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Analysis of variable angle tow composites structures using variable

kinematic models
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Abstract

This work presents a refined beam model based on the Carrera Unified Formulation for the free-

vibration analyses of variable stiffness composite laminate characterized by layers with curvilinear

fibers. These models introduce a refined kinematic description over the cross-section to obtain a

3D displacement field. Taylor and Lagrange polynomials have been used to describe the cross-

sectional variables that is, equivalent single layer and layer-wise approaches have been considered.

Variable stiffness composite materials have been introduced considering a continuous variation of

the lamination angle thanks to an ad hoc integration scheme. Extensive validation of the models

has been performed including convergence analyses and comparisons with commercial codes. The

results obtained using the present models have been compared with those from open literature

considering composites with different values of thickness, lamination, and boundary conditions.

The results show that the use of refined models is mandatory for the analysis of such structures

where complex laminations may create strong mechanical couplings.
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1. Introduction

Composite materials are increasingly used in many engineering fields thanks to their lightness

and the high mechanical performances. For this reason, many research activities are engaged to

optimize traditional composite materials and to define modern advanced materials based on the

fiber-reinforced laminate. Conventional composite materials consider a uniform lamination over the

whole component (Constant Stiffness Composite Laminates - CSCL). High-performance structures,

such as in the aerospace field, could be enhanced by the use of different lamination scheme in

different areas, and for this reason, the Variable Stiffness Composite Laminates (VSCL) have been

introduced. In order to modify the laminate stiffness locally, a possible method is the variation of

the fiber volume fraction as presented in the work of Leisa and Martin [1] related to the control of

the frequency values of a plate. Another simple approach to obtain panels with variable stiffness

is represented by the variation of the number of the layers. Through the ply drop-off, an inner

layer is terminated in order to vary the thickness and then the stiffness. Di Nardo and Lagace [2]

studied the effects on the buckling and post-buckling behaviors of this kind of laminates. Modern

composite manufactory technologies have led to a third method for the manufacturing of VSCL. New

automatic processes have made possible the production of Variable Angle Tow (VAT) composites

where the fibers are not constrained along a straight path but can follow curvilinear trajectories.

A detailed overview of this process and other automated manufacturing methods can be found in

the work by Dirk et al.[3]. This technology increases the design space and increases the freedom

in the tailoring process to obtain the desired structural performances. VAT material capabilities

can be exploited to control the stress fluxes, to increase the stiffness locally, to control the dynamic

behavior of complex structures.

This idea was originally proposed by Hyer [4, 5] to overcome the discontinuities in the areas

where the fiber orientation changes. The same author has shown in [6] how a curvilinear pattern

of the fibers can be used to improve the buckling load in plates with the presence of holes. In the

nineties, several researchers have investigated the characteristics of the VSCL in term of buckling

and static deformation as shown in the works by Waldhart[7] or Langley[8]. Tatting, after a work

on the variable stiffness composite cylinders [9], has proposed with Gurdal a design tool for the

VSCL [10]. Lopes et al. [11] have presented how the curvilinear fibers can redirect the load fluxes

from a central region to a stiffer area in order to improve the buckling stiffness. VAT materials have

found a large application in the design of the aeroelastic response as shown in [12]. Weaver and
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his collaborators have deeply investigated the buckling and post-buckling behavior of this class of

composites [13, 14], studying also the optimization of VAT composite plates [15, 16]. Xiaodong et al.

[17] investigates the buckling behavior of VAT plates affected by delamination areas. Ribeiro and

Akhavan [18, 19] have used the First-Order Shear Deformation Theory (FSDT) for the evaluation

of non-linear vibrations of VSCL plates. More recently, the same theory has been used in the work

by Montemurro e Catapano [20], where is presented an optimization strategy for VAT laminates,

and in the work by Zhou and Gosling [21] where they investigate the uncertainty of the mechanical

performances of VAT plates. Ribeiro et al. [22] have exploited the accuracy of a Third Order

Shear Theory to study the free vibration of thin and thick VSCL plates. The same authors have

presented a work [23] in which a Layer-Wise (LW) theory and p-version finite element method have

been used to evaluate the vibration modes of thin and thick variable stiffness plates. The same

approach has also been used for geometrically non-linear static analyses [24]. The LW approach

allows the accuracy to be increased thanks to the capability to describe aech layers separately. This

topic is discussed in many works such as the manuscript by Robbin and Reddy [25] which propose

a finite element (FE) model considering a LW displacement approximation, or the work by Shimpi

and Ainapure [26] based on an FE beam model and a trigonometric LW shear deformation theory.

The present work proposes an extension of the Carrera Unified Formulation (CUF) to the analy-

sis of variable angle tow structures. CUF has been developed for plate and shell by Carrera [27, 28]

and then, extended for the beam case. When refined one-dimensional (1D) models are considered,

the cross-sectional behavior is described through a function expansion. The CUF provides an ef-

ficient tool to derive refined models with any expansion order in a compact and unified manner.

This approach produces accurate results for beams with arbitrary geometries like plate-shell ones

[29]. In the CUF framework, two main classes of one-dimensional models have been developed: the

Taylor models (TE), where the homonymous expansions are implemented [30, 31], and the Lagrange

models (LE) that use the Lagrange polynomials [32]. The second approach led to a model where

the unknowns are only the nodal displacements. Other models are those based on the Chebyshev

Expansions [33] or the Hierarchical Legendre-type Expansions [34]. In this paper, for the first time,

a formulation able to deal with VAT structures is introduced in the framework of the CUF. The

aim of the work concerns the validation of the present model for free-vibration analyses on VAT

structures and a critical analysis of the advantages of the refined models in the analysis of such

structures. A first part is dedicated to a brief explanation of the theoretical model; an exhaustive
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validation of the model is presented in the second part while the third section gives a comparison

with the literature for thin and thick plates considering different boundary conditions. Finally, an

accurate comparisons between LW and ESL models has been presented.

2. One-dimensional refined models

This section presents the theoretical model used in this work. A first part briefly introduces the

CUF and the FEM solution adopted. A second part focuses on the implementation of the variable

angle tow model.

2.1. Preliminaries

In the present model a beam can be generally oriented with respect to a global frame (xg,yg,zg)

and is described using a local frame (x,y,z) where y is the beam axis, and the plane x − z defines

the plane of the beam cross-section. Figure 1 shows these two frames considering a plate described

through a beam model.

y

X

z

xG

yG

zG

Beam nodes

Figure 1: Global and local frames.

The local displacement vector can be written as:

u(x, y, z) = {ux uy uz}
T (1)

The stress vector σ and the strain one ǫ are defined using the following form:

σ(x, y, z) = {σxx, σyy, σzz, τxy, τxz, τyz}
T (2)
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ǫ(x, y, z) = {ǫxx, ǫyy, ǫzz, ǫxy, ǫxz, ǫyz}
T (3)

Considering the assumption of linear behavior, the relation between these two terms is defined

as:

ǫ = bu (4)

The 6 × 3 matrix b is a differential operator whose expression can be found in [35]. The stress

vector is defined by the Hooke’s law:

σ = Cǫ (5)

where C is the 6× 6 stiffness matrix of the material.

Z=1

2

 

3

y

X

Figure 2: Material reference system

A anisotropic material has a different behavior in any direction, and the matrix C is composed

of 21 independent coefficients. Instead, if the material is orthotropic, the independent terms become

nine (considering the symmetry of the components C12 = C21, C13 = C31 and C23 = C32). In this

case, the matrix C is defined as:
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C =


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0 0 0 0 0 C66
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



















(6)

When a composite is considered the fiber may have a general orientation, θ, that is the matrix

C should be rotated using a proper rotation matrix, as shown in the book by Reddy [36]:

C̃ = ΛT
CΛ (7)

where C̃ is the matrix of the material coefficients in the beam reference system and Λ is the rotation

matrix.

2.2. Kinematic assumption and FE solution

In the framework of the 1D CUF formulation the displacement field is expressed as the product

of two contributions. The first one is the expansion used to describe the behavior over the cross-

section. The second contribution is the solution along the beam axis. This product provides a

three-dimensional (3D) displacement field expressed in this form:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2 . . .M, (8)

where Fτ is an arbitrary cross-section expansion in function of x and z, while M is the number

of the expansion terms. According to the used function Fτ , the kinematics of the model can be

profoundly modified. The problem is solved using the FEM method. Introducing the Lagrange

function as shape functions Ni, the unknown vector u is approximated as follows.

u(x, y, z) = Fτ (x, z)Ni(y)qτi (9)

The index i denotes the number of nodes of the beam element and qτi are the nodal unknowns.

The expression of the shape functions can be found on [35] .

Using the principle of the virtual work (PVD), the stiffness matrix can be derived. The PVD is

expressed as

δLint = −δLine (10)
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where δ denotes the virtual variation. The terms of 10 are the variation of the strain energy Lint

and of the inertial work Line. Respectively, this two terms can be written as follows:

δLint =

∫

V

δǫTσdV (11)

δLine =

∫

V

δuTρüdV (12)

where ρ is the material density, ü is the acceleration vector, σ is the stress vector and δǫ is the

virtual variation of the strain defined as:

δǫ = bδu = bFs(x, z)Nj(y)δqsj (13)

The following form is achieved by substituting in the equation 11 the formulas 5 and 13:

δLint = δqT
sj

∫

V

Nj(y)Fs(x, z)b
T C̃bFτ (x, z)Ni(y)dV qτi = δqT

sjk
ijτsqτi (14)

kijτs is a 3 × 3 matrix and it is called the stiffness fundamental nucleus(FN). This block has the

same form, regardless of the kinematic theory introduced in the problem.

kτsijxx =C̃22

∫

A

Fτ,xFs,xdA

∫

l

NiNjdy + C̃66

∫

A

Fτ,zFs,zdA

∫

l

NiNjdy

+ C̃44

∫

A

FτFsdA

∫

l

Ni,yNj,ydy;

kτsijxy =C̃23

∫

A

FτFs,xdA

∫

l

Ni,yNj,ydy + C̃44

∫

A

Fτ,xFsdA

∫

l

NiNj,ydy;

(15)

Equation 15 reports two terms of the FN where the differential operator is applied, and the material

coefficients are extracted from the integral. This last is subdivided in the integral along the axis and

the integral over the plane of the cross-section. The other terms are obtained by the permutation of

the indexes, and the global stiffness matrix is achieved by varying the indexes i,j,τ and s. From the

inertial work, similarly, the mass fundamental nucleus can be obtained. More information about

the definition of the mass matrix and the procedure to obtain the global stiffness and mass matrix

can be found in the book of Carrera et al. [35].

Knowing the mass matrix M and the stiffness matrix K and according to the notation used in

[35], the free undamped problem can be written as:

MÄ+KA = 0 (16)
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where A is the nodal unknown vector. The natural frequencies ωi can be computed by solving the

eigenvalue problem

(−ωi
2
M +K)Ai = 0 (17)

where Ai is the ith eigenvector.

2.3. Taylor expansion based models

The Taylor expansion based models, TE models, use the Taylor expansions as Fτ and Fs to

expand the solution from the node of the beam to the cross-section. The TE model allows the

accuracy to be improved by increasing the order of the expansion. Considering a TE model of the

second order, the displacement field of the term ux, for example, is expressed as follows:

ux = ux1
+ xux2

+ zux3
+ x2ux4

+ xzux5
+ z2ux6

(18)

An overview of the performances of the Taylor models can be found in the work by Carrera et.

al.[29]

2.4. Lagrange expansion based models

Introducing the Lagrange polynomials, the cross-section response can be described using two-

dimensional elements where the unknowns are only the displacement in the nodes. More two-

dimensional elements can be used on the cross-section if a proper assembly procedure is adopted.

In this way, arbitrary cross-section geometries can be implemented. The interpolation functions are

the following where t and s are the coordinates in the natural reference system:

Fτ =
1

4
(r2 + r ∗ rτ )(s

2 + ssτ ) τ = 1, 3, 5, 7

Fτ =
1

2
s2τ (s

2 + ssτ )(1− r2) +
1

2
r2τ (r

2 − rrτ )(1 − s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1 − s2) τ = 9

(19)

These functions allow cross-sectional elements with different numbers of nodes (Lagrange Nodes)

to be built, each one with three degrees of freedom. In this work, only the nine-node set has

been used, and the accuracy of the kinematics has been improved by increasing the number of L9

elements.
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LE models allow the laminate to be investigated using a LW approach. This characteristic means

that the model considers each layer separately improving the accuracy of the classical methods based

on the Equivalent Single Layer (ESL). The cross-sectional discretization defines the layers of the

laminate, and for each ply, an arbitrary material and lamination angle can be imposed. In this way,

the real description of the laminate can be obtained as shown in Figure 3.

x

y

z

0°
45°

-45°
0°

Core

Aluminium

Beam Cross-Section

Lagrange Node

Cross Sectional Description

Figure 3: Layer-wise approach description

3. Variable angle tow model

When a variable angle tow structure is considered, the layers of a laminate are no longer char-

acterized by straight fibers rotated by a specific angle but each fiber follows a path that can be

arbitrary defined. The fibers of a VAT plate have a continuous variation of the lamination angle,

in this way, at each position, the laminate has a different stiffness value. The implementation of a

VAT model requires to consider the lamination angle, θ, as a variable in the whole plate domain,

that is, the matrix C̃ is no longer constant in each ply but it is function of the coordinates of the

point in which is evaluated.

C̃ −→ C̃(xG, yG, zG) (20)

This means that, considering the expression of the FN terms reported in Equation 15, the elastic

coefficients, e.g. C̃22, cannot be extracted from the integrals. Besides, the integration along the
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beam axis and the integration over the cross-section should be performed simultaneously.

kτsijxx =

∫

V

C̃22Fτ,xFs,xNiNjdV +

∫

V

C̃66Fτ,zFs,zNiNjdV

+

∫

V

C̃44FτFsNi,yNj,ydV ;

kτsijxy =

∫

V

C̃23FτFs,xNi,yNj,ydV +

∫

V

C̃44Fτ,xFsNiNj,ydV ;

(21)

The fundamental nucleus reported in Equation 15 can be rewritten in the form reported in Equation

21 where the integrals have been combined in a unique volume integral which includes the material

proprieties too. The present implementation refers to the Gauss integration technique to evaluate

the integrals. In the case of a classical laminate the first contribution of the first term reported in

Equation 15 can be written as:

C̃22

∫

A

Fτ,xFs,xdA

∫

l

NiNjdy = C̃22

∫ 1

−1

∫ 1

−1

Fτ,xFs,x|J
2D|dηdν

∫ 1

−1

NiNj |J
1D|dξ =

C̃22

nl
gp

∑

l=1

nk
gp

∑

k=1

Fτ,x(ηl, νk)Fs,x(ηl, νk)|J
2D(ηl, νk)|wlwk

nm
gp

∑

m=1

Ni(ξm)Nj(ξm)|J1D(ξm)|wm

(22)

where η, ν and ξ are the natural coordinates, |J2D| and |J1D| are the determinants of the Jacobian

of the iso-paraemtric transformations over the cross-section and along the beam respectively; wm,

wl and wk are the weights related to the Gauss points ηl, νk and ξm; ngp is the number of the

Gauss point used.

In the VAT model the splitting of the integral is not possible,, that is Equation 21 assumes the

new form:
∫

V

C̃22Fτ,xFs,xNiNjdV =

∫ 1

−1

∫ 1

−1

∫ 1

−1

C̃22Fτ,xFs,xNiNj |J
2D||J1D|dηdνdξ =

nl
gp

∑

l=1

nk
gp

∑

k=1

nm
gp

∑

m=1

C̃22(ξm, ηl, νk)Fτ,x(ηl, νk)Fs,x(ηl, νk)Ni(ξm)Nj(ξm)|J1D(ξm)||J2D(ηl, νk)|wlwkwm

(23)

where C̃22(ξm, ηl, νk) is the material constant evaluated in a specific Gauss point. The evaluation

of the new integrals has consequences on the computational cost that should be pointed out. First

of all, the order of the function to be integrated is now given by the order of the shape functions

and by the order of the law used to describe the fiber path, that is, a proper number of Gauss points

should be defined in order to obtain an accurate integral. Moreover, the evaluation of the integral

reported in Equation 23 requires (nl
gp × nk

gp × nm
gp) loops while the integral in Equation 22 requires
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only (nl
gp × nk

gp + nm
gp) loops, that is, an increase of the computational cost of the VAT model with

respect to the conventional one has to be expected.

Figure 4 shows the differences between the current VAT model, where the material proprieties

are evaluated at each Gauss point, and a Step by Step model usually implemented in the com-

mercial codes and here used in some preliminary assessments. The second approach considers the

lamination angle as constant over the whole element. In this case, the Gauss points of the element

are characterized by the same material proprieties. Within this assumption, the curvilinear paths

of the fibers are approximated by linear segments, that is a higher number of elements is required to

describe the fiber paths correctly. This kind of approach is widely used in the commercial softwares,

such as in the work of Demasi et al.[37] where an expensive solid model is used as the reference

solution.

The Step by Step method produces a coarse estimation of the stiffness by imposing the same

mean lamination value for the whole element. Otherwise, the present model considers in each Gauss

point the real value of the lamination angle guaranteeing a smoother approximation of the stiffness

along the investigated component.

Step by Step model

C C

C C

HH

HH

VAT model

A B

D E

F G

I L

x

y

z

A B

C
D E

F G

H
I L

y

x

F

Beam node

Gauss Point
Lamination of the point F=(x,y,z)

x

z

y

Figure 4: VAT present model vs Step by Step integration scheme

4. Numerical Results

In this section, the present model has been assessed and validated through free vibration anal-

yses. The first part reports an assessment analysis focused on the validation of the current VAT

implementation for both the TE and LE models. Convergence analyses have also been performed.
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In the second part, the accuracy of the model has been investigated through comparison with lit-

erature results, that is a plate has been studied considering different laminations, thickness, and

boundary conditions. Finally, a comprehensive comparison between LE and TE based models has

been presented.

4.1. Variable angle tow model assessment

The assessments and the convergence analyses of the present model are presented in the current

section. A single layer cantilevered plate is considered, see Figure 5. The orthotropic material has

the following properties: ELL = 50 GPa, ETT = EZZ = 10 GPa, GLZ = GTZ = GLT = 5 GPa,

νLZ = νTZ = νLT = 0.25 and density of 1700 kg/m3. The lamina has the following dimension:

x

y

z

a

b

t

(a) Geometry

x

y

z

θ(y)

(b) Lamination

Figure 5: Composite plate considered in the assessment analyses.

a = 0.2 m and b = 1 m. The thickness t is equal to 0.01 m. The dimensions are shown in Figure

5a. The fibers follow the simple path shown in Figure 5b. At the root the fibers have a lamination

angle equal to 0 while that linearly goes to 90 degrees at the free end, as defined in Equation 24.

θ(y) = 0 +
y

L
90 (24)

VAT model VS Step by Step approach

In this section the results obtained with the present model have been compared with those

obtained using a step by step approach. The present analysis has been exploited to validate the

present approach since a mesh refinement should lead to a convergence between the two models.

At the same time, the performances in term of convergence rate of the present VAT model and the

classical step by step approach have been investigated. A three dimensional model has been also

reported in order to provide a reference solution. The model has been built using a 5× 40× 3 mesh
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# Beam Element Position 1 2 3 4 5

Angle [◦] 9 27 45 63 81

Table 1: Step by step lamination angles for the case of a five beam element mesh.

and hexahedral elements with 27 nodes, H27, have been used. Table 1 reports, as an example, the

step by step lamination angles for the case in which a mesh with five beam elements is considered.

Different mesh refinements have been considered and the results have been reported in Tab 2. The

first 15 natural frequencies have been evaluated using 5, 10, 15, 30 and 60 B3 elements. All the

models share the same cross-section kinematic approximation, 4 L9 Lagrange elements. The degrees

of freedom of each model have been reported in the second row of Table 2. The four node beam

Step by Step 4L9 Model VAT 4L9 Model 3D Model

Model 5B3 10B3 15B3 30B3 60B3 5B3 10B3 15B3 30B3 60B3 600H27

DOF 891 1701 2511 4941 9801 891 1701 2511 4941 9801 18711

Mode 1 6,66 6,59 6,57 6,57 6,57 6,62 6,58 6,57 6,57 6,57 6,56

Mode 2 35,52 34,02 33,76 33,63 33,61 35,57 34,02 33,76 33,63 33,61 33,61

Mode 3 58,47 57,20 56,98 56,89 56,88 58,86 57,28 57,02 56,90 56,88 56,70

Mode 4 105,60 94,76 92,96 92,09 91,98 105,78 94,71 92,95 92,09 91,98 91,94

Mode 5 124,44 124,51 124,58 124,62 124,63 124,83 124,68 124,66 124,65 124,64 124,62

Mode 6 166,50 159,16 157,69 156,89 156,77 166,50 159,29 157,73 156,89 156,77 156,40

Mode 7 242,98 192,93 186,79 183,92 183,53 243,97 192,53 186,64 183,91 183,53 183,34

Mode 8 303,05 280,05 274,90 271,76 271,26 304,29 280,73 275,16 271,78 271,26 270,74

Mode 9 387,20 330,66 315,47 308,87 307,99 389,52 329,80 315,10 308,84 308,00 307,52

Mode 10 483,90 418,11 407,68 401,39 400,38 490,27 419,20 408,15 401,45 400,38 399,53

Mode 11 529,56 508,69 473,37 458,05 456,00 529,75 507,72 472,84 458,00 456,01 455,43

Mode 12 750,98 527,14 526,94 526,88 526,87 741,82 527,20 526,98 526,89 526,87 526,77

Mode 13 854,97 581,86 560,90 549,61 547,81 852,73 583,35 561,57 549,69 547,82 546,52

Mode 14 871,40 729,77 663,18 632,51 628,34 871,64 729,42 662,58 632,45 628,35 627,84

Mode 15 1131,43 784,90 739,07 718,04 714,88 1136,81 786,90 739,99 718,17 714,89 713,13

Table 2: First 15 natural frequencies of the cantilevered plate calculated using a Step by Step description and a VAT

model. B3 elements have been used.

elements (B4) have been also considered, In this case, the following meshes have been used: 10, 20
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and 60 B4 elements. Table 3 shows the results obtained with these models.

Step by Step 4L9 Model VAT 4L9 Model

Model 10B4 20B4 60B4 10B4 20B4 60B4

DOF 2511 4941 14661 2511 4941 14661

Mode 1 6,56 6,56 6,57 6,57 6,57 6,57

Mode 2 33,63 33,61 33,61 33,62 33,61 33,61

Mode 3 56,85 56,87 56,88 56,90 56,88 56,88

Mode 4 91,97 91,96 91,96 92,01 91,97 91,96

Mode 5 124,45 124,59 124,63 124,65 124,64 124,64

Mode 6 157,04 156,82 156,75 156,83 156,77 156,75

Mode 7 183,54 183,48 183,48 183,68 183,51 183,49

Mode 8 271,80 271,30 271,20 271,59 271,25 271,20

Mode 9 308,23 307,91 307,89 308,53 307,97 307,90

Mode 10 401,46 400,42 400,25 401,25 400,36 400,25

Mode 11 457,18 455,85 455,76 457,69 455,94 455,78

Mode 12 526,77 526,84 526,86 526,92 526,88 526,86

Mode 13 549,77 547,86 547,58 549,68 547,81 547,58

Mode 14 631,94 628,11 627,87 632,71 628,24 627,89

Mode 15 718,44 714,91 714,49 718,44 714,88 714,49

Table 3: First 15 natural frequencies of the cantilevered plate calculated using a Step by Step description and a VAT

model. B4 elements have been used.

Figures 6a-f reproduce the convergence of the models considered for the first six modes. The

figures report on the x -axis the degrees of freedom that depend on the number of beam elements

used. On the y-axis is reported the frequency value. The results underline the convergence behavior

of the two approaches and confirm the capability of the VAT model to converge faster than the

classical approach. The curves show how, at equal degrees of freedom, the VAT models introduce

a lower error compared to a Step by Step model. In this case, considering the simple fiber pattern,

the advantages of the present model are small compared to the Step by Step approach, but it is

clear as, even with few element, the VAT model is able to produce results more accurate. The xy-

bending mode, mode 5, has a different convergence because of the stepped model underestimates

the stiffness at the root of the lamina, that is, for a coarse mesh a lower frequency value is predicted.
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Figure 6: Convergence analysis of the first six natural frequencies
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Comparison between LE and TE models

In this section the effect of the cross-section kinematic approximation is investigated. LE and

TE models have been compared considering different cross-sectional meshes, in the case of LE

models, and different expansion orders, when TE models have been considered. Table 4 shows the

values obtained using the two expansions at different refinement levels. The results refer to a model

with ten B3 elements along the axis.

Columns 2 to 6 report the results obtained from a refinement of the cross-sectional mesh for the

LE models, that is a higher number of Lagrange elements is considered. As shown by the results,

the refinement leads to weak improvements, also at high frequencies.

A different behaviors can be appreciated when the model uses TE expansions, see column 7 to

12. The classical theories (Eulero Bernoulli as EULE and Timoshenko as TBT) present the well-

known limitations due to their fundamental assumptions. The bending modes have been correctly

predicted but the torsional modes as well as the effects due to the bending/torsional coupling effects

have not been detected as shown in figure 7. The first order TE model does not introduce sensible

improvements. The second order model appear to be more accurate, the errors on the frequency

values have a sensible decrease, and the torsional effects are detected. The fourth order model is

able to provide an excellent accuracy comparable with the 4L9 model but with the half of DOFs.

In conclusion it is clear that accurate results for VAT beam structure can be obtained only using

an higher order model. Both TE and LE models have provided accurate results in the case of a

structure with only one layer. The following section will consider more realistic cases and more

complex lamination schemes.

4.2. Analysis of a multilayered VAT panel

In this section outcomes of [22] are used to compare the present VAT model with literature

results. The reference uses a p-version finite element based on the TSDT. The studied case concerns

the plate shown in Figure 8 characterized by the following dimensions: a = b = 1 m. Two

thicknesses are considered: 0.01 m and 0.1 m respectively for thin and thick plates. The plate is

a three-layer laminate, and the lamination of each layer will be expressed as < T0, T1 >, where

T0 and T1 are the two parameters used to identify the lamination angle as expressed in Equation

25. The plate is described using a LE model which allows a LW approach to be employed. 10 B3

elements are used over the y − axis, and 30 9-node Lagrange Elements are used to describe the
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VAT 10B3 LE Model VAT 10B3 TE Model

Model 2L9 4L9 6L9 8L9 10L9 EULE TBT Order 1 Order 2 Order 3 Order 4

DOF 945 1701 2457 3213 3969 189 189 189 378 630 945

Mode 1 6,58 6,58 6,58 6,58 6,58 7,22 7,22 7,22 6,65 6,58 6,58

Mode 2 34,06 34,02 34,01 34,01 34,01 35,04 34,94 34,93 34,34 34,05 34,01

Mode 3 57,53 57,28 57,12 57,02 56,96 96,80 96,13 96,09 59,43 57,71 57,42

Mode 4 94,88 94,71 94,66 94,63 94,62 142,97 137,52 136,14 96,16 94,90 94,63

Mode 5 124,78 124,68 124,67 124,67 124,67 193,27 190,82 190,72 125,57 124,74 124,69

Mode 6 159,87 159,29 158,92 158,68 158,53 330,13 323,43 323,23 166,78 160,31 159,58

Mode 7 193,03 192,53 192,35 192,25 192,19 515,78 500,44 429,04 197,35 193,39 192,37

Mode 8 281,88 280,73 280,05 279,64 279,38 657,71 548,72 500,06 300,63 283,25 281,29

Mode 9 330,85 329,80 329,41 329,21 329,09 760,23 729,66 541,73 342,96 332,06 329,49

Mode 10 421,19 419,20 418,08 417,45 417,06 936,30 873,43 729,03 460,29 425,04 420,28

Mode 11 509,37 507,72 507,13 506,84 506,67 1073,13 1018,46 737,83 523,89 511,36 507,11

Mode 12 528,28 527,20 527,06 527,03 527,02 1465,57 1252,97 1017,38 535,10 527,74 527,35

Mode 13 586,62 583,35 581,72 580,87 580,36 1685,49 1418,38 1220,23 651,74 594,83 584,98

Mode 14 732,06 729,42 728,32 727,79 727,48 1690,62 1565,04 1286,86 752,29 735,63 729,22

Mode 15 794,79 786,90 783,95 782,67 782,02 2477,18 2075,31 1417,79 872,17 808,34 788,90

Table 4: First 15 natural frequencies of the VAT plate evaluated using various TE an LE models.

(a) Euelero-Bernulli theory: 96,80 Hz (b) VAT LE Model: 94,71 Hz

Figure 7: Comparison between Eulero-Bernulli theory and 4L9 model.
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cross-section of the plate (10 L9 elements for each layer). Two laminations have been considered.

T0

T1

T1 x

y

b/2

b/2
a/2

a/2

Figure 8: Plate geometry and lamination parameters

The first one, called lamination a, is represented by the following T0 and T1 set: < 0◦, 45◦ >,<

−45◦,−60◦ >,< 0◦, 45◦ >. The second one, lamination b, is always a symmetric lamination and is

defined as follows: < 90◦, 45◦ >,< 60◦, 30◦ >,< 90◦, 45◦ >.

θ(y) = 2(T1 − T0)
|y|

a
+ T0 (25)

Figure 9 presents an example of the previous laminations in order to understand the patterns of

the fibers in each layer. It should be noticed that lamination b can introduce some issues in the

manufacturing process because of the presence of overlapped fibers at y = 0, but this problem is not

the topic of this paper. The plate has been analyzed considering two different boundary conditions.

At first, the four edges have been supposed clamped while, in a second time, the square plate has

been supposed entirely free. A refined three-dimensional solution obtained using a 3D FEM model

with 20 × 20× 3 H27 elements has been included as reference. The 3D model uses a step by step

approach and has ∼ 95000 DOFs. Table 5 shows the first nine frequency values for the clamped

plate. The values confirm the capability of the present model to deal with complex laminate where a

VAT lamination characterizes several layers. The results for the thick plate show a higher accuracy

while the thin plate presents errors of about some percentage points which can be decreased through

a refinement of the cross-sectional mesh. Table 6 shows the results considering the second boundary

condition, the free plate. The achieved values agree with those from the reference.

When the thinner panels are considered, the present model shows some discrepancy with respect

to the literature results as well as the 3D model, this is due to the high flexibility of the structure

that requires a refined cross-sectional kinematic to be well captured. Because of this, a refinement

of the cross-sectional discretization leads to a better solution.

18



X

YY

X

Y

<0°,45°> layer <-45°,-60°> layer

X

45°

0°

-60°

-45°

(a) Lamination a

X

Y

X

Y

X

Y

<90°,45°> layer <60°,30°> layer

30°

60°90°

(b) Lamination b

Figure 9: Example of the lamination layups.

19



h/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

[< 0, 45 >,< −45,−60 >,< 0, 45 >]

0,01 Ref. [22] 92,26 130,82 195,19 237,86 274,99 282,67 340,09 389,10 431,02

LE Model 94,44 135,36 206,40 247,05 287,67 307,89 361,64 433,83 476,36

Refined LE Model 92,90 132,28 198,97 240,46 278,75 291,12 346,60 404,07 444,97

3D Model 92.65 131.50 196.86 239.23 276.76 286.34 342.84 395.43 436.74

0,1 Ref. [22] 614,11 909,55 1233,02 1338,63 1485,64 1798,60 1932,28 1965,59 2152,26

LE Model 609,79 903,63 1216,00 1328,41 1469,33 1774,84 1930,15 1931,36 2113,88

3D Model 607.24 897.04 1208.40 1314.14 1458.18 1753.52 1916.57 1904.91 2096.64

[< 90, 45 >,< 60, 30 >,< 90, 45 >]

0.01 Ref. [22] 113,18 145,25 212,66 269,06 292,47 316,49 362,78 392,79 465,04

LE Model 114,32 148,92 223,15 279,60 303,80 332,45 381,32 425,44 507,54

3D Model 113.02 145.21 212.99 269.67 292.70 315.84 358.88 393.29 465.73

0.1 Ref. [22] 682,20 917,49 1304,68 1313,59 1466,64 1714,97 1920,80 1991,02 2001,10

LE Model 672,68 909,02 1270,07 1301,02 1441,95 1690,38 1904,58 1943,18 1943,44

3D Model 670.27 904.11 1264.63 1291.94 1433.44 1678.67 1883.04 1931.44 1947.36

Table 5: Natural frequencies [Hz] for the clamped plates.
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h/a Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

[< 0, 45 >,< −45,−60 >,< 0, 45 >]

0,01 Ref. [22] 22,44 27,1 54,87 76,05 94,35 114,01 114,47 138,89 160,49

LE Model 22,53 27,32 55,03 77,71 94,8 114,76 115,66 140,64 166,68

3D Model 22.26 27.04 54.39 75.73 93.65 113.60 112.99 137.56 159.39

0,1 Ref. [22] 201,89 258,71 467 664,96 764,44 867,89 903,61 1021,75 1129,86

LE Model 200,85 257,1 465,16 661,13 759,03 863,08 894,21 1015,21 1122,93

3D Model 200.28 256.20 462.22 657.30 754.14 858.41 887.09 1009.03 1122.09

[< 90, 45 >,< 60, 30 >,< 90, 45 >]

0,01 Ref. [22] 19,61 24,1 44,19 62,03 64,41 91,98 99,1 110,45 133,78

LE Model 19,61 24,25 44,31 62,99 64,81 93,29 101,01 111,26 135,06

3D Model 19.54 24.09 44.12 62.11 64.35 91.76 99.11 110.19 133.05

0,1 Ref, [22] 182,64 230,91 392,83 560,4 561,81 765,73 837,24 881,66 1010,19

LE Model 182,02 230,43 392,43 561,63 559,04 764,02 837,75 879,58 987,54

3D Model 181.46 230.06 391.74 560.02 557.96 760.90 834.15 877.64 986.12

Table 6: Natural frequencies [Hz] for free plates.
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When the thicker panels are considered the advantages of a Layer-wise description are more

evident, in fact, the results obtained by means of the present model are in agreement with those of

the 3D solution while the results reported by Akhavan and Ribeiro [22] have a larger error.

The results show a higher stiffness of the lamination a in the clamped case while, when no

boundary conditions are applied, the lamination b is more rigid. This phenomenon is due to the

path of the fiber with respect to the modal shapes which are influenced by the boundary conditions.

The first modal configuration is considered to explain it. In the clamped case, the lamination b

has the fibers perpendicular to the border at y = 0, and this feature increases the bending stiffness

while the lamination a has only angled fibers at the edges. This distribution of the fibers brings the

lamination b to have higher frequencies. In the free condition, the angled fibers (particularly +−45◦

fibers) govern the modal shape. Lamination a is very close to a (+45◦,−45◦,+45◦) lamination and

provides a greater stiffness with respect to the lamination b. Figure 10 shows the first five modal

shapes of the clamped panel for both the laminations.

Figure 11 presents the modal shapes in the case of the free boundary condition. The correct

description of the VAT lamination can be noted in the first modal shape. In fact, in the lamination

a there is a quasi-symmetric modal shape because of a quasi-+45◦/ − 45◦ lamination. Instead,

the lamination b has two corners that moves more than the others because along with a diagonal

the most of the fibers are perpendicular, so in this direction, the plate is less rigid. This can be

better explained using the figure 12 which shows that the top-right and bottom-left corner have no

longitudinal fibers over the conjunction line, and, in fact, they have a more significant displacement.

4.3. Layer-Wise VS Equivalent Single Layer approach

The present section aims to compare the LE and TE models in the case of a complex lamination

such as the one considered in the previous section. LE models are able to provide a Layer-wise

description since each layer has a proper description while the TE models introduce a global expan-

sion that leads to an Equivalen Single Layer approach. Table 7 presents the frequencies achieved

by the analysis of the previous free plate with the thickness equal to 0.01 m.

The frequency values show that the first order TE model presents difficulties in the correct

detection of the vibrational behavior of the plate. Higher order models provide more accurate

results, especially when lamination b is considered.

A more exhaustive analysis can be done comparing the modal shapes evaluated using different
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Figure 10: First 5 modal shapes of the clamped plate.

23



(a) Mode 1

Lamination a

(b) Mode 2
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(c) Mode 3

Lamination a
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Lamination a

(e) Mode 5
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(f) Mode 1

Lamination b

(g) Mode 2
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(h) Mode 3
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Figure 11: First 5 modal shapes of the free thin plate.
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Figure 12: Effects of the fiber placements on the 1st free modal shape.
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models. The Modal Assurance Criterion [38] has been used to compare the modal shapes. When

the MAC has a value equal to 1 there is a perfect modal matching while a value equal to 0 means

complete mismatching, intermediate values represent a partial correspondence between the modal

shapes. These values can be reported on the colored matrix shown in the Figures 13 and 14 where

a black square represents two identical modal forms. Figures 13 and 14 report the results for

lamination a and lamination b respectively. Two models have a perfect correlation if these graphs

are characterized by a black diagonal.

Figure 13 shows that when lamination a is considered even a fourth order model is not able to

detect correctly the modal shapes, in fact it can be noticed a modal switch between the fourth and

the fifth mode. Moreover, modes six, seven and eight show some contamination since some values

out of the diagonal are nor perfectly zero. Figure 14 shows that ESL models perform better when

lamination b is considered. A third order model is able to detect the first five modal shape while a

fourth order model detects accurately the first eight modal shapes.

It can be concluded that, when complex laminations are considered, the use of refined models

is mandatory. A LW approach leads to accurate results but it also requires a higher computational

cost. Despite the ESL models are not as accurate as the LW ones, they can lead to a strong

reduction in the computational cost.
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(c) 4th order TE Model

Figure 13: Modal shapes comparison between the LE model and different orders of the TE model for the lamination

a
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Model Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

[< 0, 45 >,< −45,−60 >,< 0, 45 >]

LE Model 22,53 27,32 55,03 77,71 94,8 114,76 115,66 140,64 166,68

TE Model 1st order 92,17 205,38 376,48 620,37 723,38 785,14 781,33 934,10 1326,02

TE Model 2nd order 23,50 31,87 104 111,65 266,91 267,54 497,23 500,81 779,24

TE Model 3rd order 23,18 31,86 62,12 101,63 103,67 129,95 146,55 267,56 302,78

TE Model 4th order 22,77 27,49 59,08 98,34 101,06 129,63 139,42 152,68 210,75

[< 90, 45 >,< 60, 30 >,< 90, 45 >]

LE Model 19,61 24,25 44,31 62,99 64,81 93,29 101,01 111,26 135,06

TE Model 1st order 22,68 64,69 131,36 225,23 350,20 511,06 710,84 781,29 1097,91

TE Model 2nd order 20,33 24,61 57,28 92,49 94,17 110,18 186,16 196,98 303,67

TE Model 3rd order 20,07 24,48 46,51 64,35 78,04 106,76 110,70 161,71 172,32

TE Model 4th order 19,75 24,31 45,11 63,74 66,88 97,79 101,33 121,16 172,32

Table 7: Comparison between LE model (Layer-wise approach) with TE models (Equivalent Single Layer)
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(b) 3rd order TE Model
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(c) 4th order TE Model

Figure 14: Modal shapes comparison between the LE model and different orders of the TE model for the lamination

b

26



5. Conclusions

In this work, a refined beam model based on the Carrera Unified Formulation has been extended

to the free vibration analysis of plates made of VAT composites. A new approach in evaluation

of the stiffness matrix has been introduced in order to include a variable lamination angle within

the same layer. Single- and Multi-layer plates have been considered using both layer-wise and

equivalent single layer approaches. An extensive validation of the models has been performed

considering the effects of the finite element discretization as well as the cross-sectional kinematic

approximation. The present VAT model has been compared with a Step by Step model and the

convergence of both the approaches has been investigated. The model has been then compared

with other approaches presented in literature. Multi-layer plates with complex fiber patterns have

been investigated considering different boundary conditions and geometrical configurations. The

results lead to the following remarks:

• the present VAT model is able to detect the effects due to curvilinear fibers as proven by the

comparison with the results obtained from a step by step approach and open literature;

• the introduction of curvilinear fibers in a lamina can introduce complex coupling effects that

cannot be detected by the classical theories, that is refined models are required;

• the use of VAT composite materials allows the stiffness to be arbitrarily distributed over a

panel, that is, an accurate design can lead to desired frequencies and modal shapes;

• the use of ESL models, justified by their lower computational cost, can be considered only

when thin panels are considered. Despite their higher computational cost, the LW models

provide accurate results even when thick panels are considered;

• for a given TE model a different lamination layup may lead to a different accuracy level that

is Layer-wise models are strongly recommended when VAT structures have to be investigated.

The advantages of the use of variable angle tow composite materials may lead to more performing

design solutions as long as appropriate numerical tools are used in the design process. The present

work shows that refined one-dimensional models are an accurate and reliable approach to the design

of such structures.
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