
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Architecture recognition by means of convolutional neural networks / Andrianaivo, LOUIS NANTENAINA; Roberto,
D’Autilia; Palma, Valerio. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND
SPATIAL INFORMATION SCIENCES. - ISSN 2194-9034. - ELETTRONICO. - 42:2/W15(2019), pp. 77-84.
[10.5194/isprs-archives-XLII-2-W15-77-2019]

Original

Architecture recognition by means of convolutional neural networks

Publisher:

Published
DOI:10.5194/isprs-archives-XLII-2-W15-77-2019

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2738312 since: 2020-02-26T20:07:15Z

Copernicus Publications



ARCHITECTURE RECOGNITION BY MEANS OF CONVOLUTIONAL NEURAL
NETWORKS

Louis N. Andrianaivo1,2, Roberto D’Autilia2, Valerio Palma1

1 FULL | the Future Urban Legacy Lab,
Politecnico di Torino,

Via Agostino da Montefeltro 2, 10134 Torino, Italy
valerio.palma@polito.it

2 Dipartimento di Matematica e Fisica,
Università degli Studi Roma Tre,

Largo San Leonardo Murialdo 1, 00146 Roma, Italy
landrianaivo@mat.uniroma3.it, roberto.dautilia@uniroma3.it

Commission II,WG II/8

KEY WORDS: Artificial Intelligence, Machine Learning, Deep Learning, Convolutional Neural Networks, Image Classification,
Architectural Heritage, Mobile Computing

ABSTRACT:

The use of mobile computing technologies can change the experience of visiting cultural sites by making vast digital heritage
collections accessible on site. The spread of machine learning technologies on mobile devices is encouraging the interaction
of artificial intelligence with the shape of the built environment. However, while some research already applies deep learning
image recognition in an urban context, the literature on how to develop effective neural networks to detect architectural features
is still limited, as well as the availability of architecture-related datasets. This work presents the steps and results of the prototype
development of a mobile app to perform monument recognition using convolutional neural networks. The tool allows users to
interact with the physical space and access a digital archive of texts, models, images and other data.

1. INTRODUCTION

1.1 Introduction

It is almost commonplace to say that the machine learning
technology is changing the way we interact with the real world.
For many years the theoretical studies of the brain structure
(Amit, 1992), the artificial neural networks (Hopfield, 1982)
and the physics of disordered systems (Mezard et al., 1987)
have built the theoretical foundation for effective machine
learning systems, but only in recent years the technology has
been available to engineer on these intelligent devices. The
machine learning technology puts together models of neural
networks based on Hebb ideas (Hebb, 1949), the modeling
revisitation of these concepts (Hopfield, 1982, D’Autilia ,
Guerra, 1991) and the new hardware and software tools (Abadi
et al., 2016).

In recent years, the availability of parallel computers with fast
GPUs has made it possible to simulate networks made of many
neurons with complex connection topologies. The resulting
machine learning systems are often considered only black boxes
that can be used by those who know little or nothing of the
theory. However many problems are still open. For example it
is not clear how to find the optimal topology of the network,
for a given problem, although the enormous number of the
published attempts realizes a zoology of models that can be
compared and selected as in a sort of evolutionary environment.

From an epistemological point of view one of the most relevant
aspects of the diffusion of the machine learning is given by
its interdisciplinary. The Artificial intelligence spans across

different subjects, including disciplines such as linguistics,
theoretical physics, computer science, art, biology or logic.
After all, machine learning has been designed to parody the
functions of the brain, by definition an interdisciplinary device.

In this cultural framework we suggest to use deep learning
methods to build queries to access a database starting from the
real world data. Our goal is to consider a real object such as
a monument or an architectural artifact image as the input of a
machine learning system to query a database and to extract all
the information related to that object.

1.2 Motivation

The objects that make up a city can be viewed as the links to a
set of stories. Most of these information is often inaccessible.
An ancient, modern or even an archaeological site is a place
where many events happened in different times. The corpus of
this information forms a virtual network of mutually connected
information. This information can be stored in a database, but
the queries to access them can depend on many parameters.
In presence of an ancient statue one may be interested in the
sculptural technique, in the history of the person represented,
in its archeology or in the biography of the author. At the
same time we may be interested in learning about all the similar
specimens found in other areas of the world.

Solutions such as audio tours, informative panels or QR codes
are not suitable to perform all these queries. It is worth
to note that widespread portable music recognition systems
already interact with features of the environment to get access
to data and services. Similarly, a mobile device could connect



locations, artworks, architectural objects and their spatial
characteristics to carefully selected digital contents. Starting
from the recognition of object itself, a machine learning system
can produce complex queries, and by learning the interests of
the users it can reorganize the data in the most appropriate way.

Another key challenge in cultural heritage management is to
optimize the resources allocated. Most of the informative
infrastructure that can be found in cultural sites requires
maintenance and site-specific design. Machine learning
technologies can be suitable for both large sites that cannot
provide appropriate services and small sites that cannot afford
surveillance and maintenance.

Mobile computing technologies can overcome many limitations
of previously adopted methods to enhance the experience of
visiting cultural sites and make digital heritage collections
increasingly accessible.

1.3 Related works

Unprecedented computational resources and the availability of
ever-growing datasets have recently boosted the development
of deep learning (DL) techniques. DL algorithms are a subset
of machine learning (ML) models which allows a machine
to represent complex concepts on the basis of a hierarchy of
simpler concepts (Goodfellow et al., 2016). Exploiting the
capacity to learn from experience, these models can effectively
interpret an input object to assign it to a category. Convolutional
neural networks (CNNs) are a class of DL models which is
largely applied to deal with images (Rawat , Wang, 2017).
CNNs are currently used for computer vision tasks such as
face recognition, handwriting recognition or image analysis for
medicine and biology (Hosny et al., 2018, Webb, 2018). The
spread of these technologies on mobile devices is encouraging
the interaction of the artificial intelligence with the shape of the
built environment.

Given a strong interest for self-driving cars, CNNs are
extensively used for object detection and segmentation on street
level imagery (Cordts et al., 2016). Recently, CNNs have
been applied in building façade segmentation (Stathopoulou
, Remondino, 2019) and architectural landmark classification
(Gada et al., 2017, Amato et al., 2016). Interest in landmark
recognition has also been demonstrated by Google, who issued
two large datasets since 2018 and related challenges for the
data scientist community Kaggle (Araujo , Weyand, 2018, Cao
, Weyand, 2019). However, the literature on how to develop
effective neural networks to detect architectural features is
still limited, as well as the availability of architecture-related
datasets.

2. DESCRIPTION

2.1 Dataset

The present application was developed for the Central
Archaeological Area in Rome, which includes the imperial
Fora. Compared to other datasets for object recognition, the
collection of monument images from such a small area poses
some challenges. First, unlike other objects, landmarks are
fixed in their position, hence pictures of a same monument are
likely to be similar to each other and not suitable for learning
to distinguish a monument from the surroundings. Second,
unlike other landmark datasets, this one gathers objects which

are quite close together, both spatially and historically, so that
pictures may often show the same background and similar
architectural features.

Starting the project from scratch and having to document not
only famous buildings, we took pictures specifically for the
project. Our dataset labels the images of 46 monuments of
the Imperial Fora, with pictures spanning a complete overview
of the architectural characteristics. The viewpoints have been
chosen with particular care: the monuments were framed from
different positions and we included the most common places
for the visitors, details and panoramic views. We also chose
different object lighting and camera exposure conditions to
make the DL model deal with more difficult circumstances. We
both used pictures taken from mobile phones and professional
cameras.

Monuments not only show recurring architectural structures
and decorations. In fact, they feature heterogeneous dimensions
and conservation status: some are quite incomplete and poorly
preserved, some are part of more recent buildings, some are
large and composed of many different parts.

2.2 Artificial neural networks (ANNs)

Artificial neural networks (ANNs) are the bulk of machine
learning, a technology that can be used to approximate general
functions. Inspired by the biological structure of the nervous
system (McCulloch , Pitts, 1943), ANNs can be viewed
as a graph where the nodes represent neurons (perceptrons,
processing units) and the edges are the connections between
couples of neurons as in Fig.1. The transfer of information

Input
layer

Hidden
layer

Output
layer

Ouput

Figure 1. An artificial neural network example.

between neurons is given by the combination of non-linear
operations

out =
N∑
i=1

vi × ϕ(wi × x+ bi) (1)

where the operators × and + are defined between tensors, and
wi and vi are respectively the weight of the edges connecting
the input layer to a hidden layer and the hidden layer to the
final layer (output). The bi are the bias assigned to each unit in
the hidden layer. The function ϕ is the (in general non-linear)
transfer or activation function.

This type of neural network is often referred to as feedforward
or fully connected. An example of activation function,
often used in fully connected neural networks, is the ReLU,



Rectified Linear Unit, f(x) = max(0, x). By the Universal
Approximation Theorem (Cybenko, 1989) any continuous
function can be approximated by means of a feed forward
neural network.

The criteria for the choice of the activation function are
given by the hypothesis of the theorem. The neural network
approximates the function by minimizing the error between the
real values and the values predicted by means of the weights
and biases of the graph. The main idea is to find the minimum
of a value function by applying the gradient descent method
on the error function. In general, datasets are very large in
size and dimension so it is more efficient to use the stochastic
gradient descent (SGD) to save memory, applying the method
on a randomly chosen batch of the dataset.

In ANNs, the SGD is applied to each layer. As we only have
the real value of the output layer, we start from the final layer
and go backward. This process is called backpropagation.
The choice of the neural network parameters (N number of the
units, activation function, etc) is usually matter of experience,
for the right parameters are those which let the network perform
the best.

2.3 Deep learning and convolutional neural networks
(CNNs)

The design of the architecture of a neural network does not
have a clear setup. However, it can be observed that the more
units we have the better the neural network approximates the
function we want to model. In (Hornik, 1991) an estimation of
this number is given, which is exponential over the dimension
of the input in the worst case, and in (Sutskever , Hinton, 2008)
it is suggested to break the feedforward network into several
hidden layers to improve the performance.

This kind of network is referred to as the deep feedforward
neural network and its architecture is a composition of
feedforward neural networks. The number of hidden layers is
the depth of the network, and this family of networks forms a
class of deep neural networks. Deep learning techniques study
these families of networks.
Deep learning is basically an optimization and regulation of the
tensor operations so that the network could perform well.

2.3.1 CNNs description: The Convolutional neural
networks (CNNs) (LeCun, 1989) belong to the class of deep
neural networks, based on the mathematical convolution
operation, a method used in signal processing to minimize the
noise. Indeed, let f and g be two functions well defined in
(−∞,+∞), the convolution of f and g is defined by

(f ∗ g)(t) =
∫ +∞

−∞
f(x)g(t− x)dx (2)

Here f is referred to as the output signal where g is the weight,
a distribution probability. For CNNs, these are the input dataset
and the kernel respectively. The equivalence of this formula in
a 2D (2-nd rank tensor) discrete time is given by

(I ∗K)[i, j] =

k−1∑
r=0

k−1∑
c=0

I[r + i, c+ j]K[r, c] (3)

In Fig.2 an example of this operation is shown as a tensor
product. Notices that the dimension of the weighted output is

reduced. To keep the same dimension as the input we could use
zero padded input, this makes sense for instance for 1D discrete
signal processing application by assuming that at time 0 there
is no signal.

Figure 2. A 2D convolution example.

The convolution is well defined for any dimension of the inputs,
for example 1D for time series and 3D for color video. A
traditional application of the convolution operation is image
filtering. Image data can be considered as a 2D layer for RGB
channels which is compatible with convolution operations.

The CNN architecture for image classification is illustrated
in Fig.3. There are several layers in which operations on
the coordinates are performed by using convolution to extract
important features in the pictures. At the final layer we have the
fully connected one which predicts the output.

A convolutional layer is composed by three operations:
convolution, non-linear function and pooling (sub sampling).
As shown in Fig.3 the first hidden layer (edge detection) for
instance outputs different layers of features which correspond
to several kernels. Next to the convolution we introduce the
non-linear function. Its purpose is similar to the feed forward
neural network. In most cases, we use ReLU to replace the
negative coordinates (the pixels of the picture) by zero. The
last operation is pooling, to reduce the dimension of each
output by keeping the important information. There are many
pooling techniques available: max-pooling, average-pooling,
sum-pooling. An example of max-pooling is shown in Fig.4,
parameterized by the size and the stride with a filter of size
2× 2 with stride 2.

2.3.2 CNNs training: The training of the CNNs is the same
as in the case of the feed forward neural networks. In Fig.3 the
last layer is a fully connected layer and the convolution layer is
the result of a tensor product. The backpropagation procedure
has been used to train the model. As mentioned before, the
gradient descent method can be exploited to find the minimum
of the error.



Figure 3. Illustration of a CNN on image data.

Figure 4. A Max-pooling example.

This is done in three main steps: inference (forward),
computation of the gradient and updating the weights
(backward). More precisely, we start from a random weight
and bias, run an inference on batch of the dataset and finally
compute the gradient of the error function (using a chain rule)
to update the weights of the network with respect the backward
ordered layer.

The last step is the most important for the training and has to be
done carefully. Due to memory and computational resources,
the statistical gradient descent performs better together with
optimization and regularization techniques.

3. METHODS AND EXPERIMENTS

This section presents the methods and strategies adopted to
construct and optimize the ML model. We describe the steps of
data preparation (including augmentation techniques and data
cleaning), network training and testing and model building for
different platforms. For each step, we discuss methodology and
the operations we carried out in our experiments.

3.1 Methodology

3.1.1 Data preparation. The preparation of the dataset is
one of the fundamental steps in ML. Good results require a
careful treatment of data. We started by inspecting the available
images for each class, then we applied data augmentation,
formatting and cleaning.

methods:

1. Data selection: we collected some samples of pictures
for each monument. Since pictures may present different
classes (more than one monument), we manually verified
each picture and highlighted (e.g. by cropping the picture)
the features to make the network “learn” properly the
corresponding monument.

2. Data augmentation: The collected picture dataset does
not contain enough images to train the network. Some
platforms can artificially generate more data during the
training, but we chose to extend the dataset in advance.
In fact, the relatively small number of images available for
each class makes it difficult to handle duplicate data if we
cannot access the random image generation algorithms.
For our purposes, we needed at least 600 pictures for each
class (500 for training, 100 for validation). To improve the
dataset, we applied the following transformations:

• Rotation (clockwise and counter-clockwise for a
small range of angles)

• Crop (given an estimation of the area occupied by
the class object)

• Flip (top-bottom and left-right)

• Distortion (simple, Gaussian, ...)

• Zoom

• Histogram equalization

• Invert

• Resize (related to what needed by the network
architecture)



3. Data cleaning: each operation applied during the data
augmentation is random. Since several duplicate images
are expected, we adopted a classical technique to cleaned
up the data, by creating a hash table for the images. For
this, we used a JSON1 format database.

operations:
Data augmentation resulted in more than 70% duplicate images
for each classes, so we needed to generate more than the
targeted 600 images. In our experiment, we produced around
2000 images per class using Augmentor (Bloice et al., 2019)
(image augmentation library in Python). The data cleaning was
done using a MongoDB2 database to hash the images.

3.1.2 Network training. The convolutional network works
well for the classification task and is widely used for computer
vision problems. The idea is to extract the features of the input
image by using a sufficient number of convolutional layers and
use a fully connected network at the final layer to perform the
classification (deep convolutional neural network). The main
purpose of training is to tune the kernel parameters, together
with the weights and the biases for the fully connected layer.
Moreover, we need to be able to use the inference model into a
mobile device.

methods:

1. The model: after several trials, we chose to use a class
of CNNs known as the MobileNets (Howard et al., 2017).
It was developed by Google researchers to be an efficient
candidate for mobile DL models. The model fits our needs
because it is fast and light and it shows better accuracy
when tested on the ImageNet database. The main feature
of this architecture is the use of depthwise separable
convolutions, composed by depthwise 3×3 and pointwise
1 × 1 convolution layers. This significantly reduces the
number of parameters to be trained in the network. The
MobileNet-224 architecture can be seen as follows:

convolution type kernel shape input shape
normal 3× 3× 3× 32 224× 224× 3

depthwise 3× 3× 32 112× 112× 32
pointwise 1× 1× 32× 64 112× 112× 32
depthwise 3× 3× 64 112× 112× 64
pointwise 1× 1× 64× 128 56× 56× 64
depthwise 3× 3× 128 56× 56× 128
pointwise 1× 1× 128× 128 56× 56× 128
depthwise 3× 3× 128 56× 56× 128
pointwise 1× 1× 128× 256 28× 28× 128
depthwise 3× 3× 256 28× 28× 256
pointwise 1× 1× 256× 256 28× 28× 256
depthwise 3× 3× 256 28× 28× 256
pointwise 1× 1× 256× 512 14× 14× 256

5 ×depthwise 3× 3× 512 14× 14× 512
pointwise 1× 1× 512× 512 14× 14× 512

depthwise 3× 3× 512 14× 14× 512
pointwise 1× 1× 512× 1024 7× 7× 1024
depthwise 3× 3× 1024 7× 7× 1024
pointwise 1× 1× 1024× 1024 7× 7× 1024

averagePool2D 7× 7 7× 1024
fully connected 1024×N 1× 1× 1024

Table 1. MobileNet-224

In Table 1, the architecture of the mobileNet with the
1JavaScript Object Notation.
2Cross-platform document-oriented NoSQL database program.

input image shape 224 × 224 × 3 is shown. Each
convolution layer is followed by the batch normalization
(Ioffe , Szegedy, 2015) and the activation function ReLU.
The width multipliers of the MobileNet model are α =
0.25, 0.5, 0.75, 1.0, to reduce the size of the model and the
width of the depthwise separable convolution.

2. Training: the MobileNet model is easy to train for a right
choice of parameters. To this purpose we used some
known techniques for debugging neural networks such as:

• Initialization of the weight

• Regularization of the tuning parameter

• Choice of the back-propagation function

• Fine tuning

• Dropout

3. Test : we tested the accuracy of our model for a set of 100
images not included in the training dataset.

operations:
We used the implementation of MobiliNet version 1 from
Keras (Chollet et al., 2015), a Python library for ML, and the
technique known as transfer learning, which is time saving
but results in a good performance of the model. Instead of
using random initialization, the network was pre-trained on
the ImageNet database because it has the same features (color
pixels).

For the training, we needed to match the model and our dataset.
We used the 224 version of the MobileNet model with the width
multiplier α = 1.0. The Keras implementation offers a choice
on the pooling layer. For our purpose we used the average
pooling 2D as in Table 1 followed by a dropout layer for the
training.

In the fully connected layer, we initialized the weight by
random uniform value with L2 regularization. We used
SGD for the back-propagation optimizer with the categorical
cross-entropy loss function (very suitable for softmax activation
functions). For fine-tuning, we retrained the same network with
different numbers of classes, so that we could adjust the training
parameters to obtain the right choice.

3.1.3 Building the model. The final step is to use the
inference model on a mobile device with iOS or Android
operative system.

methods:

1. Converting the inference model for iOS: there are several
ML libraries that be used on iOS devices. For this
project, we took advantage of the recent framework Core
ML3 developed by Apple: an API which enables an easy
interaction with the device performances, especially for
ML application.

2. Converting the inference model for Android: here we used
tensorFlow lite4, an open source DL framework for mobile
included in TensorFlow (Abadi et al., 2016).

3https://developer.apple.com/documentation/coreml
4https://www.tensorflow.org/lite/



operations:
By means of Core ML tools we converted the Keras model into
a Core ML model and exploited TensorFlow to obtain the lite
version of the inference model to be used on Android systems.

4. RESULTS AND PERFORMANCE

4.1 Convergence and accuracy

We processed all our experiment on the NVIDIA DGX-15 deep
learning server from the Department of Mathematics of Roma
Tre University occupied by 2×Intel(R) Xeon(R) Processor
E5-2698 v4 and 8× NVIDIA Tesla P100 GPU 16GB HBM2
and 512GB of RAM.
As mentioned before, the transfer learning technique saved
us some time for the training and debugging. Starting the
training from scratch might need more data than we possessed
to obtain a better accuracy in a short time. In Fig.5, we give a
comparison of the loss and accuracy between the same model
with a different initialization of the weights. The models are
trained with the same parameters on the same data; we notice
that the accuracy is good but the zero-knowledge model needs
more tuning as the loss seems to be trapped in a local minimum.

Figure 5. Comparison between a warm-up 50 epochs of
the model initialized by the ImageNet and random weight.

In Fig.6, we present the convergence of the cross-entropy
during the training measured in 1000 epochs, on 46 classes.
The model was initialized by the trained weight from ImageNet
(this weight was already trained on less classes). It took around
32 hours to obtain a score of 0.9988086 with loss 0.013294
from a separate test data.

4.2 Profile

Having the said powerful resources, we provide a time and
memory profiling of the overall processes we followed.

5https://www.nvidia.com/en-us/data-center/dgx-1/

Figure 6. Convergence of the loss in 1000 epochs
(ImageNet weight).

Pre-processing. The augmentation of the data required much
computational power and time. We generated 2000 images per
each classes. It took around 155 seconds for 80 CPU cores
and required 40 GB of RAM. For a total of 46 monuments, the
augmentation of the data took around 2 hours. The cleaning
process for the duplicate pictures was done quickly. When the
remaining data were enough for the training, we passed to the
next steps.

Training. For the training we used one graphic card Tesla
P100 of 16GB DRAM memory in which by default TensorFlow
allocates all the 16GB. The input parameters used during the
training depends on the data and the performance of the model,
for instance the batch-size must be more than or equal to
the number of the output labels while the number of epoch
is arbitrary. For example, for 39 classes we fed around 390
batches per epoch and we ran two models for a given number
of epochs. The weights from the most accurate were used in the
fine-tuning.

4.3 App structure

As described in a previous work (Palma, 2019) the prototype
app was developed using the Xcode development environment
and the Swift programming language, and it runs on iOS
platforms6. The app’s interface was designed aiming at ease
of use, and it features two main views (Fig.7). The first view
presents the camera monitor and allows the user to frame a
monument inside a squared target. Pictures from the camera
are continuously processed in the background. When the
DL algorithm recognizes a monument, if accuracy exceeds a
predefined threshold, the name of the monument is shown. The
user can then touch inside the square and enter the second view.
It displays information on the monuments, including name,
time coverage, pictures and texts. The detail view can also show
3D models that the user can interactively explore.

When internet connection is available, each time the app is
launched the information is downloaded or updated from web.
The app connects to the web repository Cult, developed and
maintained at the University of Padova7. The Cult database

6A simpler prototype was developed for Android platforms using the
Android Studio development environment, for the main purpose of testing
the coverted inference model.

7The website and database were developed at the Department of Civil,
Architectural and Environmental Engineering at the University of Padova
as part of the Tu-CULT project, and it is maintained by the ReLOAD lab.



Figure 7. Scheme of the connection between the main
view of the app interface and the monument detail view.

is available through a web interface which allowed us to
upload monument entries and related documents and metadata.
The app can access the server through a web application
programming interface. After a first connection, the app can
work offline exploiting the lightweight DL model which is
stored on the device.

5. CONCLUSIONS

As we highlighted in the introduction, the AI is changing
the way we interact with things, in particular with the city.
Search engines for information are still based mainly on texts,
partially on images and sounds, and operate on general and
unorganized datasets. Libraries, archives, academic studies and

researches, constitute a framework with a logical structure that
is not generally accessible to non-experts. In the presence of
an archaeological or architectural art object, however, the users
search for cultured or academic information that is general not
easily available.

The Italian architectural and archaeological heritage represents
an immense mine of information, studies, research or simply
stories that deserve to be accessed in a simple way starting from
real objects. The creation of information sets indexed by real
objects seems to be one of the possible natural evolution of a
paradigm that has remained stable in the last thirty years.

This approach has the additional advantage of bringing people
away from virtual environments by putting closer to the real
monuments that become a set of entry points for a labyrinth of
knowledge on the history and culture.

The traditional archaeological guides, even when they are
reorganized according to new technologies, remain prescriptive
and rather intrusive objects. On the contrary, the model
proposed in this paper is a sort of cultured automaton, a wise
friend who, consulted in the right place, can lead the user
on a cultural path that can radically change her the level of
knowledge. From this point of view the tool described in these
pages can become a useful educational tool.

The possibility of changing our awareness and knowledge of
ancient and modern architecture can be realized by a smart
and pragmatic use of artificial intelligence technologies. At
the same time, the mixing of the disciplinary fields is also
the starting point of a cultural transformation that no longer
contemplates any difference between the humanistic, scientific
and artistic disciplines.

ACKNOWLEDGMENTS

The team working on the project at FULL | the Future
Urban Legacy Lab of Politecnico di Torino is also composed
by Matteo Robiglio (full professor at the Department of
Architecture and Design and project manager at FULL),
Claudio Casetti (associate professor at the Department of
Control and Computer Engineering and project coordinator)
and Francesca Frassoldati (associate professor at the
Department of Architecture and Design). Désirée Adiutori
from the Department of Computational Sciences of the
University of Roma Tre contributed to develop the Android
prototype app.

REFERENCES

Abadi, Martı́n, Barham, Paul, Chen, Jianmin, Chen, Zhifeng,
Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat,
Sanjay, Irving, Geoffrey, Isard, Michael, Kudlur, Manjunath,
Levenberg, Josh, Monga, Rajat, Moore, Sherry, Murray,
Derek G., Steiner, Benoit, Tucker, Paul, Vasudevan, Vijay,
Warden, Pete, Wicke, Martin, Yu, Yuan, Zheng, Xiaoqiang,
2016. Tensorflow: A system for large-scale machine learning.
Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’16, USENIX
Association, Berkeley, CA, USA, 265–283.

Amato, Giuseppe, Falchi, Fabrizio, Vadicamo, Lucia,
2016. Visual Recognition of Ancient Inscriptions Using
Convolutional Neural Network and Fisher Vector. Journal on
Computing and Cultural Heritage, 9, 1–24.



Amit, Daniel J., 1992. Modelling Brain Function: The World
of Attractor Neural Networks. 1st edn, Cambridge University
Press, New York, NY, USA.

Araujo, André, Weyand, Tobias, 2018. Google-Landmarks: A
New Dataset and Challenge for Landmark Recognition. (23
June 2019).

Bloice, Marcus D, Roth, Peter M, Holzinger, Andreas,
2019. Biomedical image augmentation using Augmentor.
Bioinformatics. https://doi.org/10.1093/bioinformatics/btz259.

Cao, Bingyi, Weyand, Tobias, 2019. Announcing
Google-Landmarks-v2: An Improved Dataset for Landmark
Recognition & Retrieval. (23 June 2019).

Chollet, François et al., 2015. Keras. https://github.com/
fchollet/keras. (23 June 2019).

Cordts, Marius, Omran, Mohamed, Ramos, Sebastian, Rehfeld,
Timo, Enzweiler, Markus, Benenson, Rodrigo, Franke, Uwe,
Roth, Stefan, Schiele, Bernt, 2016. The Cityscapes Dataset for
Semantic Urban Scene Understanding. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE,
Las Vegas, NV, USA, 3213–3223.

Cybenko, G., 1989. Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals and
Systems, 2, 303–314. https://doi.org/10.1007/BF02551274.

D’Autilia, Roberto, Guerra, Francesco, 1991. Qualitative
aspects of signal processing through dynamic neural networks.
447–462.

Gada, Siddhant, Mehta, Viraj, Kanchan, Karan, Jain, Chahat,
Raut, Purva, 2017. Monument Recognition Using Deep
Neural Networks. 2017 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC),
IEEE, Coimbatore, 1–6.

Goodfellow, Ian, Bengio, Yoshua, Courville, Aaron, 2016.
Deep Learning. MIT Press.

Hebb, Donald O., 1949. The organization of behavior: A
neuropsychological theory. Wiley, New York.

Hopfield, J J, 1982. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the
National Academy of Sciences, 79, 2554–2558. https://www.
pnas.org/content/79/8/2554.

Hornik, Kurt, 1991. Approximation Capabilities of Multilayer
Feedforward Networks. Neural Netw., 4, 251–257. http://dx.
doi.org/10.1016/0893-6080(91)90009-T.

Hosny, Ahmed, Parmar, Chintan, Quackenbush, John,
Schwartz, Lawrence H., Aerts, Hugo J. W. L., 2018. Artificial
intelligence in radiology. Nature Reviews Cancer, 18, 500–510.
http://www.nature.com/articles/s41568-018-0016-5.

Howard, Andrew G., Zhu, Menglong, Chen, Bo, Kalenichenko,
Dmitry, Wang, Weijun, Weyand, Tobias, Andreetto, Marco,
Adam, Hartwig, 2017. MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications. CoRR,
abs/1704.04861. http://arxiv.org/abs/1704.04861.

Ioffe, Sergey, Szegedy, Christian, 2015. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. F. Bach, D. Blei (eds), Proceedings of the 32nd
International Conference on Machine Learning, Proceedings
of Machine Learning Research, 37, PMLR, Lille, France,
448–456.

LeCun, Yann, 1989. Generalization and network design
strategies. Elsevier.

McCulloch, Warren S., Pitts, Walter, 1943. A logical calculus
of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5, 115–133. https://doi.org/10.1007/
BF02478259.

Mezard, M., Parisi, G., Virasoro, M.A., 1987. Spin Glass
Theory and Beyond. Lecture Notes in Physics Series, World
Scientific.

Palma, Valerio, 2019. Towards deep learning for architecture:
a monument recognition mobile app. ISPRS - International
Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-2/W9, 551–556. https://doi.org/10.
5194/isprs-archives-XLII-2-W9-551-2019.

Rawat, Waseem, Wang, Zenghui, 2017. Deep Convolutional
Neural Networks for Image Classification: A Comprehensive
Review. Neural Computation, 29, 1-98.

Stathopoulou, Ellie, Remondino, Fabio, 2019. SEMANTIC
PHOTOGRAMMETRY – BOOSTING IMAGE-BASED
3D RECONSTRUCTION WITH SEMANTIC LABELING.
ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLII-2/W9,
685-690.

Sutskever, Ilya, Hinton, Geoffrey E., 2008. Deep, Narrow
Sigmoid Belief Networks Are Universal Approximators.
Neural Computation, 20, 2629-2636. https://doi.org/10.1162/
neco.2008.12-07-661. PMID: 18533819.

Webb, Sarah, 2018. Deep learning for biology. Nature,
554, 555–557. http://www.nature.com/doifinder/10.1038/
d41586-018-02174-z.


