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Abstract: Thin-walled gears, designed for aeronautical applications, have shown very rich 

dynamics that must be investigated in advance of the design phase. One of the signatures of their 

dynamics is coupling due to the meshing teeth which stand-alone gear models cannot capture. This 

paper aims to investigate the dynamics of thin-walled gears considering time-varying coupling due 

to the gear meshing. Each gear is modelled with lumped parameters according to a local rotating 

reference system and the coupling is modelled by a traveling meshing stiffness. The set of equations 

of motion is solved by the non-linear Method of Multiple-Time-Scales (MMTS). MMTS is a very 

powerful technique that is widely used to solve perturbation problems in many fields of mathematic 

and physics. In the analyzed numerical test case, the relevance of gear coupling is demonstrated as 

well as the capability of the MMTS to capture the fundamental features of the system dynamics. In 

this study the analytical methodology, which uses MMTS, allows for the calculation of the forced 

response of the system made of two meshing gears despite the presence of a parametric quantity, 

i.e., the mesh stiffness. The calculation is performed in the frequency domain using modal 
coordinates, which ensures a fast computation. The result is compared with time domain analysis 
for validation purposes.

Keywords: dynamics; mesh stiffness; forced response; time-variant parameters; Method of Multiple 

Time-Scales; cyclic-symmetric systems dynamics; lumped parameters model 

1. Introduction

The need to identify a non-linear methodology for a dynamic study of two meshing gears moves 

from the evidence of some critical resonances occurring during operations, which cannot be 

investigated by analyzing a single gear considered as a stand-alone component, but it requires the 

analysis of the overall system which can be made of two or more than two meshing gears (planetary 

system), where time-varying parameters and non-linearities appear in the equations of motion. In 

practice, it is experimentally verified that one gear can influence the dynamics of the other meshing 

gears, under certain conditions, causing unexpected resonances, which are dangerous for the overall 

system. Then, a dynamic coupling is established between the meshing gears. This phenomenon is 

mainly due to the fluctuation of the mesh stiffness at the meshing teeth, which varies because of the 

different mesh conditions and contact points during meshing. Fluctuations of the mesh stiffness can 

induce severe instability conditions and affect also the resonances of the system. The phenomenon of 

dynamic coupling can be experimentally verified in industrial applications, in particular for 

aeronautical applications where the gears, having specific mechanical characteristics and working at 

critical speed regimes, show mutual interactions, which largely affect the forced response of the 

system. In more detail, the dynamic coupling causes critical resonances on a gear, which are induced 

by the excitation of the mode shapes of the meshing gear. The presence of these mutual interactions 

among the components leads to a different study of the system, which must include all the gears 
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involved in the interactions. The dynamic coupling is a direct consequence of the variations of tooth 

flexibility (mesh stiffness) because of the different contact conditions during rotation, but also because 

of the variations of the contact ratio. Thus, time-varying mesh stiffness causes the system to be non-

linear. It is worth remembering that here the term “non-linear” is adopted to highlight the fact that 

the system is not the usual Linear Time-Invariant System (LTIS), but a Linear Time-Variant System 

(LTVS). Being the system of the type LTVS, it is not possible to compute the forced response by 

inverting the dynamic stiffness matrix as for a LTIS, since the latter is a time-variant parameter inside 

the equation of motion. Nevertheless, the dependent variable of the equation of motion does not 

show elevation to powers or other non-linearities (e.g., Duffing equation). Then, the superimposition 

effect principle is valid for such a system and it will be used in the following discussion. As a 

consequence, the adoption of a “non-linear” method is needed to compute the forced response of the 

system. The dynamics of gear systems have been extensively studied by researchers for decades and 

still represent an important matter of interest for the understanding of phenomena affecting the 

dynamics of such systems. The evaluation of the mesh stiffness variations and the related non-linear 

aspects have a primary importance for researchers who provide several modelling solutions of the 

phenomenon [1] for mathematical definition. According to the different types of modelling of the 

mesh stiffness, many works provided different methodologies for the computation of the response 

of the system, according to different levels of complexity. Most of the works focused on the combined 

effect of mesh stiffness variation and backlash between the meshing teeth, which affects largely the 

response of the meshing gears, developing non-linear methodologies for the iterative and numerical 

computation of the response [2–9]. Other studies focused on the analysis of the instability conditions, 

which can be caused by the fluctuations of the mesh stiffness involving sometimes wide operational 

speed ranges of the gears and can lead to failures. Works on instability provide an analytical solution, 

using perturbation methods (e.g., method of multiple time-scales, MMTS) to establish relations 

between the analyzed instability conditions and the entity of the mesh stiffness fluctuations [10]. 

Recently, instability analyses and forced response studies were extended to more complex systems 

like planetary gear systems [11–14]. Most of the cited works analyze the dynamics of a gear system 

by considering the gears as rigid bodies connected by the mesh stiffness and introducing the 

transmission error between two meshing gears, which consider the fluctuations of an equivalent 

tooth compliance that excites the system. 

In this paper, the aim is to consider the gears as compliant bodies and compute analytically the 

forced response of the system excited both parametrically and externally. The backlash phenomenon 

is not considered at this stage in order to focus the attention on the phenomenon of the dynamic 

coupling and on the method to be developed to study the phenomenon without the nonlinearity 

introduced by intermitting contacts during meshing. Here, transmission error cannot be used 

anymore since the gear bodies are considered as compliant. The gears, which constitute the overall 

system, are linked together by means of a time-variant mesh stiffness, which acts on the nodes of the 

teeth, where the contact takes place. In other words, the system sees both a parametric excitation and 

an external force exciting the system. The methodology developed here applies the Method of 

Multiple-Time-Scale (MMTS) to compute the frequency response of a single mesh gear pair, modelled 

with lumped parameters, and investigate the dynamic coupling, which is established between the 

gears, verifying the mutual interactions and resonances induced by the phenomenon. MMTS allows 

a good approximation to the solution of the problem by introducing “scales” variables, which will 

substitute the independent variable of the problem. The solution of the problem passes through the 

elimination of the so-called “secular terms”. This procedure represents a necessary solvability 

conditions for the solution of the problem. In this paper, numerical examples of forced response are 

reported, based on test cases. Upon these test-case analyses, the methodology is finally validated by 

means of direct time integration (DTI) of the non-linear equations of motion. 

2. Model of the System

The system under analysis is made of two meshing gears (Gear-1 or G1, and Gear-2 or G2, Figure 

1). For each gear, a local reference system rotating with the gear itself is defined. Each gear is divided 
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into sectors (Z1 for Gear-1, and Z2 for Gear-2), one per each tooth (Figure 2). A gear ratio η can be 

defined for the system under analysis as the ratio between Z1 and Z2. Each sector is modelled as a 

lumped parameter model with two degrees of freedom (dof), or nodes, one for the tooth and one for 

the gear sector wheel (Figure 3). The rotation of each gear around its own axis is allowed (no radial 

or axial displacement are allowed, only tangential displacement is allowed). The latter assumption is 

reasonable for the case of thin walled spur gears where radial and axial displacements can be 

assumed as negligible. The sectors are then coupled together. The periodic coupling between the 

teeth of the two gears is modelled by a time-variant mesh stiffness KM(t), described in more detail in 

Section 3. 

Figure 1. System of two meshing gears. 

Figure 2. Representation of the sectors of the gears. 

Figure 3. Lumped parameters model of the sectors of the gears Gear-1 and Gear-2. 

As shown in Figure 3, the two gears are constrained to ground by means of the stiffness elements 

𝑘𝑎,1  and 𝑘𝑎,2  respectively. The mechanical characteristics of mass 𝑚𝑏,1  and 𝑚𝑏,2,  and stiffness 

𝑘𝑏,1 and 𝑘𝑏,2 are associated to the teeth of the gears, whose displacement coordinates are 𝑥𝐺1,𝑡 and 

𝑥𝐺2,𝑡 (respectively for the teeth of G1 and the teeth of G2). The mechanical characteristics of mass 𝑚𝑐,1 

and 𝑚𝑐,2, and stiffness 𝑘𝑐,1 and 𝑘𝑐,2 are associated to the gear sector wheel, whose displacement 
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coordinates are 𝑥𝐺1,𝑐 and 𝑥𝐺2,𝑐 (respectively for the sector wheel of G1 and the sector wheel of G2). 

In Figure 3, a force acting on the meshing teeth dof (equal but with opposite direction for the tooth 

of G1 and the tooth of G2) is shown, which represents the force establishing between them when the 

meshing couple is in contact. Obviously, when the couple is not meshing, no forces are exchanged. 

Then, the force travels along the circumference of each gear as the system rotates. The excitation force 

will be discussed more in detail in Section 5. 

The physical displacement vector (with the corresponding size) is: 

{𝑥}  =  { {𝑥𝐺1}
𝑇
, {𝑥𝐺2}

𝑇
 }
𝑇

1𝑥𝑁
, (1) 

where, 

{𝑥𝐺1}
𝑇
 =  {{𝑥𝐺1,𝑐}

𝑇
 , {𝑥𝐺1,𝑡}

𝑇
}
𝑇

1 𝑥 2𝑍1
, (1) 

{𝑥𝐺2}
𝑇
 =  {{𝑥𝐺2,𝑐}

𝑇
 , {𝑥𝐺2,𝑡}

𝑇
}
𝑇

1 𝑥 2𝑍2
, (3) 

with 𝑁 =  2 𝑍1 + 2 𝑍2. {𝑥} including Gear-1 displacement coordinates, 𝑥𝐺1 , subdivided into 𝑥𝐺1,𝑐 

which indicates the displacement of the nodes of the gear wheel, and 𝑥𝐺1,𝑡  indicating the 

displacement of the teeth. The same holds for 𝑥𝐺2 of Gear-2. The equation of motion, in matrix form, 

can be written in general as: 

𝑀 �̈� + �̂� �̇� + �̂�(𝑡) 𝑥 =  �̂�(𝑡), (4) 

where 𝑀 is the mass matrix; �̂� is the damping matrix; �̂�(𝑡) is the stiffness matrix which includes 

time-variant parameters, corresponding to the mesh stiffness KM(t) used to couple the two gears; �̂�(𝑡) 

is the force vector containing non-zero values for the teeth dof. As anticipated before, �̂�(𝑡) is a time-

variant vector since the mesh force passes from one tooth to another as the system rotates. Then, each 

tooth is periodically subjected to a force excitation due to the meshing, where the period is equal to 

the rotation period of the gear. In the next section, the mesh stiffness will be discussed, then the 

assembly of the matrices will be presented in Section 4. 

3. Definition of Mesh Stiffness

During meshing, many factors can induce fluctuations of the stiffness characteristics of the teeth. 

As explained before, the fluctuations of the mesh stiffness can be due to different contact conditions 

given by different contact ratios and contact positions along the tooth face. Hertzian contact 

phenomena can also influence the stiffness of the teeth. The combined effect of all these fluctuation 

sources produces a time history of the mesh stiffness acting on a single tooth. In this paper the time 

history of the mesh stiffness is not investigated in detail and it is approximated to a rectangular 

waveform traveling from one tooth to another one. In more detail, the mesh stiffness, which couples 

the nth tooth pair, is assumed to have a constant value kt when the nth tooth pair is in contact and a 

null value when the contact is missing. Within the meshing time interval, the constant value, kt, 

assumed by the mesh stiffness can represent an equivalent mean value of a real trend during 

meshing. Since rotating reference systems are used, in each gear the mesh stiffness rotates with the 

same speed as the gear but in the opposite direction. In Figure 4 the time history of a generic mesh 

stiffness KM(t) is shown with equivalent value kt and unitary contact ratio, acting on a single tooth of 

a gear, with Z sectors (teeth) rotating at certain speed with revolution period T. In this qualitative 

example of mesh stiffness, one can distinguish between the meshing time interval, when the tooth is 

in contact, from the rest of the time history when the tooth is not in contact and the mesh stiffness 

assumes a null value. Once a full revolution is performed, so after a period T, the tooth experiences 

again the mesh stiffness. 
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Figure 4. Qualitative time history of the mesh stiffness over one revolution period. 

The rectangular waveform can be translated into a sum of harmonics by developing the Fourier 

Series of time trend: 

𝐾𝑀(𝑡)  =  𝐾𝑐 + ∑ [𝐾𝑉𝑎
𝑠 cos (𝑠𝛺𝑡)∞

𝑠 = 1 + 𝐾𝑉𝑏
𝑠 sin(𝑠𝛺𝑡)], (5)

where 𝐾𝑐 is the mean value of the function, 𝑠 is the harmonic index, 𝛺 is the speed of the gear (𝑇 =

2𝜋/𝛺), while 𝐾𝑉𝑎
𝑠  and 𝐾𝑉𝑏

𝑠 are the coefficients of the “cosine” harmonics and the “sine” harmonics, 

respectively. The expression of the Fourier series can be further manipulated by means of the Euler 

formula, to redefine Equation (5) as the real-valued form of the complex notation of the Fourier Series 

which will be used in the following discussion (Equation (6)).  

𝐾𝑀(𝑡)  =  𝐾𝑐 + 𝐾𝑉(𝑡)  =  𝐾𝑐 + ∑ [𝐾𝑉
𝑠𝑒𝑖 𝑠𝛺 𝑡 + 𝐾𝑉

𝑠̅̅̅̅  𝑒−𝑖 𝑠𝛺 𝑡]∞
𝑠 = 1 , (6) 

where: 

𝐾𝑉
𝑠  =  

1

2
(𝐾𝑉𝑎

𝑠 − 𝑖𝐾𝑉𝑏
𝑠 ); 𝐾𝑉

𝑠̅̅̅̅ , complex conjugate of 𝐾𝑉
𝑠. (7) 

In Figure 5a,b a numerical example is shown (with Z1 = 10, Z2 = 20 and kt = 106 N/m ) where T1 

and T2 are the revolution periods of Gear-1 and Gear-2 respectively, and they are different from one 

another since Z1 ≠ Z2. 

(a)
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(b) 

Figure 5. (a) Mesh Stiffness traveling on G1. (b) Mesh Stiffness traveling on G2. 

By looking at the previous example, it is easy to note that the periodic time history of the mesh 

stiffness of the two gears is different. As a matter of fact, the rectangular waveform is the same, but 

its period differs in the two gears, being T1 for Gear-1 and T2 for Gear-2. Here, this concept is clarified 

with an example. Let us consider the previous system with Z1 = 10 teeth and Z2 = 20 teeth. In Figure 

6a the couple 1-1 (tooth-1 of G1—tooth-1 of G2) starts meshing for an angle θ1 = 0° of G1. After a full 

revolution of G1 (Figure 6e) tooth-1 of G1 meshes again but now with tooth-11 of G2. The same is for 

the other couples 2-2 and 2-12 (Figure 6b–f) and so on. Thus, a certain couple (i-j) meshes with a base 

period that is twice the base period T1. Of course, the latter relation changes for systems with different 

number of teeth.  

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 6. (a) Mesh couple for θ1 = 0°; (b) Mesh couple for θ1 = 36°; (c) Mesh couple for θ1 = 72°; (d) 

Mesh couple for θ1 = 180°; (e) Mesh couple for θ1 = 360°; (f) Mesh couple for θ1 = 1 round+36°. 

4. Equations of Motion and Construction of the Matrices

Having adopted a lumped parameters model, it is convenient to write, for clarity’s sake, an 

equation of motion (considering at this stage the un-damped unforced system) of one dof connected 

to the ith tooth of Gear-1. Then, let us consider the previous example of a system constituted by one 

gear (Gear-1) having 10 teeth (Z1) and a second gear (Gear-2) having 20 teeth (Z2). Let us write the 

equation of motion of tooth-1 of Gear-1. By looking at Figure 7 below, neglecting at this stage the 

presence of damping and excitation force, the resulting equation of motion is: 

𝑚𝑏�̈�𝑡1,1 + 𝑘𝑏(𝑥𝑡1,1 − 𝑥𝑐1,1) + 𝐾𝑀1,1(𝑡) (𝑥𝑡1,1 − 𝑥𝑡2,1) + 𝐾𝑀1,11(𝑡) (𝑥𝑡1,1 − 𝑥𝑡2,11)  =  0, (8) 

where 𝑚𝑏 refers to mass of the teeth; 𝑘𝑏, nominal stiffness of the teeth; 𝐾𝑀1,1(𝑡) and 𝐾𝑀1,11(𝑡) mesh

stiffness coupling the 1-1 teeth pair and 1-11 teeth pair respectively. 

Figure 7. Linearized system showing meshing stiffnesses involving tooth-1 of G1. The gears are 

constrained to the ground by means of the stiffness ka. 

It is possible to write the latter equation in a clearer form as follows: 

𝑚𝑏�̈�𝑡1,1 + 𝑘𝑏𝑥𝑡1,1 + (𝐾𝑀1,1(𝑡) + 𝐾𝑀1,11(𝑡)) 𝑥𝑡1,1 − 𝐾𝑀1,1(𝑡) 𝑥𝑡2,1 − 𝐾𝑀1,11(𝑡) 𝑥𝑡2,11 − 𝑘𝑏𝑥𝑐1,1  =  0. (9) 

In Equation (9), two types of time-variant stiffness can be highlighted. The first type includes 

𝐾𝑀1,1(𝑡) and 𝐾𝑀1,11(𝑡). The two terms refer to a specific teeth pair that meshes during operation. They

are characterized by a rectangular waveform having a period 𝑇𝑝𝑎𝑖𝑟 that is strictly dependent on the 

number of teeth of the two gears. It is easy to derive 𝑇𝑝𝑎𝑖𝑟 and to relate it to the revolution periods 

of the two gears, 𝑇1 and 𝑇2 respectively. In general, 𝑇𝑝𝑎𝑖𝑟 is a multiple of both the periods 𝑇1 and 

𝑇2. It is convenient to write the latter relation in a mathematical form: 

𝑇𝑝𝑎𝑖𝑟  =  𝑛𝑇1𝑇1  =   𝑛𝑇2𝑇2 (10) 

where the coefficients 𝑛𝑇1 and 𝑛𝑇2 define the multiple of the respective revolution periods. In the 

example analyzed here it is easy to note that 𝑛𝑇1  =  2 and 𝑛𝑇2  =  1. In other words, a specific pair 

meshes after two revolution of the Gear-1 as well as after one revolution of Gear-2. The other type of 

variable stiffness term which appears into Equation (9) is the term 𝐾𝑀1,1(𝑡) + 𝐾𝑀1,11(𝑡). This sum

creates a rectangular waveform different from the previous one. As a matter of fact, 𝐾𝑀1,1(𝑡) +

𝐾𝑀1,11(𝑡)  is a waveform with the same constant value kt but with a period exactly equal to the

revolution period 𝑇1, as shown in Figure 8. 
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Figure 8. Time history of the time-variant terms that appear into the equation of motion Equation (9). 

Then, for all the equations of motion of the dof belonging to Gear-1, two different sets of 

harmonics appear into the equation. The fundamental frequencies, which describe the two sets, are 

respectively: 

Ω1  =  
2𝜋

𝑇1
, (11) 

Ω3  =  
2𝜋

𝑇𝑝𝑎𝑖𝑟
(12) 

Following the same approach, it is possible to write the equations of motion for the dof belonging 

to Gear-2. For those equations, still two types of variable stiffness can be distinguished into the 

resulting equation (here the equation of motion is not reported because is similar to Equation (9). The 

first type is again the rectangular waveform of the single pair of teeth described by the period 𝑇𝑝𝑎𝑖𝑟, 

so by the fundamental frequency Ω3. The second type of time-variant stiffness term is the sum of all 

the other pair waveforms involved into the equation, but now the resulting rectangular waveform 

has a base period equal to the revolution period of Gear-2, i.e., 𝑇2. Therefore, another set of harmonics 

appears in the equations of motion of the system and it is described by the fundamental frequency 

Ω2, which is the speed of Gear-2 

Ω2  =  
2𝜋

𝑇2
(13) 

Finally, the construction of the stiffness matrix �̂�(𝑡) allows to write the full stiffness matrix in 

the next form (Equation (14)), by properly distinguishing between the terms referred to the three 

different sets of harmonics, having fundamental frequencies Ω1, Ω2 and Ω3: 

�̂�(𝑡)  =  (𝐾𝑐 + 𝐾𝑉1̂(𝑡) + 𝐾𝑉2̂(𝑡) + 𝐾𝑉3̂(𝑡)), (14)
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𝐾𝑉1̂(𝑡)  =  ∑ [𝐾𝑉1
𝑠1𝑒𝑖𝑠1𝛺1𝑡 + 𝐾𝑉1

𝑠1̅̅ ̅̅ ̅𝑒−𝑖𝑠1𝛺1𝑡∞
𝑠1 = 1

], (15) 

𝐾𝑉2̂(𝑡)  =  ∑ [𝐾𝑉2
𝑠2𝑒𝑖𝑠2𝛺2𝑡 + 𝐾𝑉2

𝑠2̅̅ ̅̅ ̅𝑒−𝑖𝑠2𝛺2𝑡∞
𝑠2 = 1

], (16) 

𝐾𝑉3̂(𝑡)  =  ∑ [𝐾𝑉3
𝑠3𝑒𝑖𝑠3𝛺3𝑡 + 𝐾𝑉3

𝑠3̅̅ ̅̅ ̅𝑒−𝑖𝑠3𝛺3𝑡∞
𝑠3 = 1

]. (17) 

The mass matrix 𝑀  and the stiffness matrix �̂�(𝑡) are obtained by writing the equation of 

motion for each dof of the system as shown in Equation (9) according to the matrix notation. The 

damping matrix �̂� will be defined later in Section 6.1 assuming a modal damping ratio 𝜍 to the 

mode shapes of the system. 

5. Excitation Force

A mesh force applied to two meshing teeth excites the system. The mesh force F(t) of Figure 3 

corresponds to a torque (for example applied on G1) and a resistant torque (applied on G2) acting on 

the system. Since the mesh force rotates along the gears as the system rotates, each tooth of a gear 

undergoes periodically the same mesh force, with a period that is equal to the rotation period of the 

gear itself (𝑇1 for teeth of G1 and 𝑇2 for the teeth of G2) each tooth is subjected to the same force with 

a time delay. During meshing, the value of the mesh force is assumed to be constant. Then, 

considering the generic ith tooth of a gear, the mesh force 𝐹𝐺𝑖(𝑡) acting on it will have the same trend

of the mesh stiffness in the time domain (rectangular waveform, Figure 4). As a consequence, the 

force vector �̂�(𝑡) in the equation of motion Equation (4) contains, in correspondence to the teeth dof, 

the mesh force trends 𝐹𝐺𝑖(𝑡), properly phased in the time domain according to the position of the

tooth which is considered (e.g., if tooth-1 of G1 undergoes 𝐹11(𝑡), tooth-2 of G1 undergoes 𝐹12(𝑡)  =

𝐹11(𝑡 + ∆𝑇), being ∆𝑇 the meshing time interval). Finally, the force vector �̂�(𝑡) can be represented 

as 

�̂�(𝑡)  =  

{

{0}𝑍1×1

{

𝐹11
⋮

𝐹12𝑍1

}

𝑍1×1

{0}𝑍2×1

{

𝐹21
⋮

𝐹22𝑍2

}

𝑍2×1}𝑁×1

(18) 

As for the mesh stiffness, it is convenient to express the mesh force as a Fourier series, since it is 

periodic in the time domain. This will be advantageous for the computation of the forced response 

(Section 6), since each harmonic will be considered separately, computing the overall response as a 

superimposition of the effects due to each harmonic. As a matter of fact, the system is a linear time-

variant system whereby the superimposition principle is valid. Then, let us write the expression of 

the force function, in the Fourier series. It is convenient to distinguish between the force acting on the 

teeth nodes of Gear-1 from the force acting on the teeth nodes of Gear-2. The two force sets, expressed 

in Fourier Series, have fundamental frequencies that are the speed of the Gear-1 (𝛺1) for the excitation 

force terms acting on the teeth nodes of Gear-1 and the speed of Gear-2 (𝛺2) for the excitation force 

terms acting on the teeth nodes of Gear-2. As a consequence, let us write the general expression of 

the force acting on the ith tooth of G1 and the force acting on the jth tooth of G2 respectively in Equations 

(19) and (20):

𝐹1𝑖(𝑡)  =  𝐹1𝑖,0 +∑ [𝐹1𝑖𝑎
𝑘1cos (𝑘1𝛺1𝑡)

∞
𝑘1 = 1

+ 𝐹1𝑖𝑏
𝑘1 sin(𝑘1𝛺1𝑡)]; (19) 

𝐹2𝑗(𝑡)  =  𝐹2𝑖,0 +∑ [𝐹2𝑗𝑎
𝑘2cos (𝑘2 𝛺2𝑡)

∞
𝑘2 = 1

+ 𝐹2𝑗𝑏
𝑘2 sin(𝑘2𝛺2𝑡)]. (20) 

As for the mathematical expression of the mesh stiffness (Section 3), The Fourier Series of the 

mesh force can be written by means of the exponential notation. Equations (19) and (20) become: 
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𝐹1𝑖(𝑡)  =  𝐹1𝑖,0 +∑ [ 𝐹1𝑖
𝑘1  𝑒𝑖𝑘1𝛺1𝑡∞

𝑘1 = 1
+ 𝐹1𝑖

𝑘1̅̅ ̅̅ ̅
𝑒−𝑖 𝑘1𝛺1𝑡], (21) 

𝐹2𝑖(𝑡)  =  𝐹2𝑖,0 + ∑ [ 𝐹2𝑖
𝑘2  𝑒𝑖𝑘1𝛺1𝑡∞

𝑘1 = 1
+ 𝐹2𝑖

𝑘2̅̅ ̅̅ ̅
𝑒−𝑖 𝑘2𝛺2𝑡], (22) 

With 

𝐹𝐺𝑖
𝑘𝐺 = 

1

2
(𝐹𝐺𝑖𝑎

𝑘𝐺 − 𝑖 𝐹𝐺𝑖𝑏
𝑘𝐺), (23) 

𝐹𝐺𝑖
𝑘𝐺̅̅ ̅̅ ̅
 =  

1

2
(𝐹𝐺𝑗𝑎

𝑘𝐺 + 𝑖 𝐹𝐺𝑗𝑏
𝑘𝐺). (24) 

Being the forcing functions 𝐹1𝑖(𝑡) and 𝐹2𝑗(𝑡) expressed as a series of harmonics with frequencies

𝑘1𝛺1 and 𝑘2𝛺2 respectively, it is convenient to separate the force vector 𝐹(𝑡) into a sum of two 

vectors whose components can be expressed as harmonics having frequencies 𝑘1𝛺1  and 𝑘2𝛺2 , 

respectively �̂�1(𝑡) (Equation (25)) and �̂�2(𝑡) (Equation (26)). Thus, let us represent the two vectors 

as follows: 

�̂�1(𝑡)  =  

{

{0}𝑍1×1

{

𝐹11
⋮

𝐹12𝑍1

}

𝑍1×1

{0}2𝑍2×1 }
𝑁×1

, (25) 

�̂�2(𝑡)  =  

{

{0}2𝑍1×1
{0}𝑍2×1

{

𝐹21
⋮

𝐹22𝑍2

}

𝑍2×1}𝑁×1

. (26) 

The overall forcing function vector 𝐹(𝑡) is 

�̂�(𝑡)  =  �̂�1(𝑡) + �̂�2(𝑡). (27) 

6. Forced Response Computation with MMTS

Section 6 deals with the development of a general analytical solution of the forced response of 

the system under exam using MMTS. MMTS is a very used technique able to obtain approximations 

of solutions to non-linear problems. It works by substituting different “scales” variables (according 

to the level of approximation the user desires) to the independent variable of the equation, treating 

them as independent variables. Being a frequency-based method, it allows the study of the response 

of a complex system in a very flexible way, reducing considerably the computational time, with 

respect to other time-based methods which provide a numerical and iterative solution to the problem. 

Before going through the discussion of MMTS, it is advantageous to rewrite the equation of motion 

Equation (4) in terms of modal coordinates. The use of modal coordinates leads to a great 

simplification of the problem by decoupling the equation of motions. Moreover, it allows the direct 

evaluation of the effect of a harmonic component of the excitation force on the respective mode shape 

that is excited by that component. Thus, the following Paragraph 6.1 is dedicated to the 

transformation of the equation of motion in modal coordinates while the mathematical development 

of MMTS is discussed in Paragraph 6.2. 

6.1. Modal Analysis and Transformation of the Equation of Motion in Modal Coordinates 

Since the stiffness matrix �̂�(𝑡)  contains time-variant elements, the computation of modal 

analysis cannot be performed in general. For this reason, the computation of the modal analysis is 

performed on the mean part of the stiffness matrix 𝐾𝐶 (Equation (14)) (𝐾𝐶 is a symmetric matrix). 



Appl. Sci. 2019, 9, 1225 11 of 24 

Thus, let us consider the time-invariant (unforced and undamped) part of the equation of motion 

Equation (4) (Equation (28)) and perform the modal analysis (Equation (29)). 

𝑀�̈� + 𝐾𝐶𝑥 =  0; (28) 

det(𝐾𝐶 −𝜔
2𝑀)  =  0 , 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 →  𝜔𝑛

2 , 𝜓𝑛  , 𝑛 =  1 ÷ 𝑁 ; (29) 

𝛹 =  [𝜓1, … , 𝜓𝑛, … , 𝜓𝑁]𝑁×𝑁, 𝑚𝑜𝑑𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 

𝜔𝑛, 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
From modal analysis, the natural frequencies 𝜔𝑛 and mode shapes 𝜓𝑛 of the (mean) overall 

system are obtained. Then, let us apply Direct Modal Transformation (DMT, Equation (30)) to the 

equation of motion using the modal matrix 𝛹 and multiply the latter by the transpose of the modal 

matrix 𝛹𝑇. The resulting equation written in modal coordinates (𝑢, vector of modal coordinates) is 

reported in Equation (31). 

𝑥 =  𝛹𝑢 . (30) 

𝑀𝑚𝑜𝑑  �̈� + �̂�𝑚𝑜𝑑 �̇� + 𝐾𝑐,𝑚𝑜𝑑  𝑢 + �̂�(𝑡) 𝑢 =  �̂�(𝑡) , (31) 

with: 𝑀𝑚𝑜𝑑, modal mass matrix; �̂�𝑚𝑜𝑑, modal damping matrix; 𝐾𝑐,𝑚𝑜𝑑, modal mean stiffness matrix; 

�̂�(𝑡)  =  𝛹𝑇𝐾�̂�(𝑡)𝛹; (32) 

�̂�(𝑡)  =   𝛹𝑇�̂�(𝑡) (33) 

If the mode shapes are normalized with respect to the unitary modal masses, 𝑀𝑚𝑜𝑑 is equal to 

the identity matrix and 𝐾𝑐,𝑚𝑜𝑑 is a diagonal matrix having on its main diagonal the eigenvalues of 

the system 𝜔𝑛
2. As anticipated in Section 2, damping is not modelled physically into the model. For 

the sake of simplicity, damping is introduced by means of the modal damping ratio 𝜍𝑛  to be 

associated to each nth mode shape. It is possible to obtain the modal damping �̂�𝑛 as: 

�̂�𝑛  =  2
𝜍𝑛

√𝑘𝑚𝑜𝑑𝑛 × 𝑚𝑚𝑜𝑑𝑛

=  2
𝜍𝑛

√𝜔𝑛
2

,  =  1 ÷ 𝑁 ; 
(34) 

with 𝑚𝑚𝑜𝑑𝑛
 modal mass of the nth mode shape (𝑚𝑚𝑜𝑑𝑛

 =  1, if the mode shapes are normalized with

respect to the unitary modal masses) and 𝑘𝑚𝑜𝑑𝑛 modal stiffness of the nth mode shape (𝑘𝑚𝑜𝑑𝑛  =  𝜔𝑛
2,

if the mode shapes are normalized with respect to the unitary modal masses). Then, the modal 

damping matrix �̂�𝑚𝑜𝑑  is a diagonal matrix having on its main diagonal the modal damping �̂�𝑛 , 

satisfying the following relation that allows computation of the damping matrix in physical 

coordinates. 

𝐶 =  𝛹𝑇−1 �̂�𝑚𝑜𝑑 𝛹
−1 (35) 

The diagonalization of most of the matrices inside the equation of motion allows us to write 

singularly the equations of motion in modal coordinates (Equation (36)). The only term that is not 

diagonalized is �̂�(𝑡) being a non-symmetric matrix that was not involved in the modal analysis. As 

a consequence, in the nth equation of motion in modal coordinates �̂�(𝑡) must be expressed as sum of 

the products of the elements �̂�𝑛𝑟(𝑡) (elements of the matrix �̂�(𝑡) at nth row and rth column) times the 

rth modal displacement 𝑢𝑟. 

𝑢�̈� + �̂�𝑛𝑢�̇� +𝜔𝑛
2 𝑢𝑛 + ∑{ �̂�𝑛𝑟(𝑡) 𝑢𝑟}

𝑁

𝑟 = 1

 =   �̂�𝑛(𝑡)  , 𝑛 =  1 ÷ 𝑁 (36) 

The Equation (36) represents the useful equation for the development of MMTS by means of 

which it is possible to compute the modal response 𝑢𝑛, in the frequency domain, of the generic nth 

mode shape subjected to a modal force �̂�𝑛(𝑡). The development of MMTS will be presented in the 

next Paragraph 6.2 starting from the single nth equation of motion in modal coordinates (Equation 

(35)). 
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6.2. Forced Response Computation Using MMTS 

MMTS operates by substituting the independent time variable 𝑡 with the time scales 𝑡0, 𝑡1, 𝑡2, 

…, where 𝑡0  =  𝜀
0𝑡, 𝑡1  =  𝜀

1𝑡 and 𝑡2  =  𝜀
2𝑡 and ε is the scale factor which describes the time scale.

The relation between the original time variable and the new time scales is expressed in Equation (37). 

Here, the series approximating the old variable 𝑡 is truncated at the second order (power 𝜀2): 

𝑡 =  𝑡0 + 𝑡1 + 𝑜(𝜀
2)  =  𝑡 + 𝜀𝑡 + 𝑜(𝜀2)  =  𝑡 + 𝜏 + 𝑜(𝜀2). (37) 

As a consequence, the dependent variable 𝑢𝑛(𝑡) as well as the derivative operators need to be 

written (Equations (38), (39) and (40)), in the new time scale variables: 

𝑢𝑛  =  𝑢𝑛0(𝑡, 𝜏) + 𝜀 𝑢𝑛1(𝑡, 𝜏) + 𝑜(𝜀
2), 𝑛 =  1 ÷ 𝑁; (38) 

𝑑

𝑑𝑡
⇒

𝜕

𝜕𝑡
+ 𝜀

𝜕

𝜕𝜏
+ 𝑜(𝜀2), (39) 

𝑑2

𝑑𝑡2
⇒

𝜕2

𝜕𝑡2
+ 2𝜀

𝜕2

𝜕𝑡𝜕𝜏
+ 𝑜(𝜀2) . (40) 

The solution to the problem requires the proper manipulation of the equations of motion. 

Recalling Equation (36), the manipulation consists of associating some terms of the equation to the 

coefficient 𝜀 (Equations (41), (42) and (43)). Let us associate the time-variant part of the stiffness 

matrix, �̂�(𝑡), the damping matrix �̂�𝑛 and the modal force �̂�𝑛(𝑡) to the scale factor 𝜀: 

�̂�(𝑡)  =  𝜀 𝐷(𝑡) , (41) 

�̂�𝑛  =  𝜀 𝑐𝑛 ; (42) 

�̂�𝑛(𝑡)  =  𝜀 𝑃𝑛(𝑡)  . (43) 

Substituting Equations (41), (42) and (43) into Equation (36), the latter becomes: 

𝑢�̈� + 𝜀 𝑐𝑛𝑢�̇� +𝜔𝑛
2 𝑢𝑛 + ∑ {𝜀 𝐷𝑛𝑟(𝑡) 𝑢𝑟}

𝑁
𝑟 = 1  =   𝜀 𝑃𝑛(𝑡)  , 𝑛 =  1:𝑁  . (44) 

Once the new equation of motion Equation (44) is defined, the MMTS operates by substituting 

the new expression of the modal response 𝑢𝑛(𝑡) (Equation (38)) and the new derivative operators 

(Equations (39) and (40)) into Equation (44). The resulting equation of motion will be an equation 

where all the terms are characterized by a multiplying coefficient that is in general a power of the 

scale factor 𝜀 (𝜀𝑛). Then, a separation of the terms according to the power of 𝜀 is performed, by 

creating 𝑛 different equations. The new equations are reported below (Equations (45) and (46)). 

 Equation corresponding to the power 𝜀0:

𝑢𝑛0̈ + 𝜔𝑛
2𝑢𝑛0  =  0 . (45) 

 Equation corresponding to the power 𝜀1:

𝑢𝑛1̈ + 𝜔𝑛
2𝑢𝑛1  =  −2

𝜕2𝑢𝑛0

𝜕𝑡𝜕𝜏
− ∑ { 𝐷𝑛𝑟(𝑡) 𝑢𝑟0}

𝑁
𝑟 = 1 − 𝑐𝑛

𝜕𝑢𝑛0

𝜕𝑡
+ 𝑃𝑛(𝑡) . (46) 

The solution of Equation (45) can be written in the general form 

𝑢𝑛0  =  𝐴𝑛(𝜏)𝑒
𝑖𝜔𝑛𝑡 + 𝐴𝑛̅̅̅̅ (𝜏)𝑒

−𝑖𝜔𝑛𝑡  =  𝐴𝑛(𝜏)𝑒
𝑖𝜔𝑛𝑡 + 𝐶𝐶 , (47) 

where 𝐴𝑛(𝜏) is a function of the time variable 𝜏. Substituting Equation (47) into Equation (46) and 

adopting the notation in Equation (48), one obtains Equation (49): 

(… )̇  =  
𝜕(… )

𝜕𝑡
;  (… )′  =  

𝜕(… )

𝜕𝜏
 ; (48) 

𝑢𝑛1̈ + 𝜔𝑛
2𝑢𝑛1  =  −2[𝑖𝜔𝑛𝐴𝑛

′ 𝑒𝑖𝜔𝑛𝑡 + 𝐶𝐶] − ∑ { 𝐷𝑛𝑟(𝑡) [𝐴𝑟𝑒
𝑖𝜔𝑟𝑡 + 𝐶𝐶]}𝑁

𝑟 = 1 −

𝑐𝑛[𝑖𝜔𝑛𝐴𝑛𝑒
𝑖𝜔𝑛𝑡 + 𝐶𝐶] + 𝑃𝑛(𝑡) , 

(49) 

where the quantity 𝐶𝐶 represents the complex conjugate of the previous term. 
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In order to solve the N equations of motion (Equation (49)) in the modal coordinate 𝑢 it is 

necessary to develop the terms  𝐷𝑛𝑟(𝑡) and 𝑃𝑛(𝑡) in their harmonic series:  

𝐷(𝑡)  =  𝐷1(𝑡) + 𝐷2(𝑡) + 𝐷3(𝑡) , (50) 

𝐷(𝑡)  =  ∑ [ 𝐷1
𝑠1  𝑒𝑖 𝑠1𝛺1𝑡

∞

𝑠1 = 1

+ 𝐷1
𝑠1̅̅ ̅̅ ̅𝑒−𝑖𝑠1𝛺1𝑡] + ∑ [ 𝐷2

𝑠2  𝑒𝑖 𝑠2 𝛺2 𝑡
∞

𝑠2 = 1

+ 𝐷2
𝑠2̅̅ ̅̅ ̅𝑒−𝑖 𝑠2𝛺2𝑡]

+ ∑ [ 𝐷3
𝑠3  𝑒𝑖 𝑠3𝛺3𝑡

∞

𝑠3 = 1

+ 𝐷3
𝑠3̅̅ ̅̅ ̅𝑒−𝑖 𝑠3𝛺3𝑡]

(51) 

𝑃(𝑡)  =  𝑃1(𝑡) + 𝑃2(𝑡) , (52) 

𝑃(𝑡)  =  𝑃1,0 + 𝑃2,0 + ∑ [ 𝑃1
𝑘1  𝑒𝑖𝑘1𝛺1𝑡∞

𝑘1 = 1
+ 𝑃1

𝑘1̅̅ ̅̅ ̅
𝑒−𝑖 𝑘1𝛺1𝑡] + ∑ [ 𝑃2

𝑘2  𝑒𝑖𝑘2𝛺2𝑡∞
𝑘2 = 1

+

𝑃2
𝑘2̅̅ ̅̅ ̅
𝑒−𝑖 𝑘2𝛺2𝑡] .

(53) 

It is worth to remind that the fundamental frequency 𝛺1 is the speed of G1, the fundamental 

frequency 𝛺2 is the speed of G2, linked to 𝛺1 through the gear ratio η =  
𝑍1

𝑍2
 and the fundamental

frequency 𝛺3 is the frequency whereby a generic pair of teeth meshes (see Equations (11), (12) and 

(13)). Substituting the expressions Equation (51) and Equation (53) into Equation (49), one obtains the 

extended pth equation of motion in modal coordinates with all the time-variant parameters developed 

inside (see Appendix A, Equation (A2)). This equation contains all the harmonics of the excitation 

force, but they can be treated singularly by computing the forced response to each harmonic 

component of the force. Finally, a sum of all the response contributions can be performed, thanks to 

the superimposition effect principle, so to compute the overall multi-harmonic response. Thus, the 

following discussion analyzes the forced response to the generic kth harmonic component of 𝑃1(𝑡) 

acting on the teeth of G1. The same approach is used to compute the forced response to the second 

set of harmonics 𝑃2(𝑡) acting on the nodes of G2, but here they are not treated for sake of clarity. Let 

us consider the following equation (Equation (54)) of the pth modal equation of the system, where 

only the generic kth harmonic component of the force function 𝑃1(𝑡) is considered: 

𝑢𝑝1̈ + 𝜔𝑝
2𝑢𝑝1  =  −2𝑖𝜔𝑝𝐴𝑝

′ 𝑒𝑖𝜔𝑝𝑡 −∑ ∑ [ 𝐷1𝑝𝑟
𝑠1  𝐴𝑟  𝑒

𝑖(𝑠1𝛺1 + 𝜔𝑟)𝑡∞
𝑠1 = 1

+𝑁
𝑟 = 1

𝐷1𝑝𝑟
𝑠1  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠1𝛺1 − 𝜔𝑟)𝑡 ] − ∑ ∑ [ 𝐷2𝑝𝑟
𝑠2  𝐴𝑟 𝑒

𝑖(𝑠2η𝛺1 + 𝜔𝑟)𝑡∞
𝑠2 = 1

+𝑁
𝑟 = 1

𝐷2𝑝𝑟
𝑠2  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠2η𝛺1 − 𝜔𝑟)𝑡 ] − ∑ ∑ [ 𝐷3𝑝𝑟
𝑠3  𝐴𝑟 𝑒

𝑖(𝑠3
𝛺1
𝑛𝑇1

+𝜔𝑟)𝑡∞
𝑠3 = 1

+𝑁
𝑟 = 1

𝐷3𝑝𝑟
𝑠3  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠3
𝛺1
𝑛𝑇1

−𝜔𝑟)𝑡
] − 𝑖𝑐𝑝𝜔𝑝𝐴𝑝𝑒

𝑖𝜔𝑝𝑡 + 𝑃1𝑝
𝑘1  𝑒𝑖 𝑘1𝛺1𝑡 + 𝐶𝐶 . 

(54) 

It is now possible to investigate and remove the unwanted secular terms, inside the latter 

equation. The elimination of secular terms represents a solvability condition for the solution of the 

problem, because of the additional freedom introduced with the new independent variables. In order 

to eliminate secular terms, the resonant terms of each equation need to be forced to zero. The 

discussion upon secular terms research and elimination is faced more in detail in the Appendix B. 

Two types of resonant terms can be distinguished inside the equation Equation (54) which can give 

secular terms: the first type gives “exact” secular terms and they are reported in Equations (55) and 

(56); the second type can gives nearly secular terms when the excitation frequency  𝑘1𝛺1 approaches 

to 𝜔𝑝, and they are reported in Equations (57), (58) and (59). 

−2𝑖𝜔𝑝𝐴𝑝
′ 𝑒𝑖𝜔𝑝𝑡, (55) 

−𝑖𝑐𝑝𝜔𝑝𝐴𝑝𝑒
𝑖𝜔𝑝𝑡 , (56) 

𝐷1𝑝𝑟
𝑠1  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠1𝛺1 − 𝜔𝑟)𝑡, (57) 

𝐷2𝑝𝑟
𝑠2  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠2 η 𝛺1 − 𝜔𝑟)𝑡, (58)
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𝐷3𝑝𝑟
𝑠3  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠3 
𝛺1
𝑛𝑇1

− 𝜔𝑟)𝑡
. (59) 

Since we are interested in the computation of the pth modal response, it is convenient to introduce 

an auxiliary frequency variable 𝜎 to express the neighborhood of the excitation frequency  𝑘1𝛺1 to 

the pth natural frequency 𝜔𝑝: 

𝑘1𝛺1  =  𝜔𝑝 + 𝜀𝜎 ; (60) 

𝛺1  =  
𝜔𝑝

𝑘1
+ 𝜀

𝜎

𝑘1
. (61) 

By properly substituting the frequency variable 𝜎 and performing secular terms elimination by 

equating to zero the sum of all the possible secular terms, in their critical conditions (see Appendix B 

for a detailed development), one obtains the following equation in the unknown 𝐴𝑝, which is the 

amplitude of the pth modal response 𝑢𝑝0: 

−2𝑖𝜔𝑝𝐴𝑝
′ − 𝐷1𝑝𝑝

(2𝑘1) 𝐴𝑝̅̅̅̅  𝑒
𝑖 2 𝜎 𝜏 – 𝐷2𝑝𝑝

( 2η𝑘1 ) 𝐴𝑝̅̅̅̅  𝑒
𝑖 2𝜎𝜏 − 𝐷3𝑝𝑝

( 2 𝑛𝑇1𝑘1) 𝐴𝑝̅̅̅̅  𝑒
𝑖 2𝜎𝜏 −

𝑖𝑐𝑝𝜔𝑝𝐴𝑝 + 𝑃1𝑝
𝑘1  𝑒𝑖 𝜎𝜏  =  0. 

(62) 

Now, let 

𝐴𝑝  =  𝑎𝑝 𝑒
𝑖𝜎𝜏 . (63) 

Substituting Equation (63) into Equation (62), it follows 

−2𝑖𝜔𝑝(𝑎𝑝
′ + 𝑖𝜎𝑎𝑝)𝑒

𝑖 𝜎 𝜏 −𝒟 𝑎𝑝̅̅ ̅ 𝑒
𝑖 𝜎𝜏  − 𝑖𝑐𝑝𝜔𝑝𝑎𝑝 𝑒

𝑖 𝜎𝜏 + 𝑃1𝑝
𝑘1  𝑒𝑖 𝜎𝜏  =  0 , (64) 

where 

𝒟 =  𝐷1𝑝𝑝
(2 𝑘1) + 𝐷2𝑝𝑝

( 2 η 𝑘1 ) + 𝐷3𝑝𝑝
( 2 𝑛𝑇1𝑘1). (65)

In order to have a steady-state solution 𝑎𝑝
′  =  

𝜕𝑎𝑝

𝜕𝜏
has to be null. By eliminating the common

term 𝑒𝑖𝜎𝜏, the equation Equation (64) becomes: 

2𝜎𝜔𝑝𝑎𝑝 − 𝒟 𝑎𝑝̅̅ ̅   − 𝑖𝑐𝑝𝜔𝑝𝑎𝑝  + 𝑃1𝑝
𝑘1  =  0 . (66) 

From Equation (66) it is possible to derive analytically an expression of 𝑎𝑝 as a function of the 

frequency variable 𝜎. As a consequence, the analytical solution of the modal response 𝑢𝑝0 (Equation 

(67)) due to the kth harmonic of the excitation force 𝑃1(𝑡) is derived. 

𝑢𝑝0  =  𝐴𝑝(𝜏)𝑒
𝑖𝜔𝑝𝑡 + 𝐶𝐶 =  𝑎𝑝(𝜎) 𝑒

𝑖 (𝜔𝑝+𝜎𝜀) 𝑡 + 𝐶𝐶 . (67) 

Since 𝑎𝑝  is a complex quantity, it is convenient to express 𝑎𝑝  according to its real and 

imaginary parts (Equations (68), (69) and (70)). The analytical expression of the real and imaginary 

parts is derived as a function of 𝜎: 

𝑎𝑝  =  𝑎𝑅 + 𝑖 𝑎𝐼 ; (68) 

𝑎𝑅  =  
𝒫𝐼(𝒟𝐼−𝑐𝑝𝜔𝑝)+𝒫𝑅(2𝜎𝜔𝑝+𝒟𝑅)

𝜔𝑝
2(𝑐𝑝

2+4𝜎2)−𝒟𝑅
2−𝒟𝐼

2 , (69) 

𝑎𝐼  =  
𝑎𝑅(𝒟𝐼+𝑐𝑝𝜔𝑝)−𝒫𝐼

2𝜎𝜔𝑝+𝒟𝑅
, (70) 

where: 

𝑃1𝑝
𝑘1  =  𝒫𝑅 + 𝑖 𝒫𝐼 , (71) 

𝒟 =  𝒟𝑅 + 𝑖 𝒟𝐼 , (72) 

The latter expressions (Equations (68), (69), (70), (71) and (72)) allow the computation of the 

modal response of the pth mode shape in the frequency domain. Each mode shape, connected to a 
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specific nodal diameter of the system, is excited in resonance by some EO of the mesh force, according 

to the law reported in the following equation Equation (73), from gear dynamics theory [9]: 

𝐸𝑂 =  𝑚𝑍 ± 𝑁𝐷 ,𝑚 =  1,2, …  . (73) 

Thus, the construction of the multi-harmonic forced response is computed by considering, one 

by one, each EO of the mesh force, associating it to the mode shapes, which are described by the 

relative nodal diameter ND, excited by the selected EO and computing the modal responses. Once 

the modal responses in the frequency domain are computed for all the EO, they are transformed 

through DMT (Equation (30)), passing from modal coordinates to physical coordinates, and the 

forced response of a given node is developed in the time domain (in our case the nodes of the teeth 

of the gears) as the sum of all the mode shapes contributions (i.e., DMT). The validity of the 

superimposition effect principle (as explained in the Introduction) allows the summation of all the 

responses due to the different EO in the time domain. The result will be a multi-harmonic response, 

developed in the time domain. Since the response is not described by a single harmonic it is not 

possible to acquire the amplitude of the time domain response. Thus, the latter will be expressed by 

acquiring the peak-to-peak measure of the time domain trend as function of a reference frequency 

(which can be the speed of G1 or the speed of G2 as well) defining uniquely the excitations (both 

parametric and external) of the overall system. As a matter of fact, setting a certain speed for G1 means 

also setting the speed of G2 since the speed of the gears are linked by the gear ratio. As consequence, 

the mesh stiffness and mesh force, representing the parametric and the force excitations respectively, 

directly depend on the speed of the two gears. Finally, the reference frequency describes uniquely 

the operational conditions of the overall system. In the next section an example of forced response is 

computed on a dedicated test case and a comparison with Direct Time Integration (DTI) method is 

made to validate the MMTS methodology, developed into this paper. 

7. Forced Response Computed on Test-Cases

In this Section, a study of the forced response of a test case is presented. The aim is to show when 

MMTS is applied for such applications and why it is convenient to use it. Such a problem can be 

studied, on the other hand, by Direct Time Integration (DTI) of the equations of motion but this is a 

very time-consuming method which makes difficult a detailed study of the forced response over a 

wide range of operational frequency. Anyway, here DTI is used to validate the methodology that is 

developed in this paper. More in detail, given a certain system model, characterized by given mass, 

stiffness and damping matrices, two parallel studies are developed on the system, applying MMTS 

and DTI respectively. The validation of the MMTS methodology is made by comparing the peak-to-

peak (P2P) measures of the multi-harmonic response developed in the time domain, calculated with 

the two methods. Here, the P2P result is plotted against a reference frequency, which is decided at 

the beginning of the calculation and defines uniquely all the excitations of the system (both 

parametric and external excitation). The reference frequency chosen for the P2P plots is the speed of 

Gear-1, 𝛺1. As a matter of fact, the speed of Gear-2, 𝛺2, is directly connected to 𝛺1 through the gear 

ratio η. Then, all the parametric and external excitations are directly defined. Through the test-case 

analysis, the dynamic coupling phenomenon is investigated, by remarking its causes and 

consequences. It is demonstrated that the dynamic coupling, caused by the presence of a time-variant 

mesh stiffness, leads to a nodal coupling of certain nodal diameters of the meshing gears. To clearly 

note the phenomenon, a specific test case is built. In more detail, the example which has been used 

several times in this paper is considered. That is the case of a couple of gears (G1 and G2) having 

respectively Z1 = 10 teeth and Z2 = 20 teeth. The system model of each gear, as it was introduced at 

the beginning of the paper (Section 2) is constituted by two nodes per sector of the gear (the number 

of sectors is equal to the number of teeth). As consequence, each gear has number of dof equal to 

twice the number of its teeth. Being the dimension of the gear model twice the number of the sectors, 

two modal families of natural frequencies can be derived by performing modal analysis of both the 

gears considering them as stand-alone components. In Figure 9a,b the frequency vs. nodal diameter 
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diagram of the two gears (considered as stand-alone components) is reported, given the mechanical 

characteristics of the gears shown in table Tables 1 and 2. 

Table 1. Mechanical characteristics of G1 model. 

GEAR-1 

Z1 10 Teeth 

ND [0,...,5] 

Mechanical characteristics 

mb 0.2 (kg) 

mc 1 (kg) 

ka 107 (N/m) 

kb 107 (N/m) 

kc 108 (N/m) 

damping ratio 0.005 (-) 

Table 2. Mechanical characteristics of G2 model. 

GEAR-2 

Z2 20 Teeth 

ND [0,...,10] 

Mechanical characteristics 

mb 0.2 (kg) 

mc 2 (kg) 

ka 107 (N/m) 

kb 107 (N/m) 

kc 108 (N/m) 

damping ratio 0.005 (-) 

(a) 

(b) 

Figure 9. (a) Frequency vs. ND diagram of Gear-1. (b) Frequency vs. ND diagram of Gear-2. 
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The gears are coupled by means of a mesh stiffness of the same type described in Section 3. So, 

it assumes for the nth pair of meshing teeth a constant value equal to kt when the pair is in contact, it 

assumes a null value when it is not. In this test-case kt is equal to 106 N/m. The mesh stiffness causes 

a modal coupling between some modes characterized by specific nodal diameters of the two gears 

respectively. It is good to remember that the mesh stiffness does not have a remarkable influence on 

the natural frequencies, which remains practically equal to those of the two gears considered as stand-

alone components, even though it may have an important influence on the dynamic response of the 

overall system. In such a case the numbers of teeth Z1 and Z2 has a strong relation with each other. 

This condition emphasizes the nodal coupling between specific nodal diameters of the gears. It is 

worth to remind that such a system represents an unusual system because, in practice, gear systems 

are never designed with such numbers of teeth to avoid the same couple of teeth meshes too often. 

Nevertheless, this choice, which does not affect the validity of the methodology, aims to boost the 

effect of the analyzed phenomenon of the dynamic coupling so to better understand it. In Figure 10 

an example of nodal coupling is reported for the system under analysis. That is the case of a nodal 

coupling between the nodal diameter ND-5 of G1 and the nodal diameter ND-10 of G2. By recalling 

the vector of the physical coordinates of the system defined in Section 2 (Equation (1)), the mode 

shape shown in Figure 10 contains both the nodal diameters. It means that an excitation of ND-5 of 

G1 affects the vibration of G2 which will vibrate at the same natural frequency with a ND-10 shape. It 

is important to remark that the ND-5 of G1 (considered as stand-alone component) has a natural 

frequency 𝜔5  =  1118 Hz (see Figure 9a). When the G1 is coupled to G2 by means of the mesh 

stiffness, the ND-5 of G1 still has natural frequency 𝜔5, but the mode shape of the coupled system 

associated to that natural frequency shows an ND-5 mode shape coupled to an ND-10 of G2. In other 

words, it is numerically demonstrated that a mesh stiffness with such a value of kt causes the coupling 

between the nodal diameters of the gears without changing remarkably the natural frequencies with 

respect to those of the gears (considered as stand-alone components). The choice to keep a value of kt 

that does not cause a remarkable change in the natural frequencies is a reasonable assumption that 

verifies what is experimentally found in the industrial applications. As a matter of fact, real test cases 

are characterized by mode shapes showing modal couplings between nodal diameters at given 

natural frequencies, which are practically the same of those of the stand-alone gears. Thus, the test 

case under exam aims at simulating a real coupled system where the dynamic characteristics of the 

mode shapes and natural frequencies remain practically unchanged. 

Figure 10. Mode shape of the system. Nodal Coupling between ND-5 of G1 and ND-10 of G2. 

As it was described in Section 5, the external force acting on the system is a mesh force which 

travels from one tooth to another one with the mesh stiffness. In other words, a force of value Fm acts 

on the teeth nodes (with same value but with opposite direction) of a specific nth teeth pair when it is 

in contact. So, as for the mesh stiffness, the Fourier series of the mesh force is studied, as described in 
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Section 5. In Figure 11a,b the harmonic content (or Engine Orders, EO) of the forces, acting on the 

two gears respectively, is shown in terms of amplitudes of the various EO. 

(a) 

(b) 

Figure 11. (a) Engine Orders of mesh force acting on G1. (b) Engine Orders of mesh force acting on G2. 

As anticipated in Section 6.2 (Equation (73)), a harmonic index EO of the travelling force excites 

mode shapes characterized by a specific ND. Since the ND under analysis for G1 is 5, the EO excitation 

that have been selected are: 5, 15, 25, 35. MMTS allows the computation of the modal response of the 

mode shape of interest due to the selected EO. The forced response in the physical coordinates is 

easily derived through Direct Modal Transformation (DMT). Here, the forced response (expressed as 

the P2P measure of the multi-harmonic response developed in the time domain) of the teeth of the 

two gears is computed, in a given operational speed range (the reference speed is the speed of G1) 

where the excitation of the mode shape in Figure 8 occurs. What is expected is to see a resonance of 

the G1 due to the excitation of the ND-5 by some EO of the mesh force and an “induced” resonance 

of the G2 due to the action of the latter EO exciting the G1. The fact that the second resonance is 

induced by the first one is demonstrated by the fact that no excitation of the ND of G2 should be 

present for that operational frequency conditions. As a matter of fact, by looking at the Campbell 

diagrams of the gears, you can note that for G1 (Figure 12a) the involved EO crosses the natural 

frequency line in that operational speed range, while for G2 (Figure 12b) no crossing of the natural 

frequency lines occurs by the involved EO. Thus, the conclusion is that the second resonance on G2 is 

caused by the first one on G1. 
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(a) 

(b) 

Figure 12. (a) Campbell diagram of G1. (b) Campbell diagram of G2. 

The P2P measure of the multi-harmonic response of the two gears computed using MMTS is 

reported in Figure 13. Here, also the P2P measure computed by means of DTI is shown in order to 

make a comparison between the two results. It is worthy to note that there is a big difference in terms 

of computational time for the construction of the forced response using the two methodologies 

(MMTS and DTI). In more detail, a DTI study can take some hours, and the computational time can 

increase considerably as the number of dof of the system increases as well as the resolution of the 

operational speed range and the integration time interval increase. As consequence, the 

computational efforts can be practically unsustainable for systems with a large number of dof and 

very low damping ratios whereby DTI must integrate for larger time interval in order to reach a 

steady-state response, where the transient part is completely extinguished (i.e., a real test-case of gear 

system where damping ratio is lower than 0.1%). On the other hand, MMTS, operating in the 

frequency domain, results in a very fast calculations of the forced response which can take few 

minutes and then it allows to select the EO of interest which have an influence in a given operational 
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speed range, neglecting the minor effects of other EO and so reducing considerably the computational 

efforts. In both the analysis, two resonance peaks are visible in a given operational speed range (speed 

of G1 from 210 Hz to 240 Hz). The blue curves are the resonances of G1 computed respectively with 

MMTS and DTI. The same for the red curves. The resonance of G2 is induced by the resonance of G1, 

as anticipated before. By looking at the figures Figure 14a,b showing respectively the FFT of the time 

domain responses, computed through DTI, of the gears (respectively shown in the figures Figure 

15a,b), it is easy to note that the main harmonic component of the multi-harmonic response in both 

cases is exactly the natural frequency of the mode shape shown in Figure 10 which couples ND5 of 

G1 to ND10 of G2. This represents an additional proof that the resonance of G2 is directly induced by 

the excitation of that single mode shape by the mesh force on the G1. This is a clear example of 

dynamic coupling between two meshing gears and MMTS allowed to forecast the resonance of G2 

induced by the excitation of the ND of G1 and this could not be possible if you have considered the 

gears as stand-alone components. In that case, no interaction between the ND of the gears can be 

studied. 

Figure 13. Peak-to-Peak measure of the multi-harmonic response of the gears. Comparison between 

DTI and MMTS. 

(a)
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(b) 

Figure 14. (a) FFT of the response of G1 (Figure 14a). (b) FFT of the response of G2 (Figure 14b). 

(a) 

(b) 

Figure 15. (a) Time domain response of G1 by DTI. (b) Time domain response of G2 by DTI. 
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8. Conclusions

The objective of this paper is to investigate the mutual interactions (dynamic coupling) which 

affect the response of a couple of meshing gears, by developing a methodology able to compute 

easily, with limited computational efforts, the forced response of the gears, without loosing the 

generality and complexity of the system. As a matter of fact, here the gears are considered as 

compliant bodies. As opposed to other methodologies which were developed in the past, whereby 

the assumption of the gears as rigid bodies needed to be supported by the introduction of the 

transmission error to simulate the compliance of the gears. Here, the challenge is to couple two 

compliant gears (whose dynamic characteristics are automatically included) and to investigate how 

the dynamics of a gear interacts with the other one when phenomena of mesh stiffness fluctuations 

occur. In addition to that, the methodology provides guidelines for an analytical solution to the 

problem, allowing the researcher to compute the forced response of a complex system undergoing 

both a parametric and external excitation. The choice of MMTS for the mathematical solution of the 

linear time-variant problem is addressed to its capability to provide an analytical solution to the 

problem, by strongly simplifying it. This is a great advantage for applications like gear coupling 

where the simplicity of the methodology (MMTS) compensates for the complexity of the system and 

allows for the analysis of the behavior of the gears in a considerably wide range of operation.  
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Appendix A. Forced Response Computation 

Complete pth equation of motion in modal coordinates including all the harmonic sets of both 

the parametric and the excitation force, expressed in Fourier Series: 

𝑢𝑝1̈ + 𝜔𝑝
2𝑢𝑝1  =  −2[𝑖𝜔𝑝𝐴𝑝

′ 𝑒𝑖 𝜔𝑝 𝑡 + 𝐶𝐶] − ∑ ∑ {[𝐷1𝑝𝑟
𝑠1  𝑒𝑖 𝑠1 𝛺1 𝑡 +∞

𝑠1 = 1
𝑁
𝑟 = 1

𝐷1𝑝𝑟
𝑠1̅̅ ̅̅ ̅̅ 𝑒−𝑖 𝑠1 𝛺1 𝑡] [𝐴𝑟𝑒

𝑖𝜔𝑟𝑡 + 𝐶𝐶]} − ∑ ∑ {[ 𝐷2𝑝𝑟
𝑠2  𝑒𝑖 𝑠2 η 𝛺1 𝑡 +∞

𝑠2 = 1
𝑁
𝑟 = 1

𝐷2𝑝𝑟
𝑠2̅̅ ̅̅ ̅̅ 𝑒−𝑖 𝑠2 η 𝛺1 𝑡] [𝐴𝑟𝑒

𝑖𝜔𝑟𝑡 + 𝐶𝐶]} − ∑ ∑ { [ 𝐷3𝑝𝑟
𝑠3  𝑒

𝑖 𝑠3 
𝛺1
𝑛𝑇1

𝑡
+∞

𝑠3 = 1
𝑁
𝑟 = 1

𝐷3𝑝𝑟
𝑠3̅̅ ̅̅ ̅̅  𝑒

−𝑖 𝑠3 
𝛺1
𝑛𝑇1

𝑡
] [𝐴𝑟𝑒

𝑖𝜔𝑟𝑡 + 𝐶𝐶]}  − 𝑐𝑝[𝑖𝜔𝑝𝐴𝑝𝑒
𝑖𝜔𝑝𝑡 + 𝐶𝐶] + 𝑃10,𝑝 +

∑ [ 𝑃1𝑝
𝑘1  𝑒𝑖 𝑘1 𝛺1 𝑡∞

𝑘1 = 1
+ 𝑃1𝑝

𝑘1̅̅ ̅̅ ̅̅ 𝑒−𝑖 𝑘1 𝛺1 𝑡]  + 𝑃20,𝑝 +∑ [ 𝑃2𝑝
𝑘2  𝑒𝑖 𝑘2 η 𝛺1𝑡∞

𝑘2 = 1
+

𝑃2𝑝
𝑘2̅̅ ̅̅ ̅̅  𝑒−𝑖 𝑘2 η 𝛺1 𝑡]  .

(A1) 

Further manipulations of Equation (A1) allows to write the right-hand side (RHS) of the 

equation in a clearer form, by grouping the CC terms (Equation (A2)): 

𝑅𝐻𝑆 =  −2𝑖𝜔𝑝𝐴𝑝
′ 𝑒𝑖𝜔𝑝𝑡 − ∑ ∑ [𝐷1𝑝𝑟

𝑠1  𝐴𝑟  𝑒
𝑖(𝑠1𝛺1 + 𝜔𝑟)𝑡 +∞

𝑠1 = 1
𝑁
𝑟 = 1

𝐷1𝑝𝑟
𝑠1  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠1𝛺1 − 𝜔𝑟)𝑡] − ∑ ∑ [𝐷2𝑝𝑟
𝑠2  𝐴𝑟 𝑒

𝑖(𝑠2 η 𝛺1 + 𝜔𝑟)𝑡 +∞
𝑠2 = 1

𝑁
𝑟 = 1

𝐷2𝑝𝑟
𝑠2  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠2 η 𝛺1 − 𝜔𝑟)𝑡] − ∑ ∑ [𝐷3𝑝𝑟
𝑠3  𝐴𝑟  𝑒

𝑖(𝑠3 
𝛺1
𝑛𝑇1

+ 𝜔𝑟)𝑡
+∞

𝑠3 = 1
𝑁
𝑟 = 1

𝐷3𝑝𝑟
𝑠3  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠3 
𝛺1
𝑛𝑇1

− 𝜔𝑟)𝑡
] − 𝑖𝑐𝑝𝜔𝑝𝐴𝑝𝑒

𝑖𝜔𝑝𝑡  +
1

2
𝑃1,0

𝑝
+∑ [𝑃1𝑝

𝑘1  𝑒𝑖 𝑘1 𝛺1 𝑡]∞
𝑘1 = 1

+
1

2
𝑃2,0

𝑝
+

∑ [𝑃2𝑝
𝑘2  𝑒𝑖 𝑘2 η 𝛺1 𝑡]∞

𝑘2 = 1
+ 𝐶𝐶 .

(A2) 
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Appendix B. Elimination of secular terms 

Here, the possible secular terms are analyzed. Two types of resonant terms can be distinguished 

inside the equation Equation (54) which can give secular terms: the first type gives “exact” secular terms 

and they are reported in Equations (A3) and (A4); the second type can give secular terms as the 

excitation frequency  𝑘1𝛺1 approaches to 𝜔𝑝, and they are reported in Equations (A5), (A6) and 

(A7). These terms are called nearly secular terms. 

−2𝑖𝜔𝑝𝐴𝑝
′ 𝑒𝑖𝜔𝑝𝑡 ; (A3) 

−𝑖𝑐𝑝𝜔𝑝𝐴𝑝𝑒
𝑖𝜔𝑝𝑡 ; (A4) 

𝐷1𝑝𝑟
𝑠1  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠1𝛺1 − 𝜔𝑟)𝑡 ; (A5) 

𝐷2𝑝𝑟
𝑠2  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠2 η 𝛺1 − 𝜔𝑟)𝑡 ; (A6) 

𝐷3𝑝𝑟
𝑠3  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠3 
𝛺1
𝑛𝑇1

− 𝜔𝑟)𝑡
. (A7) 

Nearly secular terms become “exact” secular terms in specific conditions. Below, each nearly secular 

term is analyzed to find the critical conditions which cause secular terms. 

𝑘1𝛺1  =  𝜔𝑝 + 𝜀𝜎 . (A8) 

 𝐷1𝑝𝑟
𝑠1  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠1𝛺1 − 𝜔𝑟)𝑡  :

It produces secular terms for 𝑟 =  𝑝  and 𝑠1𝛺1  approaching to 2𝜔𝑝 . The condition which 

verifies this case is 𝑠1  =  2𝑘1. As consequence, by substituting the latter relation, it follows: 

𝑠1𝛺1  =  
𝑠1

𝑘1
𝜔𝑝 + 𝜀

𝑠1

𝑘1
𝜎 =  2𝜔𝑝 + 2𝜎𝜀 . (A9) 

 𝐷2𝑝𝑟
𝑠2  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠2 η 𝛺1 − 𝜔𝑟)𝑡 :

It produces secular terms for 𝑟 =  𝑝  and  𝑠2η 𝛺1  approaching to 2𝜔𝑝 . The condition which 

verifies this case is 𝑠2  =  2 η 𝑘1. As consequence, it follows: 

𝑠2η 𝛺1  =  
𝑠2 η

𝑘1
𝜔𝑝 + 𝜀

𝑠2 η

𝑘1
𝜎 =  2𝜔𝑝 + 2𝜎𝜀 . (A10) 

 𝐷3𝑝𝑟
𝑠3  𝐴𝑟̅̅ ̅ 𝑒

𝑖(𝑠3 
𝛺1
𝑛𝑇1

− 𝜔𝑟)𝑡
: 

It produces secular terms for 𝑟 =  𝑝  and 𝑠3
𝛺1

𝑛𝑇1
approaching to 2𝜔𝑝 . The condition which 

verifies this case is 𝑠3  =  2 𝑛𝑇1𝑘1. As consequence it follows: 

𝑠3𝛺1

𝑛𝑇1
 =  

𝑠3 𝜔𝑝

𝑘1 𝑛𝑇1
+ 𝜀

𝑠3 𝜎

𝑘1 𝑛𝑇1
 =  2𝜔𝑝 + 2𝜎𝜀 . (A11) 

Now it is possible to eliminate secular terms by applying the critical conditions analyzed before, 

summing up the resonant terms and forcing them to zero. It follows: 

−2𝑖𝜔𝑝𝐴𝑝
′ 𝑒𝑖𝜔𝑝𝑡 − 𝐷1𝑝𝑝

𝑠1 𝐴𝑝̅̅̅̅  𝑒
𝑖 (𝑠1 𝛺1 − 𝜔𝑝) 𝑡 − 𝐷2𝑝𝑝

𝑠2 𝐴𝑝̅̅̅̅  𝑒
𝑖 (𝑠2 η 𝛺1 − 𝜔𝑝) 𝑡 −

𝐷3𝑝𝑝
𝑠3  𝐴𝑝̅̅̅̅  𝑒

𝑖 ( 
𝑠3
𝑛𝑇1

 𝛺1 − 𝜔𝑝) 𝑡
− 𝑖𝑐𝑝𝜔𝑝𝐴𝑝𝑒

𝑖𝜔𝑝𝑡 + 𝑃1𝑝
𝑘1  𝑒𝑖 𝑘1𝛺1 𝑡  =  0 . 

(A12) 

Substituting the equations Equations (A9), (A10) and (A11) into Equation (A12): 

−2𝑖𝜔𝑝𝐴𝑝
′ 𝑒𝑖𝜔𝑝𝑡 − 𝐷1𝑝𝑝

(2 𝑘1) 𝐴𝑝̅̅̅̅  𝑒
𝑖 ( 2𝜎𝜀 ) 𝑡 𝑒𝑖 𝜔𝑝 𝑡 – 𝐷2𝑝𝑝

( 2η𝑘1 ) 𝐴𝑝̅̅̅̅  𝑒
𝑖 (2𝜎𝜀) 𝑡 𝑒𝑖 𝜔𝑝 𝑡 −

𝐷3𝑝𝑝
( 2 𝑛𝑇1𝑘1) 𝐴𝑝̅̅̅̅  𝑒

𝑖 ( 2𝜎𝜀 )𝑡 𝑒𝑖 𝜔𝑝 𝑡 − 𝑖𝑐𝑝𝜔𝑝𝐴𝑝𝑒
𝑖 𝜔𝑝 𝑡 + 𝑃1𝑝

(𝑘1) 𝑒𝑖 𝜎𝜀𝑡 𝑒𝑖 𝜔𝑝 𝑡  =  0 . 
(A13) 

It is possible to eliminate the common term 𝑒𝑖𝜔𝑝𝑡 into Equation (A13) and write the equation, 

considering that 𝜀𝑡 is exactly equal to τ: 
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−2𝑖𝜔𝑝𝐴𝑝
′ − 𝐷1𝑝𝑝

(2𝑘1) 𝐴𝑝̅̅̅̅  𝑒
𝑖2𝜎𝜏 – 𝐷2𝑝𝑝

(2η𝑘1 ) 𝐴𝑝̅̅̅̅  𝑒
𝑖2𝜎𝜏 − 𝐷3𝑝𝑝

(2𝑛𝑇1𝑘1) 𝐴𝑝̅̅̅̅  𝑒
𝑖2𝜎𝜏 − 𝑖𝑐𝑝𝜔𝑝𝐴𝑝 +

𝑃1𝑝
𝑘1  𝑒𝑖 𝜎𝜏  =  0 . 

(A14) 
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