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Abstract This paper presents explicit expressions of the linear and geometric stiffness matrix, as well as the 

mass matrix and vector of equivalent nodal forces for a simple planar beam finite element based on the 

Refined Zigzag Theory. After a brief review of the theory, the matrices are derived via Hamilton’s principle and 

special anisoparametric (inter-dependent) shape functions. The C0-continuous element shows remarkable 

accuracy in the analysis of composite laminated or sandwich beams and for particular structures with partial 

interaction of two or more sub-components with interlayer slip. 

 

Introduction 

The high stiffness-to-weight and strength-to-weight ratio, together with the tailoring freedom, has led 

to a widespread adoption of composite materials, especially in the form of multi-layered structures [1]. 

The field of application ranges from aircraft to automotive components and from naval to civil 

constructions. In the civil engineering field, there exist many multi-part structural elements with shear 

compliant connections that can also be modelled as a multi-layered construction. 

The high transverse-shear deformability of composite materials and the intrinsic through-the-thickness 

heterogeneity of multi-layered structures make a challenging task to accurately evaluate their 

mechanical behavior. Classical equivalent single layer theories (as the Classical Lamination Plate 
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Theory and the First-order Shear Deformation Theory) are easy to implement but, due to their 

excessively simplified kinematic assumptions, not always accurate (especially for thick and/or 

heterogeneous laminates) [2]. On the other hand, layerwise approaches (or even high-fidelity, three-

dimensional finite element models based on commercial codes) provide excellent predictions but are 

computationally expensive [3,4]. 

An interesting compromise between accuracy and computational cost can be achieved using the so-

called zigzag theories and the global-local theories [5-7]. Focusing on the first group we mention the 

pioneering works by Di Sciuva [8,9] and Cho [10] to the very last years [11], a large number of zigzag 

theories have been presented. A recently proposed approach is the Refined Zigzag Theory (RZT) for 

both beam [12] and plate structures [13]. At the cost of very few additional kinematic variables (one 

for the beam case and two for the plate case), RZT is able to model the normal distortion that is typical 

of laminated structures and to provide accurate global and local response predictions for isotropic, 

laminated composite, sandwich and functionally graded structures [14]. Several beam, plate and shell 

finite elements based on RZT have been proposed [15-20] with the aim of demonstrating the accuracy 

of the approach and the possibility to include RZT finite elements into commercial codes. Due to the 

kinematic assumptions, only C0-continuous shape functions are in fact required. 

The implementation of finite elements into FEM commercial codes can be made easier if explicit 

expressions of the relevant matrices are available. Kosmatka derived the explicit formulas for the 

bending and transverse shear stiffness, incremental (or geometric) stiffness, mass and equivalent nodal 

force matrices for a two-node beam element based on the Timoshenko Beam Theory (TBT) [21]. 

Since the adopted shape functions are the exact solutions of the static equilibrium equations of TBT 

(when no distributed loads are present), the “exact” stiffness matrix is obtained in agreement with the 

results by Przemieniecki [22]. Similarly, Reddy has presented the flexural stiffness matrix and nodal 

forces vector for a beam element based on his third-order theory [23]. Tessler and Spiridigliozzi have 

developed a hierarchy of curved beam finite elements with anisoparametric (or interdependent) 

polynomial shape functions for the Timoshenko/Marguerre shallow beam model [24]. Explicit 

expressions for the stiffness and mass matrices are provided. 

The scope of this work is to present, for the first time, explicit expressions for the linear and geometric 

stiffness as well as the mass matrices of a simple beam finite element based on the Refined Zigzag 

Theory and to demonstrate again the high performance quality of this approach. The outline of the 

paper is as follows. In Section 2 the kinematic assumptions of RZT for beams will be briefly reviewed 

in order to set the framework for the finite element formulation. Section 3 presents the derivation of 

the beam finite element equations of motion via the Hamilton’s principle and appropriate shape 

functions. Explicit expressions for the key matrices (linear and geometric stiffness, mass and 

equivalent nodal forces) are obtained. Section 4 provides an assessment of the modelling capabilities 

of the RZT beam finite element for the stability (buckling loads) and dynamic analysis (natural 

frequencies) of multilayered and sandwich structures. 
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Refined Zigzag Theory (RZT) 

In this section, the basic assumptions of the RZT for planar beams in a (𝑥, 𝑧) plane (𝑥 is the beam 

axial coordinate, 𝑧 is the thickness coordinate) are briefly reviewed. The key idea is to enrich the 

displacement field of the Timoshenko Beam Theory (with 3 kinematic variables, namely the uniform 

axial displacement, 𝑢(𝑥), the deflection, 𝑤(𝑥), and the bending rotation,  (𝑥)). In particular, the axial 

displacement presents an additional contribution, 𝜙(𝑘)(𝑧). 𝜓(𝑥), which models the cross-sectional 

distortion typical of multilayered beams.  𝜙(𝑘)(𝑧) is the zigzag function, piecewise continuous along 

the thickness and depending on the layer sequence and the transverse shear moduli, 𝐺𝑥𝑧(𝑘). 𝜓(𝑥) is the 

zigzag rotation and measures the amplitude of the zigzag contribution to the axial displacement. For 

further details in the derivation of 𝜙(𝑘), refer to [12]. Figure 1 shows the adopted notation for the lay-

up and for the zigzag function in the case of a three-layer beam. Each layer has thickness ℎ(𝑘) (with 

the coordinate 𝑧 ranging from 𝑧𝑘−1 to 𝑧𝑘) and can exhibit a width 𝑏(𝑘). The total thickness is ℎ =∑ ℎ(𝑘)𝑁𝑘=1 , where N is the total number of physical layers. The zigzag function 𝜙(𝑘)(𝑧) can be defined 

in each layer in terms of its bottom and top values, 𝜙𝑘−1 = 𝜙(𝑘)(𝑧𝑘−1)  and 𝜙𝑘 = 𝜙(𝑘)(𝑧𝑘), 
respectively. The zigzag function vanishes on the bottom and top laminate surfaces [12], 𝜙0 =𝜙(1)(𝑧0) = 𝜙(1)(−ℎ/2) = 0 and 𝜙𝑁 = 𝜙(𝑁)(𝑧𝑁) = 𝜙(𝑁)(+ℎ/2) = 0 (see Figure 1). 

The RZT defines the displacement field for the kth layer as follows 

 𝑢(𝑘)(𝑥, 𝑧) = 𝑢(𝑥) + 𝑧.  (𝑥) + 𝜙(𝑘)(𝑧). 𝜓(𝑥)       (1a) 𝑤(𝑘)(𝑥, 𝑧) = 𝑤(𝑥)          (1b) 

 

The corresponding strains from linear elasticity theory yield 

 

𝜀𝑥(𝑘)(𝑥, 𝑧) = 𝜕𝑢(𝑘)𝜕𝑥 = 𝑢,𝑥(𝑘) = 𝑢,𝑥 + 𝑧. 𝜃,𝑥 + 𝜙(𝑘)𝜓,𝑥 = [1, 𝑧, 𝜙(𝑘)] {𝑢,𝑥𝜃,𝑥𝜓,𝑥} = 𝑺𝑥 . �̃�𝑥  (2) 

𝛾𝑥𝑧(𝑘)(𝑥, 𝑧) = 𝑤,𝑥(𝑘) + 𝑢,𝑧(𝑘) = 𝑤,𝑥 + 𝜃 + 𝜙,𝑧(𝑘)𝜓 = 𝛾 + 𝛽(𝑘)𝜓 = [1, 𝛽(𝑘)] {𝛾𝜓} = 𝑺𝑥𝑧. �̃�𝑥𝑧  (3) 

 

With the assumption that each layer is linearly elastic and orthotropic corresponding to the Cartesian 

coordinates (𝑥, 𝑧), the constitutive relations take the form 

 𝜎𝑥(𝑘) = 𝐸𝑥(𝑘)𝜀𝑥(𝑘) = 𝐸𝑥(𝑘)𝑺𝑥�̃�𝑥         (4a) 𝜏𝑥𝑧(𝑘) = 𝐺𝑥𝑧(𝑘)𝛾𝑥𝑧(𝑘) = 𝐺𝑥𝑧(𝑘) 𝛾 + 𝐺𝑥𝑧(𝑘)𝛽(𝑘)𝜓 = 𝐺𝑥𝑧(𝑘)𝑺𝑥𝑧�̃�𝑥𝑧       (4b) 
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The resultant stress vectors, �̃�𝒙 and �̃�𝒙𝒛, and the generalized constitutive matrix are obtained with Eqs. 

(2) and (3) by integration over the cross section area 𝐴 

 

�̃�𝒙 = {𝑁𝑥 ,𝑀𝑥,𝑀𝜙} = ∫ {𝜎𝑥(𝑘),  𝑧𝜎𝑥(𝑘),  𝜙(𝑘)𝜎𝑥(𝑘)} 𝑑𝐴𝐴 = ∫ 𝑺𝑥𝑇𝜎𝑥(𝑘)𝑑𝐴𝐴  

= ∫ 𝑺𝑥𝑇𝐸𝑥(𝑘)𝑺𝑥�̃�𝑥𝑑𝐴𝐴 = ∫ 𝐸𝑥(𝑘) [ 1 𝑧 𝜙(𝑘)𝑧 𝑧2 𝑧𝜙(𝑘)𝜙(𝑘) 𝑧𝜙(𝑘) 𝜙(𝑘)2]𝑑𝐴 �̃�𝑥𝐴 = [𝐴11 𝐵12 𝐵13𝐵12 𝐷11 𝐷12𝐵13 𝐷12 𝐷22]  �̃�𝑥 (5a) 

�̃�𝒙𝒛 = {𝑉𝑥, 𝑉𝜙} =  ∫ {𝜏𝑥(𝑘), 𝛽(𝑘)𝜏𝑥(𝑘)} 𝑑𝐴𝐴 = ∫ 𝑺𝑥𝑧𝑇𝜏𝑥𝑧(𝑘)𝑑𝐴𝐴  

= ∫ 𝑺𝑥𝑧𝑇𝐺𝑥𝑧(𝑘)𝑺𝑥𝑧�̃�𝑥𝑧𝑑𝐴𝐴 = ∫ 𝐺𝑥𝑧(𝑘) [ 1 𝛽(𝑘)𝛽(𝑘) 𝛽(𝑘)2] 𝑑𝐴 �̃�𝑥𝑧𝐴 = [𝑄11 𝑄12𝑄12 𝑄22]  �̃�𝑥𝑧   (5b) 

 

Combining Eqs. (5) gives 

 

�̃� = { �̃�𝒙�̃�𝒙𝒛} = {  
  𝑁𝑥𝑀𝑥𝑀𝜙𝑉𝑥𝑉𝜙}  

  = [  
  𝐴11 𝐵12 𝐵13 0 0𝐵12 𝐷11 𝐷12 0 0𝐵13 𝐷12 𝐷22 0 00 0 0 𝑄11 𝑄120 0 0 𝑄12 𝑄22]  

  
{  
  𝑢,𝑥𝜃,𝑥𝜓,𝑥𝛾𝜓 }  

  = 𝑫{ �̃�𝒙�̃�𝒙𝒛} = 𝑫 �̃�   (6) 

 

Finite Element Formulation 

We derive the equations of motion via the principle of Hamilton 

 𝛿Π = ∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝑇 − 𝛿𝑊)𝑡2𝑡1 𝑑𝑡 = 0       (7) 

 

where 𝛿𝑈, 𝛿𝑉, 𝛿𝑇 and 𝛿𝑊 represent, respectively, the variation of the strain energy, of the potential 

energy associated with initial stress, of the kinetic energy and of the work of the external forces. 

The variation of strain energy can expressed in terms of generalized stresses and strains 

 𝛿𝑈 = ∫ (δ�̃�𝐱T�̃�𝐱 + δ�̃�𝐱𝐳T�̃�𝐱𝐳)𝐿0 dx        (8) 

 



5 

where 𝐿 is the beam finite element length. 

The work done by the external loads is 

 𝛿𝑊 = ∫ δ𝐮T𝐪𝐿0 dx          (9) 

 

The displacement and distributed loads vector contain the following components 

 

𝒖(𝑥) = {𝑢(𝑥)𝑤(𝑥)θ(𝑥)ψ(𝑥)},  𝒒(𝑥) = {𝑝𝑥(𝑥)𝑝𝑧(𝑥)𝑚(𝑥)0 }      (10) 

 

The variation of kinetic energy reads 

 

𝛿𝑇 = ∫ ∫ 𝜌(𝑘)( 𝛿�̇�(𝑘)�̇�(𝑘) + 𝛿�̇�(𝑘)�̇�(𝑘)) 𝑑𝐴 𝑑𝑥𝐴𝐿0       (11) 

 

Substituting Eqs. (1) yields 

 

𝛿𝑇 = ∫ ∫ 𝜌(𝑘)[(𝛿�̇� + 𝑧. 𝛿�̇� + 𝜙(𝑘)𝛿�̇�)(�̇� + 𝑧. �̇� + 𝜙(𝑘)�̇�) + 𝛿�̇��̇�] 𝑑𝐴 𝑑𝑥𝐴𝐿0    (12) 

 

For the mass moments of inertia we introduce the following general term 

 

𝐼𝑛𝑚 = ∫ 𝜌(𝑘)𝑏(𝑘)𝑧𝑛( 𝜙(𝑘))𝑚 𝑑𝑧ℎ2−ℎ2          (13) 

 

In detail we have 

 

𝐼00 = ∫ 𝜌(𝑘)𝑏(𝑘)𝑑𝑧ℎ2−ℎ2 = ∑ 𝜌(𝑘)𝑏(𝑘)ℎ(𝑘)𝑁𝑘=1        (14a) 

𝐼10 = ∫ 𝜌(𝑘)𝑏(𝑘) 𝑧 𝑑𝑧 = 12∑ 𝜌(𝑘)𝑏(𝑘)ℎ(𝑘)(𝑧𝑘 + 𝑧𝑘−1)𝑁𝑘=1ℎ2−ℎ2      (14b) 
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𝐼20 = ∫ 𝜌(𝑘)𝑏(𝑘)𝑧2 𝑑𝑧 = 13∑ 𝜌(𝑘)𝑏(𝑘)(𝑧𝑘3−𝑧𝑘−13)𝑁𝑘=1ℎ2−ℎ2        (14c) 

𝐼01 = ∫ 𝜌(𝑘)𝑏(𝑘) 𝜙(𝑘)(𝑧) 𝑑𝑧 = 12∑ 𝜌(𝑘)𝑏(𝑘)ℎ(𝑘)(𝜙𝑘 + 𝜙𝑘−1)𝑁𝑘=1ℎ2−ℎ2     (14d) 

𝐼11 = ∫ 𝜌(𝑘)𝑏(𝑘) 𝑧 𝜙(𝑘)(𝑧) 𝑑𝑧 = 16∑ 𝜌(𝑘)𝑏(𝑘)ℎ(𝑘)[𝑧𝑘(2𝜙𝑘 + 𝜙𝑘−1) + 𝑧𝑘−1(2𝜙𝑘−1 + 𝜙𝑘)]𝑁𝑘=1ℎ2−ℎ2 (14e) 

𝐼02 = ∫ 𝜌(𝑘)𝑏(𝑘) 𝜙(𝑘)2(𝑧) 𝑑𝑧 = 13∑ 𝜌(𝑘)𝑏(𝑘)ℎ(𝑘)(𝜙𝑘2 + 𝜙𝑘𝜙𝑘−1 +𝜙𝑘−12)𝑁𝑘=1ℎ2−ℎ2   (14f) 

 

After integration over the cross section, we can write the variation 𝛿𝑇 in compact form 

 

𝛿𝑇 = ∫ {𝛿�̇�𝛿�̇�𝛿�̇�𝛿�̇�}
𝑇 . [𝐼00 0 𝐼10 𝐼010 𝐼00 0 0𝐼10 0 𝐼20 𝐼11𝐼01 0 𝐼11 𝐼02] . {

�̇��̇��̇��̇�}𝐿0 𝑑𝑥 = ∫ 𝜹�̇�𝑻𝐿0 𝑹 �̇� 𝑑𝑥     (15) 

 

The variation of the potential energy of the beam-column associated with a constant initial axial force 

F (F > 0 for tension) is given as 

 𝛿𝑉 = 𝐹. ∫ 𝛿𝑤,𝑥𝑤,𝑥𝐿0 𝑑𝑥          (16) 

 

The kinematic variables 𝑢(𝑥), 𝑤(𝑥) and 𝜓 (𝑥) are discretized using standard linear shape functions. 

For the deflection 𝑤(𝑥), an anisoparametric (interdependent) interpolation is chosen which guarantees 

that no parasitic shear strains arise in the thin limit case [15]. The approximation of the kinematic 

variables can be written as follows 

 𝒖(𝑥) = 𝑵(𝑥). 𝐮𝐞          (17) 

 

where 𝐮𝐞 is the nodal degrees-of-freedom vector, (𝑢1, 𝑤1, 𝜃1, 𝜓1, 𝑢2, 𝑤2, 𝜃2, 𝜓2), and 

 

𝑵 = [  
  𝑁1𝐿 0 0 0 𝑁2𝐿 0 0 00 𝑁1𝐿 − 𝐿8𝑁𝑚𝑄 − 𝑐.𝐿8 𝑁𝑚𝑄 0 𝑁2𝐿 𝐿8𝑁𝑚𝑄 𝑐.𝐿8 𝑁𝑚𝑄0 0 𝑁1𝐿 0 0 0 𝑁2𝐿 00 0 0 𝑁1𝐿 0 0 0 𝑁2𝐿 ]  

       (18) 

 



7 

With the dimensionless coordinate ξ = (2xL − 1) along the beam axis, the shape functions read 

 N1L(ξ) = 12 (1 − ξ), N2L(ξ) = 12 (1 + ξ), NmQ (ξ) = (1 − ξ2)    (19) 

 

The factor c depends on the constraint condition used to simplify the element topology to the classical 

one with degrees-of-freedom only defined at the beam ends. Numerical studies indicate that the best 

results are obtained when using the condition Vx  =  const. [15]. In this case 

 c =  Q12 Q11⁄           (20) 

 

From Eqs. (2), (3) and (18) we get the element strain matrix 

 

�̃� = [  
  u,x,x,xγ
 ]  
  = 𝐁. 𝐮𝐞 =

[  
   
  − 1L 0 0 0 1L 0 0 00 0 − 1L 0 0 0 1L 00 0 0 − 1L 0 0 0 1L0 − 1L 12 c ξ2 0 1L 12 −c ξ20 0 0 12 (1 − ξ) 0 0 0 12 (1 + ξ)]  

   
  . 𝐮𝐞   (21) 

 

After substitution of Eq. (21) into Eq. (8), using (6) and subsequent integration over the beam length, 

the linear stiffness matrix is obtained 

 𝐊𝐞 = L2∫ 𝐁T(ξ) 𝐃 𝐁(ξ)dξ+1−1 =

[  
   
   
   
  A11L 0 B12L B13L − A11L 0 − B12L − B13LQ11L −Q112 − Q122 0 − Q11L − Q112 − Q122Q11L2+4D114L Q12L2+4D124L − B12L Q112 Q11L2−4D114L Q12L2−4D124L((4Q22−2cQ12+c2Q11)L12 + D22L ) − B13L Q122 Q12L2−4D124L ((2Q22+2cQ12−c2Q11)L12 − D22L )A11L 0 B12L B13LQ11L Q112 Q122𝑆𝑦𝑚𝑚. Q11L2+4D114L Q12L2+4D124L((4Q22−2cQ12+c2Q11)L12 + D22L )]  

   
   
   
  

(22) 
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For the derivation of the consistent load vector, linearly varying loads are assumed 

 

𝐪(x) = { 
 px1N1L(ξ) + px2N2L(ξ)pz1N1L(ξ) + pz2N2L(ξ)m1N1L(ξ) + m2N2L(ξ)0 } 

 
        (23) 

 

From Eq. (9) it follows 

 

𝐟𝐞 = L2∫ 𝐍(ξ)T+1−1 𝐪(ξ)dξ =

{  
   
  
   
  L6 (2px1 + px2)L6 (2pz1 + pz2) − (pz1+pz2)L2−(8m1+4m2)L24− c (pz1+pz2)L224L6 (px1 + 2px2)L6 (pz1 + 2pz2)(pz1+pz2)L2+(4m1+8m2)L24  c (pz1+pz2)L224 }  

   
  
   
  

     (24) 

 

Substituting the interpolations 

 �̇� = 𝑵 �̇�𝒆           (25) 𝜹�̇� = 𝑵 𝜹�̇�𝒆           (26) 

 

we finally get the expression for the variation of the kinetic energy 

 𝛿𝑇 = 𝜹�̇�𝑒𝑇 ∫ 𝑵𝑻𝐿0 𝑹 𝑵 𝑑𝑥 �̇�𝒆 = 𝜹�̇�𝑒𝑇 𝑴 �̇�𝒆        (27) 

 

and of the mass matrix 
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𝑴 = 𝐿2∫ 𝑵𝑻(ξ)+1−1 𝑹 𝑵(ξ) 𝑑ξ= 

𝐿120 .
[  
   
   
40𝐼00 0 40𝐼10 40𝐼01 20𝐼00 0 20𝐼10 20𝐼0140𝐼00 −5𝐼00𝐿 −5𝑐𝐼00𝐿 0 20𝐼00 5𝐼00𝐿 5𝑐𝐼00𝐿𝐼00𝐿2 + 40𝐼20 𝑐𝐼00𝐿2 + 40𝐼11 20𝐼10 −5𝐼00𝐿 20𝐼20 − 𝐼00𝐿2 20𝐼11 − 𝑐𝐼00𝐿2𝑐2𝐼00𝐿2 + 40𝐼02 20𝐼01 −5𝑐𝐼00𝐿 20𝐼11 − 𝑐𝐼00𝐿2 20𝐼02 − 𝑐2𝐼00𝐿240𝐼00 0 40𝐼10 40𝐼0140𝐼00 5𝐼00𝐿 5𝑐𝐼00𝐿𝑆𝑦𝑚𝑚. 𝐼00𝐿2 + 40𝐼20 𝑐𝐼00𝐿2 + 40𝐼11𝑐2𝐼00𝐿2 + 40𝐼02]  

   
   

(28) 

 

The initial stiffness matrix 𝑲𝐺 is developed by using the interdependent shape function 𝑵𝑤 for the 

transversal deflection 𝑤(𝑥) as given in the second row of Eq. (18) 

 

𝑵𝑤 = [0, 𝑁1𝐿 , (− 𝐿8𝑁𝑚𝑄) , (− 𝑐𝐿8 𝑁𝑚𝑄) 0, 𝑁2𝐿 , (− 𝐿8𝑁𝑚𝑄) , (− 𝑐𝐿8 𝑁𝑚𝑄)]    (29) 𝛿𝑉 = 𝐹. ∫ 𝛿𝑤,𝑥𝑤,𝑥𝐿0 𝑑𝑥 = 𝐹. ∫ (𝑵𝒘,𝒙𝛿𝒖𝑒)𝑇(𝑵𝒘,𝒙𝒖𝑒)𝑑𝑥𝐿0 = 𝛿𝒖𝑒𝑇 [𝐹. ∫ 𝑵𝒘,𝒙𝑻 𝑵𝒘,𝒙𝑑𝑥𝐿0 ]𝒖𝑒  =  𝛿𝒖𝑒𝑇𝑲𝐺  𝛿𝒖𝑒          (30) 𝑲𝐺 = ∫ 𝑵𝒘,𝒙𝑻 𝑵𝒘,𝒙𝑑𝑥𝐿0 = 𝐿2∫ 𝑵𝒘,𝒙𝑻 (ξ)𝑵𝒘,𝒙(ξ)𝑑𝜉+1−1        (31) 

 

After integration we obtain the explicit form of the initial stiffness matrix 

 

𝑲𝐺 = 𝐹12𝐿 .
[  
   
  0 0 0 0 0 0 0 012 0 0 0 −12 0 0𝐿2 𝑐𝐿2 0 0 𝐿2 −𝑐𝐿2𝑐2𝐿2 0 0 −𝑐𝐿2 −𝑐2𝐿20 0 0 012 0 0𝑆𝑦𝑚𝑚. 𝐿2 𝑐𝐿2𝑐2𝐿2 ]  

   
  
    (32) 

 

The finite element equation of motion then reads 

 𝑴�̈�𝑒 + (𝑲 +𝑲𝑮)𝒖𝑒 = 𝒇𝒆         (33) 

 

As a special case we get from Eq. (33) the equation for the linear stability analysis 
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(𝑲 − 𝜆𝑲𝑮)𝒖𝑒 = 𝟎          (34) 

 

and the equation representing the free vibration analysis 

 (𝑲 − 𝜔2𝑴)𝒖𝑒 = 𝟎          (35) 

 

Numerical Results 

As a first example, we demonstrate the applicability of RZT beam finite elements to a structure which 

is normally analyzed by the theory of beam-columns with partial interaction of two subcomponents. 

Among others, Girhammer et al. [25-27] have given analytical expressions for such a composite beam-

column with interlayer slip where Bernoulli´s hypothesis is used for each component. Adam et al. [28] 

have dealt with the same beam under sinusoidal and random excitations. Xu et al. [29] have developed 

a model with reference to Timoshenko´s theory, Kryzanowski et al. [30] proposed a mathematical 

model for slip buckling and Grenoc et al. [31] gave recently a two-layer beam solution for the 

buckling load based on Timoshenko´s theory. We refer to the work of Langosch [32] who compared 

different slip theories when dealing with laminated glass constructions. 

The interlayer slip s, as a relative displacement between the two subcomponents, will be driven by the 

shear load per unit length 𝑞 via the following linear relation 

 𝑞(𝑥) = 𝐾𝑠. 𝑠(𝑥)          (36) 

 

where 𝐾𝑠 stands for the stiffness of the shear connectors (slip modulus). If we model the slipping zone 

by a weak interlayer with thickness 𝑡, the interlayer slip s can be evaluated with the following 

linearized relation 

 s(𝑥) ≅ γ(𝑥). 𝑡 = 𝜏(𝑥)𝐺𝑓 . 𝑡 = 𝑞(𝑥)𝑏.𝐺𝑓 . 𝑡        (37) 

 

In Eq. (37), γ and 𝜏 denote the mean value of the shear angle and of the shear stress of the weak 

interlayer, 𝐺𝑓 denotes the shear modulus, 𝑏 is the width of the same layer. Substituting Eq. (37) into 

Eq. (36), we get the following relation [32] 

 𝐾𝑠 = 𝐺𝑓𝑏𝑡            (38) 
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We investigate the buckling of two different beam-columns composed of two and three glass panes, 

respectively, and with one or two sheets of Polyvinylbutyral (PVB), which is approximately assumed 

as elastic (see Figure 2). Further geometrical and mechanical properties of the columns are: beam 

length L = 2000 mm; glass: Ex,g = 70000 N/mm2; Gxz,g = 28460 N/mm2; PVB: Poisson´s ratio f = 

0.39. Two different shear moduli Gf are used for the isotropic interlayer (see Tables 1, 2). 

Table 1 shows the convergence of buckling load values obtained by the proposed FE-model compared 

with a slip model and with a high precision 2D-FE analysis when using a pinned-pinned support 

condition. For the special case of constrained warping at the supports, no analytical solution does 

exist. The RZT-model allows easily to distinguish two variants of warping behaviour of the end cross 

section by controlling the fourth kinematic degree, (x), which activates or deactivates the internal 

zigzag kinematic (Figure 3 and Figure 4). In Table 2 the buckling load values 𝐹𝑏,𝑐𝑜𝑛 are given for the 

case when the slip at the end of the beam is constrained (𝐹𝑏 denotes the buckling load without end 

constraint). Parametric studies [32] have shown that the increasing effect  to the buckling resistance 

when constraining the warping of beam´s end cross section depends on  

 the shear modulus of interlayer; 

 the buckling length;  

 the thickness of panes. 

The second example deals with the free vibration of a cantilever sandwich beam for which 

experimental data exist. For the detailed description of the experimental setup and tests, refer to [33]. 

The beam has an effective span of L = 32 cm and the symmetric cross section (width b = 48.53 mm) 

consists of three layers with a core thickness of 6.07 mm and two faces with 5.00 mm. Core and faces 

exhibit the following material data (Table 3). 

In Table 4 the first five experimental natural frequencies are reported and compared with the results 

provided by the present RZT FE solution (for an increasing number of elements). The presence of the 

ten accelerometers is also taken into account by considering lumped masses (1.45 g) located at the 

right positions along the beam span (x = 3, 47, 80, 113, 145, 180, 212, 245, 278 and 315 mm). For 

sake of comparison, Table 4 also shows the first five natural frequencies evaluated by a high-fidelity 

plane-stress FE solution based on 20480 QUAD8 parabolic elements (10 elements through the 

thickness of each face, 12 elements through the thickness of the core and 640 elements along the 

span). The commercial package MSC/PATRAN and NASTRAN has been used. 

The comparison between the NASTRAN and RZT natural frequencies reveals that the latter are 

accurate even if using few beam elements (10). In order to obtain similar performances on the higher-

order modes, more elements are required (50) but the computational effort is again much less 
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demanding with respect to the NASTRAN model. The difference between numerical (RZT and 

NASTRAN) and experimental frequencies is somehow higher (5% on the fundamental frequency, 7% 

on the second one and less than 5% the other ones) but this can be due to the mechanical properties of 

the core material that have been evaluated through an experimental procedure [33] that revealed a not 

negligible statistical dispersion. 

Since the present RZT-based beam finite element corresponds to the one proposed in [15] (with the 

constraint Vx = const.), the same numerical examples discussed in this section have been analyzed 

with the original element and found to provide results coinciding with the current ones. 

 

Conclusions 

In the present paper, the explicit expressions of the linear and geometric stiffness matrix, as well as the 

mass matrix and vector of equivalent nodal forces, are derived for a simple beam finite element based 

on the Refined Zigzag Theory for the analysis of composite laminated and sandwich structures. 

The theory is briefly reviewed and the finite element formulation is presented. A set of numerical 

results is also discussed in order to assess the accuracy of the approach with respect to high-fidelity 2D 

FE models built using commercial codes and to experimental tests. Buckling loads of compressed 

composite beam-columns and natural frequencies of sandwich beams are evaluated. 

For both applications, RZT-based finite elements show to be accurate with a reduced computational 

cost (if compared to detailed 2D FE models) and slightly more demanding with respect to beam finite 

elements usually implemented in commercial codes (based on the Timoshenko Beam Theory). 

Moreover, the availability of explicit expressions for the key FE matrices makes the proposed finite 

element a useful approach for the analysis of static, dynamic and stability analysis of multilayered 

composite beams. 
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Figure captions 

 

Fig.1 Lay-up notation and zigzag function for a three-layer beam. 

Fig.2 Cross sections of laminated glass beam-columns. 

Fig.3 Pinned support with and without warping and slip, respectively. 

Fig.4 Buckling modes of a pinned-pinned beam-column (three-layer laminated safety glass) 

with/without slip constraint at the beam´s end.  
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Shear modulus of 

PVB interlayer  

Linear buckling load Fb  for two-layer laminated safety glass (d1 = d2) 

5 El. 10 El. 20 El. 50 El. 100 

El. 

Slip 

theory 

[32] 

FE 

(2D) 

[32] 

Gf = 1 

N/mm2 

[kN] 20.00 19.69 19.61 19.59 19.58 19.59 19.55 

Gf = 10 

N/mm2 

[kN] 33.5 32.76 32.58 32.53 32.52 32.52 32.24 

 Linear buckling load Fb  for three-layer laminated safety glass (d1 = 

d2= d3) 

5 El. 10 El. 20 El. 50 El. 100 

El. 

Slip 

theory 

[32] 

FE 

(2D) 

[32] 

Gf = 1 

N/mm2 

[kN] 43.04 42.56 42.44 42.41 42.40 42.41 42.40 

Gf = 10 

N/mm2 

[kN] 104.27 102.22 101.70 101.56 101.54 101.57 101.58 

Table 1 Buckling loads Fb without slip constraint at the end of beam (  0). 

Table



 

 

 

Table 2 Buckling loads Fb,con with slip constraint at the end of beam ( = 0). 

Shear modulus of 

PVB interlayer 

Linear buckling  load  Fb,con for two-layer 

laminated safety glass  (d1 = d2) 
∆ = 𝐹𝑏,𝑐𝑜𝑛 − 𝐹𝑏𝐹𝑏  

5 El. 10 El. 20 El. 50 El. 100 El.  (%) 

Gf = 1 

N/mm2 

[kN] 26.55 25.43 25.17 25.10 25.09 +28.1 

Gf = 10 

N/mm2 

[kN] 34.51 33.46 33.20 33.13 33.12 +1.8 

 Linear buckling  load  Fb,con  for three-layer 

laminated safety glass  (d1 = d2 = d3) 
∆ = 𝐹𝑏,𝑐𝑜𝑛 − 𝐹𝑏𝐹𝑏  

5 El. 10 El. 20 El. 50 El. 100 El.  (%) 

Gf = 1 

N/mm2 

[kN] 62.91 60.01 59.34 59.15 59.13 +39.5 

Gf = 10 

N/mm2 

[kN] 110.21 106.31 105.33 105.05 105.01 +3.4 

Table



 

 

Material E (N/mm2) G (N/mm2)  (kg/m3) 

Ergal® (faces) 69570 25766 2849 

Rohacell® IG31 (core) 40.3 12.4 36.825 

Table 3 Mechanical material properties (mean values, refer to [33]): Young´s modulus, shear modulus 

and mass density. 

Table



 

 

 Refined Zigzag Theory NASTRAN 

20480 

Elem. 

Mode Experimental 

(Hz) 

10 Elem. 50 Elem. 100 Elem. 

1 88.3 84.3 84.0 83.9 83.9 

2 357 336 332 331 331 

3 804 803 773 771 771 

4 1414 1523 1412 1408 1407 

5 2214 2582 2263 2252 2250 

Table 4 First natural frequencies of specimen IG31_32_5. Experimental frequencies are different from 

those shown in [33] (Table 3) since the latter were not correctly reported. 

 

Table


