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Summary

This dissertation proposes a new paradigm for Carrera’s Unified Formulation (CUF)
based multi-scale structural modelling by bridging micromechanics, and the advanced
one-dimensional/beam structural theory. The achievements in the exploration process
can be summarised in the following two aspects: a geometrically nonlinear macro-scale
CUF-based beam model and a geometrically nonlinear multi-scale CUF-based beam
model.
The exploration started from a study of nonlinear structural modelling established by
coupling the nonlinear CUF and Asymptotic Numerical Method (ANM). This geometri-
cally nonlinear CUF-based beam model has been accomplished in collaboration with G.
De Pietro. It is one of the first studies that extends one-dimensional equivalent single
layer CUF models coupled with ANM to account for geometrical non-linearities us-
ing a total Lagrangian formulation (large deformation and rotation but small strains).
Static nonlinear, post-buckling and snap-through analyses of beam structures have been
presented, and the corresponding load-displacement and load-stress curves have been
assessed. Results have been compared with two-dimensional FEM solutions. It has been
shown that, for the considered cases, a quadratic through-the-thickness description
ensures accurate displacements and normal axial stress component. A higher expan-
sion order is required to predict the shear stress component accurately, especially for
very high load levels. In the considered post-buckling analysis, both high-order and
low-order one-dimensional CUF models have detected the bifurcation point accurately.
However, accurate results for the shear stress call for a higher-order model. In the snap-
through analysis, a refined beam theory is required to accurately track the equilibrium
path.
To address geometrically nonlinear problems in beam structures from different scales,
a geometrically nonlinear CUF-based multi-scale beam model has been derived by cou-
pling the proposed macroscopic model and the Multilevel Finite Element (also known
as FE2) framework, which is also the main novelty of this thesis. The solution proce-
dure consists of a macroscopic/structural analysis and a microscopic/material analysis.
At the macroscopic scale, the unknown constitutive law is derived from a numerical
homogenisation of a Representative Volume Element (RVE) at the microscopic level.
Vice versa, the microscopic deformation gradient is calculated from the macroscopic
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model. As far as the geometrically nonlinear problem is concerned, the resulting non-
linear mathematical system is solved by ANM, which is more reliable and less time to
consume compared to classical iterative methods. The proposed framework is used in
investigating the effect of microscale imperfections (not straight carbon fibres) on the
macroscale response (instability). Results are analysed in terms of accuracy and com-
putational costs towards full FEM solutions. Three factors have been identified for an
imperfection sensitivity parametric analysis: the wavelength, the amplitude and the size
of RVE.
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Sommario

Questa dissertazione propone un nuovo paradigma per l’analisi multi-scala delle
strutture di tipo trave, utilizzando la formulazione unificata di Carrera (”Carrera’s Uni-
fied Formulation”, CUF). La modellizzazione multi-scala collega la micromeccanica e la
teoria strutturale macroscopica. I risultati del processo di esplorazione possono essere
riassunti nei due aspetti seguenti: un modello macroscopico di trave, contenente non-
linearità geometriche, ed un modello di trave multi-scala, anch’esso non-lineare da un
punto di vista geometrico.
L’indagine qui presentata inizia con uno studio della modellazione macroscopica non
lineare. Il modello strutturale viene stabilito accoppiando la CUF non-lineare con il Me-
todo Numerico Asintotico (”Asymptotic Numerical Method”, ANM). Questo modello di
trave, basato sulla CUF contenente non-linearità geometriche, è realizzato in collabora-
zione con G. De Pietro: si tratta di uno dei primi studi che estende i modelli CUF uni-
dimensionali accoppiati con il metodo ANM. Si presentano analisi non lineari statiche,
post-buckling e snap-through delle strutture traviformi e se ne valutano le corrispon-
denti curve carico-spostamento e carico-sforzo. I risultati sono confrontati con soluzioni
agli elementi finiti bidimensionali. Si dimostra che, per i casi considerati, una descrizio-
ne quadratica attraverso lo spessore garantisce accurati spostamenti a componente di
tensione assiale. Inoltre, si necessita di un ordine di espansione più elevato al fine di
prevedere con precisione la componente di sollecitazione di taglio. Nell’analisi post-
buckling considerata, i modelli CUF di ordine basso rilevano il punto di biforcazione in
modo accurato. Tuttavia, al fine di ottenere risultati accurati riguardanti la sollecitazio-
ne di taglio, si richiede un modello di ordine superiore. Nell’analisi di snap-through, è
necessaria una teoria raffinata per tracciare accuratamente il percorso di equilibrio.
Per affrontare problemi contenenti non-linearità geometriche provenienti da scale di-
verse, un modello di trave multi-scala, basato sulla CUF contenente non-linearità geo-
metriche, viene derivato accoppiando ilmodellomacroscopico proposto ed il framework
agli Elementi Finiti Multilivello (noto anche come FE2). La soluzione consiste in un’ana-
lisi macroscopico/strutturale e un’analisi microscopica/materiale. Alla scala macrosco-
pica, la legge costitutiva incognita è calcolata attraverso un’omogeneizzazione numeri-
ca di un Elemento di Volume Rappresentativo (”Representative Volume Element”, RVE).
Viceversa, il gradiente di deformazione microscopico è calcolato tramite modello ma-
croscopico. Il sistema matematico non-lineare risultante è risolto attraverso il metodo
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ANM, il quale risulta essere più affidabile e meno dispendioso dal punto di vista dei
tempi di calcolo, rispetto ai metodi iterativi classici. La metodologia proposta viene uti-
lizzata per studiare l’effetto delle imperfezioni alla scala microscopica (fibre di carbonio
non perfettamente diritte) sulla risposta macroscopica (instabilità). I risultati vengono
analizzati in termini di accuratezza e costi computazionali, rispetto alle soluzioni FEM.
Tre fattori sono identificati per un’analisi parametrica di sensibilità alle imperfezioni:
lunghezza d’onda ed, ampiezza della imperfezione e dimensione dell’RVE.
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Chapter 1

Introduction

1.1 Background
In this thesis, a multi-scale framework for nonlinear problems is developed

using a FE2 approach where at macro-scale CUF higher-order structural theories
are used, and the resulting non-linear problem is solved bymeans of the advanced
ANM nonlinear solver.
In continuum and structural mechanics, the objects under investigation are usually
macroscopic structures, which are made of some given materials. Materials can be clas-
sified as homogeneous and heterogeneous. Homogeneous materials are formed of a
single component with a uniform spatial distribution, some examples being metals, al-
loys or plastics. Heterogeneous materials are composed of a plurality of components or
a single component with a non-uniform spatial distribution. Fibre-reinforced materials
are an example of this class. They are formed from two components: a matrix and a
fibre, allowing to increase overall strength and stiffness (see Petrone et al. [136]).
For addressing the mechanical problems of heterogeneous materials, a multi-scale mod-
elling accounting for both structural and material level has been proposed in the liter-
ature in order to improve accuracy and efficiency. Multi-scale modelling refers to a
modelling approach in which multiple models of different scales are employed simulta-
neously to describe the system under investigation to achieve a reasonable compromise
between accuracy and efficiency (see E and Lu [52]). This approach has been suggested
to overcome some issues presented by separate structural level/macroscopic modelling
and material-level/microscopic modelling. First, a single structural-level/macroscopic
model neglects interactions between different components at the material level, the re-
sponse at material level caused by the reaction of the macroscopic structure and the
change of the macroscopic material properties. For instance, macroscopic failure might
originate from microscopic instabilities, defects and cracks (see Jochum and Grandi-
dier [98]). If these interactions between material and structural level are neglected, a
model at structural level cannot accurately describe the problems under investigation,
especially when considering nonlinearity. In a nonlinear problem, the response not only
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depends on the initial state but also on the evolution of the material properties and the
geometric features. Secondly, it is cumbersome and often impossible to start modelling
directly from the microscopic scale considering the vast requirement of computing re-
sources. A composite structure consists of several representative units, and a represen-
tative unit contains several single phases. Thus, the geometric dimensions of a single
phase are much smaller than that of a single unit, which is much smaller than the entire
structure. If FEM is applied at the finest scale, the element size should be smaller than a
representative size of a single phase to ensure accuracy. This level of mesh refinement
requires a prohibitive computational cost.
Multiscale methods are gradually being adopted by the industry, and there are already
some software products based on semi-analytical and numerical methods, such as DIGI-
MAT or SwiftComp.Manymultiscale software developers came from research institutes
or universities. This trend has also promoted the use of many of the latest theories and
techniques.
As far as macro-scale modeling is concerned, in different engineering sectors, one-
dimensional/beam, two-dimensional/plate or three-dimensional/solid composite struc-
tures are widely applied. It can be beneficial to straightforwardly connect microme-
chanics with structural theories, especially for the one-dimensional/beam structures.
For example, beam theories reduce the number of problem dimensions from three to
one, thus significantly reducing the total number of unknown variables. However, clas-
sical structural theories are not always applicable due to an expansion of the application
range of heterogeneous materials (see Giunta [74]). Carrera’s Unified Formula (CUF) is
a powerful framework to accurately describe beams, plates and shells with a significant
improvement in computational efficiency. Using CUF, accurate results can be obtained
by assuming a suitable high-order model, which is especially evident when addressing
short beams. CUF advanced theories are here coupled in a FE2 sense to micromechani-
cal finite element homogenisation and localisation.
For the general linear problem of multi-scale modelling, the solution involves only one
step, more specifically, one homogenisation and localisation. However, for a nonlinear
geometric problem in a multi-scale framework, this requires multiple homogenisations
and localisations, resulting in an exponential increase of the computational cost. Es-
pecially for the multi-scale analysis of problems presenting a strong nonlinearity, in
the process of tracking the solution path, as the solution step length becomes smaller
and smaller, the number of solution steps increases. Compared with the structural-level
model, the calculation needed in one more step is far more expensive in a multi-scale
problem. Consequently, the rise in computational costs has prompted an urgent need
for an accurate and efficient nonlinear solver. This solver should be able to accurately
track the nonlinear equilibrium path while minimising the number of solution steps.
The asymptotic numerical method (ANM) nonlinear solver is a very good choice to
address this aspect since it ensures accurate yet efficient path tracking for strong non-
linear problems. Finally, the multi-scale finite element (FE2) framework enables nesting
macroscopic and microscopic models.
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1.2 Outline of the Thesis
This thesis is divided into three parts: a literature review presented in Chapter 2,

the theoretical developments addressed in Chapter 3 and Chapter 4 and, finally, some
numerical results shown in Chapter 5 and Chapter 6. The layout of each chapter is
briefly outlined:

• Following this introductory chapter, a review of beam theories, multiscale meth-
ods and nonlinear solvers is presented in Chapter 2.

• Chapter 3 focuses on the description of the structural model for geometrically
nonlinear analyses.Within the framework of a total Lagrangian approach, a finite
element solution based on nonlinear CUF is provided. More specifically, highly
nonlinear problems, such as post-buckling and snap-through problems are con-
sidered. The critical points for coupling ANM and CUF are there all presented.

• In Chapter 4, a model for the geometrically nonlinear multiscale problems anal-
ysis is derived. The theoretical derivation of this model is an extension of what
addressed in Chapter 3. Homogenisation and localisation are derived under the
framework of the FE2 method.

• Chapter 5 presents some numerical examples of the proposed non-linear struc-
tural model. Post-buckling and snap-through analyses are carried out. Results are
compared in terms of accuracy and computational costs towards FEM solutions
using solid finite elements.

• Chapter 6 addresses some numerical analyses where the proposed multiscale
modelling has been used. The case of a heterogeneous material with a round in-
clusion is first presented. The case of a fibre-reinforced material is then studied
with particular attention being paid in assessing the effect of imperfections.

• Conclusion and outlooks are provided in Chapter 7.
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Chapter 2

State of the Art

To the best of this author’s knowledge, a brief review is conducted for a handful
of widely used beam theories, multi-scale methods and nonlinear solvers. Section 2.1
presents the summary of beam theories, including the classic beam theories, Vlasov-
Reddy beam theory, generalised beam theory and Carrera’s unified formula. Section 2.2
focuses on the multi-scale methods, which are classified into solving the RVE/UC prob-
lem and building the link for the multi-scale problem. The methods for addressing the
RVE problems are categorised as analysis, semi-analysis and numerical methods. As for
building the link for the multi-scale problem, fine-scale oriented and coarse-scale ori-
ented methods are presented. In Section 2.3, the nonlinear solvers are grouped into the
path-corrector methods and perturbation methods.

2.1 Review of the BeamTheories
For the structural analysis, slender structures usually can be simplified into beams.

In essence, a beam model is to transform the three-dimensional problems into a set of
one-dimensional variables. These variables are only subject to the coordinates along
the axis. Since the size of the thickness is much minor than the size of the length, it can
be approximated that the components of the displacement, strain, and stress are dis-
tributed based on the thickness. Therefore, beam theories are much simpler plate/shell
or solid theories. The calculation efficiency is also much higher with the reduction of
unknowns. Due to these excellent features, beam theories are still very appealing for
various static and dynamic analyses.
Started by Leonardo daVinci, beamswere studied theoretically.The proof is amanuscript
called “Madrid Codex” written in 1493 (see Carrera et al. [134]). For a thin beam, a cor-
rect description is shown for the bending behaviour. Besides, the well-known hypoth-
esis was made: the axial strain on the cross-section is distributed linearly. In 1638, the
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earliest systematic study of beam structures was proposed by Galilei Galileo in the “Di-
alogues concerning two new sciences”. In this book, he proposed two questions about
beam theory: one is the strength of the cantilever beam.The other is the strength of the
beam under its weight. Since the neutral surface of the beam is taken on the underside
of the beam, the proposed problem is not solved correctly. In 1826, the neutral surface
problem was solved by Navier Claude-Louis in “Mechanical and Structural Applica-
tions in Mechanics”. An accurate definition is given: the neutral surface passes through
the centroid of the section. In 1856, de Saint-Venant gave general references and solu-
tions to the problem of bending and torsion of beams. The concept of a curved centre is
provided, and the cylinder does not twist when the resultant force of the lateral forces
passes through the centre of the bend. By controlling the position at which the exter-
nal force generates a lateral force, it is possible to avoid the occurrence of bending and
torsion coupling of the beam. At the same time, the method of calculating the centre
position of the bend on the section is also deduced. A Cartesian coordinate system is
adopted in this section for the beam structures as depicted in Fig. 2.1,

Figure 2.1: A beam structure in the Cartesian coordinate system.

where “ ” stands for the cross-section, which is achieved by intersecting the beam
structure with a plane orthogonal to its axial direction. 𝑦- and 𝑧-axis symbolise two
orthogonal directions laying on . The extension on the axial direction “𝑥” is higher
than any other dimension orthogonal to it.

u𝑇 (𝑥, 𝑦, 𝑧) = { 𝑢𝑥 (𝑥, 𝑦, 𝑧) 𝑢𝑦 (𝑥, 𝑦, 𝑧) 𝑢𝑧 (𝑥, 𝑦, 𝑧) } (2.1)

where 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are the displacement components along 𝑥-, 𝑦- and 𝑧-axis, respec-
tively. The transposition operator is addressed by superscript ‘𝑇’.
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2.1.1 Classical Theory: Euler Bernoulli BeamTheory (EBBT)
From the perspective of deformation, the first accurate study of the beam is started

from the EBBT theory. It was invented by Leonhard Euler and Johann Bernoulli in
1705, it was not the previous study of beams from stress, but the earliest use of cal-
culus tools to study beam deformation. This theory assumes that the cross-section is
still flat and keeps perpendicular to the midplane of the beam after deformation. The
transverse shear effect in cross-sectional deformation is not considered. Based on this
assumption, the derived differential equation of the deformation of the cantilever beam
is represented by the displacement of the beam centreline. Within this theory, the dis-
placement field is written as

𝑢𝑥 = 𝑢𝑥1 − 𝑢𝑦1,𝑥𝑦 − 𝑢𝑧1,𝑥𝑧,
𝑢𝑦 = 𝑢𝑦1,
𝑢𝑧 = 𝑢𝑧1

(2.2)

𝑢𝑥1, 𝑢𝑦1 and 𝑢𝑧1 respectively represent the first-order components of the displacement
in the 𝑥, 𝑦, and 𝑧 direction. As a consequence of the neglecting the shear strain, deflec-
tion is underestimated, but natural frequencies and buckling loads are overestimated.
Therefore, a more refined beam theory is in need.

2.1.2 Classical Theory: Timoshenko BeamTheory (TBT)
As one of the most adopted first-order beam theories, the TBT is developed by Tim-

oshenko (see Carrera et al. [26]). Regarding the deformation of the beam, the following
assumption is made: the cross-section perpendicular to the midplane of the beam re-
mains flat after deformation, but it is no longer assumed to be themidplane after vertical
deformation.The displacement of each point in the beam can be represented by the axial
displacement and the angle of the thickness direction. That is, along with the thickness
of the beam, the shear deformation is continuous, and shear stress is constant.The value
of stiffness decreased compared to the EBBT. The displacement field is written as

𝑢𝑥 = 𝑢𝑥1 + 𝑢𝑥2𝑦 + 𝑢𝑥3𝑧,
𝑢𝑦 = 𝑢𝑦1,
𝑢𝑧 = 𝑢𝑧1

(2.3)

In TBT, the shear correction coefficient is neglected. Consequently, the shear stress and
strain components are constant along the thickness. By employing TBT, Timoshenko
and Gere [159] studied the linear bifurcation problems of thin-walled beams. Song and
Waas [152] presented a buckling analysis on laminated beams by employing the EBBT,
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TBT and a simple three-order beam theory, where no coefficient correction is intro-
duced for each order. Compared to the simple three-order beam theory, TBT still can be
regarded as a practical solution. However, the TBT’s assumption about the distribution
of shear stress is not appropriate, because the top and bottom surfaces are under zero
loading. Mindlin and Deresiewicz [124], Cowper [36] calculated the shear coefficient to
correct strain energy. The shear coefficient is determined by the geometry of the cross-
section. At the same time, as more and more advanced composite materials are adopted
in engineering, further development on beam theories is needed to eliminate the limi-
tations of this theory.

2.1.3 Higher-order Theory: Vlasov-ReddyTheory
For improving the TBT, additional higher-order terms are needed to reflect the lo-

cal effect in displacement fields. This initial work is introduced by Vlasov [162] and
Reddy [141].This improvement aims atmeeting the requirement of zero shear strain/stress
condition. Meanwhile, these terms should be limited by their corresponding coeffi-
cients. One of the most prominent theories is Vlasov-Reddy Theory as follows.

𝑢𝑥 = 𝑢𝑥1 + 𝑓1(𝑦)𝜙𝑧 + 𝑓2(𝑧)𝜙𝑥 + 𝑔1(𝑦)𝑢𝑧1,𝑥 + 𝑧𝜙𝑥,𝑥 + 𝑔2(𝑧)𝑢𝑧1,𝑥 − 𝑧𝜙𝑥,𝑥,
𝑢𝑦 = 𝑢𝑦1 + 𝑧𝜙𝑥,
𝑢𝑧 = 𝑢𝑧1 − 𝑦𝜙𝑥

(2.4)

in which 𝑓1(𝑦), 𝑔1(𝑦), 𝑓2(𝑧) and 𝑔2(𝑧) are three-order functions. They are related to the
𝑦 and 𝑧 coordinate along the thickness.

𝑓1(𝑥) = 𝑥 − 4
3𝑏2 𝑥3,

𝑔1(𝑥) = − 4
3𝑏2 𝑥3,

𝑓2(𝑧) = 𝑧 − 4
3ℎ2 𝑧3,

𝑔2(𝑥) = − 4
3ℎ2 𝑧3,

(2.5)

In which the 𝑏 is the width along the 𝑦 axis, and ℎ is the height along the 𝑧 axis.
This theory was applied to the linear bifurcation problems of thin-walled beams by
Vlasov [162], and further used for bending and free-vibration analysis by Thai and
Vo [156] and buckling analysis by Lanc et al. [110].The Euler-Bernoulli and Timoshenko
models can be derived in this theory as special cases. However, Vlasov-Reddy beam
theory is not sufficient when considering more complex engineering problems, such as
warping outside the plane. Therefore, several higher order beam theories are proposed
to meet the requirements. It is because the precise displacement field captures small
value perturbation with respect to displacement and results in more accurate results.
However, it leads to more computational cost. Therefore, It is better to select the appro-
priate order of beam theories according to the need. It is very comfortable to make the
process of selection automated. Carrera’s Unified Formulation realises this magnificent
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contribution (refer to subsection 2.1.7).
EBBT, TBT and higher-order theory can be referred to as the axiomatic hypothesis
method. These approaches are systematically summarised by Kapania and Raciti [102].
In his article, buckling and post-buckling studies of beam theories, as well as the imple-
mentation process combined within the FEM framework are also well reviewed.

2.1.4 Asymptotic Method
Theasymptoticmethod in beam theories refers to the variational asymptoticmethod

proposed by Berdichevsky [14] andVolovoi et al. [163], which establishes the deformation-
based model by studying the effects of various variables on the disturbance parameters.
The disturbance parameter is usually a small value parameter of the geometry, such as
the height-to-length ratio of the beam. At the same time, the name “asymptotic method”
also exists in multi-scale methods and nonlinear solvers. They share the same basic idea
of expanding the function with a small-valued parameter.
First, expand the characteristic parameters (e.g. deformation) into series according to
the disturbance parameter. Secondly, construct the strain energy according to the char-
acteristic parameters. Then, retain those terms having the same order of magnitude as
the disturbance parameters. Finally, obtain the unknown function by minimising the
strain energy. Compared with axiomatic theory such as EBBT and TBT, the develop-
ment of asymptotic theory is more difficult (see Carrera et al. [23]). However, when the
characteristic parameter is taken to be zero, this theory can obtain an exact solution.
This theory was gradually improved, and the research problem was extended from the
bending and twisting problems to the warping problem (see Hodges [83]). After that,
Cesnik and Hodges. [31] compiled the variational asymptotic beam sectional analysis
(VABS) code, which aims at dealing with modelling of the rotor blades.

2.1.5 Generalised BeamTheory (GBT)
GBT is an analytical method initially developed by Schardt [149]. Warping in cross-

section is a foremost consideration in the characterisation of thin-walled beams. In this
theoretical framework, the beam structure is considered to have a deformable cross-
section. A variety of cross-sectional characteristics are defined as parameters. Some of
them are employed to describe the deformation of the whole structure, and some of
them are also applied to characterise the deformation of the cross-section. In the first-
order GBT (see Davies and Leach [43]), the first-order derivation of the cross-section
parameters are employed to calculate the stress and deflection within the cross-section.
In the second-order GBT (see Davis et al. [44]), the second-order derivation of the cross-
section parameters are utilised to solve the buckling problem. Additionally, the third-
order GBT (see Chiu [33]) is proposed for the study of post-buckling with large deflec-
tion behaviour. Dinis [47] further extended the theory to analyse buckling deformation.
Based on this analysis, an improved model is proposed by Basaglia and Camotim [10]
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for global and local buckling problems.

2.1.6 BeamTheory based on Saint-Venant Solution
Combined with Hook’s law and force boundary conditions, when the values of the

body and surface forces are zero, solving the three-dimensional elastic equation is a
classic Saint-Venant solution.When the body and surface force densities are not limited,
it is called the extension of the Saint-Venant solution or the Almansi-Michell solution
(see Michell [121]), which was solved by Iesan [97]. For settling the problem of beam
structures, Ladevèze and Simmonds [108] proposed an approach by reducing the three-
dimensional elastic equation and extended the classic Saint-Venant solution for the non-
symmetrical cross-section. The result of solving the equation consists of two parts, the
Saint-Venant part and the residual part. Dong et al. [48] deduced the extension of the
Saint-Venant solution to a non-uniform cross-section of an anisotropic material. As a
continuous work, Ladevèze et al. [107] applied this solution to study anisotropic elastic
tubes with arbitrary closed sections.

2.1.7 Carrera’s Unified Formula (CUF)
Carrera’s Unified Formulation is a framework for efficiently deriving higher-order

structural (plates, shells and beams) theories. The acronym, CUF, first appeared De-
masi [45], whereas before it was known as Unified Formulation (UF). CUF uses index
notation to unify structural theories development in one single formula. As far as beam
modelling is concerned, CUF was first applied to the study of beams by Carrera and
Giunta [25] and Carrera et al. [26]. Over the cross-section, the kinematic field is ax-
iomatically assumed along the thickness as follows:

u (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑦, 𝑧)u𝜏 (𝑥) with 𝜏 = 1, 2, … , 𝑁𝑢. (2.6)

According to Einstein’s notation, the subscript 𝜏 stands for the implicit summation con-
vention. 𝐹𝜏 (𝑦, 𝑧) indicates the functions of the cross-section coordinates 𝑦 and 𝑧, and
𝑁𝑢 denotes the number of accounted terms. u𝜏 is an unknown function of the axial
coordinate whose form depends upon the solution method.
It is arbitrary to select the expansion functions 𝐹𝜏 (𝑦, 𝑧) and order 𝑁𝑢.Therefore, several
higher-order beam theories can be obtained by changing them. Mac Laurin’s polyno-
mials are first employed as approximating functions 𝐹𝜏. As functions of the theoretical
order 𝑁, both 𝑁𝑢 and 𝐹𝜏 are obtained from Pascal’s triangle, see Table 2.1.
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𝑁 𝑁𝑢 𝐹𝜏
0 1 𝐹1 = 1
1 3 𝐹2 = 𝑦 𝐹3 = 𝑧
2 6 𝐹4 = 𝑦2 𝐹5 = 𝑦𝑧 𝐹6 = 𝑧2

3 10 𝐹7 = 𝑦3 𝐹8 = 𝑦2𝑧 𝐹9 = 𝑦𝑧2 𝐹10 = 𝑧3

⋮ ⋮ ⋮
𝑁 𝑁 (𝑎)

𝑢 𝐹𝑁𝑢−𝑁 = 𝑦𝑁 𝐹𝑁𝑢−𝑁+1 = 𝑦𝑁−1𝑧 … 𝐹𝑁𝑢−1 = 𝑦𝑧𝑁−1 𝐹𝑁𝑢
= 𝑧𝑁

(𝑎): 𝑁𝑢 = (𝑁+1)(𝑁+2)
2

Table 2.1: Mac Laurin’s polynomials terms via Pascal’s triangle.

Consequently, the explicit form of a generic 𝑁-order displacement field can be writ-
ten as

𝑢𝑥 =
𝑢𝑦 =
𝑢𝑧 =

𝑢𝑥1
𝑢𝑦1
𝑢𝑧1⏟

0

+𝑢𝑥2𝑦 + 𝑢𝑥3𝑧
+𝑢𝑦2𝑦 + 𝑢𝑦3𝑧
+𝑢𝑧2𝑦 + 𝑢𝑧3𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1

+ …
+ …
+ …

+𝑢𝑥(𝑁𝑢−𝑁)𝑦𝑁 + ⋯ + 𝑢𝑥𝑁𝑢
𝑧𝑁,

+𝑢𝑦(𝑁𝑢−𝑁)𝑦𝑁 + ⋯ + 𝑢𝑦𝑁𝑢
𝑧𝑁,

+𝑢𝑧(𝑁𝑢−𝑁)𝑦𝑁 + ⋯ + 𝑢𝑧𝑁𝑢
𝑧𝑁.⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

(2.7)

Lagrangian Polynomials (see Carrera and Petrolo [29]), Chebyshev Polynomials (see
Filippi et al. [61]), Legendre Polynomials (see Carrera et al. [27]), and Newton Poly-
nomials (see Giunta et al. [76]) were also used in the framework of CUF. Regarding
the displacements variation along the axial direction, a one-dimensional finite element
approximation is employed:

u (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑦, 𝑧) 𝑁𝑖 (𝑥)q𝜏𝑖 with 𝜏 = 1, 2, … , 𝑁𝑢 and 𝑖 = 1, 2, … , 𝑁𝑒
𝑛 . (2.8)

where 𝑁𝑖 (𝑥) is a 𝐶0 shape function. 𝑁𝑒
𝑛 indicates the number of nodes per element

and q𝜏𝑖 denotes the nodal displacement unknown vector. The specific form of shape
functions 𝑁𝑖 (𝑥) is not presented. It can be found in Bathe [11]. By employing 𝐹𝜏 (𝑦, 𝑧)
and 𝑁𝑖 (𝑥), the displacement field is grouped into two parts as shown in Fig 2.2.
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(a) Beam approximation (b) Axial approximation and cross-section approximation

Figure 2.2: Under the framework of CUF, beam models are separated as the axial ap-
proximation and the expansion over the cross-section.

By introducing CUF into the variational principle, the governing equations of any
order can be derived in a simple and elegant form for beam models. A nucleus form
for the stiffness and mass matrix can be obtained. This form depends on the approxi-
mation of the displacement field. By choosing proper approximation orders, results can
be achieved both accurately and efficiently. The versatility of CUF is one of its signif-
icant advantages. Carrera and Ciuffreda [21] provided solutions for Navier analytical
types, while Carrera and Demasi [22] offer solutions to FEM numerical types. Under
the framework of this approach, the derivation is made formally general regardless the
through-the-thickness approximating functions. He et al. [79] coupled the CUF with
Arlequin Method (see Hu et al. [86], Hu et al. [87]) to build a meso-macro coupling
sandwich model. Based on the CUF high-order beam theory, Miguel et al. [123] gener-
ated a microscopic model through the Legrende-type interpolation. Recently, CUF was
exploited to build a Component-Wise (CW) model (see Carrera et al. [28] and Maiarú et
al. [114]), which can be applied as an efficient approach for fibre-reinforced materials
with periodic microstructures. This CW model was adopted for studying the micro-
scopic progressive failure by Kaleel et al. [99]. It is worth mentioning that, Pagani and
Carrera [135] deduced CUF format based on total Lagrangian formulation with consid-
eration of geometric nonlinearity. This work is one of the theoretical foundations of the
macroscopic model for this thesis.
As the laminated structures get more applications in engineering, the corresponding
theories are also developed including the equivalent single layer theory, layerwise the-
ory, and zigzag theory (see Carrera [20] and Hu et al. [89]). These laminated-structural
theories were also realised under the framework of CUF by Carrera and Giunta [24],
Ciunta et al. [75]. It is worth mentioning that in recent years, on the basis of CUF-based
laminatedmodel fromD’ottavio and Carrera [39], D’Ottavio [41] proposed the Sublami-
nate Generalised Unified Formula (S-GUF), which can be regarded as an extension of the
symbol system defined by the CUF framework to the laminated structures. That is, con-
sidering the laminated structures with any number of layers, each sub-layer can adopt
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any kinematic formula, and each sub-layer has a clear associated polynomial. Recently,
S-GUF was exploited to resolve the buckling and wrinkling problems by D’Ottavio et
al. [40] and Vescovini [161].

2.2 Review of the Multi-scale Methods: Information
Passing Methods/Upscaling Methods

Multi-scale methods can be grouped into information-passing/upscaling/sequential
and concurrent approaches (see Kanouté et al. [101], Geers et al. [69], Klusemann and
Svendsen [103], Fish [63], E and Lu [52]). If a fine-scale (or micro-structural) model and
a coarse-scale (or structural) model coexist in the same region, the problem is solved by
employing information-passing methods. If fine-scale models and coarse-scale models
exist in different regions that may be disjoint or overlapping, the problem is solved by
employing the concurrent methods, which process simultaneously at least two regions
involved different scales. This section focuses on upscaling methods.
Upscaling approaches are based on the concept of scale separation. To quantitatively
separate the different scales, the scale separation assumption is introduced and has the
following expression:

1. Atomic and nanoscale: representative size of this scale is less than 1 𝜇 m. Quan-
tum mechanics or nanomechanics must be applied.

2. Microscale and mesoscale: the scale is between 1 𝜇m and 1 mm. When the anal-
ysis is at this scale, it is solved under the framework of micromechanics and con-
tinuum mechanics.

3. Macroscale: This scale is higher than 1mm. The problem is also solved in the
framework of continuum mechanics or structural mechanics.

It is worth mentioning that the definitions of mesoscale and microscale have not been
unified yet, in other words, they are still controversial. This thesis deals with the latter
two scales, microscale and macroscale.
A multi-scale method should be able to pass the Accuracy and Cost Requirement (ACR)
test (see Fish [62]):

Error in quantities of interest ≤ tolerance,
Cost of the multi-scale model
Cost of the microscale model ≪ 1

. (2.9)

To pass the test, some prerequisites should be satisfied. Consequently, before construct-
ing a multi-scale model, assumptions such as scale separation and self-similarity
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need to be met. Scale separation means that the characteristic lengths of the differ-
ent scales are well separated (see Hou [84]). As shown in Fig 2.3, the discrete feature-
length at the microscale 𝓁𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 is usually less than, or equal to, the shortest distance
between two inclusions, which is assumed to be much smaller than the microscopic
feature-length 𝓁𝑚𝑖𝑐𝑟𝑜, while the latter is much smaller than the macroscopic feature-
length 𝓁𝑚𝑎𝑐𝑟𝑜. The following relation should be satisfied:

𝓁𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ≪ 𝓁𝑚𝑖𝑐𝑟𝑜 ≪ 𝓁𝑚𝑎𝑐𝑟𝑜. (2.10)

Self-similarity means that shapes/patterns of structures observed at different scales

Figure 2.3: Schema of scale separation, which is reproduced based on thework ofMatouš
et al. [117]

are geometrically similar. A representative example is the Sierpinski triangle shown in
Fig 2.4. For self-similar structures, a kinematic model with a continuous sequence form
can be established. The function of several parameters (such as strain) can be trans-
formed into a power series, which depends on its exponent called the scaling parameter
(see E and Yue [53] and Dyskin [50]). In this model, the most elementary microstructure
can be seen as a RVE. Meanwhile, the self-similarity, being a strong constraint, inheres
between the macroscale and the RVE.
For the information passing methods/upscaling methods, building the link for the
multi-scale problem and solving the UC/RVE problem are two main topics.
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Figure 2.4: Schema of Sierpinski triangles.

2.2.1 Solving the UC/RVE problem

Figure 2.5: A heterogeneous composite with periodic microstructures and the RUC,
which is reproduced based on the work of Aboudi [3].

Three concepts need to be clarified in the beginning: 1) UC, 2) Repeating Unit Cell
(RUC) and 3) RVE. UC is a basic microstructure taken for analysis.The physical length is
arbitrary. As shown in Fig 2.5, if UCs are arranged by repeating each other in a domain,
they are RUCs. The periodicity of the microstructure is considered. As a type of UC,
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RUC also has no relevant physical length limitation. However, its spatial arrangement
must be orthogonal due to its underlying assumption.
RVE is defined as a sufficiently large volume to characterise the microstructure ade-
quately. Firstly, It should be representative. All microscopic distribution characteristics
should be covered. Secondly, it should be small enough. Meanwhile, an associated phys-
ical length must be given. Both the shape and size requirements of RVE is broader than
UC or RUC.The selection of its size or shape is not unique as shown in Fig. 2.6. However,
the size of RVE has a specific impact on the convergence as shown in Fig. 2.7. There are
three kinds of boundary conditions considered: Periodic, linear displacement and uni-
form traction boundary condition. When the RVE size is small, the convergence speed
is fast under periodic boundary conditions.When the RVE size is large, the convergence
of the three boundary conditions tends to be uniform. If the microstructure lacks peri-
odicity, instead of RVE, statistical volume elements should be used in the framework of
stochastic micromechanics (see Schröder [150]).
To be noticed, scale separation can be considered to be satisfied when the number of
RVE/UCs is infinite.

Figure 2.6: RVE with periodic structure selection is not unique, which is based on the
work of Schröder [150].
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Figure 2.7: RVE size and convergence under different boundary conditions, which is
reproduced based on the work of Terada et al. [154].

Analytical Method

For solving the problem of UC/RUC, analytical methods are first proposed. Here
is a brief review of Hill-Reuss-Voigt Bounds, Self-consistent Method and Mori-Tanaka
method.
Hill-Reuss-Voigt Bounds. Hill-Reuss-Voigt Bounds are applied to predict the upper
and lower bounds for predicting the effective property of UC/RVE. In the beginning,
Voigt (Taylor) assumption and Reuss (Hill) assumption [144] are applied for structural
level. Then, it is proposed by Hill [82] by extending these assumption to micromechan-
ics. The underlying assumption is the macroscopic constitutive tensor 𝐶𝑖𝑗𝑘𝑙 is obtained
from the area average of the microscopic constitutive tensor 𝐶𝑖𝑗𝑘𝑙 as

𝐶𝑖𝑗𝑘𝑙 = 1
|𝜔| ∫𝜔

𝐶𝑖𝑗𝑘𝑙𝑑𝜔. (2.11)

where 𝜔 is the microscopic domain, and “|𝜔|” represents the modulus of 𝜔. 𝐶𝑖𝑗𝑘𝑙 and
𝐶𝑖𝑗𝑘𝑙 represents the macroscopic and microscopic constitutive tensor, respectively. To
be noticed, the macroscopic variables are marked with an overline “⋅” in this chapter.
Voigt (Taylor) assumption.The strain of coarse scale 𝜖𝑖𝑗 equals the fine scale 𝜖𝑖𝑗:

𝜎𝑖𝑗 = 𝐶𝑉 𝑜𝑖𝑔𝑡
𝑖𝑗𝑘𝑙 𝜖𝑘𝑙 = 𝐶𝑉 𝑜𝑖𝑔𝑡

𝑖𝑗𝑘𝑙 𝜖𝑘𝑙. (2.12)
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𝐶𝑉 𝑜𝑖𝑔𝑡
𝑖𝑗𝑘𝑙 is the Voigt’s macroscopic constitutive tensor as follows

𝐶𝑉 𝑜𝑖𝑔𝑡
𝑖𝑗𝑘𝑙 = 1

|𝜔| ∫𝜔
𝐶𝑖𝑗𝑘𝑙𝑑𝜔. (2.13)

Reuss (Hill) assumption.The stress of coarse scale 𝜎𝑖𝑗 equals the fine scale 𝜎𝑖𝑗:

𝜖𝑖𝑗 = (𝐶𝑅𝑒𝑢𝑠𝑠
𝑖𝑗𝑘𝑙 )

−1
𝜎𝑘𝑙 = (𝐶𝑅𝑒𝑢𝑠𝑠

𝑖𝑗𝑘𝑙 )
−1

𝜎𝑘𝑙. (2.14)

𝐶𝑅𝑒𝑢𝑠𝑠
𝑖𝑗𝑘𝑙 is the Reuss’s macroscopic constitutive tensor as

𝐶𝑅𝑒𝑢𝑠𝑠
𝑖𝑗𝑘𝑙 = ( 1

|𝜔| ∫𝜔
(𝐶)−1𝑑𝜔)−1. (2.15)

The strain in fine scale is decomposed into two parts including the strain from the coarse
scale 𝜖𝑖𝑗 and the fluctuation/perturbation 𝜖∗

𝑖𝑗:

𝜖𝑖𝑗 = 𝜖𝑖𝑗 + 𝜖∗
𝑖𝑗. (2.16)

Likewise, the stress can also be decomposed as the stress from the coarse scale and the
fluctuation/perturbation:

𝜎𝑖𝑗 = 𝜎𝑖𝑗 + 𝜎∗
𝑖𝑗. (2.17)

The upper bound Because 𝐶𝑖𝑗𝑘𝑙 is positively defined, it can be derived as:

0 ≤ 1
|𝜔|𝜖

∗
𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝜖∗

𝑘𝑙𝑑𝜔
= 1

|𝜔| (𝜖𝑖𝑗 − 𝜖𝑖𝑗)𝐶𝑖𝑗𝑘𝑙(𝜖𝑘𝑙 − 𝜖𝑘𝑙)𝑑𝜔
= 𝜖𝑖𝑗(

1
|𝜔| ∫𝜔 𝐶𝑖𝑗𝑘𝑙𝑑𝜔 − 𝐶𝑖𝑗𝑘𝑙)𝜖𝑘𝑙

. (2.18)

By using the Eq. (2.13), it becomes:

𝜖𝑖𝑗(𝐶
𝑉 𝑜𝑖𝑔𝑡
𝑖𝑗𝑘𝑙 − 𝐶𝑖𝑗𝑘𝑙)𝜖𝑘𝑙 ≥ 0. (2.19)

It leading to a form as follows:

𝛼𝑖𝑗𝐶
𝑉 𝑜𝑖𝑔𝑡
𝑖𝑗𝑘𝑙 𝛼𝑘𝑙 ≥ 𝛼𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝛼𝑘𝑙 ∀𝛼𝑖𝑗 (2.20)

Therefore, it is called the upper bound condition.
The lower bound Compliance tensor 𝑀𝑖𝑗𝑘𝑙 is defined as:

𝑀𝑖𝑗𝑘𝑙 = 1
𝐶𝑖𝑗𝑘𝑙

. (2.21)
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Likewise, another equation can be obtained since the internal work should be equal to
or larger than zero (due to 𝐶𝑖𝑗𝑘𝑙 ≥ 0):

0 ≤ 1
|𝜔|𝜎

∗
𝑖𝑗𝑀𝑖𝑗𝑘𝑙𝜎∗

𝑘𝑙𝑑𝜔
= 1

|𝜔| (𝜎𝑖𝑗 − 𝜎𝑖𝑗)𝑀𝑖𝑗𝑘𝑙(𝜎𝑘𝑙 − 𝜎𝑘𝑙)𝑑𝜔
= 𝜎𝑖𝑗(

1
|𝜔| ∫𝜔(𝐶𝑖𝑗𝑘𝑙)−1𝑑𝜔 − (𝐶𝑖𝑗𝑘𝑙)−1)𝜎𝑘𝑙

. (2.22)

By using the Eq. (2.15), it can be rewritten as:

𝜎𝑖𝑗(𝐶
𝑅𝑒𝑢𝑠𝑠
𝑖𝑗𝑘𝑙

−1
− (𝐶𝑖𝑗𝑘𝑙)−1)𝜎𝑘𝑙 ≥ 0. (2.23)

It can be revised as:

𝛼𝑖𝑗𝐶
𝑅𝑒𝑢𝑠𝑠
𝑖𝑗𝑘𝑙 𝛼𝑘𝑙 ≤ 𝛼𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝛼𝑘𝑙 ∀𝛼𝑖𝑗. (2.24)

By combining Eq. (2.20) and Eq. (2.24), it becomes the Hill-Reuss-Voigt Bounds:

𝛼𝑖𝑗𝐶
𝑅𝑒𝑢𝑠𝑠
𝑖𝑗𝑘𝑙 𝛼𝑘𝑙 ≤ 𝛼𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝛼𝑘𝑙 ≤ 𝛼𝑖𝑗𝐶

𝑉 𝑜𝑖𝑔𝑡
𝑖𝑗𝑘𝑙 𝛼𝑘𝑙. (2.25)

Self-consistent Method. Eshelby [57] proposed an analytical solution of ellipsoidal in-
clusion in a homogeneous infinite matrix. The inclusion and matrix are supposed to
be merged seamlessly. A strain without constraint is assumed to exist, which is caused
by the heterogeneity. Through a hypothetical test, this tensor is derived in the form of
the Green’s function. The Green’s function is defined as the displacement at one point
caused by force at another position. In a homogeneous infinite matrix, Eshelby tensor
is constant for an ellipsoidal inclusion.
Inspired by this hypothetical test, Hill [80] and Budiansky [18] initiated original works
for the self-consistent method. Within this method, both the matrix and inclusion/fibre
is supposed to be transversely isotropic. The effective property can be derived through
the Eshelby tensor.
Mori-Tanaka method It was developed by Mori and Tanaka [125]. The underlying as-
sumption is the same as the self-consistent method. However, there is an additional as-
sumption: If volume fraction of the inclusion equals 1, properties of the whole UC/RVE
is assumed to be equal to the properties of the inclusion. A tensor is defined to relate
the average strain in the inclusion and the one in the matrix. The effective property can
be deduced by using this tensor.

Semi-analytical Method

Compared with analytical methods, differences at fine scale can be specified. Com-
pared with fully computational methods, it is more efficient. Here is a brief review of
three representative semi-analytical methods, including the Fourier series approach,
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Transformation Field Analysis (TFA) and Generalised Method of Cells (GMC) and High
Fidelity GeneralisedMethod of Cells (HFGMC). To bementioned, TFA, GMCandHFGMC
fall into the category of reduced order method.
Fourier series approach. Fourier series approach is proposedby Nemat-Nasser and
Taya [127] for the heterogeneous elastic material.The derivation of the effective proper-
ties of periodic composites in this method relies primarily on representations in Fourier
space. Due to periodic assumptions, the Fourier expansion form automatically satisfies
the continuity of the boundary condition. An integral equation can be derived based
on the equilibrium equation. Then, this integral equation is transformed into a system
of linear equations with unknown Fourier coefficients. Finally, the Eshelby tensor is in-
troduced to express the effective properties. This approach is then employed for crack
problems by Nemat-Nasser et al. [128].
TFA. TFA is proposed by Dvorak and Rao [49]. For each UC, a so-called localised op-
erator is determined by replacing the continuous strain field with a piecewise constant
field. A reduced set of constitutive relationships of heterogeneous materials can be de-
rived. Therefore, only a small number of microscopic coefficients need to be calculated,
and the number of degrees of freedom is significantly reduced. Michel and Suquet [120]
expanded TFA to the plastic analysis.The strain field is not taken as a piecewise constant
to avoid overestimating stiffness effective properties. TFA was successfully applied to
nonlinear composites (see Fish et al. [67]), damage analysis (see Chaboche et al. [32])
and fatigue analysis ( see Yu [64]).
GMCandHFGMC.GMC is developed byAboudi [2]. RUCs are orthotopically arranged
in three dimensions. The global structure is divided into RUCs, and a RUC can be di-
vided into several subcells. The whole system is described by the global coordinate and
local coordinate system. The global coordinate system is related to RUCs and a single
RUC, and the local-coordinate system is about the subcells.
Each cell can also be divided into many subcells. Through volume average of stress
and strain, the homogenised stress and strain can be derived for each subcell. By ap-
plying RUC’s continuity conditions of displacements and tractions, each subcell gets
a set of displacements. The set of displacements is then expanded by terms related to
centre coordinates and local coordinates of subcells. Based on this form of expansion,
a concentrated tensor 𝒜 (𝑠𝑢𝑏𝑐𝑒𝑙𝑙) is introduced to connect the global strain 𝜖 with the
homogenised strain of each subcell 𝜖(𝑠𝑢𝑏𝑐𝑒𝑙𝑙) :

𝜖(𝑠𝑢𝑏𝑐𝑒𝑙𝑙)
𝑖𝑗 = 𝒜 (𝑠𝑢𝑏𝑐𝑒𝑙𝑙)

𝑖𝑗𝑘𝑙 𝜖𝑘𝑙. (2.26)

Then the global constitutive law can be derived as follows:

C𝑖𝑗𝑘𝑙 = 1
𝑉

𝑁𝑠𝑢𝑏𝑐𝑒𝑙𝑙

∑
𝑠𝑢𝑏𝑐𝑒𝑙𝑙=1

(C(𝑠𝑢𝑏𝑐𝑒𝑙𝑙)
𝑖𝑗𝑚𝑛 𝒜 (𝑠𝑢𝑏𝑐𝑒𝑙𝑙)

𝑚𝑛𝑘𝑙 𝑉 (𝑠𝑢𝑏𝑐𝑒𝑙𝑙)). (2.27)

By employing a second-order displacement field, HFGMCwas developed by Aboudi [4].
As a result, HFGMC retains an advantage for complicated fine scale situation. Under the
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framework of HFGMC, Pineda et al. [138] conducted a failure study and a sensitivity
analysis on the effect of the size of the RUC on the stiffness and strength of the RUC.
However, due to the lack of consideration of different load conditions and the limitation
on sample size limitations, no rigorous statistical analysis was performed.

Numerical Methods

As the development of the computer, the numerical methods for RVE/UC problem
are more accessible to solve. Therefore, numerical methods are widely developed and
used, which are often referred to as computational upscaling methods or computation-
ally homogenisations. Accordingly, various multi-scale computational methods were
designed to ensure computational efficiency and accuracy.
Computationally homogenisation/FE2 method Computational homogenisation is a
more general concept than FE2. The numerical methods applied for discretisation are
not limited to FEM, and methods such as finite difference methods, finite volume meth-
ods, and spectral element methods can also be employed. The initial theoretical work
was proposed by Sánchez-Palencia [148], Huet [93], and Zohdi et al. [171]. The govern-
ing equations are obtained from the virtual work principle. The unknown macroscopic
material properties are derived from the microscopic Representative Volume Element
(RVE).The flow of information follows twoways: Homogenisation (micro tomacro) and
Localisation (macro to micro). Homogenisation is obtained by volume (3D problems) or
area (2D problems) average. Localisation is done by retrieving the average displacement
deformation gradient in an RVE from the structural analysis. Homogenisation and lo-
calisation both realised by addressing microscopic and macroscopic boundary value
problems (BVP) and nested with each other.
Feyel and Chaboche [60] applied the FEM for solving bothmacroscopic andmicroscopic
BVPs and denoted this method as FE2. Thanks to the development of FEM, FE2 achieved
a dominant position in the computational homogenisation methods, which evolved to
represent the category of computational homogenisations.

Figure 2.8: Decomposition of the microscopic displacement u, which is reproduced
based on the work of Tikarrouchine et al. [158]

As shown in Fig 2.8, the microscopic displacement u can be decomposed into two
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parts. One part related to slowly varying macroscopic deformation 𝜖X, where 𝜖 is the
macroscopic infinitesimal/Cauchy strain.The other part is a disturbance field caused by
heterogeneity w,X(X) as:

u = 𝜖 ⋅ X + w,X(X). (2.28)

For a two-dimensional problem, the macroscopic Cauchy strain is derived by area av-
eraging as:

𝜖 = 1
|𝜔| ∫𝜔

𝜖𝑑𝜔. (2.29)

where |𝜔| is the volume of RVE. Besides, the macroscopic Cauchy stress is also obtained
by area average as:

𝜎 = 1
|𝜔| ∫𝜔

𝜎𝑑𝜔. (2.30)

The Hill-Mandel condition is eventually be derived as follows

𝜎 ∶ 𝜖 = 1
|𝜔| ∫𝜔

𝜎 ∶ 𝜖𝑑𝜔. (2.31)

For addressing a large deformation problem, instead of using 𝜎 and 𝜖, Miehe et al. [122]
employed the PK1 stress P and Green-Lagrangian strain E for derivation. A framework
for addressing large deformation problems is built up as shown in Fig. 2.9.

Figure 2.9: Schema of FE2 for addressing large deformation problems.
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Compared to the Green-Lagrangian strain E, the Cauchy strain 𝜖 is a linearised
fraction by neglecting the second order term as:

E = 1
2

(F𝑇 ⋅ F − I) = 1
2

(∇u + ∇u𝑇 + ∇u ⋅ ∇u𝑇) (2.32)

𝜖 = 1
2

(F𝑇 + F − I) = 1
2

(∇u + ∇u𝑇). (2.33)

where F is the material deformation gradient. In this thesis, it is abbreviated as deforma-
tion gradient. As shown in Fig. 2.10, deformation gradient F represents the relationship
between the variations in reference/undeformed and current/deformed configuration:

F(x,X) = ∇u + I. (2.34)

Figure 2.10: Schema of deformation gradient F

Where I is the identity tensor. According to the large deformation framework, the
expansion of the microscopic coordinates x in the current configuration is decomposed
as:

x = F ⋅ X + w. (2.35)

where F ⋅ X represents the part related to slowly varying macroscopic deformation,
and w stands for a disturbance field part caused by heterogeneity. The macroscopic
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deformation gradient is derived by area averaging as:

F = 1
|𝜔| ∫𝜔

F𝑑𝜔. (2.36)

where |𝜔| is the volume of RVE. Besides, the macroscopic PK1 stress is also obtained
by area average as:

P = 1
|𝜔| ∫𝜔

P𝑑𝜔, (2.37)

where
P = F ⋅ S = ℋ ∶ (F − I). (2.38)

A four-order tensor ℋ is defined as (see Nezamabadi [5]):

ℋ = (F ⊗I) ∶ C(𝑟) ∶ 𝔹 + I ⊗ S. (2.39)

where ⊗ is the Kronecker product as:

(a ⊗ b)𝑖𝑗𝑘𝑙 = 1
2

(𝑎𝑖𝑘𝑏𝑗𝑙 + 𝑎𝑖𝑙𝑏𝑗𝑘), (2.40)

and ⊗ means
(a ⊗ b)𝑖𝑗𝑘𝑙 = 𝑎𝑖𝑘𝑏𝑗𝑙. (2.41)

𝔹 and S can be expressed as follows:

𝔹 = 1
2

(F𝑇 ⊗ I + I ⊗ F) (2.42)

S = C(𝑟) ∶ E. (2.43)

where ⊗ means
(a⊗b)𝑖𝑗𝑘𝑙 = 𝑎𝑖𝑙𝑏𝑗𝑘. (2.44)

The corresponding Hill-Mandel condition is derived as follows:

𝛿F𝑇 ∶ P = 𝛿E𝑇 ∶ S = ∫𝜔0

𝛿F𝑇 ∶ P𝑑𝜔 = ∫𝜔
𝛿E𝑇 ∶ S𝑑𝜔. (2.45)

Several analyses were carried out under the framework of the first order FE2. Kanit et
al. [100] studied the RVE size effects on elastic, thermal, and geometrical properties. A
parallel algorithm was introduced by Matsui et al. [118] to achieve computational ef-
ficiency. Tchalla et al. [153] implemented the FE2 method in the commercial software
ABAQUS by applying the parallel computation. A simulation of plastic behaviour of
composite materials was presented by Azoti et al. [7]. Later, El Hachemi et al. [55] ex-
tended computational homogenisation to complex viscoelastic composite materials.
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For a better prediction of the microscopic response with large macroscopic deforma-
tion gradient, the second-order FE2 was built and developed by Geers et al. [68] and
Kouznetsova et al. [106]. The variation of microscopic position Δx in the current sys-
tem is separated into three parts as follows:

Δx = FΔ𝑋 + 1
2

ΔX𝑇GΔ𝑋 + Δw. (2.46)

where a third-order tensor G is introduced as:

G = ∇F. (2.47)

For heterogeneous materials, to deal with the buckling instability that may occur at
macroscopic andmesoscale, Nezamabadi et al. [130] developed amethod calledMultiscale-
ANM by coupling FE2 and Asymptotic Numerical Method (see Subsection 2.3.2) This
method has covered several topics, including the buckling analysis of elastoplastic (see
Nezamabadi et al. [131]), a vibration analysis (see Attipou et al. [5]) and a failure anal-
ysis (see Nezamabadi et al. [132]) of fibre-reinforced material.
Voronoi Cell FEM (VCFEM) The parenchyma in plants can be thought of as consisting
of randomly distributed cells. Mattea et al. [119] generated their microstructure hinged
on a two-dimensional formula of the Voronoi tessellation algorithm. The basic idea of
the Voronoi diagram is as follows: First, random points are generated in the domain,
and a line connects two adjacent points. These lines connecting adjacent points can be
regarded as the nerves of the cells in the Voronoi diagram and constitute the Delaunay
triangulation as shown in 2.11. Then, cell walls perpendicular to these lines are intro-
duced to generate the cell structure. This morphological-based cell generation process
mimics natural evolution. Based on this theory, Ghosh and Liu [72] proposed VCFEM
modelling formicrostructureswith heterogeneity. VCFEM treats eachVoronoi unit with
embedded inclusions as a single element. There is no discretisation in the framework of
VCFEM. VCFEM is further extended to apply to awide variety ofmicromechanical prob-
lems including elasto-plastic problems (Ghosh et al. [70]), thermal-mechanical problems
(see Ghosh and Liu [71]), and damage problems (see Ghosh and Raghavan [73]).
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Voronoi diagram Delaunay Triangulation

Figure 2.11: Schema of Voronoi diagram and Delaunay Triangulation.

2.2.2 Building the Link for the Multi-scale Problem
After solving the problem in UC/RVE, another major topic is to link different scales.

Methods to link different scales can be separated into two categories: Fine scale oriented
and coarse scale oriented methods.

Fine Scale Oriented Methods

The following three methods are regarded as mainstream fine scale oriented meth-
ods. The link between two scales is by getting Effective Properties from Finer Scale.
Asymptotic method.Asymptotic Method/Homogenisation is proposed by Bensoussan
et al. [13]. Under the framework of this method, problems are limited to cases of peri-
odic oscillations. The salient point is to asymptotically expand the displacements at two
scales (X,X):

𝑢(X,X) = 𝑢0(X,X) + 𝜁𝑢1(X,X) + 𝑂(𝜁2). (2.48)
where 𝑢 is the fine-scale displacement, whereas 𝜁 (0 < 𝜁 « 1)is the characterised size of
the fine scale. Coarse scale’s strain is supposed to be computed from fine-scale strain
by domain averaging:

𝜖𝑖𝑗 = 1
|𝜔| ∫𝜔

𝜖𝑖𝑗(X,X)𝑑𝜔. (2.49)

where all the terms of coarse scale are marked with overline.
The subscript “𝜁” represents the real field. Likewise, the coarse scale stress is also de-
rived in the same way:
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𝜎𝑖𝑗 = 1
|𝜔| ∫𝜔

𝜎𝑖𝑗(X,X)𝑑𝜔. (2.50)

The variation of constitutive tensor and stress can be separated into two groups: slow
variation and fast variation. Slow variation is affected by the coarse scale (X). Fast vari-
ation depends on the fine scale (X). Through expanding the terms in balance equation,
different terms can be grouped by the different order of the characterised term 𝜁.
The elastic strain influence function ℰ𝑚𝑛

𝑘𝑙 (X) is introduced to connect the strain at fine
and coarse scale following a manner as:

𝐶𝑖𝑗𝑚𝑛 = 1
|𝜔| ∫𝜔

𝐶𝑖𝑗𝑘𝑙ℰ𝑚𝑛
𝑘𝑙 (X)𝑑𝜔. (2.51)

Therefore, the unknown coarse scale constitutive relation is constructed. Several differ-
ent specific topics are considered, and this theory is more and more generic. Lefik and
Schrefler [112] improved this method with some corrective/additional terms (thermal
expansion coefficient vector) for a thermal-mechanical analysis. Marcellini [116] ex-
tended this method for geometrically nonlinear problems. This method was well sum-
marised in Boso et al. [16] and Fish et al. [67].
Hill-Mandel Condition. Hill Mandel Condition was formulated by Hill [81] and Man-
del [115]. It is also called the average energy relation or Hill-Mandel principle of macro-
homogeneity. For static problems, it determines the energy consistency between the
fine and coarse scales (which determines the compatibility of energy rates, taking into
account time factors). A domain holds:

1
|𝜔| ∫𝜔

𝜎𝑖𝑗𝜖𝑖𝑗𝑑𝜔 = 𝜎𝑖𝑗𝜖𝑖𝑗. (2.52)

For illustrating the constitutive relationship at the coarse scale, the concept of effective
property 𝐶𝑖𝑗𝑘𝑙 is proposed:

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙. (2.53)

Meanwhile, it is also an essential assumption in the FE2 method, whichwill be discussed
later.
Heterogeneous Multi-scale Method (HMM): Finite element HMM. Heterogeneous
Multiscale Method was proposed by E and Engquist [51]. It belongs to the upscaling
methods. The constitutive tensor 𝐶𝑖𝑗𝑘𝑙 from the coarse scale is missing information.
As the framework of HMM is entirely mathematical, a general form is presented here
within the framework FEM (see Abdulle and Engquist [1]). Gauss integration is applied
for computing the coarse scale stiffness. Therefore, the problem of the whole domain
transforms into a series of issues related to Gauss quadrature points. Define the position
of the Gauss quadrature point as ̂X𝐼:

𝜎𝑖𝑗( ̂X𝐼) = 𝐶𝑖𝑗𝑘𝑙)(X̂𝐼)𝜖𝑘𝑙( ̂X𝐼) = 1
|𝜔| (∫𝜔 𝐶𝑖𝑗𝑘𝑙(X̂𝐼,𝑋)𝜖𝑘𝑙( ̂X𝐼,𝑋)𝑑𝜔) . (2.54)
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The coarse scale strain is considered to be obtained by area average:

𝜖𝑘𝑙( ̂X𝐼) = 1
|𝜔| ∫𝜔

𝜖𝑘𝑙( ̂X𝐼,𝑋)𝑑𝜔. (2.55)

in which ̂X𝐼 is the fine-scale coordinate of quadrature point. 6 sets of unit strain 𝑒𝑘𝑙 are
employed for coarse scale strain as:

𝜖𝑘𝑙(X̂𝐼) = 𝑒𝑘𝑙. (2.56)

Then, Eq. (2.54) will be reformed as:

𝐶𝑖𝑗𝑘𝑙( ̂X𝐼) = 1
|𝜔| ∫𝜔

𝐶𝑖𝑗𝑘𝑙( ̂X𝐼,X)𝜖𝑘𝑙(X̂𝐼,X)𝑑𝜔. (2.57)

Thus, the macroscopic constitutive tensor 𝐶𝑖𝑗𝑘𝑙(X̂𝐼) is obtained. After getting the ef-
fective property from the fine scale, the next step is to solve the coarse scale problem.
Galerkinmethod is applied and the elemental stiffnessmatrix is obtainedwith the Gauss
integration. Ren and E [143] has proposed an investigation of fluids with both temporal
and spatial fields considered By coupling the FEM and HMM, A method called finite
element HMM was addressed by Abdulle and Engquist [1].

Coarse Scale Oriented Method

Babuska [8] proposed this concept: Coarse-scale kinematical relationship could be
enriched to reflect the fine scale details. Inspired by this idea, several generalised FEMs
are developed, including Multi-scale FEM (MsFEM), Variational Multi-scale Method
(VMS), Multi-scale Enrichment Based on the Partition of Unity (MEPU), and Discon-
tinuous Enrichment Method (DEM). These generalised FEMs share the same process
to obtain the coarse scale stiffness matrix. Firstly, enhanced strain-displacement matrix
ℬ𝑘𝑙𝑖 is defined as follows:

ℬ𝑘𝑙𝑖(X,X) = 𝑁(𝑠𝑖,𝑋𝑡)
(X)ℰ 𝑠𝑡

𝑘𝑙(X). (2.58)

where ℰ 𝑠𝑡
𝑘𝑙 is the elastic strain influence function as mentioned for Asymptotic Method.

Then, the coarse scale stiffness can be derived as:

𝐾𝑖𝑗 = ∫Ω

1
|𝜔| ∫𝜔

ℬ𝑘𝑙𝑖𝐶𝑘𝑙𝑔ℎ(X)ℬ𝑘𝑙𝑖𝑑𝜔𝑑Ω. (2.59)

However, between these methods, integrations at the coarse scale, enrichment of the
kinematic equations, and constraints at the fine scale are different. To these differences,
the subsequent paragraphs give more details for these methods.
MsFEM. For heterogeneous material’s modelling, Hou and Wu [84] proposed MsFEM
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based on Babuska’s method. Instead of building the enhanced strain-displacement ma-
trix ℬ𝑘𝑙𝑖, the coarse-scale enriched shape function 𝑁𝑔𝑖 is obtained by addressing the
following fine-scale BVPs:

(𝐶𝑘𝑙𝑔ℎ𝑁 (𝑒)
𝑔𝑖,ℎ),𝑙(X) = 0 in 𝜔(𝑒)

𝑁 (𝑒)
𝑔𝑖 (X) = 𝑁(𝑒)

𝑔𝑖 (X) on 𝜕𝜔(𝑒) . (2.60)

The boundary conditions shown in Eq. (2.60) are proposed in the initial works. It is as-
sumed that the enhanced coarse scale shape function corresponds to a single element
in the coarse scale. Subsequently, the oversampling technique is introduced to estab-
lish a relationship between an enhanced coarse scale shape function and their corre-
sponding coarse-scale elements. This oversampling technique can improve the results
as a consequence of the ability to collect more fine-scale information. Therefore, two
corresponding boundary conditions are introduced including oversampling oscillating
boundary condition and oversampling periodic boundary condition (see Efendiev and
Hou [54]). Hou et al. [85] found that the supersample technique can effectively reduce
the boundary effects under oscillating boundary conditions. Moreover, the convergence
speed is faster, but it does not affect the linear boundary. Chu et al. [34] verified this
result and discussed various supersample techniques.
VMS. VMS was proposed by Hughes et al. [94], which is also called Hughes Variational
Multi-scale method. The idea of VMS is to use variable-consistent discretisation at the
coarse scale, and only maintain the stability at the fine scale. The fine and coarse scale
are coupled, where stability at the fine scale effects indirectly at the coarse scale.
Under the framework of this method, different scales are considered with only one axis
system X, instead of X and X. In other words, the unknowns of coarse and fine scales
are coupled. Both the displacements fields and the corresponding weights are decom-
posed into two parts. One part is about the coarse scale, and the other part is related
to the fine scale. Consequently, based on these parts of shape function and weights on
different scales, the virtual work weak form can be discretised. An additional assump-
tion is taken here to simplify the problem. The displacements and weights at fine scale
will vanish at the boundary line at each element. However, this assumption causes trou-
bles when dealing with crack problems. This method was furthermore developed with
a combination of FEM by Gravemeier [77].
MEPU. Based on the basic idea of enriching the coarse scale’s balance equation, Fish
and Yuan [65] proposed a method called MEPU. This method modified the VMS, and
apply the Galerkin Method to discretise the system. It was extended for nonlinear prob-
lems by Fish and Yuan [66].
DEM. DEM is another generalised FEM proposed by Farhat [58]. This enrichment ba-
sis function is continuous at the element interface. Lagrangian multiplier degrees of
freedom is introduced to ensure the weak continuity of solutions at element interfaces.
Besides, enrichment functions do not need to follow the high-order orthogonal rules
to evaluate the stiffness matrix. The two-dimensional and three-dimensional problems
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were benchmarked by Farhat et al. [59] and Tezaur and Farhat [155], respectively.

2.2.3 Summary of Software based on Multi-scale Methods
In 2015, Rithchey et al. [146] published a thorough review in the composites de-

sign and manufacture hub, and this work was further refined by Sertse et al. [151]. The
strengths and weaknesses of 5 candidate software products are compared. Based on
these works, several representative software products are briefly described below.

1. The NASA Glenn Research Centre’s MAC/GMC is based on two semi-analytical
models of GMC and HFGMC (refer to Subsection 2.2.1).

2. DIGIMAT is developed by e-Xstream engineering. Two kinds of multi-scale meth-
ods are applied: 1. Mori-Tanaka method (refer to Subsection 2.2.1); 2. FE2 method
(see [160] and refer to Subsection 2.2.1).

3. Multi-scale Design Systems is a family of products developed by Prof. Jacob Fish [64],
and it was later acquired by Altair. These products were programmed in Python
based on the method MEPU (refer to Subsection 2.2.2). The family of products
include a set of plug-ins for commercial FEM software (ABAQUS, ANSYS, LS-
DYNA) for implementing functionalities on multi-scale modelling.

4. SwiftComp is a code developed by Prof.Wenbin Yu based on structural mechanics
and GMC (refer to Subsection 2.2.1). A new concept Structure Genome is intro-
duced as an approach to link the microscopic mechanics and structural mechan-
ics. The effective properties can be applied for building beam, plate and other
structural models (see Yu [167]). Its graphical user interface is based on Gmsh,
and the structural solver is based on Calculix. The nonlinear solver of Calculix
is based on the Newton-Raphson method (see Dhondt [46] and refer to Subsec-
tion 2.3.1).

5. The Virtual Performance Solution is a multi-scale modelling software released
by the ESI Group based on Computational homogenisation/FE2 (refer to Subsec-
tion 2.2.1).
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2.3 Review of the Nonlinear Solver

2.3.1 Incremental/Iterative/Path-corrector Methods
In structural calculations, incremental/iterative methods are used to calculate non-

linear problems due to large geometric variations or material behaviour. Please note
that this section only focuses on geometric nonlinearity, which means the structure un-
dergoes massive displacement and large rotation during the load action. At this time,
the geometric equation is no longer linear, and the equilibrium equation must be es-
tablished in the deformed state. Suppose an object is under static load. If it is assumed
that there is an infinitesimal virtual displacement inside the object, then from the actual
configuration, the following variation equation is established:

𝛿ℒ𝑖𝑛𝑡 = 𝛿ℒ𝑒𝑥𝑡. (2.61)

𝛿ℒ𝑖𝑛𝑡 is a virtual variation of internal energy, and 𝛿ℒ𝑒𝑥𝑡 is a virtual variation of external
work. The variational equation Eq (2.61) is reduced to a nonlinear algebraic equation
with the following equivalent form:

𝜑(q,𝒫 ) = 𝒫 𝑖𝑛𝑡(q) − 𝒫 𝑒𝑥𝑡 = K(q)q − 𝜆f = 0. (2.62)

where 𝜑 is a nodal force composed of internal and external forces, 𝒫 𝑖𝑛𝑡(q) is the in-
ternal force from the internal stress, 𝒫 𝑒𝑥𝑡 is the external force vector. q is the node
displacement vector, K being the stiffness matrix, 𝜆 being the load factor, and f being
a constant loading force. The aim is to search the solution path from the initial 𝑚 state
to the 𝑚 + 1 state (unknown) in its neighbourhood. The specific decomposed format
follows Batoz and Dhatt [12] and Carrera [19]:

ℛ(q, 𝜆) = 𝜑,qΔq + 𝜑,𝒫 𝑒𝑥𝑡Δ𝒫 𝑒𝑥𝑡. (2.63)

The symbol Δ represents a global variation in one step. Δ𝒫 𝑒𝑥𝑡, 𝜑,q and 𝜑,𝒫 𝑒𝑥𝑡 can be
expressed as follows:

Δ𝒫 𝑒𝑥𝑡 = Δ𝜆f
𝜑,q = K(q)
𝜑,𝒫 𝑒𝑥𝑡 = −I,

(2.64)

where I is the identity matrix, Δq being the incremental node displacement vector, and
Δ𝜆 being the incremental load vector. The loading factor is the residual of the nodal
force. Then, Eq. (2.63) can be rewritten as follows:

ℛ(q, 𝜆) = KΔq − Δ𝜆f. (2.65)

Where ℛ(q, 𝜆) is the residual, and it is also called the unbalanced load, which is the dif-
ference between the required load and the calculated load. If the value of the imbalance
is less than the specified tolerance, the solution is converged; if not, it must be the next
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iteration, estimated from the results of the previous iteration. Within the incremental
method, the load factor 𝜆 is divided into several steps. The corresponding displacement
vector q is also divided into steps.
Newton-Raphson Method (NRM) NRM is one of the most basic algorithms for solv-
ing nonlinear equations. Based on the incremental form of Newton’s method, the dis-
placement vector q𝑚 corresponding to the load factor 𝜆𝑚 of the 𝑚th step is known, and
then the load factor is increased to 𝜆𝑚+1 = 𝜆𝑚 + Δ𝜆𝑚 to solve the corresponding dis-
placement q𝑚+1 .
It is assumed that the corresponding tangent stiffness matrix at 𝑚th step is K𝑚. The
(𝑛 + 1)th iteration of the (𝑚 + 1)th step can be expressed as:

ℛ(Δq𝑛
𝑚+1) − K𝑛

𝑚+1𝛿q𝑛
𝑚+1 + Δ𝜆𝑚+1f = 0, (2.66)

whereK𝑛
𝑚+1 is the 𝑛th modified value ofK𝑚+1, and the 𝑛th correction amount of Δq𝑚+1

is Δq𝑛
𝑚+1, which is:

𝛿q𝑛
𝑚+1 = (K𝑛

𝑚+1)−1(ℛ(q𝑛
𝑚+1) − Δ𝜆𝑚+1f). (2.67)

The (𝑛 + 1)th update of q𝑚+1 is:

Δq𝑛+1
𝑚+1 = Δq𝑛

𝑚+1 + 𝛿q𝑛
𝑚+1. (2.68)

As shown in Eq. (2.66), each iteration needs to be reformed and decomposed into a tan-
gent stiffness matrix K𝑛

𝑚+1 to work. The computational cost is quite significant, there-
fore, the modified NRM method has been proposed.
Modified Newton-Raphson Method (MNRM) For all iterations of the 𝑚th step, the
tangent stiffness matrix remains the same, therefore, at each step, only a tangential
stiffness matrix is assembled.

K𝑚+1 = K1
𝑚+1 (2.69)

The displacement increment of the 𝑚th step can be expressed as:

Δq𝑛+1
𝑚+1 = (K𝑚+1)−1(ℛ(q𝑛

𝑚+1) − Δ𝜆𝑛
𝑚+1f). (2.70)

A schematic diagram of the NRM and MNRM is shown in Fig. 2.12
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Figure 2.12: Schema of the NRM and Modified MNRM.

NRM and MRNM have been widely employed for analysing nonlinear problems.
However, for the buckling problems, the NRM and the MNRM performs poorly because
a sufficiently small step size must be specified to confirm that the calculation converges,
and that leads to a tremendous calculation amount. If the step size is improperly defined,
the solution may not converge.
Arc-length and other quadratic control methods
Riks-Wempner Method (RWM) NRM method and MNRM method are not sufficient
for the problem with strong nonlinearity. As a consequence, several pioneering works
for effectively passing the limit point were carried out by Phillips and Zienkiewicz [137],
Bergan and Holand [15], Batoz and Dhatt [12]. Among a variety of methods, RWM (see
Riks [145] andWempner [164]) is the most effective solution for passing the limit point.
For calculating the geometric nonlinear equilibrium path, a mixed load-displacement
constraint equation is introduced by the vector t = q + 𝜆f. It represents the sum of all
unknown vectors as:

(Δ𝜆𝑚𝜓)2f𝑇f + (Δq𝑚)𝑇(Δq𝑚) − Δt𝑇Δt = 0. (2.71)

The above equation is called Riks-Wempner Arc Length Constraint equation. 𝜓 is de-
fined as the user-defined load scaling parameter. This constraint is a hyperspherical
curve. In the case of 𝜓 = 1 (as shown in Fig 2.13),
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Figure 2.13: Schema of the Riks-Wempner Arc Length Method with 𝜓 = 1 .

Arc length Δ𝑠𝑚 is defined as the distance between two step along the equilibrium
path. It is expressed as follows:

Δ𝑠𝑚 = |Δt| = √(Δ𝜆𝑚)2f𝑇f + (Δq𝑚)𝑇(Δq𝑚). (2.72)

The 𝑛th modification of increment in the 𝑚 + 1 step is expressed as:

Δt𝑛𝑚+1 = Δt𝑛𝑚 + 𝛿t𝑛𝑚
= Δt𝑛𝑚+1(Δq𝑛

𝑚+1,Δ𝜆𝑛
𝑚+1𝐹 )

= Δt𝑛𝑚+1(Δq𝑛
𝑚 + 𝛿q𝑛

𝑚,Δ𝜆𝑛
𝑚 + 𝛿𝜆𝑛

𝑚f)
. (2.73)

and 𝛿 representing the local variation of the 𝑛th iteration. Based on the orthogonality
between the vector Δt1 = Δq1 + Δ𝜆1f and 𝛿t𝑛𝑚 = 𝛿q𝑛

𝑚 + 𝛿𝜆𝑛
𝑚f, the following governing

equations can be derived as:

ℛ(𝛿q𝑛
𝑚+1) = K𝑚+1𝛿q𝑛

𝑚+1 − 𝛿𝜆𝑛
𝑚+1f (2.74)

Δt1𝑚+1
𝑇𝛿t𝑛𝑚+1 = 0. (2.75)

To be noticed, the value of Δt𝑛𝑚+1 should be small enough to follow the strong nonlinear
path.
Riks-Wempner-Rammmethod (RWRM) Ramm [140] proposed an approach for im-
proving RWM by updating 𝑡𝑛−1

𝑚+1 for the 𝑛th iteration at the 𝑚 + 1 step based on the
following control equations:
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ℛ(𝛿q𝑛
𝑚+1) = K𝑚+1𝛿q𝑛

𝑚+1 − 𝛿𝜆𝑛
𝑚+1f (2.76)

Δt𝑛−1
𝑚+1

𝑇𝛿t𝑛𝑚+1 = 0. (2.77)

Ramm also studied the scaling parameters, found that the change in load does not affect
the convergence significantly . In the case of 𝜓 = 0, this method falls into the category
of cylindrical arc length methods.The length of the displacement increment is supposed
to be equal to the arc length for the first iteration of the first step:

Δq1
1

𝑇Δq1
1 = Δ𝑠1

1
2. (2.78)

Arc-length-Crisfield Method (ALCM) Not only the displacement increment of first
iteration Δq1

1 equals to the arc length, Crisfied [38] successfully promoted RWRM and
formed ALCM. It is supposed that the displacement increment equals the arc length of
each iteration equals the corresponding arc length. Consequently, the control equations
can be written as:

ℛ(𝛿q𝑛
𝑚+1) = K𝑚+1𝛿q𝑛

𝑚+1 − 𝛿𝜆𝑛
𝑚+1f (2.79)

(Δq𝑛
𝑚+1)𝑇(Δq𝑛

𝑚+1) = Δ𝑠𝑚+1
2. (2.80)

Eq. (2.80) is usually the additional equation for linear (RWM, RWRM) or quadratic
(ALCM), which is different with the form shown in Eq. (2.71). It is because all load-
related items are ignored, including all terms related to f (𝜓 = 0). This simplified form
was recommended by Crisfield [37] due to the following two reasons. First, it is for
avoiding ill-conditioned matrix near the limit points (see Crisfield [37]). Secondly, it is
because the scaling parameters 𝜓 affects the results slightly. The latter reason was val-
idated by Ramm [140] and Crisfield [38]. In this case, the spherical ALCM (𝜓 ≠ 0) is
reduced to a so-called cylindrical ALCM (𝜓 = 0). Following the theory of cylindrical
ALCM, a quadratic constraint equation is introduced for resolving (𝛿𝜆𝑛

𝑚+1). However,
for a quadratic equation, there are two roots (𝛿𝜆𝑛

𝑚+1)1,2. To determine the correct one of
these two roots, Crisfield proposed a solution by employing the corresponding vector
(𝛿t𝑛𝑚+1)1,2 of the two roots. If the value of the angle between the 𝑛th iteration vector
(Δt𝑛𝑚+1)1,2 and the (𝑛 − 1)th iteration vector (Δt𝑛−1

𝑚+1) is positive, the root is appropriate.
Furthermore, in the added constraint equation, multiple variables are introduced for a
better selection of the root (see Carrera [19].
ALCM and RWRM are also called modified ALM. The result comparison shows that
ALCM convergences faster than RWM and RWRM. Lam and Morley [109] proposed a
quadratic ALM. The unbalanced load is decomposed into parallel and orthogonal com-
ponents of the applied external load.This approach avoids the complex process of bring-
ing back root into a quadratic constraint equation and determining the appropriate root.
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This method verifies the robustness of dealing with Snap-through and Snap-back prob-
lems. Ritto-Corrêa and Camotim [147] presents the implementation of several quadric
ALMs in a uniform way, further clearly describing the root selection and line search. A
hybrid control method is proposed, where the angle predictor is based on a spherical
ALCM and the path corrector is based on a cylindrical ALCM. In the presence of strong
nonlinear problems, iterative linear (RWM, RWRM) algorithms sometimes converge
to unwanted solutions, see Eriksson and Kouhia [56]. Therefore, it is advocated to use
ALCM to solve strong nonlinear problems. Recently, a snap-through analysis for soft
solid was carried out by Liu et al. [113], which revealed the effectiveness and robustness
of this algorithm. ALCM has been adopted by a variety of commercial FEM software to
achieve nonlinear analyses, and it has been extended to studies on advanced structures
such as multistable/morphing structures by Groh and Pirrera [78].

2.3.2 Perturbation/Asymptotic Methods
Koiter’s Perturbation Method

The Kotier’s perturbation/stability method was proposed by Koiter [104], which is
hinged on the combination of the perturbation and weighted residual methods. A FEM-
based reduced order model with a handful of representative modes was established.
First, a perturbation expansion of load and displacement is generated around the bifur-
cated buckling point. The first-order term in the perturbation expansion corresponds
to the bifurcation buckling mode, while the second-order term reflects the correction
of the buckling mode in the large deformation state. Then, a certain number of bifur-
cated bucklingmodes and second-ordermodes are employed to describe the initial post-
buckling behaviour. The number of equations of the obtained nonlinear algebraic equa-
tions is equal to the selected buckling modes in the perturbation expansion. Lanzo and
Garcea [111] extended the Koiter’s perturbation theory to analyse the effect of residual
stress. Additional terms related to residual stress were evaluated by the correspond-
ing weight coefficients. Rahmen and Jansen [139] performed a post-buckling analysis
on a cylindrical shell with consideration of the interactions between the representative
modes.

Asymptotic Numerical Method

Contrasting Koiter’s perturbation method, another category of perturbation meth-
ods not only perturbs around the determined bifurcated buckling point but disturbs
along the whole path. In other words, the bifurcated buckling point is automatically
detected, not artificially given. This perturbation method was initially introduced by
Thompson and Walker [157] by coupling FEM to calculate the coefficients of the power
series.Then, Noor et al. [133] improved it by coupling the vector basis reductionmethod.
However, the efficiencies of these proposed nonlinear approaches are relatively low due
to two reasons. First, the complexity of problem analysis increases dramatically as the
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number of terms increases. Secondly, the power series for describing the equilibrium
path holds a small convergence radius.
ANM was developed to overcome these barriers by Damil and Potier-Ferry [42] and
Cochelin et al. [35], which falls into the category of second-order perturbation meth-
ods for resulting nonlinear equations. To illustrate, the equilibrium path solution is ex-
panded into a power series by perturbating the parameters, thereby transforming the
nonlinear problem into a set of linear problems. Compared to the previously mentioned
path-corrector methods, the perturbationmethod can establish an analytical expression
of the whole equilibrium path, and not only obtain discrete points on the equilibrium
path. Consider the quadratic differential equation as:

ℛ(q, 𝜆) = L(q) + Q(q,q) − 𝜆f = 0, (2.81)

where L is a linear differential operator and Q is a quadratic differential operator, and
f is a known external force. Nonlinearity of the equation comes from the quadratic
term Q. The differential equation ℛ is derived for the unknowns q and 𝜆 to obtain the
following equations:

𝜕ℛ
𝜕q

= L𝑡(q) = L(⋅) + 2Q(q, ⋅)
𝜕ℛ
𝜕𝜆

= f
. (2.82)

Where L𝑡 ∈ ℝ𝑛×𝑛 is the tangent differential operator, 𝑛 being the number of equations
or the dimension of the unknown. The unknowns q and 𝜆 in the nonlinear systems are
all expanded into power series form as:

q𝑚+1 = q𝑚 + 𝑎𝑝q𝑝,
𝜆𝑚+1 = 𝜆𝑚 + 𝑎𝑝𝜆𝑝 with 𝑝 = 1,2, ...,𝑁𝑚𝑎𝑥. (2.83)

In the formula, q𝑝, 𝜆𝑝(𝑝 = 1,2, ...,𝑁𝑚𝑎𝑥) is the coefficient of the power series, which
is the unknown quantity to be solved, and (q𝑚, 𝜆𝑚) and (q𝑚+1, 𝜆𝑚+1) are points on the
equilibrium path. For these two points, the differential equation is satisfied as:

ℛ(q𝑚, 𝜆𝑚) = L(q𝑚) + Q(q𝑚,q𝑚) − 𝜆𝑚f = 0, (2.84)
ℛ(q𝑚+1, 𝜆𝑚+1) = L(q𝑚+1) + Q(q𝑚+1,q𝑚+1) − 𝜆𝑚+1f = 0. (2.85)

Since ℛ is a quadratic differential equation, the derivatives of the second and higher
orders are all zero. Only the first order derivative of ℛ is not zero, which is marked
as ∇ℛ and can be also called as the gradient/Jacobi matrix of ℛ. Consequently, the
following equation can be derived:

ℛ(q𝑚+1, 𝜆𝑚+1) = ℛ(q𝑚, 𝜆𝑚) +𝑎(∇ℛ(q𝑚, 𝜆𝑚)(q1, 𝜆1)𝑇) + ...
+𝑎𝑝 (∇ℛ(q𝑚, 𝜆𝑚)(q𝑝, 𝜆𝑝)𝑇 + f𝑝

𝑛𝑙) .
(2.86)
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Eq (2.86) can be rewritten to the equivalent linear equations as follows

𝑎 ∶ ∇ℛ(q𝑚, 𝜆𝑚)(q1, 𝜆1)𝑇) = 0, (2.87)
𝑎𝑝 ∶ ∇ℛ(q𝑚, 𝜆𝑚)(q𝑝, 𝜆𝑝)𝑇 + f𝑝

𝑛𝑙 = 0 with 𝑝 = 1,2, ...,𝑁𝑚𝑎𝑥, (2.88)

where
∇ℛ(q𝑚, 𝜆𝑚) = (𝐿𝑡(q𝑚), 𝜆𝑚f) (2.89)

and

f𝑝
𝑛𝑙 =

𝑝−1

∑
𝑟=1

Q(q𝑟,q𝑝−𝑟).. (2.90)

By substituting Eq. (2.90) and (2.89) into Eq. (2.87) and (2.88) and grouping the terms
of the same order, the quadratic differential can be transformed into a series of linear
equations as:

𝑎 ∶ L𝑡(q) − 𝜆1f = 0, (2.91)

𝑎𝑝 ∶ L𝑡(q) +
𝑝−1

∑
𝑟=1

Q(q𝑟,q𝑝−𝑟) − 𝜆𝑝f = 0. (2.92)

The first order is a linear problem, where (q1, 𝜆1) is the tangent vector at the position
of (q𝑚, 𝜆𝑚). f𝑝

𝑛𝑙 is determined by the displacement vectors q𝑟(𝑟 = 1,2, ..., 𝑝 − 1). Based
on the previous 𝑝 − 1 power series coefficients, the nonlinear force can be solved.
There is a total of (𝑁𝑚𝑎𝑥 + 1) unknowns ((𝑞𝑝, 𝜆𝑝) and 𝑎), but only 𝑁𝑚𝑎𝑥 equations are
provided. Therefore, A equation defining the path parameter 𝑎 is introduced to close
the equations as:

𝑎 = 1
s2 [(q𝑚+1 − q𝑚)𝑇q1 + (𝜆𝑚+1 − 𝜆𝑚)𝜆1], (2.93)

where s is the scale factor. 𝑎 being the projection of the increment (Δq𝑚+1, Δ𝜆𝑚+1) in
the predicted direction (tangential direction) of the first-order solution (q1, 𝜆1). By com-
bining Eq. (2.83) with Eq. (2.93), the following equations can be derived by separating
terms with the same order of 𝑎:

𝑎 ∶ q1𝑇q1 + 𝜆12 = 1, (2.94)

𝑎𝑝 ∶ q1𝑇q𝑝 + 𝜆𝑝2 = 0. (2.95)

The above series form can only describe the equilibrium path properly within a certain
range, and this range is called the series convergence radius 𝜀. Usually, for ensuring the
stability of the calculation, it is necessary to find an effective radius that is less than or
equal to the convergence radius, and the latter is defined according to the convergence
condition of the power series. At (𝑚+1)th step, the displacement for the first 𝑁∗ orders
can be written as:

q𝑁∗
𝑚+1 = q𝑚 + 𝑎𝑝q𝑝 𝑝 = 1,2, ...,𝑁∗. (2.96)
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That is when the difference between q𝑁∗
𝑚+1 and q𝑁∗−1

𝑚+1 is tiny, it can be considered that
the effective radius reaches the maximum value. Therefore, the displacement difference
between two adjacent orders of the power series needs to be smaller than a given tol-
erance value 𝜀 as:

||q𝑁∗
𝑚+1 − q𝑁∗−1

𝑚+1 ||

||q𝑁∗
𝑚+1 − q𝑚||

≤ 𝜀. (2.97)

Obviously, 𝑎𝑝q𝑝 with 𝑝 = 1,2, ...,𝑁∗ satisfies as :

||𝑎q1|| ≤ ||
𝑁∗

∑
𝑝=1

𝑎𝑝q𝑝||. (2.98)

By the above formula, the effective range of the path parameter is derived as:

𝑎 ≤ (𝜀
||q1||

||q𝑁∗||
)

1
𝑁∗−1

. (2.99)

By substituting 𝑁∗ by the highest order𝑁𝑚𝑎𝑥, the maximum value of path parameter
in the effective radius can be obtained as:

𝑎𝑚𝑎𝑥 = (𝜀
||q1||

||q𝑁𝑚𝑎𝑥||
)

1
𝑁𝑚𝑎𝑥−1

. (2.100)

After assigning the error tolerance 𝜀 and the order of power series 𝑁𝑚𝑎𝑥, the step length
can be calculated adaptively. By considering the overall relative residual of the differen-
tial equation, Zahrouni et al. [169] proposed anothermethod for calculating the effective
radius.
This nonlinear solver has two advantages. The first one is that is it step-adaptive. There
is no need to set up a step length.This latter will be refined automatically, for instance in
the proximity of an instability point. The second advantage is the reduction of matrixes
inversion. For one single step, the tangent matrix is inverted only once. As a conse-
quence, it is a robust and effective nonlinear solver.
In most of the numerical asymptotic methods, it is often necessary to derive the cor-
responding solution format for different problems, which limits the versatility of the
ANM. Koutsawa et al. [105] proposed a diamond method based on automatic differenti-
ation technology, which significantly improved the versatility of numerical asymptotic
methods. Under the framework of the diamond method, it is feasible to generate the
ANM format automatically.
By employing ANM as a nonlinear solver, a series of geometrically nonlinear studies are
carried out on the beam structure. Najah [126] considering the two-dimensional can-
tilever beam model, similar conclusions have been drawn. The introduction of the dia-
mond method marks a significant step forward in the application of numerical asymp-
totic method engineering. Compared to the RWM employed by the commercial code
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ABAQUS, Zahrouni et al. [168] elaborated a study of the large rotational deformation
and buckling response of the cantilever beam. Hu et al. [88] addressed the buckling in-
stability of sandwich beams and used the ANM to capture the lowest critical load of the
structure with positive symmetry and antisymmetric instability. Then, this work was
further exploited by coupling the Arlinquemethod for a multi-scale (meso-macro) mod-
elling presented by Yu et al. [166]. Recently, by combining with ANM and the slowly
varying Fourier coefficients technique, several wrinkling analyses were carried out for
thin films (see Huang et al. [91]), circular membranes (see Huang et al. [92]), sandwich
plates (see Huang et al. [90]).
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Chapter 3

Geometrically Nonlinear Models for
Beam Structures

This chapter proposes the formulation of hierarchical macroscale beam models for
geometrically nonlinear problems. These models will also serve as the basis for the
multi-scale beam model for the geometrically nonlinear problem. A total Lagrangian
formulation is used. The derivation is done in the framework of large displacements
and rotation but small strains. The preliminary concepts of beam modelling are given.
Then, the framework of CUF for the nonlinear beam is presented. Displacement field
approximation, the tangent stiffness matrix and the resulting nonlinear problem are
derived. Solution by means of ANM is, then, presented. The specific solution procedure
for 1st order and 2nd up to a generic pth order is discussed. To maintain a coherent
format between themacroscale beammodel andmulti-scale beammodel, the derivation
in terms of PK1 stress P and deformation gradient F is presented in addition to the
formulation in terms of PK2 stress S and Green-Lagrangian strain E.

3.1 Preliminaries
In a beam structure, a point X ∈ ℝ3 is represented by a Cartesian reference system

as:
X = { 𝑥 𝑦 𝑧 }

𝑇 . (3.1)

where 𝑦- and 𝑧-axis stand for two orthogonal directions laying on the beam cross-
section . The axial direction “𝑥” is in the range [0, 𝑙], where 𝑙 is the beam length.
For a two-dimensional problem, terms along the 𝑦-axis are neglected. Therefore, the
displacement field can be written in the following form:

u(X) = u (𝑥, 𝑧) = { 𝑢𝑥 (𝑥, 𝑧) 𝑢𝑧 (𝑥, 𝑧) }
𝑇 (3.2)
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where 𝑢𝑥 and 𝑢𝑧 are the displacement components along 𝑥− and 𝑧-axis, respectively.
⃖⃖𝜃(X) ∈ ℝ2×2 is defined as:

⃖⃖𝜃 = [
𝑢𝑥,𝑥 𝑢𝑥,𝑧
𝑢𝑧,𝑥 𝑢𝑧,𝑧 ] (3.3)

that is the matrix rearrangement of the displacement gradient vector 𝜃 ∈ ℝ4:

𝜃(u) = ∇u = { 𝑢𝑥,𝑥 𝑢𝑥,𝑧 𝑢𝑧,𝑥 𝑢𝑧,𝑧 }
𝑇 . (3.4)

The deformation gradient tensor ⃖⃖F ∈ ℝ2×2 is defined as follows:

⃖⃖F(X) = ⃖⃖𝜃(u(X)) + I = [
𝑢𝑥,𝑥 + 1 𝑢𝑥,𝑧

𝑢𝑧,𝑥 𝑢𝑧,𝑧 + 1 ] . (3.5)

Its vector form F ∈ ℝ4 is:

F(X) =
⎡
⎢
⎢
⎢
⎣

𝑢𝑥,𝑥 + 1
𝑢𝑥,𝑧
𝑢𝑥,𝑧

𝑢𝑧,𝑧 + 1

⎤
⎥
⎥
⎥
⎦

. (3.6)

Since 𝛿I = 0 and 𝑑I = 0, its virtual variation and infinitesimal variation can be written
in the following manner:

𝛿F = 𝛿𝜃(u), and 𝑑F = 𝑑𝜃(u). (3.7)
The Green-Lagrangian strain tensor ⃖⃖E ∈ ℝ2×2 becomes:

⃖⃖E = 1
2

(⃖⃖F𝑇 ⋅ ⃖⃖F − I), (3.8)

whose components are 𝐸𝑖𝑗 with 𝑖, 𝑗 = 𝑥, 𝑧. Its vector form E ∈ ℝ4 can be written as:

E =
⎡
⎢
⎢
⎢
⎣

𝐸𝑥𝑥
𝐸𝑥𝑧
𝐸𝑧𝑥
𝐸𝑧𝑧

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑢𝑥,𝑥
𝑢𝑥,𝑧 + 𝑢𝑧,𝑥
𝑢𝑥,𝑧 + 𝑢𝑧,𝑥

𝑢𝑧,𝑧

⎤
⎥
⎥
⎥
⎦

+ 1
2

⎡
⎢
⎢
⎢
⎣

𝑢2
𝑥,𝑥 + 𝑢2

𝑧,𝑥
2𝑢𝑥,𝑥𝑢𝑥,𝑧 + 2𝑢𝑧,𝑥𝑢𝑧,𝑧
2𝑢𝑥,𝑥𝑢𝑥,𝑧 + 2𝑢𝑧,𝑥𝑢𝑧,𝑧

𝑢2
𝑥,𝑧 + 𝑢2

𝑧,𝑧

⎤
⎥
⎥
⎥
⎦

= E𝑙 + E𝑛𝑙. (3.9)

where E𝑙 and E𝑛𝑙 represent the linear and non-linear strains, respectively. In compact
matrix notation, they read:

E𝑙 = H𝜃(u), E𝑛𝑙 = 1
2
A (𝜃(u))𝜃(u). (3.10)

Matrices H and A (𝜃(u)) are defined as:

H =
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

, (3.11)
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A (𝜃(u)) =
⎡
⎢
⎢
⎢
⎣

𝑢𝑥,𝑥 0 𝑢𝑧,𝑥 0
𝑢𝑥,𝑧 𝑢𝑥,𝑥 𝑢𝑧,𝑧 𝑢𝑧,𝑥
𝑢𝑥,𝑧 𝑢𝑥,𝑥 𝑢𝑧,𝑧 𝑢𝑧,𝑥

0 𝑢𝑥,𝑧 0 𝑢𝑧,𝑧

⎤
⎥
⎥
⎥
⎦

. (3.12)

A virtual variation of the Green-Lagrange strain vector E is:

𝛿E = 𝛿 {H𝜃(u) + 1
2
A (𝜃(u))𝜃(u)} = H𝛿𝜃(u) + A (𝜃(u)) 𝛿𝜃(u). (3.13)

where 𝛿 stands for the virtual variation operator. For a two dimensional problem, the
constitutive tensor is 𝐶𝑖𝑗𝑘𝑙 with 𝑖, 𝑗, 𝑘, 𝑙 = 1 or 3. In the case of an anisotropic material,
the reduced material stiffness matrix ℂ is given by:

ℂ =
⎡
⎢
⎢
⎢
⎣

ℂ11 ℂ15 ℂ15 ℂ13
ℂ51 ℂ55 ℂ55 ℂ53
ℂ51 ℂ55 ℂ55 ℂ53
ℂ31 ℂ35 ℂ35 ℂ33

⎤
⎥
⎥
⎥
⎦

. (3.14)

According to Voigt notation, the following shorthand notation is assumed: where Voigt
notation convention:

11 → 1
13 → 5
31 → 5
33 → 3

. (3.15)

has been used. The vectorial form of second Piola-Kirchhoff stress tensor S can be writ-
ten as:

S = { 𝑆𝑥𝑥 𝑆𝑥𝑧 𝑆𝑧𝑥 𝑆𝑧𝑧 }
𝑇 . (3.16)

Hooke’s law is considered:

S = ℂE = ℂH𝜃(u) + 1
2

ℂA (𝜃(u))𝜃(u). (3.17)

The first Piola-Kirchhoff stress tensor ⃖⃖P and the PK2 stress tensor ⃖⃖S are related through:

⃖⃖P = ⃖⃖F ⋅ ⃖⃖S. (3.18)

The weak form of the governing equation is obtained using the Principle of Virtual
Displacement:

𝛿ℒ = 𝛿ℒ𝑖𝑛𝑡 − 𝛿ℒ𝑒𝑥𝑡 = 0. (3.19)

ℒ is the total work, and ℒ𝑒𝑥𝑡 is the work done by the external forces. 𝛿ℒ𝑖𝑛𝑡 is the
internal virtual work, and it is defined as:

𝛿ℒ𝑖𝑛𝑡 = ∫Ω0

𝛿⃖⃖F ∶ ⃖⃖P𝑑Ω = ∫Ω0

𝛿E𝑇S𝑑Ω = ∫Ω0

𝛿𝜃(u)𝑇[H + A(𝜃(u))]𝑇S𝑑Ω, (3.20)
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where Ω0 is the volume of the reference undeformed configuration. An infinitesimal of
internal virtual work variation can be written as:

𝑑 (𝛿ℒ𝑖𝑛𝑡) = ∫Ω0
[𝛿E𝑇𝑑S + 𝑑 (𝛿E𝑇) S] 𝑑Ω. (3.21)

After fewmanipulations (see Crisfield. [37]), Eq. (3.21) can be rewritten in the following
form:

𝑑 (𝛿ℒ𝑖𝑛𝑡) = ∫Ω0
[𝛿E𝑇ℂ𝑑E + 𝛿𝜃𝑇Ŝ𝑑𝜃] 𝑑Ω, (3.22)

where Ŝ ∈ ℝ4×4 is:

̂S =
⎡
⎢
⎢
⎢
⎣

𝑆𝑥𝑥 𝑆𝑥𝑧 0 0
𝑆𝑥𝑧 𝑆𝑧𝑧 0 0
0 0 𝑆𝑥𝑥 𝑆𝑥𝑧
0 0 𝑆𝑥𝑧 𝑆𝑧𝑧

⎤
⎥
⎥
⎥
⎦

. (3.23)

When replacing the definition of the strain vector in terms of the deformation gradient
vector, the derivative of internal virtual work variation takes the following form:

𝑑 (𝛿ℒ𝑖𝑛𝑡) = ∫Ω0

𝛿𝜃𝑇 {[H𝑇 + A𝑇 (𝜃(u))] ℂ [H + A (𝜃(u))] + Ŝ} 𝑑𝜃𝑑Ω. (3.24)

For the sake of conciseness, the matrix ℍ ∈ ℝ4×4 is defined as follows:

ℍ = [H𝑇 + A𝑇 (𝜃(u))] ℂ [H + A (𝜃(u))] + Ŝ. (3.25)

Its tensorial form is ℋ𝑖𝑗𝑘𝑙, where 𝑖, 𝑗, 𝑘, 𝑙 = 1 or 2. ⃖⃖P can be rewritten as follows

⃖⃖P = ℋ ∶ (⃖⃖F − I). (3.26)

Eq. (3.26) can be transformed into matrix form as:

P = ℍ𝜃. (3.27)

By neglecting the body forces and taking the external load by a coefficient 𝜆 to a given
load f, an infinitesimal variation of the external virtual work can be written as:

𝑑(𝛿ℒ𝑒𝑥𝑡) = 𝑑𝜆𝛿u𝑇f, (3.28)

Considering Eq. (3.25) and Eq. (3.28), an infinitesimal variation of the total virtual work
becomes:

𝑑(𝛿ℒ) = ∫Ω0

𝛿𝜃(u)𝑇ℍ𝑑𝜃(u)𝑑Ω − 𝑑𝜆𝛿u𝑇f. (3.29)
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3.2 Hierarchical Beam Elements

3.2.1 Displacement Field Approximation
Within the framework of CUF (see also Subsection 2.1.7), the displacement field in

Eq. (3.2) is rewritten as:

u (𝑥, 𝑧) = 𝐹𝜏 (𝑧) 𝑢𝜏 (𝑥) 𝜏 = 1, 2,… , 𝑁𝑢. (3.30)

𝐹𝜏 (𝑧) is a generic expansion function over the 𝑧 axis, and 𝑁𝑢 denotes the number of
accounted terms. By usingMcLaurin polynomials, a generic 𝑁-order displacement field
can be expanded as:

𝑢𝑥 = 𝑢𝑥1 + 𝑢𝑥2𝑧 + ⋯ + 𝑢𝑥(𝑁+1)𝑧𝑁,

𝑢𝑧 = 𝑢𝑧1 + 𝑢𝑧2𝑧 + ⋯ + 𝑢𝑧(𝑁+1)𝑧𝑁. (3.31)

By employing the one-dimensional finite element approximation, the displacementu(𝑥, 𝑧)
in Eq. (3.30) is further approximated as:

u (𝑥, 𝑧) = 𝐹𝜏 (𝑧) 𝑁𝑖 (𝑥)q𝜏𝑖 𝜏 = 1, 2, … , 𝑁𝑢 𝑖 = 1, 2, … , 𝑁𝑒
𝑛 (3.32)

where 𝑁𝑒
𝑛 stands for the number of nodes per element. Linear, quadratic and cubic

elements have their corresponding shape functions based on Lagrangian interpolations
and are addressed as “B2”, “B3” and “B4”, respectively. The kinematic and finite element
approximation of the displacement gradient vector is formulated as:

𝜃 = { 𝐹𝜏𝑁𝑖,𝑥q
𝑢
𝜏𝑖 𝐹𝜏,𝑧𝑁𝑖q

𝑢
𝜏𝑖 𝐹𝜏𝑁𝑖,𝑥q

𝑤
𝜏𝑖 𝐹𝜏,𝑧𝑁𝑖q

𝑤
𝜏𝑖 } = 𝐺𝜏𝑖q𝜏𝑖 (3.33)

where 𝐺𝜏𝑖 ∈ ℝ4×2 is:

G𝜏𝑖 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐹𝜏𝑁𝑖,𝑥 0
𝐹𝜏,𝑧𝑁𝑖 0

0 𝐹𝜏𝑁𝑖,𝑥
0 𝐹𝜏,𝑧𝑁𝑖

⎤
⎥
⎥
⎥
⎥
⎦

(3.34)

and q𝜏𝑖 ∈ ℝ2 is:
q𝑇

𝜏𝑖 = { 𝑞𝑢
𝜏𝑖 𝑞𝑤

𝜏𝑖 } . (3.35)

3.2.2 Element Tangent Stiffness Matrix
For an element, an infinitesimal variation of internal virtual work variation 𝛿ℒ 𝑒

𝑖𝑛𝑡
is:

𝑑 (𝛿ℒ 𝑒
𝑖𝑛𝑡) = ∫

Ω𝑒
0

𝑑 (𝛿E𝑇S) 𝑑Ω (3.36)
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where 𝑙𝑒 is the element length. Considering the geometrical relations in Eqs. (3.13),
the constitutive relations in Eqs. (3.17) and the finite element formulation in Eq. (3.33),
Eq. (3.36) becomes:

𝑑 (𝛿ℒ 𝑒
𝑖𝑛𝑡) = ∫Ω𝑒

0

𝛿𝜃(u)𝑇 {[H𝑇 + A𝑇] ℂ [H + A] + Ŝ} 𝑑𝜃(u)𝑑Ω

= 𝛿𝑞𝑇
𝜏𝑖 ∫Ω𝑒

0

𝐺𝑇
𝜏𝑖 {[H𝑇 + A𝑇] ℂ [H + A] + Ŝ} 𝐺𝜅𝑗𝑑Ω𝑑𝑞𝜅𝑗

= 𝛿𝑞𝑇
𝜏𝑖 (K

𝑒𝑙
𝜏𝜅𝑖𝑗 + K𝑒𝑡1

𝜏𝜅𝑖𝑗 + K𝑒𝑡2
𝜏𝜅𝑖𝑗) 𝑑𝑞𝜅𝑗.

(3.37)

The “fundamental nuclei” of the linear 𝐾𝑒𝑙
𝜏𝜅𝑖𝑗 ∈ ℝ2×2, initial-displacement 𝐾𝑒𝑡1

𝜏𝜅𝑖𝑗 ∈ ℝ2×2

and geometric 𝐾𝑒𝑡2
𝜏𝜅𝑖𝑗 ∈ ℝ2×2 tangent stiffness matrices can be written in the following

form:
𝐾𝑒𝑙

𝜏𝜅𝑖𝑗 = ∫Ω𝑒
0

𝐺𝑇
𝜏𝑖H

𝑇ℂH𝐺𝜅𝑗𝑑Ω

𝐾𝑒𝑡1
𝜏𝜅𝑖𝑗(𝑞𝜏𝑖) = ∫Ω𝑒

0

𝐺𝑇
𝜏𝑖 [H𝑇ℂA + A𝑇ℂ (H + A)] 𝐺𝜅𝑗𝑑Ω

𝐾𝑒𝑡2
𝜏𝜅𝑖𝑗(𝑞𝜏𝑖) = ∫Ω𝑒

0

𝐺𝑇
𝜏𝑖Ŝ𝐺𝜅𝑗𝑑Ω

(3.38)

The nuclei are not dependent on the approximation order over the thickness (𝑁𝑢) nor
the number of nodes per element along the beam axis (𝑁𝑒

𝑛 ), see Carrera et al. [26]. The
components of the linear stiffness matrix K𝑒𝑙

𝜏𝜅𝑖𝑗 are:

𝐾𝑒𝑙𝑥𝑥
𝜏𝜅𝑖𝑗 = 𝐽 11

𝜏𝜅 𝐼𝑖,𝑥𝑗,𝑥 + 𝐽 15
𝜏,𝑧𝜅𝐼𝑖𝑗,𝑥 + 𝐽 15

𝜏𝜅,𝑧𝐼𝑖,𝑥𝑗 + 𝐽 55
𝜏,𝑧𝜅,𝑧𝐼𝑖𝑗

𝐾𝑒𝑙𝑥𝑧
𝜏𝜅𝑖𝑗 = 𝐽 15

𝜏𝜅 𝐼𝑖,𝑥𝑗,𝑥 + 𝐽 13
𝜏𝜅,𝑧𝐼𝑖,𝑥𝑗 + 𝐽 35

𝜏,𝑧𝜅,𝑧𝐼𝑖𝑗 + 𝐽 55
𝜏,𝑧𝜅𝐼𝑖𝑗,𝑥

𝐾𝑒𝑙𝑧𝑥
𝜏𝜅𝑖𝑗 = 𝐽 15

𝜏𝜅 𝐼𝑖,𝑥𝑗,𝑥 + 𝐽 13
𝜏,𝑧𝜅𝐼𝑖𝑗,𝑥 + 𝐽 35

𝜏,𝑧𝜅,𝑧𝐼𝑖𝑗 + 𝐽 55
𝜏𝜅,𝑧𝐼𝑖,𝑥𝑗

𝐾𝑒𝑙𝑧𝑧
𝜏𝜅𝑖𝑗 = 𝐽 35

𝜏𝜅,𝑧𝐼𝑖,𝑥𝑗 + 𝐽 35
𝜏,𝑧𝜅𝐼𝑖𝑗,𝑥 + 𝐽 55

𝜏𝜅 𝐼𝑖,𝑥𝑗,𝑥 + 𝐽 33
𝜏,𝑧𝜅,𝑧𝐼𝑖𝑗

(3.39)

The generic term 𝐽 𝜑𝜛
𝜏(,𝑧)𝜅(,𝑧) is a cross-section moment:

𝐽 𝜑𝜛
𝜏(,𝑧)𝜅(,𝑧) = ∫

𝑒=ℎ𝑒×𝑏𝑒

ℂ𝜑𝜛𝐹𝜏(,𝑧)
𝐹𝜅(,𝑧)

𝑑 . (3.40)

The 𝐼𝑖(,𝑥)𝑗(,𝑥)
integral can be expressed as follows:

𝐼𝑖(,𝑥)𝑗(,𝑥)
= ∫

𝑙𝑒

𝑁𝑖(,𝑥)
𝑁𝑗(,𝑥)

𝑑𝑥. (3.41)
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K𝑒𝑡1
𝜏𝜅𝑖𝑗 components are:

𝐾𝑒𝑡1𝑥𝑥
𝜏𝜅𝑖𝑗 = 𝑞𝑢

𝑡𝜙𝑚 (2𝐽 11
𝜏𝜅𝑡𝐼𝑖

,𝑥𝑗
,𝑥𝜙

,𝑥
+ 𝐽 13

𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖
,𝑥𝑗𝜙 + 𝐽 13

𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖𝑗,𝑥𝜙 + 2𝐽 15
𝜏𝜅𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙+

2𝐽 15
𝜏𝜅,𝑧𝑡𝐼𝑖,𝑥𝑗𝜙,𝑥

+ 2𝐽 15
𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥

+ 2𝐽 35
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝐼𝑖𝑗𝜙 + 2𝐽 55

𝜏,𝑧𝜅,𝑧𝑡𝐼𝑖𝑗𝜙,𝑥
+

𝐽 55
𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖𝑗,𝑥𝜙 + 𝐽 55

𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝜙) +

𝑞𝑢
𝑡𝜙𝑚

𝑞𝑢
𝑠𝜚𝑚 (𝐽 11

𝜏𝜅𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 13
𝜏𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚 + 𝐽 13

𝜏,𝑧𝜅𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝜙𝜚,𝑥+

𝐽 15
𝜏𝜅𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚 + 𝐽 15

𝜏𝜅,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚,𝑥 + 𝐽 15
𝜏𝜅𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚,𝑥 + 𝐽 15

𝜏,𝑧𝜅𝑡𝑠𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚,𝑥+

𝐽 35
𝜏𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙𝜚 + 𝐽 35

𝜏,𝑧𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙𝜚 + 𝐽 35
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝜙𝜚,𝑥 + 𝐽 35

𝜏,𝑧𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝜙,𝑥𝜚+

𝐽 33
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝜙𝜚 + 𝐽 55

𝜏𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚 + 𝐽 55
𝜏𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝜙𝜚,𝑥 + 𝐽 55

𝜏,𝑧𝜅𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚+

𝐽 55
𝜏,𝑧𝜅,𝑧𝑡𝑠𝐼𝑖𝑗𝜙,𝑥𝜚,𝑥)

𝐾𝑒𝑡1𝑥𝑧
𝜏𝜅𝑖𝑗 = 𝑞𝑢

𝑡𝜙𝑚 (𝐽 13
𝜏𝜅,𝑧𝑡𝐼𝑖

,𝑥𝑗𝜙
,𝑥

+ 𝐽 15
𝜏𝜅𝑡𝐼𝑖

,𝑥𝑗,𝑥𝜙,𝑥
+ 𝐽 35

𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝜙 + 𝐽 55
𝜏𝜅𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙+

𝐽 33
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝐼𝑖𝑗𝜙 + 𝐽 35

𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖𝑗,𝑥𝜙 + 𝐽 35
𝜏,𝑧𝜅,𝑧𝑡𝐼𝑖𝑗𝜙,𝑥

+ 𝐽 55
𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥) +

𝑞𝑤
𝑡𝜙𝑚 (𝐽 11

𝜏𝜅𝑡𝐼𝑖
,𝑥𝑗

,𝑥𝜙
,𝑥

+ 𝐽 13
𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖

,𝑥𝑗𝜙 + 𝐽 15
𝜏𝜅𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙 + 𝐽 15

𝜏𝜅,𝑧𝑡𝐼𝑖,𝑥𝑗𝜙,𝑥
+

𝐽 15
𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥

+ 𝐽 35
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝐼𝑖𝑗𝜙 + 𝐽 55

𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖𝑗,𝑥𝜙 + 𝐽 55
𝜏,𝑧𝜅,𝑧𝑡𝐼𝑖𝑗𝜙,𝑥) +

𝑞𝑢
𝑡𝜙𝑚

𝑞𝑤
𝑠𝜚𝑚 (𝐽 11

𝜏𝜅𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 13
𝜏𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚 + 𝐽 15

𝜏𝜅𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚+

𝐽 15
𝜏𝜅,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚,𝑥 + 𝐽 15

𝜏𝜅𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚,𝑥 + 𝐽 35
𝜏𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙𝜚 + 𝐽 55

𝜏𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚+

𝐽 55
𝜏𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝜙𝜚,𝑥 + 𝐽 13

𝜏,𝑧𝜅𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝜙𝜚,𝑥 + 𝐽 33
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝜙𝜚 + 𝐽 35

𝜏,𝑧𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙𝜚+

𝐽 35
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝜙𝜚,𝑥 + 𝐽 15

𝜏,𝑧𝜅𝑡𝑠𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 35
𝜏,𝑧𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝜙,𝑥𝜚 + 𝐽 55

𝜏,𝑧𝜅𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚+

𝐽 55
𝜏,𝑧𝜅,𝑧𝑡𝑠𝐼𝑖𝑗𝜙,𝑥𝜚,𝑥)
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𝐾𝑒𝑡1𝑧𝑥
𝜏𝜅𝑖𝑗 = 𝑞𝑢

𝑡𝜙𝑚 (𝐽 15
𝜏𝜅𝑡𝐼𝑖

,𝑥𝑗,𝑥𝜙
,𝑥

+ 𝐽 35
𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖

,𝑥𝑗𝜙 + 𝐽 55
𝜏𝜅𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙 + 𝐽 55

𝜏𝜅,𝑧𝑡𝐼𝑖,𝑥𝑗𝜙,𝑥
+

𝐽 13
𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥

+ 𝐽 33
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝐼𝑖𝑗𝜙 + 𝐽 35

𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖𝑗,𝑥𝜙 + 𝐽 35
𝜏,𝑧𝜅,𝑧𝑡𝐼𝑖𝑗𝜙,𝑥) +

𝑞𝑤
𝑡𝜙𝑚 (𝐽 11

𝜏𝜅𝑡𝐼𝑖
,𝑥𝑗

,𝑥𝜙
,𝑥

+ 𝐽 15
𝜏𝜅,𝑧𝑡𝐼𝑖

,𝑥𝑗𝜙,𝑥
+ 𝐽 15

𝜏𝜅𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙 + 𝐽 55
𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝜙+

𝐽 13
𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖𝑗,𝑥𝜙 + 𝐽 35

𝜏,𝑧𝜅,𝑧𝑡,𝑧𝐼𝑖𝑗𝜙 + 𝐽 15
𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥

+ 𝐽 55
𝜏,𝑧𝜅,𝑧𝑡𝐼𝑖𝑗𝜙,𝑥) +

𝑞𝑤
𝑡𝜙𝑚

𝑞𝑢
𝑠𝜚𝑚 (𝐽 11

𝜏𝜅𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 13
𝜏𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚 + 𝐽 15

𝜏𝜅𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚+

𝐽 15
𝜏𝜅,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚,𝑥 + 𝐽 15

𝜏𝜅𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚,𝑥 + 𝐽 35
𝜏𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙𝜚 + 𝐽 55

𝜏𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚+

𝐽 55
𝜏𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝜙𝜚,𝑥 + 𝐽 13

𝜏,𝑧𝜅𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝜙𝜚,𝑥 + 𝐽 33
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝜙𝜚 + 𝐽 35

𝜏,𝑧𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙𝜚+

𝐽 35
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝜙𝜚,𝑥 + 𝐽 15

𝜏,𝑧𝜅𝑡𝑠𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 35
𝜏,𝑧𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝜙,𝑥𝜚 + 𝐽 55

𝜏,𝑧𝜅𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚+

𝐽 55
𝜏,𝑧𝜅,𝑧𝑡𝑠𝐼𝑖𝑗𝜙,𝑥𝜚,𝑥)

(3.42)
𝐾𝑒𝑡1𝑧𝑧

𝜏𝜅𝑖𝑗 = 𝑞𝑤
𝑡𝜙𝑚 (𝐽 13

𝜏𝜅,𝑧𝑡𝐼𝑖
,𝑥𝑗𝜙

,𝑥
+ 𝐽 13

𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥
+ 2𝐽 15

𝜏𝜅𝑡𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥
+ 2𝐽 35

𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝜙+

2𝐽 35
𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖,𝑥𝑗𝜙 + 2𝐽 35

𝜏,𝑧𝜅,𝑧𝑡𝐼𝑖𝑗𝜙,𝑥
+ 2𝐽 55

𝜏𝜅𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙 + 𝐽 55
𝜏𝜅,𝑧𝑡𝐼𝑖,𝑥𝑗𝜙,𝑥) +

𝐽 55
𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥

+ 2𝐽 33
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝐼𝑖𝑗𝜙) +

𝑞𝑤
𝑡𝜙𝑚

𝑞𝑤
𝑠𝜚𝑚 (𝐽 11

𝜏𝜅𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 33
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝜙𝜚 + 𝐽 55

𝜏𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚+

𝐽 55
𝜏𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝜙𝜚,𝑥 + 𝐽 55

𝜏,𝑧𝜅𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚 + 𝐽 55
𝜏,𝑧𝜅,𝑧𝑡𝑠𝐼𝑖𝑗𝜙,𝑥𝜚,𝑥 + 𝐽 13

𝜏𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚+

𝐽 13
𝜏,𝑧𝜅𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝜙𝜚,𝑥 + 𝐽 15

𝜏𝜅𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚 + 𝐽 15
𝜏𝜅,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚,𝑥 + 𝐽 15

𝜏𝜅𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚,𝑥+

𝐽 15
𝜏,𝑧𝜅𝑡𝑠𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 35

𝜏𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙𝜚 + 𝐽 35
𝜏,𝑧𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙𝜚 + 𝐽 35

𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝜙𝜚,𝑥+

𝐽 35
𝜏,𝑧𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝜙,𝑥𝜚)
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K𝑒𝑡2
𝜏𝜅𝑖𝑗 components are:

𝐾𝑒𝑡2𝑥𝑥
𝜏𝜅𝑖𝑗 = 𝑞𝑢

𝑡𝜙𝑚 (𝐽 11
𝜏𝜅𝑡𝐼𝑖

,𝑥𝑗
,𝑥𝜙

,𝑥
+ 𝐽 15

𝜏𝜅𝑡,𝑧𝐼𝑖
,𝑥𝑗

,𝑥𝜙 + 𝐽 15
𝜏𝜅,𝑧𝑡𝐼𝑖,𝑥𝑗𝜙,𝑥

+ 𝐽 55
𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝜙+

𝐽 15
𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥

+ 𝐽 55
𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖𝑗,𝑥𝜙 + 𝐽 13

𝜏,𝑧𝜅,𝑧𝑡𝐼𝑖𝑗𝜙,𝑥
+ 𝐽 35

𝜏,𝑧𝜅,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙)

𝑞𝑤
𝑡𝜙𝑚 (𝐽 13

𝜏𝜅𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙 + 𝐽 15
𝜏𝜅𝑡𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥

+ 𝐽 35
𝜏𝜅,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝜙 + 𝐽 55

𝜏𝜅,𝑧𝑡𝐼𝑖,𝑥𝑗𝜙,𝑥
+

𝐽 35
𝜏,𝑧𝜅𝑡,𝑧𝐼𝑖𝑗,𝑥𝜙 + 𝐽 55

𝜏,𝑧𝜅𝑡𝐼𝑖𝑗,𝑥𝜙,𝑥
+ 𝐽 33

𝜏,𝑧𝜅,𝑧𝑡,𝑧𝐼𝑖𝑗𝜙 + 𝐽 35
𝜏,𝑧𝜅,𝑧𝑡𝐼𝑖𝑗𝜙,𝑥)

1
2 (𝑞𝑢

𝑡𝜙𝑚
𝑞𝑢

𝑠𝜚𝑚 + 𝑞𝑤
𝑡𝜙𝑚

𝑞𝑤
𝑠𝜚𝑚) (𝐽 11

𝜏𝜅𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 13
𝜏𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚+

𝐽 15
𝜏𝜅𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝜙𝜚,𝑥 + 𝐽 15

𝜏𝜅𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝜙,𝑥𝜚 + 𝐽 15
𝜏𝜅,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚,𝑥 + 𝐽 35

𝜏𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙𝜚+

𝐽 55
𝜏𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝜙𝜚,𝑥 + 𝐽 55

𝜏𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝜙,𝑥𝜚 + 𝐽 15
𝜏,𝑧𝜅𝑡𝑠𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚,𝑥 + 𝐽 35

𝜏,𝑧𝜅𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙𝜚+

𝐽 55
𝜏,𝑧𝜅𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝜙𝜚,𝑥 + 𝐽 55

𝜏,𝑧𝜅𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝜙,𝑥𝜚 + 𝐽 13
𝜏,𝑧𝜅,𝑧𝑡𝑠𝐼𝑖𝑗𝜙,𝑥𝜚,𝑥 + 𝐽 33

𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝜙𝜚+

𝐽 35
𝜏,𝑧𝜅,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝜙𝜚,𝑥 + 𝐽 35

𝜏,𝑧𝜅,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝜙,𝑥𝜚)

𝐾𝑒𝑡2𝑧𝑧
𝜏𝜅𝑖𝑗 = 𝐾𝑒𝑡2𝑥𝑥

𝜏𝜅𝑖𝑗

𝐾𝑒𝑡2𝑥𝑧
𝜏𝜅𝑖𝑗 = 𝐾𝑒𝑡2𝑧𝑥

𝜏𝜅𝑖𝑗 = 0

.

(3.43)
The integrals 𝐽 𝜑𝜛

𝜏(,𝑧)𝜅(,𝑧)𝑡(,𝑧)
, 𝐽 𝜑𝜛

𝜏(,𝑧)𝜅(,𝑧)𝑡(,𝑧)𝑠(,𝑧)
, 𝐼𝑖(,𝑥)𝑗(,𝑥)𝜙(,𝑥)

and 𝐼𝑖(,𝑥)𝑗(,𝑥)𝜙(,𝑥)𝑚(,𝑥)
in Eqs. (3.42)

and (3.43) are

𝐽 𝜑𝜛
𝜏(,𝑧)𝜅(,𝑧)𝑡(,𝑧)

= ∫
𝑒=ℎ𝑒×𝑏𝑒

ℂ𝜑𝜛𝐹𝜏(,𝑧)
𝐹𝜅(,𝑧)

𝐹𝑡(,𝑧)
𝑑 (3.44)

𝐽 𝜑𝜛
𝜏(,𝑧)𝜅(,𝑧)𝑡(,𝑧)𝑠(,𝑧)

= ∫
𝑒=ℎ𝑒×𝑏𝑒

ℂ𝜑𝜛𝐹𝜏(,𝑧)
𝐹𝜅(,𝑧)

𝐹𝑡(,𝑧)
𝐹𝑠(,𝑧)

𝑑 (3.45)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝜙(,𝑥)
= ∫

𝑙𝑒

𝑁𝑖(,𝑥)
𝑁𝑗(,𝑥)

𝑁𝜙(,𝑥)
𝑑𝑥 (3.46)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝜙(,𝑥)𝜚(,𝑥)
= ∫

𝑙𝑒

𝑁𝑖(,𝑥)
𝑁𝑗(,𝑥)

𝑁𝜙(,𝑥)
𝑁𝜚(,𝑥)

𝑑𝑥. (3.47)

the tangent stiffness matrix fundamental nucleus reads:

𝐾𝑒
𝜏𝜅𝑖𝑗 = 𝐾𝑒𝑙

𝜏𝜅𝑖𝑗 + 𝐾𝑒𝑡1
𝜏𝜅𝑖𝑗 + 𝐾𝑒𝑡2

𝜏𝜅𝑖𝑗(𝜃 (3.48)
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3.2.3 Resulting Nonlinear Problem
Once the approximation order 𝑁 and the number of nodes per element 𝑁𝑒

𝑛 have
been fixed, the elemental tangent stiffness matrix can be directly obtained by assem-
bling the nuclei. The global structural tangent stiffness matrix is then obtained by as-
sembling all the element matrices as classically done in a finite element procedure. An
infinitesimal variation of the internal virtual work for the beam 𝑑 (𝛿ℒ𝑖𝑛𝑡) can bewritten
in compact form as:

𝑑 (𝛿ℒ𝑖𝑛𝑡) =
𝑁𝑒

∑
𝑒=1

𝑑 (𝛿ℒ 𝑒
𝑖𝑛𝑡) =

𝑁𝑒

∑
𝑒=1

𝛿q𝑒
𝜏𝑖

𝑇𝐾𝑒
𝜏𝜅𝑖𝑗𝑑q

𝑒
𝜅𝑗. (3.49)

By assembling the elemental stiffness matrix 𝐾𝑒
𝜏𝜅𝑖𝑗, the global stiffness matrix can be

constructed as shown in Fig 3.1.

Figure 3.1: Schematic diagram of the assembling of the global stiffness matrix.

Finally, an infinitesimal variation of the external virtual work 𝛿ℒ𝑒𝑥𝑡 can be written
as:

𝑑 (𝛿ℒ𝑒𝑥𝑡) =
𝑁𝑒

∑
𝑒=1

𝑑𝜆𝛿u𝑒𝑇f𝑒 = 𝑑𝜆
𝑁𝑒

∑
𝑒=1

𝛿q𝑒
𝜏𝑖

𝑇𝑁𝑇
𝑖 𝐹 𝑇

𝜏 f
𝑒. (3.50)

3.2.4 Shear and Membrane Locking: MITC Beam Elements
To reduce the effect of the locking effects, theMixed Interpolation of Tensorial Com-

ponents (MITC) method is introduced. As well known from literature, membrane and
shear locking make the element perform poorly. Locking effects negatively affect the
solution accuracy when linear shape functions are used to model slender structures
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(see Bucalem and Bathe [17] and Reddy [142] for more details). The MITC technique
can be briefly summarised as interpolating displacements and strains separately under
the consistency conditions, and then connecting these interpolations at some “tying
points”. The strain components are written using the following interpolation:

̅𝐸𝑥𝑥 = �̅�𝛼𝐸𝛼
𝑥𝑥

̅𝐸𝑧𝑧 = �̅�𝛼𝐸𝛼
𝑧𝑧 𝛼 = 1, ...,𝑁𝑒

𝑛 − 1
̅𝐸𝑥𝑧 = �̅�𝛼𝐸𝛼

𝑥𝑧

. (3.51)

𝐸𝛼
𝑥𝑥, 𝐸𝛼

𝑧𝑧 and 𝐸𝛼
𝑥𝑧 are the strain components computed from the geometrical relations

in Eq. (3.10) evaluated at the 𝛼-th tying point 𝜒𝑇 𝛼, which belongs to a set of points
along the natural coordinate 𝜒. Besides, �̅�𝛼 are the assumed interpolating functions.
Their expressions as functions of the natural beam element coordinate X are provided
in Carrera et al. [30]. For B2, B3 and B4 elements, they are:

• B2:

�̅�1 = 1
𝜒𝑇 1 = 0

(3.52)

• B3:

�̅�1 = −1
2

√3
(

𝜒 − 1
√3)

�̅�2 = 1
2

√3
(

𝜒 + 1
√3)

𝜒𝑇 1 = − 1
√3

𝜒𝑇 2 = 1
√3

(3.53)

• B4:

�̅�1 = 5
6

𝜒
(

𝜒 − √
3
5)

�̅�2 = −5
3 (

𝜒 − √
3
5) (

𝜒 + √
3
5)

�̅�3 = 5
6

𝜒
(

𝜒 + √
3
5)

𝜒𝑇 1 = −√
3
5 𝜒𝑇 2 = 0 𝜒𝑇 3 = √

3
5

.

(3.54)

In a MITC beam element, the 𝐼-integrals in Eqs. (3.41), (3.46), (3.47) are substituted by
̅𝐼-integrals as:

̅𝐼𝑖(,𝑥)𝑗(,𝑥)
= ∫

𝑙𝑒

�̅�𝛼𝑁𝛼
𝑖(,𝑥)

�̅�𝛽𝑁𝛽
𝑗(,𝑥)

𝑑𝑥 (3.55)

̅𝐼𝑖(,𝑥)𝑗(,𝑥)𝜙(,𝑥)
= ∫

𝑙𝑒

�̅�𝛼𝑁𝛼
𝑖(,𝑥)

�̅�𝛽𝑁𝛽
𝑗(,𝑥)

𝑁𝑞
𝜙(,𝑥)

𝑑𝑥 (3.56)
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̅𝐼𝑖(,𝑥)𝑗(,𝑥)𝜙(,𝑥)𝑚(,𝑥)
= ∫

𝑙𝑒

�̅�𝛼𝑁𝛼
𝑖(,𝑥)

𝑁𝛼
𝑗(,𝑥)

�̅�𝛽𝑁𝛽
𝜙(,𝑥)

𝑁𝛽
𝜚(,𝑥) 𝑑𝑥. (3.57)

3.3 Asymptotic Numerical Method
The Asymptotic numerical method is employed to solve the set of Eq. (3.58) accom-

panied by the boundary conditions (see Cochelin et al. [35] for more details). At step
𝑚+1, the solution point (u𝑚+1,𝜃𝑚+1,E𝑚+1, S𝑚+1, 𝜆𝑚+1) is determined from the previous
solution point (u𝑚,𝜃𝑚,E𝑚, S𝑚, 𝜆𝑚). Following a perturbation technique, an approached
solution path is characterised by a truncated power series of order 𝑁𝑚𝑎𝑥:

u𝑚+1 = u𝑚 + 𝑎𝑝u𝑝,
E𝑚+1 = E𝑚 + 𝑎𝑝E𝑝,
S𝑚+1 = S𝑚 + 𝑎𝑝S𝑝,
𝜃𝑚+1 = 𝜃𝑚 + 𝑎𝑝𝜃𝑝,
𝜆𝑚+1 = 𝜆𝑚 + 𝑎𝑝𝜆𝑝.

𝑝 = 1, 2, ...,𝑁𝑚𝑎𝑥. (3.58)

where 𝑎 is a path parameter. Superscript 𝑝 represents the expansion order. There are
5𝑁𝑚𝑎𝑥 +1 unknowns (u𝑝,𝜃𝑝,E𝑝, S𝑝, 𝜆𝑝, 𝑎) in the 5𝑁𝑚𝑎𝑥 equations above.Therefore, the
following complimentary equation should be introduced to solve the system: the path
parameter 𝑎 is defined by imposing it to be parallel to the projection of the increment
on the tangent direction (u1, 𝜆1):

𝑎 = u1(u − u𝑚) + 𝜆1(𝜆 − 𝜆𝑚). (3.59)

The validity range of the truncated series is determined by the maximum value of the
path parameter 𝑎𝑚𝑎𝑥:

𝑎𝑚𝑎𝑥 = (𝜀
||u1||

||u𝑁𝑚𝑎𝑥||
)

1
𝑁𝑚𝑎𝑥−1

. (3.60)

where 𝜀 is a tolerance whose value is chosen by the user and || ⋅ || is the vector norm.
By substituting the approached solution in Eq. (3.58) into the following equation:

∫Ω0

𝛿𝜃(u)𝑇ℍ𝜃(u)𝑑Ω = 𝜆𝛿u𝑇f (3.61)

It results in a linear system of equations. For the sake of clearness, control equations
recalled Table 3.1 can be expanded as:

∫Ω0
𝛿𝜃𝑇[H + A (𝜃𝑚 + 𝑎𝑟𝜃𝑟)]

𝑇
(S𝑚 + 𝑎𝑔S𝑔) 𝑑Ω = (𝜆𝑚 + 𝑎𝑝𝜆𝑝) 𝛿u𝑇f

S𝑚 + 𝑎𝑝S𝑝 = ℂ (E𝑚 + 𝑎𝑝E𝑝)
E𝑚 + 𝑎𝑝E𝑝 = (H + 1

2
A (𝜃𝑚 + 𝑎𝑖𝜃𝑖)) (𝜃𝑚 + 𝑎𝑗𝜃𝑗)

𝜃𝑚 + 𝑎𝑝𝜃𝑝 = ∇ (u𝑚 + 𝑎𝑝u𝑝)
𝑎 = u1 [(u𝑚 + 𝑎𝑝u𝑝) − u𝑚] + 𝜆1((𝜆𝑚 + 𝑎𝑝𝜆𝑝) − 𝜆𝑚)

. (3.62)
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3.3 – Asymptotic Numerical Method

Table 3.1: Problem control equations.

Virtual work equation ∫Ω0
𝛿𝜃𝑇 ([H + A(𝜃(u))]𝑇S) 𝑑Ω = 𝜆𝛿u𝑇f

Hook’s Law S = ℂE

Kinematic relations E = (H + 1
2
A (𝜃))𝜃

𝜃 = ∇u
Path parameter 𝑎 = u1(u − u𝑚) + 𝜆1(𝜆 − 𝜆𝑚)

For the sake of completeness, the formulation in terms of PK1 and the deformation
gradient is also presented:

∫Ω0

𝛿⃖⃖F𝑇 ∶ ⃖⃖P𝑑Ω = 𝜆𝛿u𝑇 ∶ f

⃖⃖P = ⃖⃖F ⋅ ⃖⃖S
⃖⃖E = 1

2
(⃖⃖F𝑇 ⋅ ⃖⃖F − I)

⃖⃖F(X) = ⃖⃖𝜃(u(X)) + I

(3.63)

For more details, refer to Nezamabadi [129]. These two forms are equivalent. The ex-
panded form of PK1 stress ⃖⃖P is:

⃖⃖P𝑚 + 𝑎𝑝⃖⃖P𝑝 = (⃖⃖F𝑚 + 𝑎𝑟⃖⃖F𝑟) ⋅ (⃖⃖S𝑚 + 𝑎𝑔⃖⃖S𝑔). (3.64)

The deformation gradient is expanded as:

⃖⃖F𝑚 + 𝑎𝑝⃖⃖F𝑝 = ⃖⃖𝜃𝑚 + I + 𝑎𝑝⃖⃖𝜃𝑝. (3.65)

It should be noted that ⃖⃖ ⃖F𝑝 equals to ⃖⃖𝜃𝑝. By collecting the terms with the same power of
𝑎, the algebraic equations for first order up to order 𝑁𝑚𝑎𝑥 is derived.

3.3.1 First-order Perturbation Term
The control equations for the first order perturbation term can be written in the

following form:

∫Ω0
𝛿𝜃𝑇[H + A (𝜃𝑚)]

𝑇S1 + A (𝜃1)
𝑇S𝑚𝑑Ω = 𝜆1𝛿u𝑇f

S1 = ℂ [H + A (𝜃𝑚)]𝜃1

u1𝑇u1 + 𝜆12 = 1
(3.66)

The term A (𝜃1)
𝑇S𝑚 can be rewritten as follows (see Crisfield. [37]):

A (𝜃1)
𝑇S𝑚 = Ŝ𝑚𝜃1. (3.67)
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By substituting terms in the first equation in Eq. (3.66) with Eq. (3.67), the following
equation can be derived as:

∫Ω0

𝛿𝜃𝑇[H + A (𝜃𝑚)]
𝑇ℂ [H + A (𝜃𝑚)]𝜃1 + Ŝ𝑚𝜃1𝑑Ω = 𝜆1𝛿u𝑇f. (3.68)

Using Eq. (3.25), the previous equation reads:

∫Ω0

𝛿𝜃𝑇ℍ𝑚𝜃1𝑑Ω = 𝜆1𝛿u𝑇f (3.69)

Based on Eq. (3.27), 1st order PK1 stress ⃖⃖P1 can be rewritten as:

P1 = ℍ𝑚𝜃1, (3.70)
and its tensor form is

⃖⃖P1 = ℋ𝑚 ∶ ⃖⃖𝜃1. (3.71)

3.3.2 Second to 𝑝th-order Perturbation Terms
The equivalence of Eqs. (3.66) at 𝑝𝑡ℎ order are given by:

∫Ω0

𝛿𝜃𝑇[H + A (𝜃𝑚)]
𝑇S𝑝 + A (𝜃𝑝)

𝑇S𝑚 + P𝑝
𝑛𝑙

𝐼𝑑Ω = 𝜆𝑝𝛿u𝑇f

S𝑝 = ℂ [H + A (𝜃𝑚)]𝜃𝑝 + S𝑝
𝑛𝑙

u1𝑇u𝑝 + 𝜆𝑝2 = 0

(3.72)

𝜆𝑝 represents the p
th load proportional parameter. In contrast to the 1st order PK2 stress,

there are two extra terms at each order 𝑝: S𝑝
𝑛𝑙 and P

𝑝
𝑛𝑙

𝐼. Nonlinear part of pth order PK2
stress S𝑝

𝑛𝑙 is composed of the displacements and stresses at orders anterior to the order
𝑝:

S𝑝
𝑛𝑙 = 1

2
ℂ

𝑝−1

∑
𝑟=1

A(𝜃𝑝−𝑟)𝜃𝑟. (3.73)

The other extra term is P𝑝
𝑛𝑙

𝐼𝐼 as follows

P𝑝
𝑛𝑙

𝐼𝐼 =
𝑝−1

∑
𝑟=1

A𝑇(𝜃𝑝−𝑟)S𝑟. (3.74)

Taking into account Eq. (3.73), the left side of the first equation in Eq. (3.72) can be
rewritten as:

∫Ω0
𝛿𝜃𝑇[H + A (𝜃𝑚)]

𝑇
[ℂ [H + A (𝜃𝑚)]𝜃𝑝 + S𝑝

𝑛𝑙] + A (𝜃𝑝)
𝑇S𝑚𝑑Ω

= ∫Ω0
𝛿𝜃𝑇[H + A (𝜃𝑚)]

𝑇ℂ [H + A (𝜃𝑚)]𝜃𝑝 + Ŝ𝑚𝜃𝑝 + [H + A (𝜃𝑚)]
𝑇S𝑝

𝑛𝑙𝑑Ω
= ∫Ω0

𝛿𝜃𝑇ℍ𝜃𝑝 + [H + A (𝜃𝑚)]
𝑇S𝑝

𝑛𝑙𝑑Ω
(3.75)
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Define P𝑝
𝑛𝑙

𝐼 as follows:

P𝑝
𝑛𝑙

𝐼 = [H + A (𝜃𝑚)]
𝑇S𝑝

𝑛𝑙. (3.76)

The nonlinear part of the PK1 stress P𝑝
𝑛𝑙 is the combination of P𝑝

𝑛𝑙
𝐼 and P𝑝

𝑛𝑙
𝐼𝐼.

P𝑝
𝑛𝑙 = P𝑝

𝑛𝑙
𝐼 + P𝑝

𝑛𝑙
𝐼𝐼 (3.77)

The first equation in Eq. (3.72) can be rewritten as below:

∫Ω0

𝛿𝜃𝑇ℍ𝑚𝜃𝑝𝑑Ω = 𝜆𝑝𝛿u𝑇f − 𝛿𝜃𝑇
∫Ω0

P𝑝
𝑛𝑙𝑑Ω (3.78)

pth order PK1 stress ⃖⃖P𝑝 can be rewritten as:

P𝑝 = ℍ𝑚𝜃𝑝 + P𝑝
𝑛𝑙, (3.79)

and its tensor form can be written as:

⃖⃖P𝑝 = ℋ𝑚 ∶ ⃖⃖𝜃𝑝 + ⃖⃖P𝑝
𝑛𝑙. (3.80)

Based on Eq. (3.64), a more clean form can be rewritten for ⃖⃖P𝑝
𝑛𝑙:

⃖⃖P𝑝
𝑛𝑙 = ⃖⃖F𝑚 ⋅ ⃖⃖S𝑝

𝑛𝑙 +
𝑝−1

∑
𝑟=1

F𝑝−𝑟 ⋅ S𝑟 (3.81)

The first and second term in Eq. (3.81) is the tensor form for P𝑝
𝑛𝑙

𝐼 and P𝑝
𝑛𝑙

𝐼𝐼, respectively.
In Eq. (3.81), ⃖⃖S𝑝

𝑛𝑙 is

⃖⃖S𝑝
𝑛𝑙 = 1

2

𝑝−1

∑
𝑟=1

ℂ ∶ (⃖⃖F𝑝−𝑟 𝑇 ⋅ ⃖⃖F𝑟
) (3.82)

Eq. (3.82) is the tensor form of Eq. (3.73).

3.3.3 CUF-ANM Coupling
As mentioned in Subsection 3.2.1, the following relationship is derived within the

CUF framework:

u𝑝 = 𝐹𝜏𝑁𝑖q
𝑝
𝜏𝑖 𝛿u𝑝 = 𝐹𝜏𝑁𝑖𝛿q

𝑝
𝜏𝑖,

𝜃𝑝 = 𝐺𝜏𝑖q
𝑝
𝜏𝑖 𝛿𝜃𝑝 = 𝐺𝜏𝑖𝛿q

𝑝
𝜏𝑖

. (3.83)

For the 1st order, by using Eq. (3.49) and Eq. (3.50), the equilibrium equation can be
rewritten as follows:

𝑁𝑒

∑
𝑒=1

𝛿q𝑒
𝜏𝑖

𝑇
[(𝐾𝑒

𝜏𝜅𝑖𝑗)q1𝑒
𝜅𝑗 − 𝜆1𝑁𝑇

𝑖 𝐹 𝑇
𝜏 f

𝑒
] = 0. (3.84)
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Eq. (3.78) can be discretised in the same manner:

𝑁𝑒

∑
𝑒=1

𝛿q𝑒
𝜏𝑖

𝑇
[(𝐾𝑒

𝜏𝜅𝑖𝑗)q𝑝
𝜅𝑗

𝑒 − 𝜆𝑝𝑁𝑇
𝑖 𝐹 𝑇

𝜏 f
𝑒 − f𝑝

𝑛𝑙
𝑒
𝜏𝑖] = 0. (3.85)

The pth order nonlinear force f𝑝𝑒
𝑛𝑙𝜏𝑖 is:

f𝑝
𝑛𝑙

𝑒
𝜏𝑖 = −𝐺𝜏𝑖 ∫Ω𝑒

0

P𝑝
𝑛𝑙𝑑Ω. (3.86)
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Chapter 4

Multi-scale Nonlinear Models for
Beam Structures

The first part of this chapter is about the macro-scale problem, the mesoscale prob-
lem, and the coupling of these two scales. The second part deals with the solution pro-
cess under the ANM solver framework. The proposed approach is separated into four
steps: perturbation, localisation, homogenisation, and discretisation.

4.1 Multi-scale Problem

4.1.1 Macroscale Problem
Preliminaries.A beam structure is considered at the macroscale. To distinguish the

macroscopicmodel from themicroscopic one, the quantities belonging to themacroscale
are all addressed by an overlined symbol. For the sake of clarity, some equations pre-
sented in the previous chapter are here recalled. Macroscopic Green-Lagrange strain
tensor is defined as:

E = E𝑙 + E𝑛𝑙 = H𝜃(u) + 1
2
A(𝜃(u))𝜃(u). (4.1)

The weak form of the governing equation is derived as:

𝛿ℒ = 𝛿ℒ𝑖𝑛𝑡 − 𝛿ℒ𝑒𝑥𝑡 = 0. (4.2)

where ℒ is the total work, and ℒ𝑖𝑛𝑡 the internal one:

𝛿ℒ𝑖𝑛𝑡 = ∫Ω0

𝛿F𝑇P𝑑Ω = ∫Ω0

𝛿E𝑇S𝑑Ω (4.3)

Ω0 is the volume of the reference undeformed configuration since a total Lagrangian
formulation is considered. ℒ𝑒𝑥𝑡 is the work done by external forces.

𝛿ℒ𝑒𝑥𝑡 = 𝜆𝛿u𝑇f (4.4)
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where 𝜆f is the applied external force. It should be noted (as it will appear clear later). 𝜆
is not overlined because the load proportional parameter is shared by the macroscopic
and microscopic problems. The governing equation becomes:

𝛿ℒ = ∫Ω0

𝛿E𝑇S𝑑Ω − 𝜆𝛿u𝑇f (4.5)

Hierarchical Beam Elements. According to CUF, the macroscopic displacement field
is a-priori assumed over the thickness as follows:

u (𝑥, 𝑧) = 𝐹𝜏 (𝑧)u𝜏 (𝑥) 𝜏 = 1, 2, … , 𝑁𝑢. (4.6)

In the case of MacLaurin’s polynomials (as used in this work), the explicit form of a
generic 𝑁-order displacement field reads:

𝑢𝑥 = 𝑢𝑥1 + 𝑢𝑥2𝑧 + ⋯ + 𝑢𝑥(𝑁+1)𝑧𝑁,

𝑢𝑧 = 𝑢𝑧1 + 𝑢𝑧2𝑧 + ⋯ + 𝑢𝑧(𝑁+1)𝑧𝑁. (4.7)

Concerning the displacements variation along the axial direction, a one-dimensional
finite element approximation is applied as:

u (𝑥, 𝑧) = 𝐹𝜏 (𝑧) 𝑁𝑖 (𝑥)q𝜏𝑖 𝜏 = 1, 2, … , 𝑁𝑢 𝑖 = 1, 2, … , 𝑁𝑒
𝑛. (4.8)

The displacements gradient vector in the framework of CUF reads:

𝜃 = { 𝐹𝜏𝑁𝑖,𝑥q
𝑢
𝜏𝑖 𝐹𝜏,𝑧𝑁𝑖q

𝑢
𝜏𝑖 𝐹𝜏𝑁𝑖,𝑥q

𝑤
𝜏𝑖 𝐹𝜏,𝑧𝑁𝑖q

𝑤
𝜏𝑖 } = G𝜏𝑖q𝜏𝑖 (4.9)

where G𝜏𝑖 ∈ ℝ4×2 is:

G𝜏𝑖 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐹𝜏𝑁𝑖,𝑥 0
𝐹𝜏,𝑧𝑁𝑖 0

0 𝐹𝜏𝑁𝑖,𝑥
0 𝐹𝜏,𝑧𝑁𝑖

⎤
⎥
⎥
⎥
⎥
⎦

. (4.10)

and q𝜏𝑖 ∈ ℝ2×1 is:
q𝑇

𝜏𝑖 = { 𝑞𝑢
𝜏𝑖 𝑞𝑤

𝜏𝑖 } . (4.11)

4.1.2 Microscale Problem
Without loss of generality, the considered heterogeneous material is supposed to

have a periodic microstructure. A RVE occupies a domain 𝜔0 with frontier 𝜕𝜔0 in its
reference configuration. No external forces are present on the frontier:

f = 0, on 𝜕𝜔0. (4.12)
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Periodic displacement boundary conditions are applied to the RVE frontier (see Bar-
bero [9]).
The equilibrium governing equation can be written as:

𝛿ℒ = ∫𝜔0

𝛿F𝑇P𝑑𝜔 = ∫𝜔0

𝛿E𝑇S 𝑑𝜔 = 0. (4.13)

It is assumed that the law of behaviour is known at every stage of the RVE. Hooke’s
law reads:

S = ℂ(𝑟)E, (4.14)

where ℂ(𝑟) is the constitutive material stiffness matrix for the material phase 𝑟. The
problem at the microscopic level can be written as:

∫𝜔0
𝛿𝜃𝑇[H + A (𝜃)]𝑇S𝑑𝜔 = 0

S = ℂ(𝑟)E

E = (H + 1
2
A𝜃)𝜃

𝜃 = ∇u

in 𝜔0. (4.15)

In the RVE, Hook’s law is known for each phase.

4.1.3 Coupling between Scales
Thefirst coupling relationship is based on the fact that the macroscopic deformation

gradient ⃖⃖F is equal to the volume average of the microscopic deformation gradient ⃖⃖F:

⃖⃖F = 1
|𝜔0| ∫𝜔0

⃖⃖F𝑑𝜔. (4.16)

|𝜔0| is the volume of the RVE. Eq. (4.16) can be written in a vector form:

F = 1
|𝜔0| ∫𝜔0

F𝑑𝜔. (4.17)

The current microscopic position vector x ∈ ℝ2 is considered to be the sum of a slowly
varying mean field and a perturbation field w(X) ∈ ℝ2 caused by heterogeneity as
below, where X ∈ ℝ2 is the coordinate in the reference configuration.

x = ⃖⃖F ⋅ X + w(X) (4.18)

The previous equation when differentiated by X reads:

⃖⃖F = ⃖⃖F + w,X(X). (4.19)
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Themicroscopic displacement field is obtained by subtractingX from the previous equa-
tion:

u = (⃖⃖F − I)X + w(X) = ⃖⃖𝜃X + w(X). (4.20)

The same displacement conditions are applied to two pairs of opposite edges (𝜕𝑤𝑖−
0 ∪

𝜕𝑤𝑖+
0 , 𝑖 = 𝑥, 𝑧). Based on Eq. (4.20), the microscopic displacement field yields:

u(X+) = ⃖⃖𝜃X+ + w(X+),

u(X−) = ⃖⃖𝜃X− + w(X−).
(4.21)

Consequently, the following equation can be obtained:

u(X+) − u(X−) = ⃖⃖𝜃(X+ − X−) + (w(X+) − w(X−)). (4.22)

Then, the boundary condition for the RVE can be derived as:

u(X+) − u(X−) = ⃖⃖𝜃(X+ − X−), for [(X− ∈ 𝜕𝑤𝑖−
0 ) ∪ (X+ ∈ 𝜕𝑤𝑖+

0 )], 𝑖 = 𝑥, 𝑧. (4.23)

By introducing Eq. (4.19), Eq. (4.16) :

⃖⃖F = 1
|𝜔0| ∫𝜔0

⃖⃖F𝑑𝜔 + 1
|𝜔0| ∫𝜔0

w,X(X)𝑑𝜔 = ⃖⃖F + 1
|𝜔0| ∫𝜔0

w,X(X)𝑑𝜔, (4.24)

which leads to the following relation:

1
|𝜔0| ∫𝜔0

w,X(X)𝑑𝜔 = 0. (4.25)

Using Green’s theorem, the previous equation becomes:

1
|𝜔0| ∫𝜔0

w,X(X)𝑑𝜔 = 1
|𝜔0| ∫Γ

w(X)n𝑑Γ = 0. (4.26)

where Γ is the RVE boundary on two opposite sides. Here n is used to represent the unit
normal vector perpendicular to the RVE boundary, see Fig 4.1.Themicroscale boundary
condition, then, is:

w(X) = 0, for X ∈ (𝜕𝑤𝑖−
0 ∪ 𝜕𝑤𝑖+

0 ), 𝑖 = 𝑥, 𝑧 (4.27)

or
w(X+) = w(X−), for [(X− ∈ 𝜕𝑤𝑖−

0 ) ∪ (X+ ∈ 𝜕𝑤𝑖+
0 )], 𝑖 = 𝑥, 𝑧. (4.28)

Eq. (4.28) indicates that the perturbation needs to have periodicity on the boundary,
and the boundary can be considered as the union of the subsets 𝜕𝜔0

+ and 𝜕𝜔0
− (𝜕𝜔0 =

𝜕𝜔0
+ ∪ 𝜕𝜔0

−). As shown in Fig 4.1, the corresponding normal vectors are n+ and n−

(n+=-n−), and a corresponding set of two generic points are X+ ∈ 𝜕𝜔0
+ and X− ∈
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4.2 – Multi-Scale problem in the ANM framework

𝜕𝜔0
−.

Figure 4.1: RVE configuration.

The second coupling relationship concerns the first Piola-Kirkhhoff stress at macro
and micro scales:

P = 1
|𝜔0| ∫𝜔0

P𝑑𝜔. (4.29)

The third coupling equation is the Hill-Mandel condition. The average of the variation
of the work done in the RVE is equal to an inifitesimal virtual variation of the work at
the macroscale:

𝛿F𝑇P = 𝛿E𝑇S = ∫𝜔0

𝛿F𝑇P𝑑𝜔 = ∫𝜔0

𝛿E𝑇S 𝑑𝜔. (4.30)

4.2 Multi-Scale problem in the ANM framework

4.2.1 Perturbation Technique

For macroscopic andmicroscopic scales, all the variables [(u,𝜃,E, S), (u,𝜃,E, S), 𝜆]
are expanded into power series:

61
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u ∶ u𝑚+1 = u𝑚 + 𝑎𝑝u𝑝 u ∶ u𝑚+1 = u𝑚 + 𝑎𝑝u𝑝

E ∶ E𝑚+1 = E𝑚 + 𝑎𝑝E𝑝 E ∶ E𝑚+1 = E𝑚 + 𝑎𝑝E𝑝 𝑝 = 1, 2, ...,𝑁𝑚𝑎𝑥.

S ∶ S𝑚+1 = S𝑚 + 𝑎𝑝S𝑝 S ∶ S𝑚+1 = S𝑚 + 𝑎𝑝S𝑝

𝜆 ∶ 𝜆𝑚+1 = 𝜆𝑚 + 𝑎𝑝𝜆𝑝

(4.31)

Perturbation at the Macroscale. Macroscopic problems are defined by Eq. (4.5),
whose variables are (u,𝜃,E, S, 𝜆). Similarly to what done in Chapter 3, a system of
equation for the first-order an the generic 𝑝th-order are derived:

• 1st order:

∫Ω0

𝛿𝜃𝑇ℍ𝑚𝜃
1𝑑Ω = 𝜆1𝛿u𝑇f (4.32)

• pth order:

∫Ω0

𝛿𝜃𝑇ℍ𝑚𝜃
𝑝𝑑Ω = 𝜆𝑝𝛿u𝑇f − 𝛿𝜃𝑇

∫Ω0

P𝑝
𝑛𝑙𝑑Ω (4.33)

To be noticed, ℍ𝑚 is not yet known.
Perturbation at the Microscale.The microscopic problem is defined by Eq. (4.15) and
Eq. (4.23), whose variables are (u,𝜃,E, S). The following linear problems can be derived
for each order:

• 1st order:
∫𝜔0

𝛿𝜃𝑇ℍ𝑚𝜃1𝑑𝜔 = 0
S1 = ℂ(𝑟) [H + A (𝜃𝑚)]𝜃1

𝜃1 = ∇u1
in 𝜔0, (4.34)

u1(+) − u1(−) = ⃖⃖𝜃
1
(X+ − X−) for [(X− ∈ 𝜕𝑤𝑖−

0 ) ∪ (X+ ∈ 𝜕𝑤𝑖+
0 )], 𝑖 = 𝑥, 𝑧. (4.35)

• pth order:
∫𝜔0

𝛿𝜃𝑇ℍ𝑚𝜃𝑝𝑑𝜔 = −𝛿𝜃𝑇 ∫Ω0
P𝑝

𝑛𝑙𝑑𝜔
S𝑝 = ℂ(𝑟) [H + A (𝜃𝑚)]𝜃𝑝

𝜃𝑝 = ∇u𝑝
in 𝜔0, (4.36)

u𝑝(+) − u𝑝(−) = ⃖⃖𝜃
𝑝
(X+ − X−) for [(X− ∈ 𝜕𝑤𝑖−

0 ) ∪ (X+ ∈ 𝜕𝑤𝑖+
0 )], 𝑖 = 𝑥, 𝑧. (4.37)

The nonlinear part of PK1 stress P𝑝
𝑛𝑙 is calculated from the solutions obtained with the

previous orders.
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4.2.2 Localisation
For coupling the macroscopic and the microscopic problems, the starting point is

the solution of the RVE’s linear problems at each order. The superposition principle is
applied to Eq. (4.34) and Eq. (4.36).
Consider the problem at the 1st order in Eq. (4.34). The 1st order solution u1 can be writ-
ten as a linear combination of the axial and shear deformations. These displacements
are derived by independently imposing the homogeneous deformation fields via the
boundary conditions in Eq. (4.35):

u1 = 𝜃1(11)
ũ(11) + 𝜃1(12)

ũ(12) + 𝜃1(21)
ũ(21) + 𝜃1(22)

ũ(22). (4.38)

where ũ(𝑖𝑗) (𝑖, 𝑗 = 1,2) are obtained by solving the following problem:

∫𝜔0
𝛿𝜃𝑇ℍ𝑚𝜃(ũ(𝑖𝑗))𝑑𝜔 = 0

ũ(𝑖𝑗)+ − ũ(𝑖𝑗)− = X(𝑖𝑗)+ − X(𝑖𝑗)−, 𝑜𝑛 𝜕𝜔0
(4.39)

with:

X(11)+ − X(11)− = [
1 0
0 0] (X+ − X−), X(12)+ − X(12)− = [

0 1
0 0] (X+ − X−)

X(21)+ − X(21)− = [
0 0
1 0] (X+ − X−), X(22)+ − X(22)− = [

0 0
0 1] (X+ − X−)

. (4.40)

The problem in Eq. (4.38) is written in a compact form by introducing the third-order
tensor 𝒜:

u1(X) = 𝒜(X) ∶ ⃖⃖𝜃
1
. (4.41)

By differentiating Eq. (4.41) by X, the following relation is obtained:

⃖⃖𝜃1 = 𝒜,X(X) ∶ ⃖⃖𝜃
1
. (4.42)

Tensor 𝒜 in a matrix form reads:

𝔸 = [ 𝔸(11) 𝔸(12) 𝔸(21) 𝔸(22) ] = [ ũ(11) ũ(12) ũ(21) ũ(22) ] . (4.43)
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As for the 𝔸,X ∈ ℝ4×4, it can be written as follows:

𝔸,X =
⎡
⎢
⎢
⎢
⎣

𝔸,X11 𝔸,X12 𝔸,X13 𝔸,X14
𝔸,X21 𝔸,X22 𝔸,X23 𝔸,X24
𝔸,X31 𝔸,X32 𝔸,X33 𝔸,X34
𝔸,X41 𝔸,X42 𝔸,X43 𝔸,X44

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

̃𝑢(11)
𝑥,𝑥 ̃𝑢(12)

𝑥,𝑥 ̃𝑢(21)
𝑥,𝑥 ̃𝑢(22)

𝑥,𝑥
̃𝑢(11)
𝑥,𝑧 ̃𝑢(12)

𝑥,𝑧 ̃𝑢(21)
𝑥,𝑧 ̃𝑢(22)

𝑥,𝑧
̃𝑢(11)
𝑧,𝑥 ̃𝑢(12)

𝑧,𝑥 ̃𝑢(21)
𝑧,𝑥 ̃𝑢(22)

𝑧,𝑥
̃𝑢(11)
𝑧,𝑧 ̃𝑢(12)

𝑧,𝑧 ̃𝑢(21)
𝑧,𝑧 ̃𝑢(22)

𝑧,𝑧

⎤
⎥
⎥
⎥
⎥
⎦

.

(4.44)

Then, Eq. (4.42) can be rewritten as:

𝜃1 = 𝔸,X(X)𝜃1
, (4.45)

which is the final form of the first-order localisation equation. For a pth order, u𝑝 can
be decomposed as:

u𝑝 = u𝑝
𝑙 + u𝑝

𝑛𝑙. (4.46)

The first term can be rewritten as:

u𝑝
𝑙 = 𝜃𝑝(11)ũ(11) + 𝜃𝑝(12)ũ(12) + 𝜃𝑝(21)ũ(21) + 𝜃𝑝(22)ũ(22), (4.47)

where ũ(𝑖𝑗) are obtained by the solution of the first-order problem in Eq. (4.39). The
nonlinear displacement part u𝑝

𝑛𝑙 results from the following problem:

∫𝜔0

𝛿𝜃𝑇ℍ𝑚𝜃𝑝𝑑𝜔 = − ∫𝜔0

𝛿𝜃𝑇P𝑝
𝑛𝑙𝑑𝜔 in 𝜔0. (4.48)

Considering Eq. (4.41) and Eq. (4.46), the pth order displacement becomes:

u𝑝(X) = 𝒜(X) ∶ ⃖⃖𝜃
𝑝

+ u𝑝
𝑛𝑙. (4.49)

When differentiating versus X, the previous equation reads:

⃖⃖𝜃𝑝 = 𝒜,X(X) ∶ ⃖⃖𝜃
𝑝

+ ⃖⃖u𝑝
𝑛𝑙,X (4.50)

where ⃖⃖u𝑝
𝑛𝑙,X ∈ ℝ2×2 is a second-order tensor. It has a corresponding vector form u𝑝

𝑛𝑙,X ∈
ℝ4. Eq. (4.50) in a vector form can be rewritten as:

𝜃𝑝 = 𝔸,X(X)𝜃𝑝 + u𝑝
𝑛𝑙,X. (4.51)
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4.2.3 Homogenisation
Eq. (3.70) and Eq. (3.79) are written also at the microscale::

P𝑝 = ℍ(𝑟)
𝑚 𝜃𝑝 + P𝑝

𝑛𝑙. (4.52)

where it is here assumed that p is also equal to one (in this case 𝑃 𝑝
𝑛𝑙 is equal to zero). By

introducing Eq. (4.51), Eq. (4.52) can be rewritten as:

P𝑝 = ℍ(𝑟)
𝑚 (𝔸,X(X)𝜃𝑝 + u𝑝

𝑛𝑙,X) + P𝑝
𝑛𝑙 = ℍ(𝑟)

𝑚 𝔸,X(X)𝜃𝑝 + ℍ(𝑟)
𝑚 u𝑝

𝑛𝑙,X + P𝑝
𝑛𝑙. (4.53)

Tensor 𝕃𝑚 is defined as:

𝕃𝑚 = ℍ(𝑟)
𝑚 𝔸,𝑥. (4.54)

and P𝑝
∗𝑛𝑙 as:

P𝑝
∗𝑛𝑙 = ℍ(𝑟)

𝑚 u𝑝
𝑛𝑙,X + P𝑝

𝑛𝑙. (4.55)

Eq. (4.53) can be rewritten as:

P𝑝 = 𝕃𝑚𝜃
𝑝 + P𝑝

∗𝑛𝑙. (4.56)

Based on the first and second coupling relationships in Eq. (4.17) and Eq. (4.29), the
following equations can be derived:

𝜃𝑝 = 1
|𝜔0| ∫𝜔0

𝜃𝑝𝑑𝜔 (4.57)

P𝑝 = 1
|𝜔0| ∫𝜔0

(𝕃𝑚𝜃𝑝 + P𝑝
𝑛𝑙) 𝑑𝜔. (4.58)

Two additional macroscopic terms are defined by:

𝕃𝑚 = 1
|𝜔0| ∫𝜔0

𝕃𝑚𝑑𝜔 (4.59)

and
P𝑝

𝑛𝑙 = 1
|𝜔0| ∫𝜔0

P𝑝
∗𝑛𝑙𝑑𝜔. (4.60)

Consequently, the macroscopic PK1 stress is obtained as:

P𝑝 = 𝕃𝑚𝜃
𝑝 + P𝑝

𝑛𝑙, (4.61)

which is an analogous form as shown in Eq. (4.56).
By replacing the unknown ℍ𝑚 in Eq. (4.32) and Eq. (4.33), the following macroscopic
equations can be derived:
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• 1st order:

∫Ω0

𝛿𝜃𝑇𝕃𝑚𝜃
1𝑑Ω = 𝜆1𝛿u𝑇f (4.62)

• pth order:

∫Ω0

𝛿𝜃𝑇𝕃𝑚𝜃
𝑝𝑑Ω = 𝜆𝑝𝛿u𝑇f − 𝛿𝜃𝑇

∫Ω0

P𝑝
𝑛𝑙𝑑Ω. (4.63)

4.2.4 CUF-ANMMultiscale Solution
Macroscale problem.Thewhole macroscopic domain is discretised using CUF hier-

archical beam elements. Besides, substituting 𝜃(u) in Eq. (4.9), Eq. (4.62) can be rewritten
as:

𝑁𝑒

∑
𝑒=1

∫Ω𝑒
0

𝛿𝜃𝑒𝑇𝕃𝑒
𝑚𝜃

1𝑒𝑑Ω =
𝑁𝑒

∑
𝑒=1

𝜆1𝛿u𝑒𝑇f
𝑒. (4.64)

For one element, Eq (4.64) becomes:

∫Ω𝑒
0

𝛿𝜃𝑒𝑇𝕃𝑒
𝑚𝜃

1𝑒𝑑Ω = 𝛿q𝑒𝑇
𝜏𝑖 ∫Ω𝑒

0

G𝑒𝑇
𝜏𝑖 𝕃𝑒G𝑒

𝜅𝑗𝑑Ωq𝑒
𝜅𝑗

= 𝛿q𝑒
𝜏𝑖

𝑇
(K

𝑒
𝜏𝜅𝑖𝑗(𝜃

𝑒
𝑚))q1𝑒

𝜅𝑗.
(4.65)

whereK𝑒
𝜏𝜅𝑖𝑗 is the multiscale fundamental nucleus of the elemental stiffness matrix. It is

worth noting that the macroscopic geometric nonlinearity is accounted for within the
stiffness matrix in Eq. (4.65). The nuclei are not dependent on the approximation order
over the thickness (𝑁𝑢) nor the number of nodes per element along the beam axis (𝑁𝑒

𝑛).
The components of the stiffness matrix nucleus K𝑒

𝜏𝜅𝑖𝑗 are:

𝐾𝑒𝑥𝑥
𝜏𝜅𝑖𝑗 = 𝐽11

𝜏𝜅𝑖,𝑥𝑗,𝑥 + 𝐽22
𝜏,𝑧𝜅,𝑧𝑖𝑗 + 𝐽21

𝜏,𝑧𝜅𝑖𝑗,𝑥 + 𝐽12
𝜏𝜅,𝑧𝑖,𝑥𝑗

𝐾𝑒𝑥𝑧
𝜏𝜅𝑖𝑗 = 𝐽14

𝜏𝜅,𝑧𝑖,𝑥𝑗 + 𝐽13
𝜏𝜅𝑖,𝑥𝑗,𝑥 + 𝐽24

𝜏,𝑧𝜅,𝑧𝑖𝑗 + 𝐽23
𝜏,𝑧𝜅𝑖𝑗,𝑥

𝐾𝑒𝑧𝑥
𝜏𝜅𝑖𝑗 = 𝐽41

𝜏,𝑧𝜅𝑖𝑗,𝑥 + 𝐽31
𝜏𝜅𝑖,𝑥𝑗,𝑥 + 𝐽42

𝜏,𝑧𝜅,𝑧𝑖𝑗 + 𝐽32
𝜏𝜅,𝑧𝑖,𝑥𝑗

𝐾𝑒𝑧𝑧
𝜏𝜅𝑖𝑗 = 𝐽44

𝜏,𝑧𝜅,𝑧𝑖𝑗 + 𝐽33
𝜏𝜅𝑖,𝑥𝑗,𝑥 + 𝐽34

𝜏𝜅,𝑧𝑖,𝑥𝑗 + 𝐽43
𝜏,𝑧𝜅𝑖𝑗,𝑥

. (4.66)

The generic term 𝐽𝑔ℎ
𝜏(,𝑧)𝜅(,𝑧)𝑖(,𝑥)𝑗(,𝑥)

is the following volume integral:

𝐽𝑔ℎ
𝜏(,𝑧)𝜅(,𝑧)𝑖(,𝑥)𝑗(,𝑥)

= ∫
𝑒
=ℎ𝑒×𝑏𝑒

∫
𝑙𝑒

𝕃𝑔ℎ𝐹𝜏(,𝑧)
𝐹𝜅(,𝑧)

𝑁𝑖(,𝑥)
𝑁𝑗(,𝑥)

𝑑 𝑑𝑥 . (4.67)
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Similarly, for one element, the right side of Eq (4.64) can be written in the following
form:

𝜆1𝛿u𝑒𝑇f
𝑒 = 𝛿𝑞𝑒

𝜏𝑖
𝑇𝜆1𝑁𝑖

𝑇𝐹𝑇
𝜏 f

𝑒
, (4.68)

being f
𝑒
an external force. For the pth order, Eq. (4.63) can be rewritten as:

𝑁𝑒

∑
𝑒=1

(𝛿q𝑒
𝜏𝑖

𝑇
(K

𝑒
𝜏𝜅𝑖𝑗(𝜃

𝑒
𝑚))q𝑝

𝜅𝑗
𝑒 − 𝛿q𝑒

𝜏𝑖
𝑇𝜆𝑝𝑁𝑖

𝑇𝐹 𝑇
𝜏 f

𝑒 − 𝛿𝑞𝑒
𝜏𝑖

𝑇𝑁𝑖
𝑇𝐹 𝑇

𝜏 f
𝑝
𝑛𝑙

𝑒
𝜏𝑖) = 0. (4.69)

where f
𝑝
𝑛𝑙

𝑒
𝜏𝑖 is:

f
𝑝
𝑛𝑙

𝑒
𝜏𝑖 = −G𝜏𝑖 ∫Ω𝑒

0

P𝑝
𝑛𝑙𝑑Ω. (4.70)

Microscale problem. For one element, the displacement field u in the domain can be
discretised as classically done as:

u𝑒 = Nq𝑒. (4.71)

where q𝑒 is the nodal displacement vector of the element, andN is a matrix whose com-
ponents are the considered shape functions [170]. Coherently, the following equations
hold:

𝛿u𝑒 = N𝛿q𝑒,
𝜃𝑒 = Gq𝑒,
𝛿𝜃𝑒 = G𝛿q𝑒.

. (4.72)

in which G is the shape function derivatives matrix. According to Eq. (4.72), Eq. (4.34)
for a single element can be derived as follows:

𝛿q𝑒𝑇G𝑇
∫𝜔0𝑒

ℍ𝑒
𝑚𝜃1𝑒𝑑𝜔0 = 0. (4.73)

Substituting ℍ𝑒
𝑚 in Eq. (3.25), it can be rewritten as:

𝛿q𝑒𝑇
∫𝜔0𝑒

G𝑇 [[H𝑇 + A𝑇 (𝜃𝑒
𝑚)] ℂ(𝑟) [H + A (𝜃𝑒

𝑚)] + ̂S𝑒
𝑚]G𝑑𝜔q1𝑒 = 0. (4.74)

The right-hand side of the previous equation is zero since no external force is considered
at the microscale. For the sake of brevity, the following notation is introduced:

B𝑙 = HG,
B𝑛𝑙(q𝑒) = A(𝜃(q𝑒))G,
B = B𝑙 + B𝑛𝑙(q𝑒).

(4.75)

The elemental stiffness matrix K𝑒
𝑚 is defined as follows:

K𝑒
𝑚 = ∫𝜔0𝑒

B𝑇(q𝑒
𝑚)ℂ(𝑟)B𝑚(q𝑒

𝑚) + G𝑇 ̂S𝑒
𝑚G𝑑𝜔. (4.76)
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4 – Multi-scale Nonlinear Models for Beam Structures

The global tangent stiffness matrix K𝑚 can be obtained by assembling the elemental
stiffness matrix K𝑒

𝑚. Then, the 1st order microscopic control equation Eq. (4.34) can be
rewritten as:

K𝑚q
1 = 0. (4.77)

Then, the periodic boundary condition in Eq. (4.37) can be discretised for two pairs of
opposite edges as:

q𝑝(+) − q𝑝(−) = 𝕏F𝑝. 𝑝 = 1, ...,𝑁𝑚𝑎𝑥 (4.78)
where

𝕏 = [ X(11)+ − X(11)− X(12)+ − X(12)− X(21)+ − X(21)− X(22)+ − X(22)− ] . (4.79)

For the four vertices, the following displacement loading are applied:

q𝑝
(𝑣𝑒𝑟𝑡) = [ X(11)

(𝑣𝑒𝑟𝑡) X(12)
(𝑣𝑒𝑟𝑡) X(21)

(𝑣𝑒𝑟𝑡) X(22)
(𝑣𝑒𝑟𝑡) ] F

𝑝 𝑣𝑒𝑟𝑡 = 1, 2, 3, 4. (4.80)

The pth order control equation Eq. (4.33) becomes:

K𝑚q
𝑝 = f𝑝

𝑛𝑙.𝑠 (4.81)

f𝑝
𝑛𝑙 is assembled from f𝑝𝑒

𝑛𝑙 , which is defined as:

f𝑝𝑒
𝑛𝑙 = −G∫𝜔𝑒

0

P𝑝
𝑛𝑙𝑑𝜔. (4.82)

where P𝑝
𝑛𝑙 is given in Eq. (3.77). The 1st order problem yields 𝔸, and the pth order prob-

lem gives as solution P𝑝
𝑛𝑙. The control equations, therefore, are finally written as:

• 1st order:

K𝑚q̃
(𝑖𝑗) = 0 (4.83)

q̃(𝑖𝑗)+ − q̃(𝑖𝑗)− = X(𝑖𝑗)+ − X(𝑖𝑗)− (4.84)

q̃(𝑖𝑗)
(𝑣𝑒𝑟𝑡) = X(𝑖𝑗)

(𝑣𝑒𝑟𝑡) 𝑣𝑒𝑟𝑡 = 1,2,3,4 (4.85)

• pth order:

K𝑚q
𝑝
𝑛𝑙 = f𝑝

𝑛𝑙 (4.86)
q𝑝

𝑛𝑙 = 0. (4.87)

The localisation equations are discretised in a similar manner. 𝜃𝑝𝑒 in Eq. (4.51) for each
element inside the RVE can be written as:

𝜃𝑝𝑒 = 𝔸,X𝜃
𝑝𝑒 + Gq𝑝𝑒

𝑛𝑙 . (4.88)

In addition, for the homogenisation equations, the nonlinear part of pth order PK1 stress
in Eq (4.60) can be discretised as:

P𝑝𝑒
∗𝑛𝑙 = ℍ(𝑟)

𝑚 Gq𝑝𝑒
𝑛𝑙 + P𝑝𝑒

𝑛𝑙 . (4.89)
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Chapter 5

Geometrically Nonlinear Analysis of
Beam Structures

In this chapter, numerical investigations are conducted by using the beam model
proposed in Chapter 3. In particular, the following four cases are presented. First, com-
putational efficiencies are compared by the following two aspects: the number of DOFs
of the structural model and the time cost required of the nonlinear solver to converge.
Secondly, nonlinear static analyses are carried out with a convergence analysis in the
beginning. This analysis focuses on the convergence speed of the displacement results.
The displacement results come from two models, one using the MITC element and the
other using the standard finite element. Then, two static nonlinear analyses for long
and short clamped-hinged beams are presented. The length-to-thickness ratio (𝑙/ℎ) of
long and short beams is 100 and 10, respectively. Finally, post- analyses concerning a
clamped-hinged beam and a simply-supported beam are shown, where the length-to-
fine ratio are both 20. Finally, a snap-through analysis of a simply-supported beamwith
a slenderness ratio of 20 is demonstrated.

5.1 Computational Time and Cost Assessment
In this section, the following two assessments are presented: 1. the DOF reduction

of the proposed CUF models versus reference two-dimensional FEM solution and 2. the
CPU time cost reduction when using ANM in place of NRM (the same CUF model is
employed in both cases). All the presented cases have the same gemetrical and material
properties. The cross-section thickness ℎ and width 𝑏 are equal to 1 m. Material prop-
erties are: 𝐸 = 75 GPa, and 𝜈 = 0.33 (aluminium). The following dimensionless force
𝜆 = 𝑓𝑙2/𝐸𝐼 is employed, being 𝐼 the moment of inertia of the beam cross-section and
𝑓 the applied force.. Both displacement and stress values are given in the initial fixed
coordinate system.
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5 – Geometrically Nonlinear Analysis of Beam Structures

DOFs Comparison. Results are compared with two-dimensional finite element solu-
tions computed through the commercial codeANSYS. ANSYS finite elements “Plane183”
is utilised to verify the convergence of the reference solution. This element is a two-
dimensional eight-node element with nonlinear strain based on an Updated Lagrangian
formulation. An accuracy up to four significant digits is sought for all the considered
results. For slender beams, a refined mesh is 240 × 24 and a coarse one 160 × 16 are
used. Regarding short beams, the refined mesh 80 × 8, whereas the coarse one is 32 × 8.
𝑁𝑒𝑥 and 𝑁𝑒𝑧 represent the number of elements along the beam axis and the thickness,
respectively.
As concerns the computational cost, the degrees of freedom (DOF) for the two-dimensional
finite element model as a function of 𝑁𝑒𝑥, 𝑁𝑒𝑧 are:

𝐷𝑂𝐹𝐹 𝐸𝑀 = 2(3𝑁𝑒𝑥𝑁𝑒𝑧 + 2𝑁𝑒𝑥 + 2𝑁𝑒𝑧 + 1). (5.1)

For a fixed approximation order 𝑁, the total DOFs of the proposed solutions are:

𝐷𝑂𝐹𝐶𝑈𝐹 = 2(𝑁 + 1)𝑁𝑛 (5.2)

𝑁𝑛 stands for the nodes number along the beam axis. For slender beams, the most re-
fined model is given by a mesh of 121 nodes and beam theory 𝑁 = 5, and the DOFs
of the proposed one-dimensional formulation are 1′452, whereas a 240 × 24 elements
used for the reference 2D FEM simulations, they are 35′618.
Time Cost Comparison In this paragraph, the computation time need when using
ANM or NRM are compared. In the analyses, a quadratic (𝑁 = 2) CUF model is used.
The CPU time ( 𝑡𝐶𝑃 𝑈 ) is taken for the comparison between the two non-linear solvers.
The displacement component 𝑢𝑧 in a slender beam is considered. Tables. 5.1, 5.2, and
5.3 present the transverse displacement and the CPU times for different load steps us-
ing B2, B3 and B4 elements, respectively. Calculation accuracy takes into account two
significant digits. CPU time of these two solvers can differ in the worst case by about
50%. Results show the efficiency of the ANM solver.

𝑆𝑡𝑒𝑝 𝜆 𝑢𝑧[𝑚] 𝑡𝐴𝑁𝑀
𝐶𝑃 𝑈 [𝑠] 𝑡𝑁𝑅𝑀

𝐶𝑃 𝑈 [𝑠] 𝑡𝐴𝑁𝑀
𝐶𝑃 𝑈 /𝑡𝑁𝑅𝑀

𝐶𝑃 𝑈
2 1.37 2.41 17.98 80.98 0.22
3 3.67 4.95 33.09 135.42 0.24
4 8.14 8.50 47.13 195.21 0.24
5 17.44 14.14 60.69 239.00 0.25

Table 5.1: Transverse displacement and CPU time using ANM and NRM, B4 elements.
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5.2 – Static Analysis

𝑆𝑡𝑒𝑝 𝜆 𝑢𝑧[𝑚] 𝑡𝐴𝑁𝑀
𝐶𝑃 𝑈 [𝑠] 𝑡𝑁𝑅𝑀

𝐶𝑃 𝑈 [𝑠] 𝑡𝐴𝑁𝑀
𝐶𝑃 𝑈 /𝑡𝑁𝑅𝑀

𝐶𝑃 𝑈
2 1.24 2.18 17.47 55.02 0.32
3 3.30 4.49 32.68 100.98 0.32
4 7.31 7.70 46.14 142.84 0.32
5 15.56 12.86 59.72 185.43 0.32

Table 5.2: Transverse displacement and CPU time using ANM and NRM, B3 elements.

𝑆𝑡𝑒𝑝 𝜆 𝑢𝑧[𝑚] 𝑡𝐴𝑁𝑀
𝐶𝑃 𝑈 [𝑠] 𝑡𝑁𝑅𝑀

𝐶𝑃 𝑈 [𝑠] 𝑡𝐴𝑁𝑀
𝐶𝑃 𝑈 /𝑡𝑁𝑅𝑀

𝐶𝑃 𝑈
2 1.57 2.19 17.91 44.89 0.40
3 4.17 4.50 36.08 82.25 0.44
4 9.21 7.72 53.11 110.25 0.48
5 19.52 12.86 67.90 141.10 0.48

Table 5.3: Transverse displacement and CPU time using ANM and NRM, B2 elements.

5.2 Static Analysis
Clamped-hinged beams are considered. A length-to-thickness ratio 𝑙/ℎ as high as

100 (slender beams) and as low as 10 (short beams) is considered. MITC method was
adopted for locking correction. Fig. 5.1 shows the difference between using and not us-
ing the MITC method for a B2 element. A concentrated force 𝑓 = 5𝐸𝐼/𝑙2 applied at
mid-span is considered. Displacement ̂𝑢𝑧 = 𝑢𝑧/𝑢𝐶𝑢𝑏𝑖𝑐 is evaluated at (𝑙/2,−ℎ/2), where
𝑢𝐶𝑢𝑏𝑖𝑐 is the reference solution obtained by B4 elements (121 nodes). B4 element solu-
tion is used as reference since locking is negligible in this case. It can be noticed that
the MITC beam elements are free of locking regardless the beam theory order 𝑁.
A convergence analysis versus the number of nodes is now presented. A slender beam
(𝑙/ℎ = 100) under a concentrated force 𝑓 = 𝐸𝐼/𝑙2 along the z-direction is investigated.
The previously considered normalised displacement ̂𝑢𝑧 evaluated at (𝑙/2,−ℎ/2) and cal-
culated via B4 elements is presented Fig. 5.2. The node number 𝑁𝑛 changes from 7 to
481. With the adoption of MITC, the convergence is obtained with 25 nodes, whereas
without MITC correction is achieved with 301 nodes. A similar behaviour can be ob-
served with B2 and B3 elements. MITC correction is applied to all the remaining anal-
yses. According to the convergence analysis outcome, 241 and 121 nodes are used for
slender and short beams, respectively.
Results are now compared with the ANSYS solutions. Besides displacements, the PK2
axial and shear stresses in the global system are presented.The evaluation point for 𝑢𝑥 is
(𝑙,ℎ/2), whereas 𝑢𝑧 is evaluated at (𝑙/2,−ℎ/2). For slender cases, the load-displacement
curves can be found in Fig 5.3. The beam is under a concentrated 𝑧-direction dimen-
sionless force 𝜆 = 120 at the centre point (𝑙/2,0).
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Figure 5.1: Locking correction via MITC method for B2 elements with different beam
theories 𝑁 = 2 and 𝑁 = 5, clamped-hinged beam.

Table 5.4 presents the displacement components 𝑢𝑥 and 𝑢𝑧. Results show an excellent
agreement between 1D CUF models, 2D FEM models and the solutions from ANSYS.
For a third-order model, the relative error between beams theories and reference solu-
tion is 0.94%, at worst. The stress components are given in Table 5.5. The difference is
about 0.52% for 𝑁 ≥ 3, at worst, in the case of the stress components. To be noticed,
the computational time for FEM 2D with 400 × 40 is more than 2 hours (where a sparse
matrix storage scheme has been used to optimize the code), yet the computational time
for the highest order theory 𝑁 = 5 is no more than 10 minutes.

𝑢𝑥 × −1[𝑚] 𝑢𝑧 × −10−1[𝑚]
2D FEM (400 ∗ 40) 3.7476 1.7478

𝐵2 𝐵3 𝐵4 𝐵2 𝐵3 𝐵4
1D CUF 𝑁 = 5 3.7538 3.7495 3.7478 1.7493 1.7483 1.7479
1D CUF 𝑁 = 4 3.7490 3.7418 3.7419 1.7482 1.7465 1.7465
1D CUF 𝑁 = 3 3.7269 3.7290 3.7218 1.7430 1.7435 1.7418
1D CUF 𝑁 = 2 3.7069 3.7094 3.7056 1.7383 1.7388 1.7379

Table 5.4: 𝑢𝑥 and 𝑢𝑧 in a slender clamped-hinged beam.
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Figure 5.2: Convergence analysis via MITC method for B4 elements, 𝑁 = 2, clamped
hinged slender (𝑙/ℎ = 100) beam.
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Figure 5.3: Load-displacement curves 𝑢𝑥 and 𝑢𝑧 for slender clamped-hinged beams.

For short beams, the load-displacement curves are presented in Fig. 5.4. Fig. 5.5
shows the load-stresses curves for 𝑆𝑥𝑥 at (𝑙/10,ℎ/2) and 𝑆𝑥𝑧 at (𝑙/4,0), respectively. Ac-
cording to these plots, it can be concluded that higher-order beam theories are needed
for shear stress 𝑆𝑥𝑧. Comparing the other solutions, although the 1D CUF 𝑁 = 2 model
can only obtain relatively accurate displacements and the normal stress 𝑆𝑥𝑥 but not
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Figure 5.4: Load-displacement curves 𝑢𝑥 and 𝑢𝑧, short clamped-hinged beams.
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Figure 5.5: Load-stress curves 𝑆𝑥𝑥 and 𝑆𝑥𝑧, short clamped-hinged beams.

shear stress 𝑆𝑥𝑧. At 𝜆 = 5, the error is 16.7%. Additionally, at 𝜆 = 35, the error is as
high as 30%. Table 5.6 presents the displacement components 𝑢𝑥 and 𝑢𝑧 in short beams.
Results show an excellent agreement between advanced 1D CUF models and 2D FEM
solution. For a fourth-order model, the relative difference between beams theories and
reference solution is 0.13%, at worst. The stress components are addressed in Table 5.7.
The difference is about 1.33%, at worst, in the case of the stress components. The dif-
ference in the B2 solution for 𝑆𝑥𝑧 is because results did not converge yet for 𝑁𝑛 = 121.
Short beams results are presented from Table 5.6 to 5.7.
The contour plots for 𝑢𝑥, 𝑢𝑧, 𝑆𝑥𝑥, 𝑆𝑥𝑧, and 𝑆𝑧𝑧 are presented in Figs. 5.6, 5.7, 5.8, 5.9,
respectively. Slight difference at the beam centre point can be found for 𝑆𝑧𝑧 and 𝑆𝑥𝑧. It
is due to the stress concentration coming from the application the external force.

74



5.3 – Post-buckling Analysis

𝑆𝑥𝑥 × 10−8[𝑃 𝑎] 𝑆𝑥𝑧 × −10−7[𝑃 𝑎]
2D FEM (400 ∗ 40) 9.2049 1.4142

𝐵2 𝐵3 𝐵4 𝐵2 𝐵3 𝐵4
1D CUF 𝑁 = 5 9.3532 9.2171 9.2027 0.3778 1.6365 1.3919
1D CUF 𝑁 = 4 9.3518 9.2267 9.2101 0.3802 1.6319 1.3914
1D CUF 𝑁 = 3 9.3276 9.2148 9.1749 0.3917 1.6324 1.3897
1D CUF 𝑁 = 2 9.3009 9.1887 9.1525 0.3894 1.2251 0.9830

Table 5.5: 𝑆𝑥𝑥 and 𝑆𝑥𝑧 in a slender clamped-hinged beam.

𝑢𝑥 × −[𝑚] 𝑢𝑧 × −10−1[𝑚]
2D FEM (160 ∗ 16) 1.3723 9.1386

𝐵2 𝐵3 𝐵4 𝐵2 𝐵3 𝐵4
1D CUF 𝑁 = 5 1.3740 1.3745 1.3739 9.1382 9.1400 9.1397
1D CUF 𝑁 = 4 1.3706 1.3708 1.3703 9.1312 9.1323 9.1318
1D CUF 𝑁 = 3 1.3601 1.3602 1.3599 9.1113 9.1129 9.1128
1D CUF 𝑁 = 2 1.3303 1.3303 1.3302 8.9782 8.9800 8.9799

Table 5.6: 𝑢𝑥 and 𝑢𝑧 in a short clamped-hinged beam.

5.3 Post-buckling Analysis
A buckling analysis is presented, Clamped-hinged and cantilever boundary condi-

tions are presented. Beams are loaded by a compressive force applied at a beam end
and buckling is trigged by applying a perturbation force 10−4𝑓 along the 𝑧-direction.
For structural level geometrical nonlinear analyses, Hutchinson [95], Hutchinson and
Koiter [96] gave the conclusion that the smaller disturbance will cause the bifurcation
curve to be sharper.

5.3.1 Clamped-hinged Beams
For clamped-hinged beams (slenderness ratio 𝑙/ℎ = 20), 1D CUF models are com-

pared to the 2D FEMmodel using eight-nodes elements.Themesh of the 2D FEMmodel
is 80 × 8, and 1D CUF model uses 121 nodes and B4 elements. The ANM expansion or-
der is 20, and the tolerance is 10−8. The results are given in Figs. 5.10 and 5.11. The
buckling phenomenon is well captured, and bifurcation point is detected at 𝜆 = 20. The
displacement curve is in good agreement with the one corresponding to the reference
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𝑆𝑥𝑥 × 10−10[𝑃 𝑎] 𝑆𝑥𝑧 × −10−9[𝑃 𝑎]
2D FEM (160 ∗ 16) 1.0062 1.4299

𝐵2 𝐵3 𝐵4 𝐵2 𝐵3 𝐵4
1D CUF 𝑁 = 5 1.0346 1.0071 1.0048 1.3832 1.4214 1.4118
1D CUF 𝑁 = 4 1.0352 1.0079 1.0055 1.3823 1.4204 1.4109
1D CUF 𝑁 = 3 1.0305 1.0033 1.0010 1.3818 1.4198 1.4103
1D CUF 𝑁 = 2 1.0237 0.9963 0.9941 0.9699 1.0083 0.9988

Table 5.7: 𝑆𝑥𝑥 and 𝑆𝑥𝑧 in a short clamped-hinged beam.

1D CUF 𝑁 = 5

𝑢𝑥 𝑢𝑧
2D FEM

Figure 5.6: Contours for 𝑢𝑥 and 𝑢𝑧 [m] in short clamped-hinged beams.

ANSYS solution. As for the normal stress, the 1D CUF 𝑁 = 2 model capture the 𝑆𝑥𝑥
well, but it is not accurate for the shear stress 𝑆𝑥𝑧. The difference between 𝑆𝑥𝑧 from 1D
CUF 𝑁 = 2 and other results starts from the bifurcation point, and increases as the load
parameter 𝜆 gets larger. At the point 𝜆 = 41.67, the error reaches approximately 30%.
Although the 1D CUF 𝑁 = 2 model is not accurate for shear stress 𝑆𝑥𝑧, the critical
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5.3 – Post-buckling Analysis

1D CUF 𝑁 = 5

2D FEM

Figure 5.7: Contours plot of 𝑆𝑥𝑥 [Pa] in short clamped-hinged beams.

load is detected accurately. The 1D CUF 𝑁 = 3 model is reliable for all the considered
stress components. Contour plots of displacement and stress components (𝑢𝑥, 𝑢𝑧, 𝑆𝑥𝑥
and 𝑆𝑥𝑧) for the last load step are shown in Figs. 5.12, 5.13, 5.14, and 5.15.

5.3.2 Cantilever Beams
A cantilever beam with a concentrated 𝑥-direction force 𝑓 = 𝐸𝐼/𝑙2 at the right end

(𝑙,0) is analysed. Besides, a 𝑧-direction perturbation of value 10−4𝑓 at the centre point
(𝑙/2, 0) have been introduced to trigger buckling. Geometrical and material data are the
same as the previous case. Fig. 5.16 and 5.17 illustrate the load-displacement and load-
stress bifurcation curves of 1D CUF model and 2D FEM model.
The two solutions agree well, and a critical buckling load parameter 𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 equal to

2.46 is obtained by both of them. Higher-order theories with 𝑁 ≥ 3 are necessary for
the stress component 𝑆𝑥𝑧. Fig. 5.18 presents the axial and shear stress components 𝑆𝑥𝑥
and 𝑆𝑥𝑥 for the last step. Results are accurate over the whole beam with the exclusion
of points where stress concentration occurs (𝑙,0). Coherently to what is observed in
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1D CUF 𝑁 = 5

2D FEM

Figure 5.8: Contours for 𝑆𝑧𝑧 [Pa] in short clamped-hinged beams.

displacement-load curves, the last-step deformations from these two model match well.

5.4 Snap-through Analysis
With the same geometrical and material data, a snap-through case is analysed for

a simply supported beam (𝑙/ℎ = 20). The snap-through analysis can be separated into
two parts.
Firstly, a buckling analysis is carried out by applying a 𝑥-direction concentrated force
𝑓 = 𝐸𝐼/𝑙2 at (𝑙, 0). Fig. 5.19 shows that the results of the 1D CUF model with higher-
order theory 𝑁 = 5 compares well with the 2D FEMmodel. To be noticed, higher-order
theory 𝑁 = 5 is necessary for an accurate comparison.
Secondly, the initial geometrical and stress condition of the second part of the analysis
are those at the end of the previous one. In other words, the beam is now curved and pre-
stressed. Now, load 𝑓 = 105𝑁 is applied in 𝑧 direction is at the centre (𝑙/2,0). Fig. 5.20
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1D CUF 𝑁 = 5

2D FEM

Figure 5.9: Contours plot of 𝑆𝑥𝑧 [Pa] in short clamped-hinged beams.
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Figure 5.10: Load-displacement curves for 𝑢𝑥 at (𝑙,ℎ/2) and 𝑢𝑧 at (𝑙/2,−ℎ/2), clamped-
hinged beam (𝑙/ℎ = 20).
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Figure 5.11: Load-stress curves for 𝑆𝑥𝑥 at (𝑙/4,−ℎ/2) and 𝑆𝑥𝑧 at (𝑙/4,0) of a clamped-
hinged beam (𝑙/ℎ = 20).

1D CUF 𝑁 = 5

𝑢𝑥 𝑢𝑧
2D FEM

Figure 5.12: Contours plot of 𝑢𝑥 and 𝑢𝑧 [m] in short clamped-hinged beams.
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5.4 – Snap-through Analysis

1D CUF 𝑁 = 5

2D FEM

Figure 5.13: Contours for 𝑆𝑥𝑥 of clamped-hinged beams.

shows the excellent performance of the 1D CUF model with 𝑁 = 5, which matches the
reference solution.
The displacement resultant √𝑢2

𝑥 + 𝑢2
𝑧 for several steps is presented in Fig. 5.21. As for

81



5 – Geometrically Nonlinear Analysis of Beam Structures

1D CUF 𝑁 = 5

2D FEM

Figure 5.14: Contours for 𝑆𝑧𝑧 of clamped-hinged beams.

more details, the qualitative variation of the displacement and stress components for
the last step (𝜆 = 200) is presented in Figs. 5.22 and 5.23.
Compared with the 2D FEM model, the 1D CUF model proposed in this thesis requires
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5.4 – Snap-through Analysis

1D CUF 𝑁 = 5

2D FEM

Figure 5.15: Contours for 𝑆𝑥𝑧 of clamped-hinged beams.

a smaller number of unknown variables to be solved. A two-dimensional solution with
80 × 8 Q8 elements is taken as a reference, corresponding to the number of 4194 DOFs.
Themost refined 1D CUFmodel is a fifth-order (𝑁 = 5) model with 121 nodes along the
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Figure 5.16: Load-displacement curves 𝑢𝑥 at (𝑙,ℎ/2) and 𝑢𝑧 at (𝑙/2,−ℎ/2) in a cantilever
beam (𝑙/ℎ = 20).
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Figure 5.17: Load-stress curves for 𝑆𝑥𝑥 at (𝑙/4,−ℎ/2), 𝑆𝑧𝑧 at (𝑙/4,0) and 𝑆𝑧𝑧 at (𝑙/4,0) in
a cantilever beam (𝑙/ℎ = 20).

axis, corresponding to 1452 degrees of freedom (−65.4%).Therefore, the proposed CUF-
based geometric nonlinear beam model represents an efficient modelling for analysing
the snap-through problem.
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5.4 – Snap-through Analysis

1D CUF 𝑁 = 5 2D FEM 1D CUF 𝑁 = 5 2D FEM

Figure 5.18: Contours plot 𝑆𝑥𝑥 (left side) and 𝑆𝑥𝑧 (right side) [Pa] in cantilever beams.
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Figure 5.19: Load-displacement curve 𝑢𝑧 at (𝑙/2,ℎ/2) and load-stress curve 𝑆𝑥𝑥 at
(𝑙/4,−ℎ/2) in a simply-supported beam (𝑙/ℎ = 20).
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Figure 5.20: Load-displacement curve 𝑢𝑧 at (𝑙/2,ℎ/2) and load-stress curve 𝑆𝑥𝑥 at
(𝑙/4,−ℎ/2) in a simply-supported beam (𝑙/ℎ = 20).

𝑁 = 5 2𝐷 FEM
𝜆 = 0

𝑁 = 5 2𝐷 FEM
𝜆 = 116.49

𝑁 = 5 2𝐷 FEM
𝜆 = −117.48

𝑁 = 5 2𝐷 FEM
𝜆 = −8.73

𝑁 = 5 2𝐷 FEM
𝜆 = 200

Figure 5.21: Contours plot for the displacement resultant √𝑢2
𝑥 + 𝑢2

𝑧 [m] in a simply-
supported beams.
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5.4 – Snap-through Analysis

1D CUF 𝑁 = 5

𝑢𝑥 𝑢𝑧
2D FEM

Figure 5.22: Contours 𝑢𝑥 and 𝑢𝑧 [m] in simply-supported beams.

1D CUF 𝑁 = 5

2D FEM

Figure 5.23: Contours plot 𝑆𝑥𝑥 [Pa] in simply-supported beams.
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1D CUF 𝑁 = 5

2D FEM

Figure 5.24: Contours plot 𝑆𝑧𝑧 [Pa] in simply-supported beams.

1D CUF 𝑁 = 5

2D FEM

Figure 5.25: Contours plot 𝑆𝑥𝑧 [Pa] of simply-supported beams.
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Chapter 6

Multi-scale Analysis of Beam
Structures

Analyses are carried out by the multi-scale model proposed in Chapter 4. First, the
proposed framework is validated towards a case study presented in the literature, see
Nezamabadi et al. [130].Then, an example of the instability of a simply-supported fibre-
reinforced beam is proposed.

6.1 Validation: Bending of a Rectangular Beam
This first case study consists in a heterogeneous cantilever rectangular beam un-

der a concentrated unit vertical force applied as shown in Fig. 6.1. The length of the
beam is 100 mm, and the thickness is 10 mm. At the microscale, the material consists
of a matrix with a circular inclusion (the volume fraction of the inclusion is equal to
28%). Constituents material properties are shown in Table 6.1. Results from Nezam-
abadi et al. [130] and a FE2 solution where two-dimensional finite elements are used at
macroscale (this last solution is called 2D FE2).
A preliminary convergence analysis to assess the mesh size used at RVE level for de-

Matrix Inclusion
Young Modulus [MPa] 10000 100000
Poisson’s Ratio 0.3 0.3
Volume Fraction 0.72 0.28

Table 6.1: Material property of the constituents, first case.

termining the effective properties is presented in Table 6.2. The solution proposed here
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6 – Multi-scale Analysis of Beam Structures

Figure 6.1: Geometry of a cantilever beam under static load with round inclusion RVE.

𝐸[𝐺𝑃 𝑎] 𝐺[𝐺𝑃 𝑎] 𝑣
Present study𝑎 151.70 53.63 0.28
Reference𝑏 [6] 153.27 54.01 0.28
ANSYS𝑐 153.36 54.03 0.28
𝑎 144 triangular 6 nodes elements
𝑏 4132 triangular 6 nodes elements
𝑐 4044 PLANE 183 elements

Table 6.2: Effective properties estimations.

uses a mesh with 144 elements which proofs to be a good compromise between accu-
racy and computational costs.
The comparison of degrees of freedoms between the proposed Multiscale-CUF model
with different beam theories (𝑁 = 2,3,4,5) and the 2D FE2 method from the reference
paper is shown in Table 6.3 where reduction of the DOFs number can be remarked.
Compared to the 2D FE2 model, the DOFs have been reduced by two (𝑁 = 5) to four
(𝑁 = 2) times by the 1D Multiscale-CUF model.
It is well-known that the FE2 method ismuch less computationally expensive compared
with a fully meshed model. Thanks to the proposed approach where a one-dimensional
beam model is used at macro-scale, even the model with the highest expansion order
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6.1 – Validation: Bending of a Rectangular Beam
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Figure 6.2: Load-displacement curve for 𝑢𝑧 at (𝑙,ℎ/2).

RVE number DOFs (Microscale𝑎) DOFs (Macroscale)
Multiscale-CUF 𝑁5 720 439′200 972
Multiscale-CUF 𝑁4 600 366′000 810
Multiscale-CUF 𝑁3 480 292′800 648
Multiscale-CUF 𝑁2 360 219′600 486
FE2 1440 878′400 1′138
𝑎 DOFs (Microscale) is the number of RVEs multiplied by the DOFs of each RVE.

Table 6.3: DOFs comparison between Multiscale-CUF and FE2 models, where at
macroscale Multiscale-CUF model uses 40 quadratic elements whereas a mesh 40 × 4
(length×thickness) is used for the FE2 solution.

(𝑁 = 5) presents half of the DOFs of the 2D FE2 model. Furthermore, the results with
𝑁 = 2 are already accurate as shown in Fig. 6.2, where the macroscale transverse dis-
placement variation versus the load parameter is presented.
As a second problem, at the structural level, a concentrated load is applied at the point
(𝑙,0). The length and the width of the beam are 10 m and 1 m, respectively. At the micro-
scopic scale, the same matrix-circular inclusion configuration as for the previous case
is considered where the constituent material properties are presented in Table 6.4. For
this case, the load-displacement curves for 𝑢𝑥 and 𝑢𝑧 are presented in Fig. 6.3. 𝑁 = 2
yields accurate results.
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Matrix Inclusion
Young Modulus [MPa] 100 1000
Poisson’s Ratio 0.3 0.3
Volume Fraction 0.72 0.28

Table 6.4: Material Properties of RVE constituents, second case.
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Figure 6.3: Displacement 𝑢𝑥 (left) at (𝑙,ℎ/2) and 𝑢𝑧 (right) at (𝑙,−ℎ/2) ) versus the load
parameter in a short cantilever beam.

Moreover, Fig. 6.4 shows an excellent agreement at the microstructural level between
the proposed model and the FE2 model.
From Fig. 6.5, it can be concluded that the stress components require a higher-order
theory (𝑁 = 5) to get an accurate result. From Fig. 6.5, between the result from the
FE2 model and the one from 𝑁 = 2,3 models, the maximum difference is less than 2%.
Furthermore, the curve obtained by 𝑁 = 5 is entirely coincident with the reference
curve. In Fig. 6.6, the shear stress at the middle line (𝑧/𝑙 = 0) of the beam versus the
axial coordinated is plotted. The results with 𝑁 = 3 and 𝑁 = 5 compare well with the
2D FE2 model.

6.2 Fibre Reinforced Material Microbuckling
In this second example, sinusoidal geometrical imperfections are introduced for the

fibres in RVE. This analysis aims at investigating the effect of microscale imperfection
on the macroscopic behaviour when considering compressed beams.
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Multiscale-CUF 𝑁 = 5 2D FE2

𝑢𝑥

Multiscale-CUF 𝑁 = 5 2D FE2

𝑢𝑧

Figure 6.4: Displacement 𝑢𝑥 at (𝑙,ℎ/2) and 𝑢𝑧 at (𝑙,−ℎ/2) contour plots in a short can-
tilever beam at the last load step.

6.2.1 Post-buckling Analysis
The post-buckling analysis is conducted on fibre-reinforced material to study the

instability phenomena triggered by the imperfection in micro-structural level. Both ge-
ometrical and material information is known at RVE level. Matrix and fibre material
properties are presented in Table 6.5. A square RVE is adopted, where the length 𝐿𝑅 is
1𝜇𝑚. Along the middle line (𝜂 = 0) of the RVE, there is a fibre whose height ℎ𝑓 equals to
1/20𝐿𝑅. The geometrical imperfection is introduced as a sinusoidal wave for the fibre,
which is shown in a scale-up picture Fig 6.7. Λ represents the wavelength, and 𝐴𝑚𝑎𝑥
stands for the amplitude of the imperfection. The amplitude is 1/10ℎ𝑓. Macroscopic ge-
ometrical information and boundary condition are presented in Fig 6.8, A very thick
beam (𝑙/ℎ = 5) is considered along with simply supported boundary conditions. A
displacement 𝑢∗

𝑧 is at both ends. Multiscale-CUF and 2D FE2 models are compared. At
the RVE level, Multiscale-CUF and 2D FE2 models share the same meshes as shown in
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Figure 6.5: Stress 𝑆𝑥𝑥 at (𝑙/4,−ℎ/2) in a short cantilever beam versus load parameter
(left). Micro-scale stress contour plots at different load steps for 𝑁 = 5 solution (right).
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Figure 6.6: Stress 𝑆𝑥𝑧 at (𝑧/𝑙 = 0) along the beam axis in a short cantilever beam at last
load step.

Fig 6.8. At the structural level, for the FE2 model, the mesh 20 × 4 with 𝑄8 elements
are used. The Multiscale-CUF model has 20 𝐵3 beam elements along the axis. Different
beam theories are used by changing the expansion order of 𝑁.
It is observed that the sinusoidal imperfection in the fibres triggers amacroscopic buck-
ling with two half waves. In Fig 6.9, the displacement field 𝑢𝑧 of both theMultiscale-CUF
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6.2 – Fibre Reinforced Material Microbuckling

Figure 6.7: The schema of the imperfection.

Matrix Inclusion
Young Modulus (𝐺𝑃 𝑎) 100 100000
Poisson’s Ratio 0.3 0.3
Volume Fraction 0.95 0.05

Table 6.5: Material properties of the RVE.

method with 𝑁 = 5 and the 2D FE2 method are presented for the last step. The dis-
placement fields from those two models compare well with each other. In Fig 6.10, the
macroscopic contours for displacement component 𝑢𝑧 of the initial state and step 5, 8
and 12 is presented from the Multiscale-CUF model. The results from 2D FE2 model is
the same as the Multiscale-CUF.
Load-displacement curves 𝑢𝑧 at (𝑙/4,−ℎ/2) and (3𝑙/4,ℎ/2) are shown in Fig 6.11. The
results for 𝑁 ≥ 3 compare well with the reference FE2 solution. The buckling critical
loads predicted from these models are all equal to 0.18. An enlarged picture is illus-
trated around this point for the sake of clarity. The 𝑁 = 5 result is the closest to the
curve from the 2D FE2 solution. Furthermore, load-stress curves of axial stress 𝑆𝑥𝑥 at
(𝑙/4,ℎ/2) and (𝑙/4,−ℎ/2) are depicted in Figs 6.12. The error between critical buckling
load via Multiscale-CUF with 𝑁 ≥ 4 and FE2 is 2.94%.
By plotting out the microscopic displacement and stress fields, buckling phenomena
are also found out in the microscale. Thanks to the multi-scale framework, the micro-
scopic response can also be obtained for each step. For points (𝑙/4,−ℎ/2) and (3𝑙/4,ℎ/2)
at last step, two local displacement fields 𝑢𝑧 and the global displacement field 𝑢𝑧 are de-
picted in Fig 6.13.Themaximumvalue displacement 𝑢𝑧 is located near the points (1/4𝐿𝑅,
−1/2ℎ𝑓) and (3/4𝐿𝑅, 1/2ℎ𝑓). The local stress field 𝑆𝑥𝑥 at (𝑙/4,ℎ/2) and (𝑙/4,−ℎ/2) and
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Figure 6.8: Simply-supported beam at the structural level and RVE with fibre inclusion
at the microstructural level.

Multiscale-CUF 𝑁 = 5 FE2

Figure 6.9: Contour of displacement 𝑢𝑧 for the last step.

global stress field 𝑆𝑥𝑥 at the last step are presented in Fig 6.14. The macroscopic load-
stress curve and the contour of microscopic stress fields are displayed in the Figs 6.15
and 6.16 for each step. Fig 6.15 shows that the maximum stress is at (1/4𝐿𝑅, 1/2ℎ𝑓).
Additionally, Fig 6.16 illustrates that the maximum stress is also at (1/4𝐿𝑅, 1/2ℎ𝑓).
A comparison of the results at macroscopic and microscopic scale shows a signifi-

cant correlation between the scales as illustrated in Fig 6.17, where load-displacement
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6.2 – Fibre Reinforced Material Microbuckling

Initial state Step 5

Step 8 Step 12

Figure 6.10: Macroscopic displacement field 𝑢𝑧 for initial state and step 5, 8 and 12.

Figure 6.11: Load-displacement curves for 𝑢𝑧 at (𝑙/4,−ℎ/2) (left) and (3𝑙/4,ℎ/2) (right)
in a simply-supported beam (𝑙/ℎ = 5).

curves for the macroscopic displacement 𝑢𝑧 at (𝑙/4,−ℎ/2) and the microscopic dis-
placement 𝑢𝑧 at (𝐿𝑅/4,ℎ𝑓/2) are depicted on the same picture. The macroscopic load-
displacement curve for 𝑢𝑧 at (3𝑙/4,ℎ/2) and themicroscopic load-displacement curve for
𝑢𝑧 at (3𝐿𝑅/4,−ℎ𝑓/2) are also plotted out on the same picture. Additionally, as shown in
Fig 6.18, also load-stress curves for macroscopic stress 𝑆𝑥𝑥 and the microscopic stress
𝑆𝑥𝑥 are illustrated on the same picture. According to these curves, both the microscopic
and macroscopic scale present the same critical buckling load value. This result reveals
a synergistic response at both macro and micro scales.
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Figure 6.12: Load-stress curves for 𝑆𝑥𝑥 at (𝑙/4,ℎ/2) (left) and (𝑙/4,−ℎ/2) (right) in a
simply-supported beam (𝑙/ℎ = 5).

Figure 6.13: Contour plots of the displacement field 𝑢𝑧 and 𝑢𝑧 at (𝑙/4,−ℎ/2) and
(3𝑙/4,ℎ/2). Dimension in [m].

6.2.2 Imperfection Sensitivity Analysis
In this section, three factors are studied for the imperfection sensitivity: the wave-

length, the amplitude and the size of the RVE. The definitions of wavelength and am-
plitude are shown in Fig. 6.7.
Wavelength effect A post-buckling analysis is performed for three different values of
the wavelength: Λ1 = Λ0, Λ2 = 2Λ0, and Λ3 = 3Λ0, see Fig 6.19. It should be noted
that the geometric imperfections are all sinusoidal.
In the region where the bifurcation begins, the longer the wavelength, the sharper the
macroscopic load-displacement and load stress curves, see Fig. 6.20. This phenomenon
can be explained by the fact that a larger wavelength of the geometric imperfection
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6.2 – Fibre Reinforced Material Microbuckling

Figure 6.14: Contour plots of stress field 𝑆𝑥𝑥 and 𝑆𝑥𝑥 at (𝑙/4,ℎ/2) and (𝑙/4,−ℎ/2). Di-
mension in [Pa].

Figure 6.15: Macroscale axial stress variation versus the load parameter and RVE axial
stress contour plots at (𝑙/4,ℎ/2).

produces a smaller macroscopic disturbance. Intuitively, for curves with one cycle of
sinusoidal geometric imperfection, the curve with larger wavelengths is flatter. Dis-
placement curves for 𝑢𝑧 at (𝑙/4,−ℎ/2) are shown in Fig 6.20. The difference among the
results starts at 𝑢∗

𝑧 = 0.06. Similar results are found for the global variable 𝑆𝑥𝑧 as shown
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6 – Multi-scale Analysis of Beam Structures

Figure 6.16: Macro-scale axial stress variation versus the load parameter and RVE axial
stress contour plots at (𝑙/4,−ℎ/2).

Figure 6.17: Load-displacement curve for 𝑢𝑧 at (𝑙/4,−ℎ/2) and 𝑢𝑧 at (𝐿𝑅/4,ℎ𝑓/2) (left)
and load-displacement curve 𝑢𝑧 at (3𝑙/4,ℎ/2) and 𝑢𝑧 at (3𝐿𝑅/4,−ℎ𝑓/2) (right).

in Fig 6.21.
Amplitude effect Next, the amplitude of geometric imperfections is investigated. Fig. 6.22
shows the effect of different amplitude values on the axial stress 𝑆𝑥𝑥. A higher ampli-
tude value yields a higher critical load value. In the range of 𝑢∗ = 0 to 𝑢∗ = 0.017, the
three curves are coincident. The curve with amplitude 𝐴1 = 1.00𝐴0 has a critical buck-
ling value 𝑢∗

𝑐𝑟 = 0.0180, the curve with amplitude 𝐴2 = 1.05𝐴0 has a critical buckling
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6.2 – Fibre Reinforced Material Microbuckling

Figure 6.18: Load-stress curve for 𝑆𝑥𝑥 at (𝑙/4,ℎ/2) and 𝑆𝑥𝑥 at (𝐿𝑅/4,ℎ𝑓/2) (left) and
load-displacement curve 𝑆𝑥𝑥 at (𝑙/4,−ℎ/2) and 𝑆𝑥𝑥 at (𝐿𝑅/4,ℎ𝑓/2) (right).

Figure 6.19: Configuration of three RVEs for different imperfection wavelengths.

value 𝑢∗
𝑐𝑟 = 0.0186, and the curve with amplitude 𝐴3 = 1.25𝐴0 has a critical buckling

load of 𝑢∗
𝑐𝑟 = 0.0192. For shear stress 𝑆𝑥𝑧, Fig 6.23 presents the same tendency. The rea-

son for this result is that: for the same wavelength, a larger amplitude results in a larger
fibre/matrix volume ratio. The change in the volume ratio results in a stiffer material.
RVE size effect A key point of the homogenization method is to determine the size of
the RVE. A convergence test of macroscopic responses to determine the reasonable size
of the RVE is presented in the following.
Three kinds of element (1 × 1, 2 × 2, and 3 × 3) are employed as shown in Fig 6.24.
The displacement component 𝑢𝑧 and shear stress 𝑆𝑥𝑧 are shown in Fig 6.25 and 6.26,
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Figure 6.20: Load-displacement curves for 𝑢𝑧 at (𝑙/4,−ℎ/2) in a simply supported beam
(𝑙/ℎ = 5) with different microscale imperfection wavelengths.
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Figure 6.21: Load-stress curves for 𝑆𝑥𝑧 at (𝑙/2,0) for a simply supported beam (𝑙/ℎ = 5)
with different microscale imperfection wavelengths.

respectively.
It can be seen that these three curves share the same instability value. Meanwhile, It
is evident that the curve for the 3 × 3 RVEs is the sharpest one, and the curve of 1 × 1
RVE is the bluntest one. It was already discussed in Fig. 2.7 that when using periodic
boundary conditions, the RVE size influences convergence. In the range from 𝑢∗

𝑧 = 0 to
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Figure 6.22: Load-stress curves for 𝑆𝑥𝑥 at (𝑙/4,ℎ/2) in simply supported beams (𝑙/ℎ = 5)
with different microscale imperfection amplitudes.
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Figure 6.23: Load-stress curves for 𝑆𝑥𝑧 at (𝑙/2,0) in simply supported beams (𝑙/ℎ = 5)
with different microscale imperfection amplitudes.

𝑢∗
𝑧 = 0.01, three curves are coincident. In the non-linear response, the results of 2 × 2
RVEs and 3 × 3 RVEs tend to converge. Although the overall trend of the curve of 1 × 1
RVE is the same, the results of the bifurcation point and the post-buckling response are
significantly different.
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Figure 6.24: Considered RVEs.
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Figure 6.25: Load-displacement curves for 𝑢𝑧 at (𝑙/4,−ℎ/2) in simply supported beams
(𝑙/ℎ = 5) with different RVEs’ sizes.
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Figure 6.26: Load-stress curves for 𝑆𝑥𝑧 at (𝑙/2,0) in simply supported beams (𝑙/ℎ = 5)
with different RVEs’ sizes.

105



106



Chapter 7

Conclusions and Outlook

7.1 Conclusive Remarks
In this study, a macro-scale non-linear CUF-based beam model and a multi-scale

CUF-based beam model have been derived.
For the first time, a hierarchical nonlinear beam model based CUF and the advanced
nonlinear solver ANM are coupled. Thanks to CUF, several higher-order beam theo-
ries have been derived in a concise and unified form. The computational time has been
reduced by up to four times when employing NRM. This model has been employed
for the post-buckling and snap-through analyses of beam structures, and the corre-
sponding load-displacement and load-stress curves have been assessed. Results have
been compared with two-dimensional FEM solutions. It has been shown that, for the
considered cases, a quadratic through-the-thickness description ensures accurate dis-
placements and normal axial stress component. Higher expansion order is required to
accurately predict the shear stress component, especially for very high load levels. In
the considered post-buckling analysis, both high-order and low-order one-dimensional
CUF models have detected the bifurcation point accurately. However, accurate results
for the shear stress call for a higher-order model. In the snap-through analysis, a refined
beam theory (𝑁 = 5) is required for tracking the equilibrium path accurately, which
is also crucial for determining the initial state of the second stage. Meanwhile, the im-
portance of employing a hierarchical solution has been well shown for conveniently
choosing an appropriate approximation order of the cross-sectional displacement field
Then, a geometrically nonlinear CUF-based multi-scale beam model has been derived
by coupling the advanced CUF beam model and the nonlinear solver ANM under the
FE2 framework. It is the first known attempt of the extension application of nonlinear
CUF-based model to multi-scale problems. Under the framework of FE2, the introduc-
tion of one-dimensional CUF theory has accelerated the resolution of the multi-scale
problemwithout compromising accuracy. It is due to the following two reasons: first, in
general in a one-dimensional/beam model, the resulting computational cost is signifi-
cantly lower than that of a two-dimensional finite element model. Secondly, the number
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of microscopic problems is significantly reduced due to the reduction in the number of
corresponding RVEs at the Gauss points. Results are compared with reference solutions.
Compared to the 2D FE2 model, the number of degrees of freedom is reduced up to four
times. For the fibre-reinforced material case, the relation between the microscopic im-
perfection and macroscopic instability has been demonstrated thanks to the proposed
multiscale nested geometrically nonlinear model. Load-displacement and load-stress
curves have been gathered for both microscopic and macroscopic buckling, whose bi-
furcation points are coincident. Results show that the Multiscale-CUF with 𝑁 ≥ 4 and
the reference 2D FE2 compare well. The maximum error between the critical buckling
load from these two models is 2.94%. Following this analysis, three factors have been
identified for an imperfection sensitivity parametric analysis: imperfection wavelength,
imperfection amplitude and the size of RVE. For the wavelength, a higher value induces
sharper load-displacement and load-stress curves. The imperfection amplitude has a di-
rect correlation with the value of instability load. The RVE size affects the convergence
of nonlinear: 2 × 2 or 3 × 3 microstructural arrays for the RVE ensure a better conver-
gence.

7.2 Outlook for Future Research
Thecurrentwork lays the foundations for future research on advanced one-dimensional

models for multi-scale structural mechanics. Not only beam (1D), plate (2D) and shell
(2D) elements could also be derived in the multi-scale framework. Concerning further
developments inside the multi-scale modelling framework, several improvements can
be entailed. First, a second-order homogenisation theory can be employed to gener-
alise the proposed models. Secondly, the component-wise concept based on CUF can
be integrated into the presented framework. Finally, this model is limited to address
two-dimensional problems. It can be further extended to three-dimensional problems.
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