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Abstract

This paper presents the dynamic response of composite structures via refined beam models. The mode super-

position method was used, and the Carrera Unified Formulation (CUF) was exploited to create the advanced

structural models. The finite element method was employed to compute the natural frequencies and modes.

The main novelty of this paper concerns the use of Chebyshev polynomials to define the displacement field

above the cross-section of the beam. In particular, polynomials of the second kind were adopted, and the

results were compared with those from analytical solutions and already established CUF-based beam models,

which utilize Taylor and Lagrange polynomials to develop refined kinematics theories. Sandwich beams and

laminated, thin walled box beams were considered. Non-classical effects, such has the cross-section distortion

and bending/torsion coupling were evaluated. The results confirm the validity of the CUF for the implemen-

tation of refined structural models with any expansion functions and orders. In particular, the Chebyshev

polynomials provide accuracies very similar to those from Taylor models. The use of high order expansions,

e.g. seventh order, leads to results as accurate as those of Lagrange models which, from previous publications,

are known as the most accurate CUF 1D models for this type of structural problems.

Keywords: Refined beam theories, Finite elements, Carrera Unified Formulation, Dynamic response, Mode

superposition.
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1 Introduction

The development of one-dimensional (1D) structural models is of great interest to reduce the computational

costs in many engineering applications. Advanced 1D models are required to have results as accurate as those

of plate/shell (2D) and solid (3D) models. The Euler-Bernoulli Beam Theory (EBBT) [1] and the Timoshenko

Beam Theory (TBT) [2, 3] are the classical beam theories. The TBT enhances EBBT assuming constant shear

strains across the cross-section. Slender and moderately thick, solid-section beams subjected to bending can

be analyzed with good accuracy using these theories. In the last decades, many refined beams theories have

been proposed to improve classical models, but preserving their computational efficiency. Some of the most

important are discussed here, with particular attention paid to structural dynamics and composite structures.

More comprehensive reviews can be found in [4, 5].

The adoption of shear correction factors [6, 7] is a common way to improve classical theories, although

correction factors are strongly problem dependent. Another approach exploits refined displacement field above

the cross-section of the beam to include non-classical effects such as warping and cross-section distortions.

Typical examples are those in [8–19].

This paper exploits refined beam models developed in the framework of the Carrera Unified Formulation

(CUF). The CUF was initially developed for plates and shells [20, 21], and then extended to beams [22, 23].

In the CUF framework, refined structural models are built using expansions of the unknown variables. The

number of terms of the expansion, i.e. the number of unknowns, can be chosen via a convergence analysis.

The CUF has the great advantage to enable the implementation of any order structural models with no need

of formal changes in the problem equations and matrices. Recently, the CUF 1D models have been used for

structural dynamics; in particular, free-vibration [24–27] and dynamic response of thin walled structures [28].

In the works above, higher order beam theories were obtained using Taylor-like Expansion (TE). Lagrange

expansions (LE) and the component-wise approach were used in [29–33]. In [34], trigonometric, exponential,

and zig-zag models were used, whereas a beam theory based on Chebyshev Expansion (CE) polynomials has

been introduced in [35]. CE models were then used for the dynamic response of typical aerospace structures

in [36].

In the present work, the mode superposition method is combined with 1D CUF CE models to investigate the

dynamic response of laminated structures. First, a simply supported beam subjected to a sinusoidal load is

considered. Then, a sandwich structure subjected to harmonic loads and a composite box beam subjected

to distributed loads are investigated. In this paper, Section 2 presents an overview of the higher order beam

theories developed in the framework of CUF. Moreover, the FEM approach and mode superposition method

are briefly outlined. Section 3 is devoted to the presentation of the results obtained using the proposed CUF,

whereas conclusions are drawn in Section 4.
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Figure 1: Coordinate frame of the beam.

2 Higher order, hierarchical models by CUF

Given a generic beam structure, the Cartesian coordinate system adopted is shown in Fig. 1. The cross-section

Ω and the beam axis y, are orthogonal. Moreover, the beam axis has boundaries 0 ≤ y ≤ L. The validity

of the formulation adopted is not affected by the shape of the cross-section, since the reported rectangular

cross-section has merely explicative purposes. The displacement field of a beam model in the framework of

CUF can be written in a compact form as follows:

u(x, y, z, t) = Fτ (x, z)uτ (y, t), τ = 1, 2, ....,M (1)

where u = {ux, uy, uz}T is the displacement vector; Fτ indicates the functions of the cross-section coordinates

x and z ; uτ is the generalized displacement vector; M indicates the number of terms in the expansion. The

choice of Fτ and M is arbitrary. Thus, the basis functions adopted to model the displacement field across the

section can be different and expanded to any order.

Considering Taylor-like expansion polynomials as Fτ functions, one can obtain the models referred to as TE.

For instance, the displacement field of a second order TE model (TE2) can be expressed as follows:

ux(x, y, z, t) = ux1(y, t) + x ux2(y, t) + z ux3(y, t) + x2 ux4(y, t) + xz ux5(y, t) + z2 ux6(y, t)

uy(x, y, z, t) = uy1(y, t) + x uy2(y, t) + z uy3(y, t) + x2 uy4(y, t) + xz uy5(y, t) + z2 uy6(y, t)

uz(x, y, z, t) = uz1(y, t) + x uz2(y, t) + z uz3(y, t) + x2 uz4(y, t) + xz uz5(y, t) + z2 uz6(y, t)

(2)

where ux1
, uy1 , uz1 , ..., uz6 represent the components of the generalized displacement vector, i.e. the unknown

variables. The classical models - EBBT and TBT - can be obtained as particular cases of the TE1.

Another class of CUF models is based on Lagrange Expansions (LE). In this work, mainly bi-quadratic nine-

node (L9) Lagrange polynomials are used as Fτ . Lagrange polynomials can be found in [23]. The displacement
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field within an L9 element can be written as:

ux(x, y, z) = F1(x, z)ux1(y) + F2(x, z)ux2(y) + ...+ F9(x, z)ux9(y)

uy(x, y, z) = F1(x, z)uy1(y) + F2(x, z)uy2(y) + ...+ F9(x, z)uy9(y)

uz(x, y, z) = F1(x, z)uz1(y) + F2(x, z)uz2(y) + ...+ F9(x, z)uz9(y)

(3)

The time variable t is omitted in the following for the sake of clarity. ux1, ..., uz9 are the translational com-

ponents of the nine points of the L9 element. L-elements can be assembled above the cross-section imposing

the displacement continuity at the interface nodes.

In this paper, The Chebyshev Expansion (CE) is used for the first time to investigate the dynamic response

of composite structures. For instance, the CE second order kinematic model (CE2) has 18 generalized dis-

placement variables, and can be defined as follows:

ux(x, y, z) = P00(x, z)ux1(y) + P10(x, z)ux2(y) + P01(x, z)ux3(y) + P20(x, z)ux4(y) + P11(x, z)ux5(y) + P02(x, z)ux6(y)

uy(x, y, z) = P00(x, z)uy1(y) + P10(x, z)uy2(y) + P01(x, z)uy3(y) + P20(x, z)uy4(y) + P11(x, z)uy5(y) + P02(x, z)uy6(y)

uz(x, y, z) = P00(x, z)uz1(y) + P10(x, z)uz2(y) + P01(x, z)uz3(y) + P20(x, z)uz4(y) + P11(x, z)uz5(y) + P02(x, z)uz6(y)

(4)

where P00, ..., P02 are the Chebyshev polynomials of the second kind, as shown in [35].

2.1 Finite element formulation

The stress σ and the strain ε vectors are defined as follows:

σ = {σyy, σxx, σzz, σxz, σyz, σxy}T

ε = {εyy, εxx, εzzεxz, εyz, εxy}T
(5)

Under the assumption of small displacements and elongations, the following relation between strains and

displacements holds:

ε = Du (6)

D is the linear differential operator, defined as follows:

D =



0 ∂
∂y 0

∂
∂x 0 0

0 0 ∂
∂z

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x 0


(7)
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Applying the constitutive law, one can obtain the stress components:

σ = C̃ε (8)

For the sake of brevity, the explicit form of the coefficients C̃ij in the previous relation is omitted. More

details can be found in [37].

The shape functions Ni are used to interpolate the generalised displacement vector uτ along the y direction,

u(x, y, z) = Fτ (x, z)Ni(y)uτi (9)

where uτi is the nodal unknown vector. In the present work, four-node (B4) 1D elements have been used;

this leads to a cubic approximation along the y axis. The internal strain energy Lint can be related to the

work of the inertial loads Line according to the principle of virtual displacements:

δLint =

∫
V

δεTσ dV = −δLine (10)

Where δ stands for virtual variation. The virtual variation of the strain energy can be written in a compact

form combining Eqs. 6, 8 and 9:

δLint = δuTsjK
ijτsuτi (11)

In the above relation, the fundamental nucleus of the stiffness matrix is noted by Kijτs, whereas the four

indexes indicated by the superscripts are those used to expand the elemental matrix. In particular, i and j

are related to the shape functions Ni and Nj whereas τ and s are related to the expansion functions Fτ and

Fs. The 3x3 array which represents the fundamental nucleus is formally independent of the order of the beam

model. A more detailed explanation of the expansion of nuclei and assembly procedures in FEM framework

can be found in [23]. The work of the inertial loadings can be written in terms of virtual variation,

δLine =

∫
V

ρδuT ü dV (12)

In the above equation ρ stands for the density of the material, whereas ü is the acceleration vector. By

substituting Eq. 9 into Eq. 12, one has

δLine = −δuTsj
∫
L

NiNj dy

∫
Ω

ρFτFs dΩüτi = −δuTsjM
ijτsüτi (13)
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where Mijτs is the fundamental nucleus of the elemental mass matrix and üτi indicates the nodal acceleration

vector. The components of the elemental mass are:

Mijτs
xx = Mijτs

yy = Mijτs
zz =

∫
L
NiNj dy

∫
Ω
ρFτFs dΩ

Mijτs
xy = Mijτs

xz = Mijτs
yx = Mijτs

zx = Mijτs
yz = Mijτs

zy = 0

(14)

It should be noted that no assumptions have been made on the expansion order of the theory, even in the case

of the inertial terms. In fact, using this formulation, several refined beam models can be developed without

any formal change in the fundamental nucleus components.

The fundamental nuclei are substituted into the principle of virtual displacement (Eq. 10)to obtain the

undamped dynamic problem. The CUF fundamental nuclei are then expanded, and the global FEM arrays

are assembled,

Mü + Ku = 0 (15)

The second order system of ordinary differential equations is reduced into a classical eigenvalue problem if

harmonic solutions are considered,

(−ω2
kM + K)uk = 0 (16)

where uk is the k-th eigenvector.

2.2 Mode superposition method

The equilibrium governing equations of the dynamic response in a system with multiple degrees of freedom

(DOFs) are [38]:

Mü(t) +Cu̇(t) +Ku(t) = P (t) (17)

where C is the damping matrix, and P is the time-dependant loading vector, which is computed in the

framework of CUF as in [23]. The unknowns vector u is transformed in accordance with the superposition

method:

u(t) = Φx(t) (18)

where Φ is a DOFs×m matrix containing mM -orthonormalized eigenvectors and x(t) is a time-dependent

vector of order m. To transform the equations of motion, each term of Eq. 18 is substituted into the governing

equations (Eq. 17) and pre-multiplied by ΦT

ẍ(t) + ΦTCΦẋ(t) + Ω2x(t) = ΦTP (t) (19)
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where Ω2 is the diagonal matrix that stores the eigenvalues ω2
i . If the damping is neglected, from Eq. 19 one

can notice that the equations of motion are decoupled. Hence, m individual equations can be obtained by

decomposing this relation. The solution for each equation is computed by means of the Duhamel integral

ẍi(t) + ω2
i xi(t) = ri(t)

ri(t) = ΦiP (t)

 i = 1, 2, ..., n (20)

xi(t) =
1

ωi

∫ t

0

ri(τ) sinωi(t− τ)dτ + αi sinωit+ βi cosωit (21)

To compute αi and βi, initial conditions need to be addressed. The contribution to the response for each

mode is obtained after the solution for each of the m equations is calculated.

um(t) =

m∑
i=1

Φixi(t) (22)

In this approach, the accuracy of the solution depends on m.

3 Numerical Results

This section presents the numerical results of this paper. First, preliminary analyses were carried out on an

isotropic structure. Then, a sandwich beam and a laminated box beam were considered.

3.1 Compact square section

A first, preliminary assessment is presented in this section to validate the modal superposition methodology.

A simply supported, square section beam is considered. The cross-section height is 0.1 m, the span-to-height

ratio L/h is 100, and the material properties are E = 69 GPa, ν = 0.33 and ρ = 2700 kg
m3 . A vertical, harmonic

force was applied at the center of the mid-span section, Pz (t) = Pz0sin (ωt), where Pz0 = −1000N is the

amplitude of the sinusoidal load, and ω = 7 rads is the angular frequency. According to the Euler-Bernoulli

beam assumptions, the peak response can be approximated as follows [38]:

uzmaxDYN '
2Pz0L

3

π4EI

1

1− ω
ω1

(23)

where I is the moment of inertia of the beam cross-section. Such an approximation is valid as soon as ω1 > ω,

in which ω1 is the bending, first fundamental angular frequency. The dynamic response was investigated

using the modal superposition and the present CUF models over the time interval [0, 8] s. Table 1 shows

the maximum transverse displacements at the center of the mid-space cross-section. In particular, this table

compares the approximated analytical value, TE and CE models up to the third order. Figure 2 shows the
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loading point transverse displacement over the time interval using the analytical solution based on Euler-

Bernoulli and CE3. There is a good match between the analytical results and those from the finite element

Model uzmaxDY N ω1

Analytical −69.4719 14.4030
TE3 −70.0014 14.4006
CE3 −70.0019 14.3999

Table 1: Maximum transverse displacement (mm) using different theories, square beam.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  1  2  3  4  5  6  7  8

u z
 (

m
)

t (s)

ANLT
CE3

Figure 2: Transverse displacement at the center of the mid-span section for different models, square beam.

models. The use of refined models do not modify the solution to a great extent. As well known, slender,

homogenous beams under bending are well modeled by classical theories. The results from CE models match

perfectly the TE ones.

3.2 Sandwich Beam

This section presents the dynamic response of a clamped-clamped sandwich beam. The free vibration analysis

of this beam was presented in [39]. The structure consists of two face sheets (f ) bonded to a core (c). Isotropic

materials were employed with Ef = 68.9 GPa, Ec = 179.014 MPa, Gf = 26.5 GPa, Gc = 68.9 MPa, ρf =

2687.3 kg/m3, and ρc = 119.69 kg/m3. Figure 3 shows the cross-section geometry, with hf = 0.40624 mm,

hc = 6.3475 mm, b = 25.4 mm, and L = 1.2187 m. Two different loading cases were considered, as shown in

Fig. 3. Both load cases have a sinusoidal load having amplitude F0 = -10 N and angular frequency ω = 30

rad/s.

The time-dependent transverse displacement at the mid-span load application point are shown in Fig. 4 for

various theories, whereas the maximum and minimum displacements are reported in Table 2. The maximum
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deformation of the cross-section at mid-span is reported in Fig. 5 for Case 1. The results suggest that

• Overall, classical models can detect the time-dependent displacement behavior of the structures. How-

ever, significant differences were found in the maximum values due to the neglecting of torsion and the

in-plane distortion of the cross-section.

• The novel CE models are as accurate as TE models and in good agreement with LE.

Z

X

F

b

h
c

h
f

(a) Case I

Z

X

F

b

h
c

h
f

(b) Case II

Figure 3: Cross-section geometry of the sandwich beam and application points of the sinusoidal loads.

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1

u z
 (

m
m

)

t (s)

EBBT
CE7

LE

(a) Case I
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(b) Case II

Figure 4: Transverse displacement at the mid-span load application point for various theories, sandwich beam
model.

3.3 6-layer composite box beam

A cantilever, thin walled, hollow, rectangular beam was considered. This structure has been previously

investigated in [40–43] in which free vibration analyses were carried out. The structure consists of a 6-layer

laminated box beam with hollow rectangular cross-section, whose dimensions are: length L = 844.55 mm,

height h = 13.6 mm, width b = 24.2 mm and thickness t = 0.762 mm. Each layer has the same thickness.

Two material cases were considered. The same aluminum alloy of the previous case was employed for the
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Theory DOFs
Case I Case II

uzmax uzmin uzmax uzmin

EBBT 93 6.612 −6.600 6.604 −6.596
TBT 155 6.612 −6.600 6.612 −6.600

TE2 558 6.472 −6.517 6.476 −6.521
TE7 3348 6.751 −6.742 6.916 −6.907

CE2 558 6.472 −6.517 6.476 −6.521
CE7 3348 6.751 −6.743 6.917 −6.908

LE 7533 6.795 −6.819 6.958 −6.982

Table 2: Maximum and minimum transverse displacement (mm) at the mid-span cross-section obtained by
means of various theories, sandwich beam.

EBBT
CE7

LE

Figure 5: Deformation of the mid-span cross-section of the sandwich beam, Case 1.

isotropic case. Moreover, an orthotropic material having the following properties was considered,

E1 = 141.96GPa E2 = E3 = 9.79GPa ν12 = ν13 = 0.42 ν23 = 0.5

G12 = G13 = 6.0GPa G23 = 4.83GPa ρ = 1445.0 kg
m3

Different stacking sequences and ply angles were taken into account, namely the circumferentially asymmetric

stiffness (CAS) and circumferentially uniform stiffness (CUS), as in Table 3. The box beam was subjected to

a pressure load whose distribution across the section is shown in Fig. 6. The load was uniformly distributed

in the span-wise direction while a linear distribution was considered along the width. The distributed load

resultant is 10 N, whereas the height of the linear distribution is 10/L N/m. The load was modeled as a

Flanges Webs

Layup Top Bottom Left Right

CAS2 [30]6 [30]6 [30/− 30]3 [30/− 30]3
CAS3 [45]6 [45]6 [45/− 45]3 [45/− 45]3
CUS1 [15]6 [−15]6 [15]6 [−15]6
CUS2 [0/30]3 [0/− 30]3 [0/30]3 [0/− 30]3
CUS3 [0/45]3 [0/− 45]3 [0/45]3 [0/− 45]3

Table 3: Stacking sequences of the 6-layer box beam.
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Figure 6: Load distribution for the box beam.

function of the time according to the following relation:

q =


q0
t1
· t, t ∈ [0, t1]

q0, t > t1

(24)

The analysis was performed considering t1 = 0.05 s. Table 4 shows the transverse displacement for various

models, whereas Fig. 7 shows the transverse displacement over the time interval considered. Figure 8 shows

the distortion of the free tip cross-section via CE7 and LE. The results suggest that

• Perfect agreement was found between CE and TE.

• Depending on the stacking sequence, different expansion orders are needed to detect accurate results.

In particular, CAS2, CAS3, and CUS1 may require seventh or higher orders while, in the other cases,

third order models are enough. Similar results were found for the free vibration analysis [35].

• The distortion of the cross-section from CE models matches LE with good accuracy.

Model TE3 TE7 CE3 CE7 LE
DOFs 930 3348 930 3348 19344

CAS2 14.085 15.000 14.087 14.992 15.247
CAS3 33.842 37.012 33.845 36.948 37.517
CUS1 8.056 8.923 8.057 8.923 9.190
CUS2 5.581 5.755 5.582 5.756 5.770
CUS3 6.529 6.590 6.529 6.591 6.560
Isotropic 3.447 3.453 3.447 3.453 3.454

Table 4: Maximum transverse displacement (mm) at the free tip of the 6-layer box beam using various models.
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Figure 7: Time-dependent transverse displacement at the free tip of the 6-layer box beam for various theories.
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Figure 8: Free tip cross-section distortion, 6-layer composite box beam.
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4 Conclusions

This paper has dealt with the dynamic response of laminated and sandwich structures. 1D CUF refined

structural models have been employed together with the finite element method and the mode superposition

method. In particular, the Chebyshev polynomial expansions have been used to model the displacement

field above the cross-section of the structure. The main aim of this paper has been the investigation of

the accuracy of the Chebyshev-based 1D models for structural dynamics problems of composite structures.

Numerical assessments haver dealt with compact homogeneous and sandwich beams as well as a 6-layer box

structure. The results have been compared with those from Taylor and Lagrange 1D models and analytical

solutions. The results suggest that

• The novel Chebyshev expansion models (CE) have proved to be as accurate as Taylor models (TE). In

most cases, seventh order expansions can match the accuracy of Lagrange models (LE). However, TE

and CE models usually require fewer degrees of freedom than LE.

• Higher order expansions can detect torsion, bending/torsion coupling, and cross-section distortions

properly.

• As a general guideline, TE and CE should be used when global non-local effects have to be investigated.

On the other hand, LE should be preferred to deal with local effects.
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