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Abstract 31 

Natural organic matter (NOM) raises major issues for drinking water treatment including undesirable taste 32 

and color, formation of carcinogenic disinfection by-products (DBPs), and promotion of microbial regrowth 33 

in the water distribution system. As such, mesoporous biochars have been tailored from pine-forestry by-34 

products for treating NOM and color causing compounds from drinking water sources, such as lakes. Herein, 35 

several tailored biochars are fabricated via two procedures: pre-pyrolysis/activation/post-pyrolysis and 36 

activation/post-pyrolysis processes, using NaOH and ZnCl2 activators to improve the surface chemistry and 37 

porous structure for higher NOM adsorption. The mesoporous biochars, pristine biochars, and pinecone 38 

biomass are characterized via several characterization analyses including Brunauer, Emmett and Teller 39 

surface area measurement (BET), thermogravimetric analysis (TGA), and scanning electron microscopy 40 

(SEM). Batch experiments are conducted to study the adsorption isotherm, kinetics and mechanism along 41 

with desorption. Characterization revealed effective characteristics of tailored biochars for NOM adsorption 42 

including mesoporous structure, remarkable surface area (up to 1470 m2/g), high thermal stability, and 43 

elevated carbon content. All the tailored biochars showed improved removal capacities for NOM and color 44 

compounds from real lake water samples compared with those of the pinecone biomass and pristine 45 

biochars. The most promising tailored biochar (herein named as TB-N-I) was developed by NaOH modification 46 

via pre- and post-pyrolysis processes. With the lowest optimized dosage (0.25 g/L), TB-N-I removed more 47 

than 80 % of both NOM and color from the lake water (COD: 13.4 and color: 53.65 mg/L), superior to the 48 

removal capacity of commercial powdered activated carbon (PAC). Acidic conditions significantly favored the 49 

adsorption, e.g., NOM removal by TB-N-I from the lake water  reached 97 % at pH 2. Nonlinear regression 50 

provided a good fit for Freundlich and Sips (r2= 0.988 and Δq=0.08) isotherms as well as pseudo-second-order 51 

kinetic models. This suggests the heterogeneous distribution of the adsorptive sites at the biochar surface 52 

and the multilayer nature of NOM adsorption. A desorption study revealed that more alkaline solutions 53 

resulted in higher NOM desorption (30 mM NaOH ˃ 3 mM NaOH ˃ distilled water), yielding regenerated 54 

adsorbents with high re-adsorption capacity. Liquid chromatograph–organic carbon detection (LC-OCD) was 55 

used to study the removal of different NOM size fractions, e.g., low molar mass (LMM) fraction of NOM, 56 

which are more hydrophilic and resistant to conventional treatments. Of significant interest, LC-OCD 57 

indicated that TB-N-I removed 20% more of the problematic LMM compared with that of PAC. Effective pore 58 

size distribution of tailored biochar (TB-N-I) for the adsorption of NOM fractions was indicated by BET analysis 59 

and was confirmed by LC-OCD. 60 

 61 

Keywords: Biochars; Modification; Mesoporosity; Adsorption; Natural organic matter; Removal mechanism 62 

  63 
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1. Introduction 64 

 65 

Biochars are being utilized for a wide range of applications, including environmental management such as 66 

remediation of soil, management of waste, and mitigation of climate change [1-3]. Thermal treatment of 67 

biomass via pyrolysis in a limited oxygen atmosphere results in biochar, bio-oil, and syngas [3, 4]. Biochar 68 

production from waste biomass is both economical and environmentally beneficial [1]. Owing to their porous 69 

structure, relatively high surface area, and enriched surface chemistry, there is a growing interest for biochars 70 

as sustainable media in engineering value-added materials [2]. They can be produced near the point of 71 

application and/or near biomass sources in both small-scale pyrolysis units and in large-scale integrated 72 

refinery facilities that are designed for simultaneous biochar and energy production.  73 

 74 

The biomass composition and production conditions can influence the yield and properties of the biochars 75 

[5]. Biochars are typically developed from abundant biomass sources such as wood. Low-temperature 76 

pyrolysis (400-500 °C) yields enriched porous biochars with low oxygen and hydrogen content [4]. Biochars 77 

developed at higher temperatures (>700 °C) provide elevated aromaticity, hydrophobicity, surface area, 78 

mesopores and micropores. These properties make them a high quality and eco-friendly alternative to, for 79 

instance, coal-based activated carbons for water purification [6]. Surface properties of biochars can be also 80 

manipulated through activation/modification [7]. Chemical activation uses chemicals to oxidize the surface 81 

and generate desired functional groups [7]. Enhanced oxygen-containing surface functional groups enable 82 

the possibility of specific binding (e.g., hydrogen bonding and π-π electron-donor–acceptor interactions) [8]. 83 

The hydrophobic surface of biochars results in adsorption affinity for hydrophobic organic compounds, 84 

including pharmaceuticals and natural organic matter (NOM) [4, 6].  85 

 86 

Agricultural and forestry by-products such as pinecones can be tailored into value-added materials, such as 87 

biochars, providing adsorptive properties for contamination remedies [5, 6, 8-15]. The pine family comprise 88 

economically important species in agriculture and forestry industries worldwide, especially in the Nordic 89 

countries. These species produce large quantities of pinecones as by-products annually. Pinecones are 90 

composed of imbricated woody scales, containing cellulose, hemicelluloses, and lignin. Availability and high 91 

lignocellulosic content make pinecone a suitable and cost-effective biomass for biochar production. 92 

Unmodified biochars however exhibit limited adsorption for anionic species [12]. The biochars can be further 93 

modified through chemical or physical processes to increase their adsorptive properties according to the 94 

target pollutant, the environmental condition, and the treatment goals [16]. Herein, we aim to tailor 95 

mesoporous biochars through chemical modification for the adsorption of NOM from lake water. Tailoring 96 

through chemical modification, e.g., alkali activation, can enhance the surface functionality and structure of 97 

biochars [7] for higher adsorption of our target pollutant, NOM, from lake water.  98 

 99 
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NOM in natural water sources negatively affects the drinking water treatment and the finished water quality. 100 

For instance, it causes taste and color problems, raises the coagulant and oxidant/disinfectant demand, acts 101 

as a precursor to disinfection by-products (DBPs), and promotes microbial regrowth in water distribution 102 

system [17, 18]. NOM is treated conventionally by chemical coagulation, or by adsorption onto activated 103 

carbon (AC) [19]. The adsorption depends on the characteristics of the NOM, the adsorbent and the water. 104 

For instance, molecular mass size and hydrophobicity of NOM control its adsorption. NOM consists of high 105 

molar mass (HMM) fraction such as humic compounds, easily removable by coagulation, and intermediate 106 

molar mass (IMM) compounds, more controllable by adsorption [17, 19]. However, of significant concern is 107 

the low molar mass (LMM) fraction of NOM such as tannic acids, which are more hydrophilic and resistant to 108 

common treatments. As NOM adsorption primarily takes place by pore filling mechanism, it is largely 109 

influenced by the relationship between the pore size distribution of the adsorbent and molecular size of NOM 110 

[17]. Mesopores (2-50 nm width) accompanied with sufficient amount of micropores (< 1 nm in width) can 111 

therefore provide high adsorption capacities for different fractions of NOM e.g. LMM [17, 19].  112 

 113 

Our objective is to tailor biochars with high content of mesopores accompanied with microspores and desired 114 

surface functional groups though chemical modification towards higher adsorption of NOM, especially the 115 

problematic LMM fraction, from lake water. The adsorbents are fabricated via two pathways involving one-116 

step pyrolysis or two-step pyrolysis. Sodium hydroxide, NaOH, and zinc chloride, ZnCl2, are used to modify 117 

the interfacial and structural properties of the pinecone-derived biochar for higher adsorption of NOM. 118 

However, adsorption studies are mainly performed under single-solute condition (synthetically made organic 119 

matter solutions) and are not evaluated for the treatment of natural water, e.g. lake water. It is important to 120 

scrutinize the removal performance of the developed adsorbents in representative water matrices as was 121 

done in this study. To study their structure and composition, the adsorbents are characterized via 122 

characterization methods such as Brunauer, Emmett and Teller (BET) specific surface area/porosity, 123 

thermogravimetric (TGA), and scanning electron microscopy (SEM). The tailored biochars are evaluated for 124 

removing NOM and color causing compounds from lake water through adsorption equilibrium, kinetics, and 125 

mechanism and are compared with a commercial coal-based powdered activated carbon (PAC). The 126 

adsorption of different NOM fractions, such as humic substances and LMM acids, by mesoporous biochars 127 

and PAC are also analyzed via liquid chromatograph–organic carbon detection (LC-OCD). 128 

2. Methodology 129 

2.1. Materials  130 

 131 

Pinecone biomass was obtained from Otaniemi campus of Aalto University, Finland, between September and 132 

November. The cones were washed repeatedly with tap and reverse osmosis water to remove impurities, 133 
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dried at 80°C for 24 h and crushed. The dried biomass was ground in a blender (11 basic Analytical mill, IKA) 134 

and sieved using 80-μm sieve (Retsch GmbH Germany). The powdered biomass was stored at room 135 

temperature in the dark and used for tailoring biochars. NaOH and ZnCl2 were purchased from Sigma Aldrich. 136 

A commercial coal-based powdered activated carbon (PAC) (Merck) was used for comparison. Sulphuric acid, 137 

potassium permanganate, potassium iodine, starch-indicator, and sodium thiosulfate (Sigma Aldrich) were 138 

used for the determination of chemical oxygen demand calibration curve.  139 

2.2. Fabrication of mesoporous biochars  140 

 141 

Four types of biochars were tailored via one-step and two-step pyrolysis involving chemical modification; see 142 

the illustration of the fabrication pathways as Figure 1 in [20]. In the pre-pyrolysis/activation/post-pyrolysis 143 

process (I), dried powdered biomass was first pyrolyzed at 300 °C for 15 min under nitrogen gas (1 L/min) in 144 

a laboratory-scale batch tube furnace (NBD-O1200, Nobody Material Science and Technology CO., LTD, 145 

China). The weight loss from the thermal treatment was measured; 66±1% yield was achieved. Secondly, the 146 

biochars were modified with NaOH and ZnCl2. Pristine biochars were mixed with chemical solutions (1/2 147 

weight ratio of biochar/activator) for 2 h, dried overnight at 105 °C, and thirdly heated for 2 h under nitrogen 148 

gas at 800 °C. In the activation/post-pyrolysis process (II), dried powdered biomass was first mixed with the 149 

chemical solutions (1/2 weight ratio of biomass/ activator) for 30 min followed by heating in an oven at 105 150 

°C for 24 h. After drying, it was pyrolyzed at 700 °C for 2 h under nitrogen gas (1 L/min). The products were 151 

rinsed with 0.1 M HCl and reverse osmosis water until neutral pH was reached and dried at 105 °C for 24 h. 152 

The dried biochars were finally ground, sieved using 80 μm sieve, and stored at room temperature in the 153 

dark for characterization and adsorption. The samples are referred to as tailored biochar (TB)-activator 154 

(NaOH: N or ZnCl2: Z)-method (II or I) e.g., TB-N-I. For comparison, pristine biochars were also produced via 155 

pyrolysis at 300 and 700 °C (referred as B-300 and B-700).  156 

2.3. Characterization of mesoporous biochars 157 

 158 

Brunauer, Emmett and Teller (BET) specific surface area and porosity analysis was conducted using Tristar II-159 

Micromeritics, USA, via the adsorption-desorption cycle of N2 gas at 77.350 K onto the external surface of 160 
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the materials. Scanning electron microscopy (SEM) was carried out on a ZEISS SIGMA VP (1.8-2.0 kV 161 

acceleration voltage) to explore the surface morphology. Energy dispersive X-ray (EDX) analysis was 162 

performed on a JEOL JSM-7500FA analytical field Emission scanning electron microscope (15 kV acceleration 163 

voltage, emission current of 10 μA). To study the thermal stability, we carried out thermogravimetric analyses 164 

(TGA) on TA instruments – TGA Q500 (USA) from 20 °C to 800 °C at a heating rate of 10 °C/min under N2 gas 165 

environment. A Nicolet 380 FT-IR infrared spectrometer was used for Fourier transform infrared 166 

spectroscopy (FTIR).  167 

2.4. Raw water samples 168 

 169 

Lake water samples were collected from Lake Pitkäjärvi in Espoo, Finland. Table 1 compiles the quality 170 

characteristic of the lake water.  171 

Table 1 172 

2.4.1. NOM and color measurement 173 

 174 

The concentration of NOM was estimated via UV absorbance measurement at 254 nm wavelength, using a 175 

UV-1201 Shimadzu-spectrophotometer. The samples were filtered before the measurement through 176 

Sartorius Minisart 0.45 μm filters. The absorbance was converted to concentration using the CODMn 177 

calibration curve, see Figure 2 in [20]. To measure CODMn, a known amount of potassium permanganate 178 

(Na2Sa2O3) was added to acidified lake water samples using 4 M sulfuric acid. The samples were boiled for 20 179 

minutes, where the oxidizing matter in the samples reduces part of the permanganate. The unreduced 180 

portion of permanganate was measured by iodometric titration method and the amount of used 181 

permanganate was used to calculate CODMn. The color of water samples was measured according to the SFS-182 

EN ISO 7887. Samples were filtered and the absorbance was measured at 410 nm wavelength.  183 

2.4.2. Liquid chromatograph – organic carbon detection (LC-OCD) measurement 184 

 185 

Liquid chromatograph–organic carbon detection (LC-OCD) quantifies the elution as a function of size and 186 

affinity of carbon from a Toyoperal HW 50 s column using a buffered carrier solution [21]. The method was 187 
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calibrated using Suwannee River humic and fulvic acid standards. UV254 absorbance and organic carbon 188 

were measured online and allowed quantifying the elution of DOC over time. UV254 absorbance was 189 

measured with a K200 detector by Knauer, organic carbon was measured by first decomposing it to carbon 190 

dioxide (CO2) in a Gräntzel-reactor and then measuring the CO2 with Ultramat 6 infrared detector by Siemens. 191 

FIFFIKUS software was used to separate the acquired chromatograph into different apparent size fractions, 192 

viz. biopolymers (molecular weight (MW) > 20 kDa), humic substances (MW ~ 1000 Da), building blocks (MW 193 

300-500 Da), low molecular weight acids (MW < 350 Da), and low molecular weight neutrals (MW < 350 Da). 194 

2.5. Adsorption  195 

 196 

Known amount of the adsorbent in 50 mL volume of lake water were used for the adsorption batch 197 

experiments on a shaker (150 rpm and room temperature). The experiments were carried out without pH 198 

adjustment, except for those studies where indicated. After the desired contact time, the solutions were 199 

filtrated through Sartorius Minisart 0.45μm filters for the final CODMn concentration measurement. The 200 

adsorbent dosage was optimized within 0.1–1 g/L range. The effect of pH was investigated through adjusting 201 

the solution pH at values 2, 4, 8, and 10 using HCl and NaOH. The kinetics were explored at varying time 202 

intervals between 1 min to 24 h. The batch experiments were conducted in two or three replicates. We 203 

employed the following equations to determine the removal percentage and adsorption capacity: 204 

Removal % =
(Ci−Ct)

Ci
× 100                                                                                                                                        (1) 205 

 206 

qt (mg g⁄ ) =
Ci−Ct

m
× V                                                                               (2) 207 

 208 

where Ci and Ct (mg/L) are the initial CODMn concentration and the concentration at time t, respectively, V (L) 209 

is solution volume, and m (g) is adsorbent mass. 210 

2.6. Desorption and re-adsorption  211 

 212 

For desorption and re-absorption batches, 0.25 g/L dosage of TB-N-I was used to treat the lake water without 213 

pH adjustment. After first adsorption, the spent adsorbent was collected via vacuum filtration and dried 214 

overnight at 40 °C. The kinetics of desorption was studied with three desorption solutions, deionized water, 215 
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3 mM NaOH, and 30 mM NaOH at several time intervals between 1 min to 24 h. The batch tests were 216 

conducted on a shaker at 150 rpm and at room temperature, using 50 mL desorption solution and 0.25 g/L 217 

spent adsorbent. After desorption, the adsorbent was collected and dried at 40 °C overnight to be used for 218 

re-adsorption in a similar condition as the first adsorption. Desorption is determined as follows: 219 

Desorption % =
Cdes

Ci−𝐶𝑎𝑑𝑠
× 100                                                                                                                                           (3) 220 

 221 

where Cads is the CODMn after first adsorption, and Cdes is the CODMn after desorption. 222 

2.7. Theoretical analyses  223 

 224 

The isotherms and kinetics of adsorption were analyzed via non-linear regression. We used Langmuir [22], 225 

Freundlich [23], and Sips [24] isotherm models and Lagergren’s pseudo-first order [25] and pseudo-second 226 

order [26] kinetic models (see Table 1 in [20] for the equations). Weber and Morris intra-particle diffusion 227 

model [27] was used to explore the diffusion mechanisms involved in NOM adsorption (see Table 1 in [20]). 228 

The coefficient of determination, r2, and normalized standard deviation, Δq, (see Table 1 in [20]) were used 229 

to find the best-fitting nonlinear model and to quantitatively compare the applicability of the models. 230 

3. Results and discussion 231 

3.1. Characteristics of the adsorbents  232 

3.1.1. Infrared spectroscopy 233 

 234 

The FT-IR spectra of the initial and tailored materials are given Figure 1a. The spectra of the pinecone and 235 

the pristine biochar showed several significant bands. The bands at 3400-3300 cm−1 correspond to O-H 236 

stretching, at 2920 cm-1 and 2870 cm-1 indicate asymmetric and symmetric C-H, at  1600 cm-1 are related to 237 

C=C stretching, at 1240 cm-1 are for C-O stretching, and at 1010 cm-1 indicate C-H out-of-plane bending  (e.g. 238 

aromatic structure of lignin) [15, 28]. No characteristic band was observed for the TBs, confirming the 239 

gasification and conversion to graphitic structure. For instance, the disappearance of O-H stretching vibration 240 

bands for all the tailored materials suggests the oxygen in the initial materials was removed during fabrication 241 

and phenolic-aromatic structures were cracked to leave carbon solids [28]. Similar results have been reported 242 

on pinewood biochar [15]. 243 
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Figure 1 244 

3.1.2.  Thermogravimetric and elemental analyses 245 

 246 

The mass variation of the adsorbent materials as a function of temperature (TGA) is shown in Figure 1b. TGA 247 

confirmed a high thermal stability of the tailored biochars. Three stages can be distinguished during the 248 

pyrolysis of lignocellulosic materials, also observed for the pinecone biomass in Figure 3a in the reference 249 

[20]. They include (I) dehydration below 150 °C, (II) primary pyrolysis between 200 to 480 °C with evolution 250 

of most gases and tars and the formation of the basic structure via decomposition of hemicellulose and 251 

cellulose, and (III) consolidation of the biochar structure at 500-800 °C with a small weight loss via 252 

devolatilization of residual char and lignin [5, 29]. The pristine biochar also went through a large mass loss 253 

between 300 °C and 500 °C. Compared with the biomass and pristine biochar, the tailored biochar showed 254 

high thermal stability.  The elemental analysis of the tailored biochar (TB-N-I) (see Figure 3c in [20]) confirmed 255 

that TB-N-I consists mainly of carbon (84 wt. %) and other elements including oxygen (1.6 wt. %) and nitrogen 256 

(12.7 wt. %) in minor contents.  257 

3.1.3. Surface area and pore size distribution 258 

 259 

Specific surface area and porosity are among the key properties of adsorptive materials. Table 2 compiles the 260 

BET surface area, pore volume, and pore size of the initial and tailored materials. The biomass and pristine 261 

biochar (B-300) have low specific surface areas, 0.491 m2/g and 0.583 m2/g, and pore volume, 0.001 and 262 

0.001 cm3/g, respectively. This may be due to the presence of hemicellulose, cellulose, and lignin in the tight 263 

structure of the initial materials. Since B-300 was pyrolyzed at relatively low temperature (300 °C), the 264 

lignocellulosic framework was partially degraded resulting negligible increase in surface area and pore 265 

volume. The biochars tailored through both fabrication pathways, TB-N-I and TB-Z-II, showed remarkable 266 

increase in specific surface area, 1470.3 and 1067.9 m2/g, and pore volume, 0.705 and 0.511 cm3/g, which 267 

were higher than those of commercial PAC, 819.475 m2/g and 0.325 cm3/g, respectively. Chemical activation 268 

enhances pore development and builds new pores, with elevated BET surface area upon increasing the post-269 

pyrolysis temperature [9].  270 
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Table 2 271 

 272 

The nitrogen gas adsorption–desorption isotherms results are depicted in Figure 1c. The shape of adsorption 273 

isotherm discloses qualitative information about the adsorption mechanism and the pore structure of the 274 

materials [10]. Adsorption isotherms of the biomass and pristine biochar show characteristics of type II 275 

isotherm, indicating adsorption onto macroporous materials with strong adsorbate-adsorbent interactions. 276 

Further, the isotherm curves remained unclosed at lower relative pressure region (see Figure 3b in [20]), 277 

resulted from capillary condensation phenomenon. Chemisorption at a certain number of pores with strong 278 

chemical potential may prevent desorption of the adsorbed nitrogen at low pressure [10]. The shape of the 279 

N2 adsorption-desorption isotherms along with low surface area and pore volume indicates that the biomass 280 

and the pristine biochar provide limited pores. The isotherms of TBs show a predominantly mesoporous 281 

structure of the developed carbons, resulting in a gradual increase in adsorption after the initial filling of the 282 

micropores, followed by an enhancement near saturation. They can be classified as a combination of type I 283 

and type IV isotherms with hysteresis loops appeared at higher relative pressure region, indicating the wide 284 

mesopore distribution in the materials [10, 13]. The development of highly mesoporous structure along with 285 

some degree of micropores for the tailored biochars is further confirmed by the pore size distributions shown 286 

in Figure 1d. 287 

Figure 1 288 

 289 

The pore size distribution of the tailored biochars mainly ranged within 2 nm to 10 nm, with the average pore 290 

diameters of 2.96 and 2.68 nm for TB-N-I and TB-Z-II, respectively, confirming mesoporous characteristics 291 

(Table 2). The porous materials can include three categories of micropores (< 2 nm), mesopores (2-50 nm) 292 

and macropores (> 50 nm). Both micro-pores and meso-pores contents are enhanced in the modified 293 

biochars compared to those of the biomass and the pristine biochar. The tailored biochars contain both 294 

mesopores and micropores, yet the volume of mesopores was larger than that of micropores. The TBs benefit 295 

from the mesoporous structure with higher surface area and narrower pore size distribution, providing high 296 

accessibility for higher molecular weight NOM fraction and wider transport channels to micropores for the 297 
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lower molecular weight components of NOM (LMM). The mesoporous structure of the TBs is confirmed by 298 

SEM images in Figure 1e, which show the presence of microspores and mesopores. Table 3 compares the 299 

characteristics of biochars developed from forestry and agricultural wastes for pollutant removal. 300 

Table 3 301 

3.2. Adsorption of NOM and color from lake water 302 

3.2.1. Dosage of adsorptive materials 303 

 304 

Figure 2 shows NOM and color removal upon dosing of the adsorbents. The biomass and two pristine biochars 305 

were unsuccessful in removing both NOM and color from the lake water samples (removal percentage < 25 306 

%). A remarkable improvement was observed in the adsorption of NOM and color by all tailored biochars: 307 

the removal increased with dosage. TB-N-I exhibited almost 300 % improvement in NOM adsorption from 308 

lake water compared with those of the biomass and pristine biochars. An increase from 0.2 to 1 g/L of TB-N-309 

I dosage improved the NOM removal from 76 % to 87 % and the color removal from 77 % to 93 %, 310 

respectively. Alkali activated biochars generally provided higher efficiency for removing target contaminants 311 

from the lake water. Compared with PAC, TB-N-I performed noticeably better, in lower doses e.g. 0.2 g/L TB-312 

N-I removed 76% NOM compared with 60 % removal by 0.2 g/L PCA. The adsorption of NOM molecules 313 

primarily occurs via physisorption e.g., pore filling and hydrophobic attraction through π-π electron donor-314 

acceptor [1], which are promoted by improved surface and pore characteristics of our tailored biochars 315 

(Table 2). Higher NOM removal yields from both higher surface area and mesoporosity and the larger amount 316 

of hydroxyl groups generated by alkali activation [7].  317 

Figure 2 318 

 319 

TB-N-I provided the highest adsorption percentage (80 %) and capacity (36 mg/g) with the lowest optimized 320 

dose (0.25 g/L) that were superior to those obtained by PAC (75%; 27 mg/g; 0.3 g/L). The optimized adsorbent 321 

dosage is illustrated in Figure 4a in reference [20]. Furthermore,  Figure 2c shows the effect of concentration 322 

(dilutions of lake water) on NOM removal by 0.25 g/L TB-N-I at three contact times, viz. 0.5 min, 30 min, and 323 

1440 min. The TB-N-I was able to effectively remove NOM from lake water across NOM concentrations. For 324 
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instance, after 1440 min of contact time, 72 % (9.97 mg/g) and 83 % (2.63 mg/g) of NOM were removed from 325 

10 and 2.5 mg/L initial concentrations, respectively. 326 

3.2.2. Water pH 327 

 328 

The characteristics of the pollutant, the adsorbent and the water matrix define the interface chemistry [30-329 

32]. The pore size distribution plays a key role in NOM uptake, yet electrostatic attraction serves as the 330 

secondary controlling factor [17]. NOM and color adsorption from the lake water were examined by varying 331 

pH in the 2-10 range. As shown in Figure 3, the removal of both NOM and color by the engineered adsorbents 332 

generally increased upon decreasing pH. The highest removal was achieved by TB-N-I with 97% NOM and 333 

97% color removal at pH 2 while these amounts deceased to 73% NOM and 70% color removal at pH 10. A 334 

lower pH-dependency was observed for the adsorption of NOM onto TB-N-I compared with that of PAC. A 335 

higher pH-sensitivity was observed for the color adsorption compared with NOM adsorption, which can be 336 

an indicative for the ionic nature of color causing compounds in lake water (Figure 3). These are promising 337 

results in practical perspective, indicating the potential of our tailored biochars for effective NOM removal in 338 

a wide range of pH (with or without pH adjustment). 339 

Figure 3 340 

 341 

The solution pH regulates the protonation and deprotonation of both NOM fractions and biochars. While at 342 

lower pH, the attraction between protonated surface and the dissociated carboxylic group (pKa ~ 3) accounts 343 

for the adsorption of humic substances, at relatively higher pH the interaction between adsorbent and 344 

neutral phenolic group (pKa ~ 9) dominates [33]. The surface of the tailored biochars shows an amphoteric 345 

character. The point of zero charge (pHPZC) for activated carbons and biochars has been reported around 7 to 346 

8.5 [34, 35], which is consistent with the pH shift observed during our pH study (see Figure 4b in [20]). The 347 

surface is positively charged at pH 2, partly due to the donor/acceptor interactions between the char 348 

structure and the hydronium ions [35]. As there is a lower repulsion between NOM molecules adsorbed on 349 

the surface and in the solution, the humic substances can pack closely on the surface. A declining adsorption 350 

upon increasing pH suggests the electrostatic attraction being superior to the hydrogen bonding mechanism 351 
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[35]. Herein, the decreasing adsorption from pH 2 to 6 is caused by the progressively deprotonated surface 352 

towards becoming uncharged, lowering the electrostatic interactions. As pH increases from 6 to 10 (Figure 353 

3), the surface protonation is reduced and the hydrogen bonding become gradually dominant. Furthermore, 354 

because of their relatively low charged character and physical intermolecular interactions e.g., Van der Waals 355 

forces, humic substances aggregates at lower pH values, yielding a higher thickness and adsorbed NOM mass. 356 

By raising pH, the charge density on the humic macromolecules increases due to the ionization of their acidic 357 

groups, which leads to intra- and intermolecular electrostatic repulsion. Consequently, the NOM 358 

macromolecules gradually become non-aggregated, causing a thinner NOM layer thickness and lower 359 

adsorbed mass [36].  360 

3.2.3. Kinetics 361 

 362 

Figure 4 shows NOM and color removal by the TBs at different time intervals. The adsorption proceeds in 363 

two stages: a rapid uptake of the molecules within first 60 min, with 74.3 % and 59 % NOM removals by TB-364 

N-I and PAC, respectively. A slower stage appears afterwards until the equilibrium is reached within 360 min, 365 

corresponding to 80.8 % removal by TB-N-I and 71.2 % removal by PAC. Similarly, color removal increased 366 

with contact time with the TBs. 367 

Figure 4 368 

 369 

When comparing the pseudo kinetic models, the experimental kinetic data showed a better fit to pseudo-370 

second-order model (according to r2 and Δq values in Table 4). In nonlinear regression, a high value for the 371 

determination coefficient (r2) together with a small value for normalized standard deviation (Δq) suggest 372 

good fitting of a model to experimental data [30, 37]. For all our studied cases, pseudo-second-order 373 

provided higher r2 values and smaller Δq values (e.g. r2= 0.814 and Δq=0.124 for TB-N-I) compared with those 374 

of pseudo-first-order model (e.g., r2= 0.667 and Δq=0.161 for TB-N-I). 375 

 376 

The diffusion mechanisms of adsorption were studied by intra-particle diffusion model. As depicted in Figure 377 

5a, the graphs of qt versus t1/2 are multi-linear including at least two linear stages. Adsorption proceeds in 378 

four consecutive steps [38] including film diffusion through the boundary layer to the external surface and 379 

the intraparticle diffusion (pore and surface diffusions) into the interior of the adsorbent. The total rate of 380 
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adsorption is generally determined by film and/or intraparticle diffusions. The molecule transfer within the 381 

interior of the adsorbent normally occurs by pore and surface diffusions, yet their magnitudes are hardly 382 

determined. Thus, only a general intraparticle diffusion mechanism is assumed as predominant [38]. The 383 

multi-linearity of Figure 5a and C values in Table 4 suggest that the intraparticle diffusion is one of the stages 384 

involved in the NOM adsorption [30]. Film diffusion is the rate controlling stage in the initial NOM adsorption 385 

onto the exterior surface, afterwards proceeding by intra-particle diffusion into the pores.  386 

Table 4 387 

3.2.4. Isotherm 388 

 389 

Adsorption isotherms determine the distribution of NOM molecules between the surface and solution at 390 

equilibrium. NOM adsorption isotherms are shown in Figure 5b. The adsorption increases sharply with 391 

increasing NOM equilibrium concentration, which is indicative of numerous readily accessible adsorption 392 

sites. Moreover, higher NOM adsorption is observed for TB-N-I compared with that of PAC. 393 

Figure 5 394 

 395 

The equilibrium data are modeled by nonlinear Langmuir, Freundlich, and Sips isotherms. Freundlich and Sips 396 

isotherms described the adsorption equilibrium data slightly better in terms of giving higher values for r2 and 397 

lower values for Δq (Table 5). This suggests the heterogeneous distribution of the available active sites at the 398 

solid surface and the multilayer nature of adsorption. The Sips isotherm relates systems where one adsorbed 399 

molecule can get involved with more than one adsorptive site [30, 37]. 400 

Table 5 401 

3.2.5. Removal mechanism 402 

 403 

Characterization of NOM gives important information on the quality of the raw and treated water along with 404 

the process performance. NOM in water can be characterized by e.g., degree of aromaticity, amino acid 405 

content, and molar mass [18]. NOM fractions in both lake water and treated water samples were 406 

characterized by LC-OCD analysis and the results are given in Table 6 and Figure 6.  407 

Table 6 408 
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 409 

LC-OCD detected different NOM fractions, such as HMM humic substances and LMM organic acids. LC-OCD 410 

results in Table 6 show that both TB-N-I and PAC, have effectively removed humic substances (HS) and 411 

building blocks: 74.0% and 74.0% removals for TB-N-I and 59.8% and 68.9% for PAC, respectively. 412 

Biopolymers were not retained as well; PAC was able to remove only 24.3 % while TB-N-I retained 61.1%. As 413 

NOM adsorption primarily takes place in mesopores and large micropores (1-2 nm width) [39, 40], these 414 

results again suggest that TB-N-I has better range in pore size (consistent with the BET results in Table 2). 415 

DOC uptake from lake water (Table 1) for PAC was approximately 81% of that obtained by TB-N-I. Table 6 416 

also presents the average molar mass (MM) of HS, which increases from raw water sample to water samples 417 

treated by PAC and TB-N-I, respectively. Accretion in average MM indicates that IMM and LMM compounds 418 

are removed more effectively than HMM compounds. Consequently, TB-N-I is more efficient in removing 419 

small size HS compared with PAC. These results confirm that the adsorbability of NOM increases with 420 

decreasing molecular size, as suggested by Velten et al. [17] (i.e. biopolymers < HS < building blocks < LMM 421 

compounds). With LMM compounds, however, there is a clear difference between LMM neutrals and LMM 422 

acids. LMM neutrals, which are weakly or uncharged hydrophilic or slightly hydrophobic (“amphiphilic”) 423 

compounds, are retained well by both adsorbents (77.7% and 58.3% for TB-N-I and PAC, respectively). On 424 

the other hand, the concentration of LMM acids, fraction containing all aliphatic organic acids, increases with 425 

both PAC and TB-N-I treatment. As NOM with MM < 500 mg/l produces significant amount of disinfection 426 

by-products [41, 42], their efficient removal is desirable. In this study, TB-N-I has removed 20% more LMM 427 

NOM, including building blocks, LMM neutrals, and LMM acids, compared to PAC. 428 

Figure 6 429 

 430 

Chromatograms eluted for organic carbon (OC) and UV detection from LC-OCD analyses are shown in Figure 431 

6 for raw and treated water samples with TB-N-I and PAC. The chromatogram for OC exhibits a peak for 432 

biopolymers followed by large peak for humic substances and building blocks of humic substances. LMM 433 

organics include both LMM acids and LMM humics, latter ones are later subtracted. Compared to the 434 

chromatogram obtained with OC detection, that obtained with UV detection shows that TB-N-I treatment 435 
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has retained more UV absorbing compounds than total NOM removal. Relative signal strength for raw water 436 

is higher for UV compared to OC, while it is lower for PAC effluents. 437 

 438 

The effective adsorption of NOM by our mesoporous biochars is mainly owing to the high surface area, meso-439 

porosity, and large hydroxyl group contents generated by alkali activation. Our high temperature derived 440 

biochars also provide high surface aromaticity for a higher NOM sorption. Nevertheless, the nature and 441 

functionality of the target organic compounds also affect their affinity for adsorption onto the TBs. The 442 

mechanisms involved in NOM adsorption are explored in terms of multicomponent adsorption of its different 443 

fractions. While polar fraction is removed by hydrogen bonding with the surface functional groups of the TBs, 444 

non-polar fraction is attracted through hydrophobicity [1]. Furthermore, depending to the water chemistry, 445 

the amphoteric surface of TBs gets positively or negatively charged causing electrostatic forces for charged 446 

organic compounds. Aromatic π-systems in biochars provide high content of electron-withdrawing functional 447 

groups, acting as π-acceptors for electron donors [1]. Both electron -rich and -poor functional groups are 448 

present in high temperature derived biochars, enabling interactions with both electron donors and electron 449 

accepters. At acidic environment, the π–π electron donor–acceptor interactions between π-electron -rich 450 

surface and π-electron deficient organic compounds take place. At alkaline medium, adsorption is involved 451 

with proton exchange with water and formation of hydrogen bonds between the organic compounds and a 452 

surface carboxylate or phenolate, classified as a negative charge-assisted hydrogen-bond [43].  453 

 454 

Figure 7 illustrate the dominant mechanisms contributing for the adsorption of NOM, including pore filling, 455 

π–π interactions, polar/electrostatic interactions, and hydrogen-bonding [1, 44]. However, the relative 456 

contribution of these mechanisms to total adsorption is under debate. The more hydrophobic humic 457 

substances attach to the mostly π-rich adsorptive sites so that hydrophobic interactions, e.g. π–π 458 

interactions, contribute for the higher adsorption. However, the adsorption of hydrophilic LMM, e.g. tannic 459 

acid, is accompanied with their smaller molecular size and easier reach to the inner meso- and micro-pores. 460 

The relatively π-poor LMM fraction contain hydrophilic functional groups, e.g., digallic acid, enabling a 461 

monolayer adsorption. Contrarily, the π-rich humic macromolecules with structural benzene rings can pile 462 
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up at the preoccupied adsorptive surface with humic compounds [4]. Nevertheless, diverse polar functional 463 

groups on the structure of these compounds increase the adsorption affinity via hydrogen bonds and polar 464 

interactions with the engineered surface. Thus, there is more multi-layer adsorption onto mesoporous TB-N-465 

I than microporous PAC. In summary, higher adsorption of NOM onto TB-N-I originates from the presence of 466 

more adsorptive sites through meso-porosity, high aromatic surface area, and alkali-generated hydroxyl 467 

groups, resulting in the higher adsorption affinity of LMM NOM than those provided by the microporous PAC. 468 

Figure 7 469 

3.3. Desorption–re-adsorption  470 

 471 

To study the chemical regeneration potential, the desorption process on the spent tailored biochars was 472 

performed in three regeneration systems, e.g. distilled water, 3 mM NaOH and 30 mM NaOH (see Figure 5 in 473 

[20]). The desorbed NOM concentrations at several time intervals were determined. The desorption 474 

increased at higher alkaline medium as 30 mM NaOH ˃ 3 mM NaOH ˃ distilled water. It was also observed 475 

that desorption increases upon increasing time: up to 62 % desorption was achieved within 3 h, afterwards 476 

gradually raised up to 70 % within 24 h. These results indicate the adsorption of NOM onto TB-N-I is mostly 477 

reversible and the spent adsorbents show high capacity for regeneration. The second cycle of NOM 478 

adsorption on regenerated TB-N-I was performed at different time intervals. It was observed that re-479 

adsorption increased by time (see Figure 5b in [20]). The adsorption capacity of virgin TB-N-I within 3 h of 480 

contact time was around 12.5 mg/g, while NOM adsorption on the regenerated TB-N-I amounted 13.8 mg 481 

/g. The regenerated TB-N-I possessed a high adsorption capacity and hence could be utilized repeatedly for 482 

NOM adsorption. 483 

4. Conclusions 484 

 485 

Natural organic matter (NOM) in drinking water treatment serves as precursors to disinfection by-products 486 

(DBPs) and promotes microbial regrowth in the water distribution system. Renewable pinecone biomass has 487 

been used to tailor mesoporous biochars for removing NOM from lake water. The adsorbents were fabricated 488 

via pre-pyrolysis/activation/post-pyrolysis and activation/post-pyrolysis processes, using chemical activators 489 
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to enhance the surface chemistry and porous structure for a higher NOM uptake. Characterization analyses 490 

e.g. BET, SEM, EDX, FTIR, and TGA revealed high thermal stability, mesoporous structure, remarkable surface 491 

area (up to 1470 m2/g), elevated carbon content and surface functionality of the engineered products. Our 492 

tailored biochars showed superior removal capacities for NOM and color from lake water compared with 493 

those of the biomass and pristine biochars. The most promising tailored biochar (TB-N-I) was prepared via 494 

NaOH activation accompanied with pre- and post-pyrolysis. With lowest 0.25 g/L dosage, TB-N-I removed 495 

more than 80 % of both NOM and color, a superior removal capacity compared to that of commercial 496 

activated carbon (PAC). Effective NOM and color removals were achieved under a wide pH-range, e.g. TB-N-497 

I removed 97 % of NOM at pH 2. Nonlinear regression showed good fits for Freundlich and Sips isotherm and 498 

pseudo-second-order kinetic models with the experimental data. Higher alkaline mediums (30 mM NaOH ˃ 499 

3 mM NaOH ˃ distilled water) provided higher desorption resulting in regenerated adsorbents with large re-500 

adsorption capacities. Liquid chromatograph–organic carbon detection (LC-OCD) detected different NOM 501 

fraction in the lake water and was used for enlightening the mechanisms involved in NOM adsorption. LC-502 

OCD results suggested that TB-N-I was more effective in removing the problematic low molar mass (LMM) 503 

compounds compared to PAC. In summary, the experimental results and theoretical analyses confirm the 504 

high potential for the applicability of our tailored biochars for NOM treatment.   505 
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 679 
 680 

Table 1.  Characteristics of the lake water. 681 

Parameter Raw Treated with TB-N-I 

pH 7.82 7.19 

Conductivity [mS/cm] 0.206 0.224 

Turbidity [FNU] 8.50 4.52 

Color [mg/l Pt] 53.65 10.68 

CODMn 13.4 4.38 

NPOC 16.51 5.536 

Total nitrogen [mg/l N] 4.2 1.49 

Total phosphorus [µg/l P] 151 104 
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 716 
 717 

Table 2. BET analysis values. 718 

Materials  

BET surface area 

 [m2/g] 

Pore volume 

 [cm3/g] 

Pore size 

 [nm] 

Biomass 0.491 0.001 9.262 

B-300 0.583 0.001 7.400 

TB-N-I 1470.266 0.705 2.959 

TB-Z-II 1067.902 0.511 2.681 

PAC 819.475 0.325 4.291 

Note: Adsorption cumulative isotherms were used to determine pore 
volume and pore size distribution via the Barret-Joyner-Halender (BJH) 
methodology. 
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 757 

Table 3. Engineered materials developed from forestry and agricultural wastes for pollutant removal. 758 
Adsorptive material Initial 

material 
Surface area 
(m2/g) 

Pore volume 
(cm3/g) 

Pollutant Sorption 
(mg/g) 

Ref. 

Acid/alkali-
modified biochars 

rice-husk 46.8, 117.8 0.033, 0.073  tetracycline 58.8 [11] 

MgO-impregnated 
biochar 

sugarcane 
crop residue 

40.6-218.9 0.37-0.06 phosphate, 
ammonium 
humate 

398 
22 
247 

[12] 

ZnCl2- activated 
biochar 

biogas 
residue 

516.67 0.24 arsenite 27.67 [13] 

Biochar wood and 
sludge 

400 - sulfamethoxazole 
antibiotic 

- [6] 

Biochar 
microparticles 

pig manure - - methylene blue  25 [14] 

Activated Biochar pinewood 852.95 - chlortetracycline 208.3 [15] 

Tailored 
mesoporous 
biochar 

pinecone 1470 0.705 NOM 36 this work 
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Table 4. Calculated kinetic parameters for the adsorption of NOM. 786 

 
Material 

 
qe(exp) 

Pseudo-first-order Pseudo-second-order  
 

Intraparticle diffusion 

qe(cal)  k1  r2 Δq qe(cal)  k2 r2 Δq      kip C 

Nonlinear  Linear 

TB-N-I 38.15 33.16 0.629 0.667 0.161 34.85 0.023 0.814 0.124  0.411 25.65 
TB-N-II 18.16 14.13 0.817 0.588 0.182 14.71 0.080 0.655 0.153  0.183 11.04 
TB-Z-II 14.45 11.76 0.092 0.655 1.333 12.24 0.013 0.753 0.684  0.253 6.06 
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Table 5. Adsorption isotherm parameters for the adsorption of NOM calculated via nonlinear regression. 828 

Model Material Parameter 

Langmuir qL (mg/g) KL
 (L/mg) r2 Δq 

 TB-N-I 180.24 0.064 0.953 0.373 

PAC 133.24 0.072 0.967 0.184 

Freundlich KF (mg/g)/(mg/L)1/n 1/n r2 Δq 

 TB-N-I 9.446 0.985 0.984 0.081 

PAC 9.763 0.795 0.965 0.189 

Sips qS (mg/g) KS (L/mg)ns nS r2 Δq 

 TB-N-I 143.97 0.058 1.330 0.988 0.080 

PAC 127.99 0.075 1.012 0.967 0.103 
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Table 6. Average results and standard deviation of LC-OCD analysis for raw lake water and PAC and TB-N-I effluents. 865 
MM denotes molar mass. 866 

Sample 
Chromato- 
graphic DOC 
(µg/l) 

Bio- 
polymers 
(µg/l) 

Humic 
Substances 
(HS) (µg/l) 

MM of HS  
 
(g/mol) 

Building 
Blocks 
(µg/l) 

Low MM 
Neutrals 
(µg/l) 

Low MM 
Acids 
(µg/l) 

Raw water 10169 246 6921 534 1495 1450 57 
PAC 4148 ± 19.3 187 ± 3.0 2784 ± 31.3 572 ± 13 465 ± 19.9 605 ± 12.3 106 ±15.3 
TB-N-I 2732 ± 69.9 96 ± 0.8 1813 ± 53.5 656 ± 42.0 388 ± 74.4 324 ± 36.4 111 ± 13.3 
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Figure content: 908 
 909 
Figure 1. FTIR spectra (a) and TGA thermograms (b) of the tailored and initial materials. Nitrogen adsorption-desorption 910 
isotherms (c), pore size distribution (d), and SEM images of TB-N-I (e). 911 
Figure 2. NOM (a) and color (b) removal from lake water by varying adsorbent dosage after 24 h contact time. (c) NOM 912 
removal at different dilutions by 0.25 g/L TB-N-I at 0.5, 30, and 1440 min contact times - Experimental condition: room 913 
temperature; natural pH. 914 
Figure 3. Effect of pH on NOM (a) and color (b) removals from lake water by the tailored and initial materials - 915 
Experimental condition: optimized adsorbent dosage; 24 h contact time; room temperature. 916 
Figure 4. Effect of contact time on NOM (a) and color (b) removals from lake water by the tailored and initial materials 917 
- Experimental condition: optimized adsorbent dosage; natural pH; room temperature. 918 
Figure 5. a) Intra-particle diffusion plots for NOM adsorption onto tailored biochars. b) Equilibrium experimental 919 
(markers) and theoretical data (lines) plotted via non-linear regression for NOM adsorption onto TB-N-I and PAC. 920 
Figure 6. LC-OCD chromatograms obtained with organic carbon detection (a) and UV detection (b) for influent and 921 
effluent samples of PAC and TB-N-I. 922 
Figure 7. Schematic illustration of key mechanisms involved in NOM adsorption from lake water by tailored mesoporous 923 
biochars. 924 
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Figure 1. FTIR spectra (a) and TGA thermograms (b) of the tailored and initial materials. Nitrogen adsorption-961 
desorption isotherms (c), pore size distribution (d), and SEM images of TB-N-I (e). 962 
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Figure 2. NOM (a) and color (b) removal from lake water by varying adsorbent dosage after 24 h contact time. (c) 972 
NOM removal at different dilutions by 0.25 g/L TB-N-I at 0.5, 30, and 1440 min contact times - Experimental condition: 973 
room temperature; natural pH.  974 
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Figure 3. Effect of pH on NOM (a) and color (b) removals from lake water by the tailored and initial materials - 984 
Experimental condition: optimized adsorbent dosage; 24 h contact time; room temperature. 985 
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 1011 

Figure 4. Effect of contact time on NOM (a) and color (b) removals from lake water by the tailored and initial materials 1012 
- Experimental condition: optimized adsorbent dosage; natural pH; room temperature. 1013 
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  1037 
Figure 5. a) Intra-particle diffusion plots for NOM adsorption onto tailored biochars. b) Equilibrium experimental 1038 
(markers) and theoretical data (lines) plotted via non-linear regression for NOM adsorption onto TB-N-I and PAC.  1039 
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Figure 6. LC-OCD chromatograms obtained with organic carbon detection (a) and UV detection (b) for influent and 1060 
effluent samples of PAC and TB-N-I. 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 



35 
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Figure 7. Schematic illustration of key mechanisms involved in NOM adsorption from lake water by tailored mesoporous 1077 
biochars. 1078 
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