG Grant No. 267841).
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Abstract

In the paper, gridless particle techniques are presented in order to
solve problems involving electrostatic, collisionless plasmas. The method
makes use of computational particles having the shape of spherical shells
or of rings, and can be used to study cases in which the plasma has
spherical or axial symmetry, respectively. As a computational grid is
absent, the technique is particularly suitable when the plasma occupies a
rapidly changing space region.

1 Introduction

The work investigates the possibility of using gridless particle techniques [1, 2]
in the study of plasmas which are produced by laser-matter interaction with the
purpose of accelerating positive ions. Avoiding to introduce a computational
grid is useful in situations (as for plasma expansions and explosions), in which
the physical domain occupied by the particles increases rapidly in time. In
this framework, in general situations one could employ a set of computational
particles and directly calculate the electric field acting on each of them, as the
sum of the contribution of the other particles. This requires an extremely high
computational e�ort, unless the problem under exam presents some symmetry.
In the work, the cases of spherical and axial symmetry are considered. In the
first case (Sect. 2), the problem is essentially one dimensional and computational
particles are in the shape of spherical shells. By using the Gauss’s formula, the
electric field is readily evaluated. For the second case (Sect. 3), particles are
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modeled as thin circular rings, which are characterized by their radii and their
axial coordinates. In this case, the evolution of the force acting on each particle
requires necessarily the calculation of the sum of contributions due to the other
particles. Although some advantages which are present in the spherical case are
lost, the technique here presented conserves interesting features also in this case.
Results for both cases are shown and they are compared with exact calculations
(when available) or with Particle-In-Cell simulations.

2 The shell method

This Section presents in a complete, rigorous way the method of the shells,
which was already introduced and employed with di�erent formulations by other
Authors (in particular, in refs. [1, 2, 3]).

2.1 First formulation

In its simplest formulation, a set of N computational particles is considered.
After initializing their coordinates xi and momenta pi, the particle are ordered
according to their radial coordinates ri = |xi|, so that rj > ri if j > i. Then
the radial electric field acting on each particle is evaluated simply as:

Ei =

0

@
i�1X

j=1

qj + 1
2qi

1

A xi

r
3
i

, (1)

by using the Gauss’s formula and taking advantage of the spherical symmetry of
the problem. The presence of the factor 1

2 multiplying qi can be explained in a
simple way by considering that, for r = ri �✏ (✏ ! 0+) qi does not contribute to
the electric field, while for r = ri +✏ the total charge to be evaluated is

Pi
j=1 qj .

Thus, by supposing a linear behavior of E at the interface, the factor 1
2 provides

the correct value of the field (a rigorous proof of the formula is presented in Sect.
2.4). Finally, after evaluating E on each computational particle, the equations
of motion: 8

<

:

dxi
dt

= pi
mi

,

dpi
dt

= qiEi(x1,x2, ...,xN ),
(2)

can be solved by using a suitable numerical technique (e.g., the leapfrog or
the Runge-Kutta method), using a time step much smaller with respect to the
inverse of the plasma frequency.

2.2 Second formulation

The technique described above is very simple (for example, a MATLAB code can
be implemented in few lines of program), but it is excessively memory and time
consuming, as it does not take fully advantage of the symmetry of the problem.
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In fact, in a central field of forces, the trajectory of each particle takes place on
a plane. Therefore, the motion is essentially a two-dimensional problem. This
fact suggests a new, simpler formulation of the method. After generating the
initial 3D coordinates xi and momenta pi, a set of 2D coordinates Xi and Pi

is defined as (
Xi = (ri, 0), i = 1, 2, ..., N,

Pi =
⇣
pi · xi

ri
,

���pi �
⇣
pi · xi

ri

⌘
xi
ri

���
⌘

.
(3)

After that, the method is completely identical to the previous formulation, but
it uses only 2D vectors. More in detail, the particles are ordered according to
the radial position Ri = |Xi|, the electric field is evaluated as

Ei =

0

@
i�1X

j=1

qj + 1
2qi

1

A Xi

R
3
i

, (4)

and the evolution of the system is governed by the equations

(dXi
dt

= Pi
mi

,

dPi
dt

= qiEi(X1,X2, ...,XN ).
(5)

2.3 Third formulation

Starting form the Lagrangian

L (r, �, ṙ, �̇, t) =
m

2

�
ṙ
2 + r

2
�̇

2
�

� q� (r, t) , (6)

for a single particle in a central potential (� depends on t due to the interaction
with the other particles of the plasma), one can obtain the Hamiltonian

H (r, �, pr, p�, t) =
1

2m

 
p
2
r +

p
2
�

r2

!
+ q� (r, t) , (7)

and the equations of the motion
8
><

>:

dr

dt
= pr

m
,

d�

dt
=

p�

mr
2 ,

dpr
dt

= �q
��
�r

+
p
2
�

mr
3 ,

dp�

dt
= 0.

(8)

In other terms, as it is well known, for a central potential there is a constant
of the motion, p�, which corresponds to the axial angular momentum, and the
motion in radial direction is essentially one-dimensional. This suggests a third
way of studying the dynamics of these systems. Starting again from the set
{xi,pi} one can calculate

ri = |xi|, pr,i = pi · xi

ri
, p�,i = ri

����pi � pr,i
xi

ri

���� . (9)
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Then, the radial electric field is evaluated as

Er,i =

0

@
i�1X

j=1

qj + 1
2qi

1

A 1

r
2
i

(10)

(of course, particles must be sorted according to ri), and the equations of the
motion assume the form:

8
><

>:

dri
dt

=
pr,i
mi

,

dpr,i

dt
= qiEr,i(r1, r2, ..., rN ) +

p
2
�,i

mir
3
i
,

(11)

in which the p�,i’s are constants of the motion and they are fixed by the initial
conditions. This last formulation is the most convenient in terms of memory
usage and computational e�ort. However, the presence of the term p

2
�/(mr

3) in
Eqs. (11) require a special care when r ! 0. All things considered, the second
formulation represents a good compromise in terms of computational e�ciency
and simplicity.

2.4 Interaction between shells

Due to symmetry, each computational particle can be regarded as a spherical
surface (a “shell”) on which the electric charge is distributed uniformly. The
points on the surface move according to di�erent trajectories, all sharing the
same radial coordinate, r(t), and the same angular momentum p�. For simplic-
ity, a system made of only two shells (having charge q1 and q2 and radii r1 and
r2, with r1 < r2) is considered now. As the electric field is given by

E(r) =

8
>><

>>:

0, r < r1,
q1

r2
, r1 < r < r2,

q1 + q2

r2
, r > r2,

(12)

the electrostatic energy U can be readily evaluated, as

U(r1, r2) =

Z

R3

E
2

8�
d3 x =

q
2
1

2r1
+

q
2
2 + 2q1q2

2r2
. (13)

If r1 is changed of �r1, the change ��U of the energy is equal to the work
qE1 · �r1 of the field on the shell itself. In other terms, one has:

E1 = � 1

q1

�U

�r1
=

1
2q1

r
2
1

. (14)

Similarly, the field acting on the second shell can be calculated as

E2 = � 1

q2

�U

�r2
=

q1 + 1
2q2

r
2
2

. (15)
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In both cases, the value of the electric field is in agreement with the rule

“
i�1P
j=1

qj + 1
2qi”, which was introduced previously.

Now the dynamics of the two shells is considered. If there is no crossing (i.e.,
no collisions) between shells, r1 is always smaller than r2 and one has

dp1

dt
= q1

1
2q1

r
2
1

,
dp2

dt
= q2

q1 + 1
2q2

r
2
2

. (16)

Here only radial motion is considered for simplicity (i.e., p� = 0 for both shells).
The two equations (16) can be also written as

8
>><

>>:

dp1

dt
= � �

�r1

✓ 1
2q

2
1

r1

◆
,

dp2

dt
= � �

�r2

✓
q1q2 + 1

2q
2
2

r2

◆
,

(17)

from which one immediately obtains
8
>><

>>:

p
2
1

2m1
+

1
2q

2
1

r1
= Const,

p
2
2

2m2
+

q1q2 + 1
2q

2
2

r2
= Const.

(18)

As the two shells continue to expand, the asymptotic kinetic energy for t ! +1,
E(+1), of the two shells can be readily evaluated, as

8
>><

>>:

E1(+1) = E1(0) +
1
2q

2
1

r1(0)
,

E2(+1) = E2(0) +
q1q2 + 1

2q
2
2

r2(0)
.

(19)

Now, the case of collision is considered. When t = tc one has r1(tc) = r2(tc) =
rc, and for t > tc the shell #1 overtakes the shell #2. Therefore, Eqs. (16-18)
are valid only for t < tc. For t > tc, Eqs. (16) must be replaced by

8
>><

>>:

dp1

dt
= q1

q2 + 1
2q1

r
2
1

,

dp2

dt
= q2

1
2q2

r
2
2

(20)

(they are obtained by simply exchanging indices 1 and 2), from which one finally
obtains 8

>><

>>:

p
2
1

2m1
+

q1q2 + 1
2q

2
1

r1
= Const,

p
2
2

2m2
+

1
2q

2
2

r2
= Const.

(21)
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In the case of collision, in order to evaluate the new asymptotic energy, E �(+1),
both Eqs. 18 (for t < tc) and Eqs. 21 must be considered:
8
>>>><

>>>>:

E �
1(tc) = E1(0) +

1
2q

2
1

r1
�

1
2q

2
1

rc
= E1(+1) �

1
2q

2
1

rc
,

E �
2(tc) = E2(0) +

q1q2 + 1
2q

2
2

r2
�

q1q2 + 1
2q

2
2

rc
= E2(+1) �

q1q2 + 1
2q

2
2

rc
,

(22)

and 8
>><

>>:

E �
1(+1) = E �

1(tc) +
q1q2 + 1

2q
2
1

rc
= E1(+1) +

q1q2

rc
,

E �
2(+1) = E �

2(tc) +
1
2q

2
2

rc
= E2(+1) � q1q2

rc
.

(23)

In other terms, the collision produces an increase �E = q1q2/rc in the energy of
the shell #1, and a corresponding decrease ��E for the shell #2. In a typical
plasma expansion, the energy E of a shell is of the order of qQ/R, being Q the
total charge and R the initial plasma radius. Being �E ⇠ q

2
/R for a single

collision, one can conclude that the “plasma parameter” �E/E for a set on N

shells will be of the order of q/Q = 1/N . In practice, for typical values of
the number of computational particles, the system can always be regarded as
collisionless.
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Figure 1: Time evolution of the fraction of electrons inside the ion sphere for
two di�erent normalized temperature, T = 0.0431, 0.431. For each value of
T , ensemble averages (full black line) and standard deviation ranges (dashed
black lines) are reported for N = 103 shells and 300 simulations with di�erent
initial conditions, together with reference results provided by a simulation with
N = 106 shells (dashed red line).
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Figure 2: Time evolution of the fraction of trapped electrons for the same case
of Fig. 1.

2.5 Results

Some typical results are reported in the following. In all the calculations, suit-
able normalization for the physical quantities has been used such that the total
charge, the total mass of the plasma and the initial radius R are all equal to 1.
Three cases are considered: 1) the electron expansion in a spherical plasma [4];
2) the expansion of a plasma made of a mixture of two ion species [5]; 3) the
formation of shocks in Coulomb explosions [6]. Figures 1 and 2 refer to the early
stage of the electron expansion in a spherical plasma. It is assumed that elec-
trons and positive ions are initially distributed uniformly in a sphere of radius
R. Initially, electrons have Maxwellian velocity distribution with temperature
T and positive ions are considered at rest during all the transient. Calculations
have been performed both with a reduced (N ' 103) and with a high number
of shells (N ' 106), in order to obtain reference results. The initial phase-space
distribution of the electrons was generated by using random numbers, so for a
small number of particles the results will depend on the particular choice of po-
sitions and velocities. For this reason, the same calculation has been repeated
for 300 times (with di�erent initial conditions, all corresponding to the same
physical situation) in order to obtain the mean behavior and the distribution
of the physical quantities (as performed in [7]). In Figs. 1 and 2, the time
evolution of the number of electrons inside the ion sphere (i.e., with r  R) and

of the fraction of trapped electrons (i.e., with total energy p2

2m � e�(r)  0) are
reported, respectively. As can be observed, the shell method provides excellent
results, even with a reduced set of particles.

The second set of results (Figs. 3 and 4) refers to the acceleration of an
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Figure 3: Phase-space distributions of a mixture with m1/m2 = 2/3 and q1 = q2

at di�erent times (t = 3 ÷ 31). Results obtained with the shell method (blue
dots) are compared with the analytic solution (red solid lines).

ion plasma made of a mixture of two di�erent species. In this case, analytic
solutions for the problem exist [5] and can be used as a reference. The two
species (m1/m2 = 2/3, q1 = q2) are initially at rest and the ions are accelerated
by electrostatic repulsion. In Fig. 3 the phase-space distribution for the two
species, calculated with the shell method and using 103 computational parti-
cles, is reported at di�erent times and compared with analytic results. Figure
4 shows E(t ! +1)/m of the light ions as a function of their initial radial
coordinate, r = r0. This curve is important in order to determine the asymp-
totic energy spectrum, d N

d E , of the ions (considering that �E = d E
d r0

�r0 and

�N = 4�r
2
0n0�r0). The two figures show the excellent agreement between nu-

merical and analytic results.
The third case here considered concerns the shock formation in a Coulomb ex-
plosion [4, 8]. The phenomenon arises when the initial ion distribution is not
uniform, in particular if the inner density is larger respect to the outer one.
In fact, in this case the electric field has a maximum inside the plasma region
(while it depends linearly on r if the ion density is constant) and consequently
inner particles acquire higher kinetic energy with respect to the outer ones and
can “overtake” them. In the situation considered in Figs. 5 and 6, an ion plasma
made of only one species presents two regions with di�erent density for t = 0.
Figure 5 reports the value of the radial coordinate r(r0, t) of the ions as a func-
tion of their initial radius, r0, for di�erent times, while in Fig. 6 the phase-space
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Figure 4: E(t ! +1)/m of the light ions as a function of their initial radial
coordinate, r0, for the case of Fig. 3. Results obtained with the shell method
(blue dots) are compared with the analytic solution (red line).

distribution is plotted. The results here reported show the ability of the shell
method to analyze cases in which the density, in theory, may become infinite in
some point; in fact, results obtained with a relative low (104) and with a very
large (106) number of shells are in perfect agreement.

3 The ring method

In the case of axial symmetry the fundamental “brick” for a N -body technique
is a ring. More precisely, tori having circular cross section (of radius a) are
considered here. The tori shares the same axis of symmetry (the z axis) and are
characterized by their radii, Ri, and axial coordinates, zi (as in Fig. 7). When
N tori are considered, the electrostatic energy of the system can be written as:

U = 1
2

X

i �=j

qiqj�ring(Ri, Rj , zi � zj) +
NX

i=1

q
2
i Utorus(Ri, a), (24)

where �ring(R, R
�
, z

�) is the potential generated by a unit charge distributed on
a ring (i.e., a torus with a = 0) of radius R laying on the xy plane in a point of
polar coordinates (R�

, z
�), while Utorus(R, a) is the potential energy of a torus
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Figure 5: Radial coordinate, r, at di�erent times (t = 0 ÷ 1.47) as a function
of their initial position, r0, for a single-species ion plasma with a non uniform
initial density distribution. In the simulations, n(r, 0) = n1 when r < R/3 and
n2 when r 2

⇥
R
3 , R

⇤
, with n1/n2 = 8. Results for 104 shells (blue dots) are

compared with those obtained with 106 shells (red line).

of unitary charge. The potential �ring(R; R�
, z

�) can be evaluated1 in terms of
the complete elliptic integral of the first kind [9]:

K[x] =

Z �/2

0

d ↵

(1 � x sin2
↵)1/2

, (27)

as

�ring(R; R�
, z

�) =
2K[�]

�s
, (28)

1As a generic point of the ring has coordinates (R cos(�), R sin(�), 0) and the point where
the potential has to be evaluated has coordinates (R0

, 0, z
0), the potential 'ring can be written

as

'ring =
1

2⇡

� 2�

0

1

(R2 + R02 + z02 � 2RR0 cos ✓)1/2
d ✓, (25)

By introducing the new integration variable ↵ = �
2 � �

2 , the formula for 'ring becomes:

'ring =
2q

⇡

� �/2

0

1
�
(R + R0)2 + z02 � 4RR0 sin2

↵
�1/2

d ↵, (26)

from which Eq. (28) immediately follows.
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Figure 6: Ion phase-space distribution at di�erent times (t = 0 ÷ 1.47) for the
same case of Fig. 5. Results for 104 shells (blue dots) are compared with those
obtained with 106 shells (red line).

being

s = [(R + R
�)2 + z

�2]1/2
, � =

4RR
�

s2
. (29)

The calculation of Utorus(R, a) is reported in detail in the Appendix. For
the case of interest in which a ⌧ R, one has:

Utorus(R, a) ⇠ � 1

2�R


log
⇣

a

8R

⌘
� 1

4

�
. (30)

From Eq. (30), it can be noticed that Utorus diverges for a ! 0, and this is the
reason why tori are considered and not simply rings. Instead, in calculating the
interaction energy between tori, the value of �ring is employed, as it is supposed
that when a ⌧ R the energy of two tori or two rings is essentially the same.
Now, the equations of the motion for the set of rings are derived. In order to
write the Lagrangian of the system, the kinetic energy

NX

i=1

mi

2

⇣
Ṙ

2
i + ż

2
i + R

2
i �̇

2
i

⌘
(31)

must be considered. By introducing the momenta pR,i, pz,i, and p�,i:

pR,i = miṘi, pz,i = miżi, p�,i = miR
2
i �̇i, (32)
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Figure 7: Scheme of a torus.

one finally obtains the Hamiltonian H of the N interacting rings as:

H =
NX

i=1

1

2mi

 
p
2
R,i + p

2
z,i +

p
2
�,i

R
2
i

!
+1

2

X

i �=j

qiqj�ring(Ri, Rj , zi�zj)+
NX

i=1

q
2
i Utorus(Ri, a),

(33)
and the equations of the motion:
8
>>>>>>>>>>><

>>>>>>>>>>>:

d R�

d t
=

pR,�

m�
,

d z�

d t
=

pz,�

m�
,

d pR,�

d t
=

p
2
�,�

m�R3
�

�
P

� �=�
q�q�

�

�R�
�ring(R�, R� , z� � z�) � q

2
�

�

�R�
Utorus(R�; a),

d pz,�

d t
= �

P
� �=�

q�q�
�

�z�
�ring(R�, R� , z� � z�).

(34)
The angular momenta p�,� are constants of the motion. The partial derivatives
of �ring can be readily evaluated considering that:

d K[x]

d x
=

E[x] � (1 � x)K[x]

2x(1 � x)
, (35)

being E[x] =
R �/2
0 (1�x sin2

↵)1/2d↵ the complete elliptic integral of the second
kind [9]. Equations (34) have been deduced by considering only electrostatic
interaction in non relativistic limit. In principle, the method can be readily
extended to include relativistic particles and magnetic field (with axial symme-
try). To test its accuracy, the ring method has been employed to simulate the
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Figure 8: Phase-space distribution at di�erent times (t = 4 ÷ 36) of a spherical
ion plasma in the case of ring loading with method 1. Results obtained with the
ring method (blue dots) are compared with the analytic solution (red lines).

expansion of an ion sphere of uniform density, for which a simple analytic solu-
tion exists. The same normalizaion of the physical quantities of Sect. 2.5 is used
here. The initial ring distribution {Ri, zi} has been generated in two di�erent
ways: 1) by dividing the initial [R, z] domain (i.e., a half circle of radius R0)
into a number N of small squares, each corresponding to the cross section of a
ring; 2) by suitably taking a set of {Ri, zi} in a random way in order to obtain a
uniform charge density. The radius ai of the section of each ring has been chosen
as proportional to Ri, i.e., ai = k · Ri. The constant k has been determined by
requiring the potential energy of the set of the rings to be equal to the exact
value of the energy of the sphere. Figures 8, 9 and 10, 11 refer to method 1 and
method 2, for ring loading, respectively. In Figs. 8 and 9 the time evolution of
the phase-space distribution, as obtained with the ring method, is shown and
it is compared with its analytical behavior. Figures 10 and 11 show the total
kinetic energy of the ions, E =

PN
i=1

mi
2 v2

i (t), as a function of t; moreover, the

behavior of [E(t) �Er(t)]/E , where Er(t) =
PN

i=1
mi
2

⇥
v2

i (t) · er,i(t)
⇤

is the kinetic
energy due to the motion in radial direction, is also presented. Obviously, in
the exact solution Er(t) ⌘ E(t), so a value of

��E�Er(t)
E

��⌧ 1 is expected. All the
numerical results presented in Figs. 8, 9, 10, 11 are in excellent agreement with
the theory.

The second group of results here presented concerns the Coulomb explosion
of an ion plasma having initially a cylindrical form. These are cases of practical
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Figure 9: Same as Fig. 8 in the case of ring loading with method 2 (t =
4 ÷ 36). Results obtained with the ring method (blue dots) are compared with
the analytic solutions (red lines).
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Figure 10: Time evolution of the total kinetic energy of the ions (blue line) and
of the fraction of the perpendicular kinetic energy (red line) obtained with the
ring method for the same case of Fig. 8 (method 1 for ring loading). Results
obtained with the ring method are compared with the analytic solutions (black
stars).

14

136



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

t

E

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6x 10−3

(
E
−

E
r)
/
E

Figure 11: Same as Fig. 10, using method 2 for ring loading.
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Figure 12: Particle trajectories for the Coulomb explosion of an ion plasma
having initially a cylindrical shape (the ratio between initial radius R and height
H is equal to 0.1) for t = 0 ÷ 4. Results obtained with the ring method (blue
lines) are compared with those obtained with the PIC method (red dotted lines).

15

137



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 13: Angular distribution of E/m for the case of Fig. 12 for t = 0 ÷ 4.
Results obtained with the ring method (blue lines) are compared with those
obtained with the PIC method (red dotted lines).

interest, as they simulate the ion acceleration of the positive ions of a thin
solid target after interaction with a ultra intense laser pulse. Two cases are
considered, in which the cylinder has di�erent aspect ratio. Figures 12 and
13 show the trajectories of the ions and the angular distribution of the kinetic
energies for the first case. The same physical quantities are presented in Figs.
14 and 15 for the second case. In the Figures, the results of the ring method are
compared with those obtained by using a PIC code developed by the Authors
2. The agreement between the two techniques is excellent.

4 Final considerations

The results presented in the paper and all the tests that have been performed
prove the e�ectiveness of the numerical technique here proposed. The interac-
tion between computational particles is not mediated by a grid and, as shown in
Sects. 2 and 3, the method can be deduced by using a Hamiltonian approach.
Consequently, all the physical quantities of interest (e.g., momentum, energy
and angular momentum) are conserved exactly by the method, and the only

2The code makes use of an (R, z) uniform grid that is expanding in order to follow the
motion of the particles. Moreover, the electrostatic potential is calculated at the border of the
computational domain by summing the contributions due to all the rings; in this way, “exact”
boundary conditions are provided for the solver of the Poisson’s equation.

16

138



0 2 4 6 8
0

1

2

3

4

5

6

7

8

r

z

Figure 14: Same as Fig. 12, but for a cylinder with H/R = 1 for t = 0 ÷ 10.
Results obtained with the ring method (blue lines) are compared with those
obtained with the PIC method (red dotted lines).
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Figure 15: Same as Fig. 13, but for a cylinder with H/R = 1 for t = 0 ÷ 10.
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errors are due to time discretization. This properly represents an important
feature of the method. When the problem has the required degree of symmetry,
the methods of shells and of rings can be usefully employed in two cases: 1)
to obtain results making use of a simple, easy-to-implement code; 2) to have
reference results to test more complex codes, in particular when the physical
region occupied by the plasma grows dramatically during the simulation. For
these reasons, in the Authors’ opinion the method can be regarded as a useful
tool, in particular in the study of laser-plasma interaction.

A Electrostatic energy of a torus with a ⌧ R

With reference to Figure 16, the electrostatic energy of a torus can be calculated
by dividing the cross section S in a large number of subdomains. Each of them
generates an electrostatic potential that can be approximated as the one of a
ring. Indicating by �qi the charge of the i-th subdomain and by �ring(xi;xj)
the potential in xi due to a unitary charge in xj , the energy of the torus can be
approximated by

Figure 16: Cross section of a torus and coordinates employed in the calculation.

U ' 1

2

X

i �=j

�qi�qj�ring(xi,xj). (36)

In the limit when the size of the subdomains tends to zero, one obtains

U =

Z

S
d2

xQ

Z

S
d2

xP �(xQ)�(xP )�ring(xP ,xQ), (37)

where �(x) is the charge density for a unit cross section. If the torus is uniformly
charged and if a ⌧ R, one can assume

� ' q

�a2
= Const. (38)
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In order to evaluate �ring(xP ,xQ), the parameters s and �, defined in Eq. (29),
must be evaluated. One has:

� =
4(R + x1,P )(R + x1,Q)

s2
, s =

⇥
(R + x1,P + R + x1,Q)2 + (x2,P � x2,Q)2

⇤1/2
.

(39)
It turns out useful to introduce the quantity � = R + x1,P +x1,Q

2 , such that

R + x1,P = � + x1,P �x1,Q

2 , R + x1,Q = � � x1,P �x1,Q

2 . In this way, � can be
written as:

� =
1 �

⇣
x1,P �x1,Q

2�

⌘2

1 +
⇣

x2,P �x2,Q

2�

⌘2 ' 1 �
⇣

rPQ

2R

⌘2
, (40)

with r
2
PQ = (xP � xQ)2. In fact, � is much larger with respect to |x2,P �

x2,Q|  a, so the approximation 1
1+� ' 1 � ✏ can be used; moreover, � can be

approximated by R. Making use of the asymptotic behavior of K[�] for � ! 1:

K[�] ⇠
��1

�1

2
log(1 � �) + log 4, (41)

and assuming that s ' 2R, the following expression for �ring(xP ,xQ) is ob-
tained:

�ring(xP ,xQ) = � 1

�R
log
⇣

rPQ

8R

⌘
. (42)

Equation (42) can be employed in Eq. (36), which can be rewritten as

U =
�

2

2

Z

S
d2

xQ�torus(xQ), (43)

being

�torus(xQ) = � 1

�R

Z

S
d2

xP log
⇣

rPQ

8R

⌘
. (44)

For xQ = 0, �torus is readily evaluated:

�torus(0) = � 1

�R

Z a

0
2�rdr log

⇣
r

8R

⌘
= �a

2

R


log
⇣

a

8R

⌘
� 1

2

�
. (45)

To calculate �torus for a generic xQ 2 S, one can start by noticing that log(rPQ)
is proportional to the Green function for the two-dimensional Poisson’s equation:

r2
Q log rPQ = 2�� (xQ � xP ) . (46)

So, by applying the Laplacian operator r2
Q to Eq. (44), one obtains

r2
Q�torus = � 1

�R

Z

S
d2

xP · 2�� (xP � xQ) = � 2

R
. (47)
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Due to the symmetry of the problem, �torus is a function of rQ = |xQ|, and the
Laplacian operator can be written as r2

Q = 1
rQ

d
d rQ

rQ
d

d rQ
. Therefore, Eq. (47)

can be immediately solved, so obtaining

�torus(rQ) = �torus(0) �
r
2
Q

2R
. (48)

Finally, the energy of the torus can be calculated by using Eq. (43):

U =
q
2

2�2a4
· 2�

Z a

0
rQdrQ

"
�torus(0) �

r
2
Q

2R

#
= � q

2

2�R


log
⇣

a

8R

⌘
� 1

4

�
. (49)

Formula (49) is very accurate for a ⌧ R. If compared with the value of U

obtained from numerical integration of Eq. (36), the relative error is less than
0.5% for a/R < 0.2. A similar formula (without the term -1/4) has been deduced
in a concise, brilliant way in [10] by using the technique of asymptotic matching.
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Lesion dosimetry in metastatic thyroid cancer treated with 
131I: standardization of SPECT-TC calculation method with an in-house 
software tool 

Introduction  

The treatment of metastatic thyroid cancer with high 131I activity is a safe and effective therapeutic 

option when a radioiodine uptake into lesions is present. To maximize the efficacy of the 

administration, one high 131I activity treatment is preferable, while repeated lower activity 

treatments seem to be less effective due to the decreasing lesions uptake as reported by Lee [4]. The 
131I therapy employing ionizing radiation is analog to any external beam radiation therapy. For this 

reason, the calculation of the dose to the target (remnant thyroid or metastasis) and the organ at risk 

(red marrow, salivary glands, lungs) should be mandatory as reported by the national (D.Lgs 

187/2000) and European (EU Directive 59/2013) regulations. Particularly, when high activities are 

administered to the patients, the dose estimation becomes relevant. A first dosimetric goal is to 

avoid severe patient’s toxicity delivering less than 2 Gy to red marrow as reported by literature data 

[5, 6]. The correlation between dose to metastasis and clinical response is indicated by Maxon and 

Dorn [7,8],+ but the efficacy of a dosimetric approach compared to the fixed activity one is still 

under debate [9, 10]. The best effective dose to be delivered to the target in advanced metastatic 

patients (80-100 Gy to lymphnodes lesions and more than 300-400 Gy to bone metastasis [11]) as 

well as salivary gland dose limits should be confirmed by extensive clinical trials [12]. This could 

be achieved only when lesion dosimetry will be performed in most nuclear medicine therapeutic 

departments, increasing the number of patients’ dataset. The advanced metastatic patients are rare 

and represent a minority compared to all thyroid patients treated with radioiodine. To perform 131I 

lesion dosimetry, some post administration emissive acquisitions (planar or tomographic) are 

necessary to estimate the radiopharmaceutical biodistribution in each lesion that must be converted 

in dose using a specific calibration. This can represent an issue (radiation exposure of the nuclear 

medicine personal staff, time to perform the calibration and patient’s acquisitions) and many centres 

were discouraged from following this dosimetric approach, encouraged by the belief that the 

metastatic thyroid patients have a prolonged survival generally. This is true for most of the patients, 

but a percentage of them have a poor prognosis, however. The available commercial nuclear 

medicine dosimetric software supply the dose calculation for many radionuclides (i.e. 90Y or 177Lu), 

but no one is available for the 131I. The recent improvement of the SPECT-TC technology has made 

possible the direct quantification of the activity into the lesions also for this type of radioisotope 

simplifying the activity-curve analysis, but the co-registration of the different acquisitions, the 



volumes contouring and the conversion from integrated activity to dose remain an issue. The 

mathematical model is clear and shared in the scientific community, but the standardization in the 

practical aspects of the 131I dose calculation is needed as suggested by the Internal dosimetry group of 

the Italian Association of Medical Physics (AIFM) [11]. 

The aim of this study is to verify the robustness of an in-house dosimetry software tool created at 

Mauriziano Hospital of Turin to calculate the dose to the lesion of metastatic thyroid patients 

treated with high 131I activity. The standard dose calculation method is compared to the automated 

software one both on phantom and patient acquisitions to check the accuracy in term of cumulated 

activity and dose. 

Materials and methods 

131I lesion dosimetry with SPECT-TC technique 

To calculate the dose at first, the 131I activity must be estimated into the lesion.  

Absolute calibration. The lesion is defined by drawing a Volume of Interest (VOI) that enclose the 

whole metastasis. The counts into the VOI are converted to MBq applying an absolute calibration 

factor CF [MBq/counts]. This CF factor is obtained by acquiring a SPECT-TC uniform phantom 

filled with known liquid 131I activity. The total counts into the phantom are divided by the total 

activity (MBq), and this ratio represents the CF. The volume of the uniform phantom must be larger 

enough to avoid partial volume effects and without dead time count loss effects. 

 

Partial Volume Effects. The partial volume effect (PVE) is a well-known effect in the SPECT-TC 

acquisition technique that consists of a loss of counts when small volumes are acquired. To correct 

the PVE a recovery coefficient curve must be calculated to correlate the volume with the percentage 

of count loss. To this aim, a phantom with spheres of different volumes can be employed. The 

spheres are filled with a known liquid 131I activity, Atrue. The counts in each sphere are converted 

with the absolute K factor into activity, Ameasured. The measured value is compared to the true 

expected activity value Atrue. The PVE correction factor is calculated as the ratio between Ameasured  

and Atrue : PVE = Ameasured/Atrue . The PVE factor is calculated for each sphere. The smaller is the 

volume the nearest to zero is the PVE coefficient. For larger volumes the effect becomes negligible 

and the PVE factor is equal to 1.  A curve (PVE versus volume) is plotted and fitted with the 

equation 𝑓(𝑃𝑉𝐸) = 𝑎 + 𝑏 exp(𝑐 𝑣𝑜𝑙𝑢𝑚𝑒)  to obtain the function PVE-volume. When a lesion is 

evaluated, the volume of the lesion is set into the function f (PVE) and the relative PVE factor is 

obtained.  



Dead time correction. In the patient’s body, the amount of 131I activity after the therapeutic 

administration can consist in a high quantity of MBq, especially in the first days, because the 

radioiodine is cumulated not only into the metastasis but also in the organs at risk (i.e. bladder, 

stomach, salivary glands). For this reason, when an early SPECT-TC acquisition is performed the 

quantity of 131I activity can be so high to produce a count loss due to dead time events. The SPECT-

TC detector receives too many photons and is not able to count it all. This phenomenon is higher in 

the first acquisition and becomes lower and then negligible if the SPEC-TC acquisition is performed 

in the following days after the therapy. A dead time correction factor is needed to take into account 

the dead time correction. To this aim, the uniform phantom was filled with a high 131I liquid activity 

to present dead time condition. Several SPECT-TC acquisitions were acquired and the dead time 

index DT supplied by the gamma camera equipment was noticed for every acquisition. In the last 

day of acquisition, the dead time was negligible and the counts in the volume of the uniform 

phantom can be considered as true, without loss due to dead time effect. The counts measured in 

each acquisition were than related to the true counts expected, at a determined acquisition time, 

without dead time effect. The dead time correction factor KDT was also obtained as KDT = 

countsmeasured / countstrue. This factor, calculated for each SPECT-TC acquisition, was then related to 

the empirical DT factor that is available during the SPECT-TC on the workstation acquisition. A 

relationship between KDT and DT was fount: KDT = a�DT2+b. When a patient SPECT-TC is 

acquired the DT value is noticed (the mean value among all the views is considered) and trough the 

polynomial relationship the corresponding KDT factor is obtained. 

Considering all the above mentioned converting and correction factors the activity in the VOI is 

obtained with the formula: 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑐𝑡𝑠𝑅𝑂𝐼 ∙ 𝐾𝐷𝑇
𝑃𝑉𝐸 𝑅𝐶

∙ CF      [1] 

 

Activity - Time curve The activity into the lesion is calculated for each of the 4 SPECT-TC (at 4, 24, 

48, 96 h) acquired after the therapeutic 131I administration. The activity [MBq] is plotted as a 

function of the time [h] to obtain the Activity-Time curve. The curve fitting with a bi-exponential 

function Activity [MBq] = A*(EXP(B*time(h))-EXP(C*time(h))) is integrated [0, f] to calculate 

the area under the curve (undefined integral = A/B-A/C) that corresponds to the cumulated activity, 

𝐴̃  [MBq � h], in the lesion. 

Lesion mass The lesion mass [g] is calculated from the lesion volume V [cc] and the lesion density 

[g/c3]   Lesion mass [g] = lesion volume [cm3] x density [g/cm3]. 



The lesion density (g/c3) was obtained from the Hounsfield Unit HU in the VOI converted to 

density [g/cm3]. The SPECT-TC was calibrated with a HU-density curve. 

Lesion Mean Dose The mean dose to the lesion is finally calculated with the MIRD sphere model 

[xx] with the formula 

Dose [mGy] = S [mGy/MBq h] x 𝐴̃  [MBq � h].       [2] 

The S factors are tabulated in the OLINDA/EXM Model. A fit to obtain the correct S factor 

corresponding to the lesion mass was employed: 

S (mGy/MBq h) = 110.02 / m0.9734  for lesion mass < 10 g 

S (mGy/MBq h) = 107.8 / m0.9673  for lesion mass 10 g < m < 100 g 

S (mGy/MBq h) = 97.1 / m0.944 for lesion mass > 100 g. 

 

SPECT-TC calibration with 131I phantom measurements  

To obtain the absolute calibration factor K, the partial volume effects correction factors PVE and 

dead time correction factors KDT, a NEMA PET-CT sphere phantom was used.  The spheres 

(10.7cc, 5.44cc and 1.2cc) placed in the upper part and the cylinder (130 cc) positioned in the lower 

part are were filled with liquid 131 I with a well-known activity (initial 131I concentration 13.7 

MBq/ml). The surrounding volume was filled with not radioactive water. As reported in Figure 1, 

there is no overlapping between the volume of the cylinder and the volume of the spheres that are 

positioned in separate z-plane.  

 

Figure 1 NEMA PET-TC phantom 



A SPECT-TC (Siemens Intevo T2) acquisition of the NEMA PET-TC phantom was performed 

(HEHR collimators, 256x256 matrix, voxel size 4.8 mm, 64 views, 20 s/views, circular orbit Radius 

= 25 cm, 28 cm, 33 cm); images were corrected by scattering and CT-attenuation, then 

reconstructed with an Iterative Algorithm (RR, Flash3D). The acquisition was repeated 9 times, 

immediately after the phantom preparation and in the following days [0 ÷ 40 days]. Dead time DT 

values were noticed for each acquisition and reported in Table 1 where different values of activity 

from the preparation of the phantom up to the last acquisition are also shown. Acquisitions were 

stopped when the dead time became negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Volumes and correspondent activities inside the NEMA phantom at the preparation 

time and after 20 and 40 days, when the dead time became negligible. 

The absolute calibration factor K was calculated on the larger volume (cylinder) of the phantom to 

avoid PVE effects and in the last acquisition day, to be far from dead time count loss. In Figure 2 

the sagittal view of the NEMA PET phantom is reported: cylinder and spheres are visible. 

SPECT-TC  

acquisition 

time [days] 

Volume  

[ml] 

Activity  

[MBq] 

Dead time 

index DT  

[%] 

0 

Sphere 1 :   11,5 

Sphere 2 :   5,6 

Sphere 3 :   1,1 

Cylinder :   130 

150 

75 

15 

1710 

26 

20 

Sphere 1 :    11,5 

Sphere 2 :    5,6 

Sphere 3 :    1,1 

Cylinder :    130 

25 

12 

2,5 

280 

5 

40 

Sphere 1 :    11,5 

Sphere 2 :    5,6 

Sphere 3 :    1,1 

Cylinder :    130 

5 

2,5 

0,5 

55 

0,5 



 

 

Figure 2 Sagittal view of the NEMA PET Phantom: the 131I activity is visible inside the cylinder 

and the spheres. 

 

Partial Volume Effect (PVE) curves were obtained on the spheres volumes (10.7cc, 5.44cc and 

1.2cc) while for the cylinder (130 cc) the volume is large enough to avoid partial volume effects. 

The analysis was performed on the last SPECT-TC acquisition to be far from dead time effects. The 

PVE ratio was plotted as a function of the volume (spheres and cylinder are reported). The trend is 

reported for the 3 detector radius (25, 28, 33 cm) and is similar to literature data as well as the 

fitting curves. The curves were employed to calculate, from the volume of the lesion, the 

corresponding PVE correction factor. 

Dead time correction curve was evaluated on the cylinder volume. The curve that correlates the DT 

coefficient to the KDT correction factor was obtained. 

 

Verification of the 131I SPECT-TC calibration 

 
To verify the 131I SPECT-TC calibration the NEMA PET phantom was set-up a second time: 

spheres and cylinder were filled with a known activity of liquid 131 I (10,11 MBq/ml) and 

surrounded by water. 4 SPECT-TC acquisitions were performed (same acquisition protocol used for 

the calibration). The 4 acquisitions were analysed to obtain the activity into the volumes with the 

formula [1]. The absolute calculated activities [MBq] were compared to the theoretical values. By 

fitting the Time-Activity curves, the mean dose for each VOIs was calculated with the formula [2] 



and compared to the theoretical value. Percentage dose differences were calculated for activities and 

dose values to estimate the accuracy of the dosimetric method. 

Patient 131I lesion dosimetry 

After the calibration of the SPECT-TC system, the dosimetric protocol was applied to patients 

hospitalized for the therapeutic administration of 131I at Nuclear Medicine Department. After the 

radioiodine administration, the first SPECT-TC acquisition was performed within 4-5 h (patient was 

encouraged to void bladder before the scan). The following SPECT-TC acquisitions were 

performed at 24, 72 and 96 h post administration. 

A group of 6 metastatic thyroid patients was considered (3 F, 3 M, age 41 ÷ 71 . 4 year, 

histopathology % papillary, % follicular). The 131I activity was administered from 20xx to 201yy  

(7.1 MBq [3.7 ÷ 11.2]). The value of activity [MBq] for each lesion of the patient was segmented 

on the SPECT-CT reconstructed images by means of the contouring software (Volumetrix 

@Siemens on the e-soft workstation). The lesions were contoured on CT basis, taking into account 

the uptake (a threshold segmentation method was used on the counts image).  This process is 

necessary for each SPECT-TC acquisition and it is extremely time-consuming and can be affected 

by operator interpretation and errors. The contouring must be performed on the all 4 SPECT-TC 

maintaining the lesion VOIs equal. To calculate the dose with the standard method the counts data 

of each VOIs were entered on a dedicated electronic sheet that calculates the activity. The fit of the 

time-activity curve was performed with a external software (@LabFit) to calculate the mean dose to 

the lesion. 

 
131I  Lesion  dosimetry  with a 3D in-house dedicated  software  

An in-house software has been developed (®MatLab) with the aim to become the dosimetric 

calculation process more automatized and standardized. The intent was to process the SPECT-CT 

images automatically. The iterative (IT_SCAC) SPECT reconstructed images were imported on the 

MatLab workspace. The SPECT count matrix was imported and the registration with the CT was 

achieved considering that the two matrices have the same sagittal heights, and the transversal 

images have the same centre coordinates.  For these reasons, the cranio-caudal CT scan must be 

always equal to the SPECT emissive scan. The voxel size of the SPECT image was fixed (4.8 mm) 

and the voxel size of the CT was adapted to have the same number of rows and columns of the 

SPECT matrix, considering that after the registration the real dimensions of the 3D images are the 

same. The SPECT-TC are visualized in the transversal, longitudinal and sagittal planes (Fig. 3). A 

colormap predefined in MatLab was applied, subdivided in 1000 colour shades, and the windowing 



can be modified to identify the lesions better. Then, different sections of interest are identified on 

the z-plane to be analysed. To define the lesion Volume of Interest (VOIs) three different 

segmentation methods are available: free-hand manual, 2D single slice threshold and 3D threshold. 

The more useful is the 3D threshold method where the VOI is obtained as a percentage of the 

maximum in the region of the lesion. This is the first stage of the method, represented in Fig.  4. 

Secondly, all the slices belonging to the chosen lesion are analysed with the possibility to change 

the contour of the tumor if some errors occurred, Fig. 5.  

 

 

Figure 3: First stage of the 3D threshold method, changing the value of the threshold the    

               corresponding volume of the lesion is visualized. 

 

 



 

Figure 4: First stage of the 3D threshold method, changing the value of the threshold the    

               corresponding volume of the lesion is visualized. 

 

Figure 5: Second stage of the 3D method, all the slices of the lesion are analysed and it  

               contour can be modified. 

To apply this segmentation method the lesion volume must be known. For this reason, each tumor 

lesion is a priori analysed on the processing Siemens workstation (e.soft) and the volume of the 

metastasis is defined on SPECT and CT basis. Once the volume is set, this value is applied to the 

3D MatLab tool, that automatically chooses the threshold value to obtain the exact value of volume 

(ml). The operator draws the lesion VOI only on one SPECT-TC (usually the second or the third 



acquisition, where the lesions are more visible, due to the higher uptake). The MatLab code 

automatically draws the same VOIs on the other 3 available SPECT-TC. This is achieved in an 

automatized manner: the software changes the threshold to maintain the volume of the VOI equal in 

all the 4 SPECT-TC acquisitions. In case of particular geometric shape or location of the lesion a 

2D single slice threshold method is always possible, inspecting all the slices of the considered 

section and correcting manually the volume automatically fixed by the 3D method. Also, the free-

hand method of segmentation is available, but the 3D threshold method is preferred because of a 

more robust standardization and independence from the operator. After the contouring process the 

total counts inside each lesion, for each SPECT-TC acquisition, are automatically obtained from the 

counts matrix. To convert the counts to the activity (MBq) using the equation [1] the time per views 

(s/views), detector radius (25, 28 or 33 cm) and the mean dead time (DT) of each SPECT-TC must 

be taped as input into the software that ask for these values.  The activity of each VOIs is than 

related to the acquisition time (derived automatically from the SPECT-TC header-DICOM). The 

activity-time curve is obtained for each lesion and plotted. A curve fitting model is performed by 

choosing between mono or bi-exponential [Activity [MBq] = A*(EXP(B*time(h))-

EXP(C*time(h))] and the activity-time curve and the cumulated activity is obtained [MBq � h]. To 

convert the lesion volume into a mass (g) the HU lesion value is automatically obtained from the 

CT image and converted in mass with the calibration curve. Then, the mean dose is calculated with 

the equation [2]. 

Validation of the 3D in-house dosimetric software 

Phantom acquisition As reported the SPECT-TC calibration was verified with a 131I phantom 

acquisition: activity and dose into the spheres and cylinder were at first calculated with the standard 

method (electronic sheet). The 4 SPECT-TC were than analysed also with the 3D dosimetric 

software (a mono-exponential fit was chosen due to only physical decay). The theoretical activity 

values, as well as the doses, were compared to the calculated results both with standard and with 3D 

software ones. 

Patients acquisition Also for the 6 patients the same verification was performed. The lesion 

dosimetry obtained with standard method was compared to results obtained by analysing the 

SPECT-TC with 3D software (in this case the bi-exponential fit was employed to take into account 

also the biological discharge). The results are shown in the following tables.  

 
 



Results 
Absolute calibration 

 

The absolute calibration factor (CF), converting counts to MBq was 𝐶𝐹 = 4 ⋅ 10−5 𝑐𝑜𝑢𝑛𝑡𝑠
𝑀𝐵𝑞

. 

Partial Volume Effects 

 

Partial volume effect curves are reported in Figure 6 for the 3 different circular acquisition radius 

values. The fit 𝑓(𝑃𝑉𝐸) = 𝑎 + 𝑏 exp(𝑐 𝑣𝑜𝑙𝑢𝑚𝑒) is reported in Table 2. These curves were applied 

to obtain the PVE correction factor when phantom verification and lesion dosimetry are performed. 

 

𝒇(𝑷𝑽𝑬) = 𝒂 + 𝒃 𝐞𝐱𝐩(𝒄 𝒗𝒐𝒍𝒖𝒎𝒆) 

Circular Detector Radius (cm) Fit Coefficient a Fit Coefficient b Fit Coefficient c 

25 98,54 -109,4 -0,1638 

28 99,5 -107,6 -0,1430 

33 99,58 -106,3 -0,1067 

 

Table 2: Coefficients for the fitting curve of the PVE coefficient. 

Figure 6: PVE coefficient (dots) are reported as a function of the volume (XXX ml sphere e 130 ml 

cylinder). 3 different detector radius value were analysed. Curve fit (lines) are also reported. 



Dead time correction  

 

The DT index (mean value into the all SPECT-TC views) are reported and the corresponding KDT 

factor is also shown in Table 3: 

 

DT index [%] KDT  

1 1,0013 

2 1,0020 

3 1,0033 

5 1,0073 

8 1,0172 

13 1,0438 

17 1,0741 

22 1,1235 

26 1,1720 

KDT = 

a�DT2+b 

 

 

Table 3: KDT obtained in function of the DT indexes detected by the SPECT-TC device. 

 

The KDT data are plotted in Fig. 7 as a function of the DT values (dots) and the parabolic fit KDT = 

a�DT2+b is shown (line). The strong relationship between DT and KDT is evident and it is confirmed 

that the DT index reported on the acquisition Siemens workstation is related to the dead time 

correction factor KDT. The fit was employed from the DT mean value of the SPECT-TC to obtain 

the corresponding KDT value in the lesion dosimetry. This dead time correction method is a 

simplified method. The best solution would be to correct each SPECT-CT view for the 

corresponding dead time values. This is possible only modifying the raw data during the acquisition 

because the DT indexes are displayed just in the time of the acquisition process. This solution is not 

feasible without access to the raw data that was at the moment not possible. For these reasons, the 

mean value was chosen as reference. 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 7: Fitting curve for the KDT coefficient in function of DT index, with the empirical function 

in Eq. 5. 

 

Activity - Time curve  

A typical activity-time curve both for the cylinder (where only physical decay is present) and for a 

lesion are reported in Figs 8-9. The first point for lesions is set at zero and the second is in the 

increasing phase of the uptake, while the following points are in the decreasing phase. The 

coefficients of the fit curve: Activity [MBq] = A*(EXP(B*time(h))-EXP(C*time(h))) referred to the 

lesion in example is reported in Tab. 4. 

 

 
 

Figure 8: Activity curve for the cylinder inside the water phantom, only physical decay present. 



 

 
Figure 9: Example of Lesion-Activity curve for a lesion inside a real patient. 

 

 

 

 

Time - Activity Curve 

A B C 

-127 -0,107 -5,6e-3 

Area under the curve [MBq � h] = 21212 

 

Table 4: Example of coefficients for the Time-Activity biexponential curve, Activity [MBq] = 

A*(EXP(B*time(h))-EXP(C*time(h))), typical of a lesion. 

 

 

Lesion mass  

The lesion mass is obtained from the mean Hounsfield Unit (HU) into the lesion. A calibration 

curve was obtained with a CT-Phantom, to convert HU in mass density (g/cm3). The phantom was 

acquired on the SPECT-TC system and the different well-known density materials were related to 

the HU. The values are reported in Table 5 as well as the fitting curve is shown in Figure 10 (two 

different curves where employed when HU is < 1 or > 1). From the density g/cm3 the lesion mass is 

obtained multiplying the density to the volume. 

 



HU g/cm3 

-986 0.00005 

-709 0.281 

-531 0.463 

-77 0.937 

-42 0.957 

1 1 

29 1.049 

93 1.077 

220 1.105 

224 1.06 

431 1.275 

779 1.467 

1161 1.691 

4000 2.98 

HU < 1 g/cm3 = 0.001 HU +1.0044 

HU > 1 g/cm3 = 0.00005 HU +1.0661 

 

Table 6: Relation between the density and the HU of different materials. 

 

 
 

Figure 10:  Fitting curve for the relation density-HU for two different HU range of values (HU<1 or 

HU>1). 

 



Lesion Mean Dose  

The lesion mean dose is then obtained with the Equation [2] where the S factor is calculated from 

the lesion mass with the above-reported equations. 

Dose [mGy] = S [mGy/MBq h] x 𝐴̃  [MBq � h] 

For example, for the lesion reported in Fig. 7, the mean dose was obtained equal to 84,5 Gy, all the 

data of volume and mass are reported in Tab. 7. 

Lesion volume (cm3) 28,12 

Lesion density (g/cm3) 1,08 

Lesion mass (g) 30,26 

S (mGy/MBq h) 3,98 

Cumulated activity [MBq h] 21212 

Mean lesion Dose = 84,5 Gy 

 

Table 7: Calculated data for the same lesion of Fig. 9, with at the end the value of the mean dose to 

the lesion. 

 

Validation of the 3D in-house dosimetric software 

Phantom dosimetry 

In Table 8 results of volumes (obtained with the threshold 3D segmentation method), the cumulated 

activities and the mean doses in the verification phantom are reported. The theoretical expected 

value is compared to the calculated value obtained analysing the phantom acquisitions with the 3D 

software (MatLab). The percentage difference is shown in brackets. 

 

 

 

  

 



VOI 
Volume  

[cm3] 

Cumulated activity  

[MBq h] 

Mean Dose  

[Gy] 

Theoretical Calculated Theoretical Calculated Theoretical Calculated 

Cylinder 130.0 130.3 (0%) 365923 329462 (-10%) 358  318 (11%) 

Sphere 1 11.5 11.5 (0%) 28073 23613  (-16 %) 311 328 (5%) 

Sphere 2 5.6 5.6 (0%) 15912 12910  (-19 %) 323 259 (20 %) 

Sphere 3 2.7 2.6 (-4%) 7158 7653 (+7%) 316  333 (+5%) 

Sphere 4 1.1 0.5 (-45%) 3203 6673 (+100%) 326 671 (+105%) 

 

Table 8: Results from the phantom verification in terms of volume, cumulated activity and mean 

dose to the lesion. Calculated data (obtained with the in-house software) are compared with the 

theoretical value.  

 

The higher variations were found for the smallest sphere (Sphere 4: 1.1 cc) where the 3D software 

overestimated the dose due to the lower volume calculated by the 3D software when the VOI was 

contoured. This dimension is below the spatial resolution and for this reason lesions smaller than 

2.5 cm3 were not evaluated. 

 

In Figure 11 the theoretical activity decay curve inside the cylinder is reported and compared to the 

activity curve data obtained by the 3D MatLab software (a monoexponential fit was applied). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 11: Theoretical activity decay curve (red line) inside the 130 ml cylinder compared to the 

activity curve data obtained by the 3D MatLab software (blue line) The overall difference in the 

cumulated activity  was about 11 % (see Table 8). 

 

 

Patients dosimetry  

In the following Tables 9-14, results from lesion dosimetry of patients are reported. Volumes, 

cumulated activities and mean doses to the lesions calculated with standard method were compared 

to results obtained with 3D software. A whole-body image is also shown as well as lesion type. In 

brackets the percentage difference is reported (the standard method results were set as a reference 

value). 

  



Patient # 1  
 

Female, 42 years, Administered activity = 5552 MBq   date 24/10/2016 

 

 
Lesion 

Volume  

[cm3] 

Cumulated activity  

[MBq h] 

Mean Dose  

[Gy] 

Theo Calc Theo Calc Theo Calc 

Lymphnod 6.15 6.17 

(0%) 

9114 8502  

(-7%) 

160 150 

(-7%) 

Lymphnod 4.36 4.33 

(-1%) 

10431 10598 

(2%) 

267 275 

(3%) 

Lymphnod 7.81 7.94 

(2%) 

898 840 

(-7%) 

12 12 

(0%) 

Lung 7.28 7.27 

(0%) 

4508 4236 

(-6%) 

115 121 

(5%) 

Lung 5.2 5.2 

(0%) 

1259 1219 

(-3%) 

56 55 

(-2%) 

Lung 5.69 5.55 

(-3%) 

1596 1541 

(-4%) 

76 67 

(-13%) 

Lung 18.32 18.41 

(0%) 

3081 3108 

(1%) 

45 52 

(13%) 

Lung 7.82 7.82 

(0%) 

1515 1419 

(-7%) 

80 75 

(-7%) 

 

Table 9: Results for patient #1 

 

  



Patient # 2  
 

Female, 71 years, Administered activity = 7209 MBq   date 30/01/2017 

 

 

Lesion 
Volume  

[cm3] 

Cumulated activity  

[MBq h] 

Mean Dose  

[Gy] 

Theo Calc Theo Calc Theo Calc 

Vertebra 14 13.8  

(-1%) 

3917 4057 

(3%) 

25.5 27.8 

(8%) 

 

Table 10: Results for patient #2 

 

 

 

 

 

 

 

 

 



Patient # 3 
 

Female, 58 years, Administered activity = 3716 MBq   date 19/12/2016 

 

 

Lesion 
Volume  

[cm3] 

Cumulated activity  

[MBq h] 

Mean Dose  

[Gy] 

Theo Calc Theo Calc Theo Calc 

Bone 7.7 7.7 

(0%) 

12717 12678  

(0%) 

174 177 

(2%) 

Bone 3.95   3.95 

 (0%) 

3993 4001 

(0%) 

103 105 

(2%) 

Bone 9.5 9.5 

(0%) 

7159 7147 

(0%) 

82 81 

(-1%) 

Bone 5.1 4.9 

(-4%) 

2423 2420 

(0%) 

45 45 

(0%) 

Bone 4.2 4.22 

(0%) 

4142 4118 

(1%) 

101 105 

(4%) 

Bone 4.9 4.82 

(2%) 

3323 3231 

(3%) 

73 70 

(4%) 

 

Table 11: Results for patient #3 

 

 

 

 

 

 



Patient # 4 
 

Female, 63 years, Administered activity = 5596 MBq   date 13/03/2017 

 

 

Lesion 
Volume  

[cm3] 

Cumulated activity  

[MBq h] 

Mean Dose  

[Gy] 

Theo Calc Theo Calc Theo Calc 

Bone 193.5 193.7 

(0%) 

63625 64735 

(2%) 

40 40 

(0%) 

Bone 11.33   11.29 

 (0%) 

12807 13579 

(6%) 

121 129 

(6%) 

Bone 85 84 

(-1%) 

92690 95184 

(3%) 

128 131 

(2%) 

Bone 6.7 6.7 

(0%) 

1425 1671 

(15%) 

21 26 

(19%) 

Bone 5.5 5.5 

(0%) 

5059 4916 

(-3%) 

101 96 

(-5%) 

 

Table 12: Results for patient #4 

 

 

 

 

 

 



Patient # 5 
 

Female, (54) years, Administered activity = 5594 MBq   date 18/06/2018 

 

 

Lesion 
Volume  

[cm3] 

Cumulated activity  

[MBq h] 

Mean Dose  

[Gy] 

Theo Calc Theo Calc Theo Calc 

Bone 9 9  

(0%) 

7167 7157 

(0%) 

74 78 

(5%) 

Bone 10.4   10.6 

 (2%) 

1260 1279 

(1%) 

13 13 

(0%) 

Bone 6.1 6.25 

(2%) 

1280 1269 

(-1%) 

25 24 

(-4%) 

Bone 10.1 10.2 

(1%) 

1789 1801 

(1%) 

19 18.7 

(-2%) 

Bone 10 9.9 

(0%) 

1283 1285 

(0%) 

14 14 

(0%) 

 

Table 13: Results for patient #5 

 

 

 

 

 

 

 



Patient # 6 
 

Female, 71 years,  

Administered activity 1st treatment= 9286 MBq   date 29/05/2017 

2nd treatment= 11145 MBq date 30/04/2018 

 

 

Lesion 
Volume  

[cm3] 

Cumulated activity  

[MBq h] 

Mean Dose  

[Gy] 

Theo Calc Theo Calc Theo Calc 

1st treat 29.3 28.1 

(-4%) 

22457 21212  

(-6%) 

85 84 

(-1%) 

2nd treat 20.3   20.9 

 (3%) 

7542 8024 

(6%) 

41 42 

(2%) 

 

Table 14: Results for patient #6 

  



Statistics on phantom and patient results 

The validation of the 3D MatLab software with the previously used standard method gives good 

results in the case of the phantom (percentage dose difference mean ± 1dev.st  6.7 ± 14.0 %) 

excluding the last sphere present due to its volume, smaller than the resolution of the SPECT 

device. Also considering the results for patient lesion dosimetry, a good agreement in terms of 

cumulated activity (percentage difference mean ± 1dev.st  0.3 ± 4.7 %)  and absolute dose 

(percentage difference mean ± 1dev.st -1.0 ± 6.4 %) was found. Box-plot diagram for the theoretical 

and calculated dose and cumulated activity for all the patients of Tables 9-4 are reported in Figure 

12 (a) and (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.12 Box Plot for dose results (a) and for cumulated activity (b) 
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T-test for paired samples was applied both for dose and cumulated activity comparisons on patients 

and phantom results. p-values are reported in Table 15 and do not show statistical differences. 

Patient dosimetry  

Dose (p-value) 0.4758 

Cumulated Activity (p-value) 0.4019 

Phantom dosimetry 
 

Dose (p-value) 0.4563 

Cumulated Activity (p-value) 0.2959 

Table 15: Statistic tests to compare dose and activity results obtained with standard and Matlab dose 

calculation methods. 

 

Discussion 

At present, commercial software for internal dosimetry do not take into consideration 131I patients 

and there are not open source versions available. In literature, some studies on internal dosimetry 

are present but designed only for PET images [13]. The importance to standardize the dosimetric 

calculation approach leads to the development of in-house software, able to provide the values of 

dose to the lesions in metastatic thyroid patients, treated with 131I for metastatic thyroid cancer. 

The main aim of the new software is to minimize the operator-dependence, processing the SPECT-

CT images automatically. Most of the efforts were devoted to the registration of the SPECT 

reconstructed image and the correspondent CT. The software implements during the calculation the 

gamma camera parameters, obtained by a calibration process. One of the critical points of the 

process is the contouring of each lesion on the 4 different acquisition: it should be well defined the 

volume of the lesion in the initial clinical phase to obtain precise results. In case of difficult 

identification of the lesion, the error in the volume definition will affect considerably the dose 

calculation. A strong synergy with the medical staff is fundamental to avoid incorrect values of dose 

to the tumour. Once the lesion volume is well identified, the 3D software automatically contour on 

the 4 SPECT-TC acquisitions the lesion, obtaining counts converted into cumulated activity and 

finally in mean dose. 



The curve fitting process of the activity-time function is another crucial point of the study, due to its 

fundamental role in the calculation of the final mean dose to the tumor. In this version of the 

software, the possibility to try different fit models allows a more tailored choice of the activity 

curve function. 

The validation of the 3D MatLab dose software was performed on phantom and patients 

acquisitions to test the robustness of the dose calculation tool. The good agreement both in terms of 

cumulated activity and dose confirms the reliability of the in-house software that will be employed 

for the patient dose calculation. 

At present, only a few numbers of patients were available for the validation, but the statistic could 

be increased in future. Due to the high flexibility of the 3Dsoftware it could be rapidly adapted to 

other isotopes (i.e. Lu177) but new calibration factors will be needed and  given as input to the dose 

calculation tool. 

 

Conclusion 

The present paper demonstrates the efficacy of an in-house dosimetry software, designed to 

calculate the dose to the lesion in case of metastatic thyroid patients treated with high 131I activity. 

To validate the robustness of the software, a comparison in terms of dose and cumulated activity 

was performed both on a phantom and on six real patients with reference results from the standard 

dose calculation, giving a good agreement. The employment of the dosimetry software could be a 

promising alternative to dose calculation, granting a standardization of the procedure with limited 

operator-dependence. 

 

 

 

 

  



Reference 

[1] Willowson et al., Quantitative SPECT reconstruction using CT-derived corrections, PMB, 

2008, 53:3099-3112, doi: 10.1088/0031-9155/53/12/002 

[2] Loevinger R, Budinger T, Watson E, MIRD Primer for Absorbed Dose Calculations, Society of 

Nuclear Medicine, 1988. 

[3] DewarajaYK et al., MIRD pamphlet No. 23: Quantitative SPECT for patient-specific 3-

dimensional dosimetry in internal radionuclide therapy, J Nucl Med, 2012, 53(8):1310-25, doi: 

10.2967/jnumed.111.100123. 

[4] Lee JJ et al, Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients 

with differentiated thyroid carcinoma, Ann Nucl Med, 2008, 22:727-734, doi: 10.1007/s12149-007-

0179-8. 

[5] Giostra A1, Richetta E, Pasquino M, Miranti A, Cutaia C, Brusasco G, Pellerito RE, Stasi M., 

Red marrow and blood dosimetry in (131) I treatment of metastatic thyroid carcinoma: pre-

treatment versus in-therapy results, Phys Med Biol., 2016, 61(11):4316-26, doi: 10.1088/0031-

9155/61/11/4316.  

[6] Miranti A., Giostra A., Richetta E., Gino E., Pellerito RE., Stasi M., Comparison of 

mathematical models for red marrow and blood absorbed dose estimation in the radioiodine 

treatment of advanced differentiated thyroid carcinoma., 2015, 60(3):1141-57, doi: 10.1088/0031-

9155/60/3/1141. 

[7] Maxon H.R., Quantitative radioiodine therapy in the treatment of differentiated thyroid cancer, 

QJ Nucl. Med 1999; 43(4):313-23. 

[8] Dorn R. et al., Dosimetry-guided radioactive Iodine treatment in patients with metastatic 

differentiated thyroid cancer: largest safe dose using a risk-adapted approach, J Nucl Med, 2003, 

44(3):451-6. 

[9] Deandreis D, Rubino C, Tala H, Leboulleux S, Terroir M, Baudin E, et al. Comparison of 

empiric versus whole body/blood clearance dosimetry-based approach to radioactive iodine 

treatment in patients with metastases from differentiated thyroid cancer, J Nucl Med, 2017, 

58(5):717-722. doi: 10.2967/jnumed.116.179606. 

 



[10] Klubo-Gwiezdzinska J. et al, Efficacy of dosimetric versus empiric prescribed activity of 131I 

for therapy of differentiated thyroid cancer, J Clin Endocrinol Metab, 2011, 96(10):3217-25. doi: 

10.1210/jc.2011-0494. 

[11] Nagarajah J. et al., Iodine Symporter Targeting with 124I/131I Theranostic, J Nucl Med, 2017, 

58(Suppl 2):34S-38S. doi: 10.2967/jnumed.116.186866. 

[12] Mandel S.J., Radioactive iodine and the salivary glands, Thyroid. 2003, 13(3):265-71. 

[13] Sgouros G. et al., Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET 

and 3-dimensional-internal dosimetry (3D-ID) software, J Nucl Med, 2004, 45(8):1366-72. 


