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ABSTRACT

Quantum metrology is a research field that deals with enhancing the resolution or sensing

capabilities of a system which is otherwise constrained by classical limits. Improvements

in measurements have historically led to new scientific discoveries, the recent example

being the gravitational wave detection. Thus, quantum metrology could be an avenue

for enabling scientific breakthroughs. In the present thesis, I have reported a first feasi-

bility test of quantum enhanced correlated phase interferometry. A result that, on one

other hand, paves the way for developing a new field of quantum metrology and on the

other hand, could be applied to the detection of fundamental stochastic noises such as

Holographic noise, gravitational wave background or traces of primordial black holes. The

experiment was performed injecting two types of quantum states, namely the squeezed

states and a twin-beam like state, in a system consisting of two co-located power recycled

Michelson interferometers. When two independent squeezed states were injected, we were

able in detecting a faint test correlated phase signal with an amplitude several orders of

magnitude below the shot noise limited sensitivity of a single interferometer. The joint

sensitivity obtained for the double interferometric system with squeezed states injected

was (3.21 ± 0.16) × 10−17 m√
Hz

around 13.5 MHz, in a few seconds of measurement time.

The second phase of the experiment involved the injection of a bipartite quantum cor-

related state in the two interferometers. In this case, we have demonstrated a quantum

advantage in detecting uncorrelated noise or difference in the two interferometers’ signals

enabled by the reduction of the noise in the output photo-current subtraction.



PREFACE

The technological exploitation of quantum mechanics’ principles can offer an improved

performance over the classical framework[1][2]. Some of the principles on which these

quantum technologies are built include uncertainty principle, superposition, entanglement

etc. These quantum technologies are the foundation of the so called “second quantum

revolution”[1][2]. If the first quantum revolution enabled inventions such as the laser and

semiconductor and transistor, which behaviour has been understood through quantum me-

chanics, the use of the aforementioned non trivial quantum mechanical effects often involv-

ing the control and manipulation the single particle degree of freedoms is the main feature

of the second quantum revolution. Among these technologies, one can mention quantum

communication[3][4], quantum metrology[5][6][7], quantum computation[8][9] and quan-

tum imaging [10][11]. Quantum metrology provides a route to overcome the classical limits

in resolution or sensitivity of measurements, by exploiting the properties of quantum states

[12],[6]. One of the examples, is the use of squeezed states of light, where fluctuations in

one quadrature are suppressed at the expense of the other. The applications of squeezed

states in metrology vary from gravitational wave detectors[13], magnetometry[14] and ap-

plication to imaging of biological systems [5][15]. Another prominent example is exploiting

entangled states, where the correlation level among particles exceeds the one allowed by

classical physics. In general, there are wide range of applications of entanglement, such

as spectroscopy[16], lithography[17], interferometry[18]. In particular, a special role in

quantum metrology is played by non-classically correlated beam pairs, namely twin beam

states which can produce maximally entangled states in photon number. Indeed, this kind

of state in principle could be generated by interfering two squeezed states on a beam split-

ter. The recent demonstration of enhancement in sensitivity using two mode squeezing

for detection of uncorrelated noises in a single interferometer is one of the example[19] for

its application for quantum metrology.

Optical interferometry, represents one of the best sensing tool for detection of faint

phase noises. A prime example is the recent detection of gravitational waves[20]. The

large scale gravitational wave detectors employ a power recycled Michelson interferometer

scheme with its arms having linear Fabry-Pérot cavities with a length around 4km. The

typical strain sensitivity reported of the large scale gravitational wave interferometers are
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10−22
√
Hz−1 around 150Hz frequency [20]. Since, the interferometer sensitivities are con-

strained by the shot noise one could increase the power in order to enhance the sensitivity.

However, further increasing of power would lead to increase of radiation pressure noise

from the mirrors, thermal effects, scattering etc. Hence, there is an interest for applica-

tion of quantum technology in the interferometric systems to further enhance the sensing

capabilities that could help unveil fundamental properties of nature. In particular, the

use of squeezed light in large scale interferometers for detection of gravitational waves has

already been implemented in LIGO and GEO600[13][21] where they have reported around

2.15dB and 2dB of quantum enhancement respectively.

There are fundamental sources of noises such as holographic noise[22] or gravitational

wave background [23][24] that could produce correlated phase fluctuations in two separated

interferometers, which have an increased chance to be detected by exploiting quantum en-

hanced interferometry with respect to other sources of noises. In particular, holographic

noise would arise due to non-commutative property of the fundamental geometrical vari-

ables conjectured in some Planck scale phenomenological models, which are associated

with uncertainty in measuring relative positions or rotation [25][13]. It has been argued

that light, meanwhile propagating in the arms of an interferometer, would sum up incre-

mental displacement at each discrete Planck interval step, leading to a measurable effect.

Long-range (space-like) quantum-like correlation among these variables, and the conse-

quent reduction of the effective numbers of independent degrees of freedom, would allow

also to account for the holographic principle. The range of this correlation is expected

to be only bounded by causality, namely the two interferometers should occupy the same

space time volume. This noise is expected to be present in the frequencies upto MHz

range.

For this purpose, a double interferometer system namely Holometer, consisting of pair

of 40m long power recycled Michelson interferometers placed close to each other (without

arm cavities), has been built at the Fermilab [26],[27]. However, at this moment, the

holometer is being operated using classical light only. The results of the first measurements

were reported in [27] where they have reported a strain sensitivity of 10−21
√
Hz−1.

The present thesis discusses a first proof-of-principle experiment for demonstrating the

possibility of overcoming the classical limits in correlated phase detection sensitivity by

exploiting the properties of quantum states of light in this double interferometric system.

This has been motivated by the results of earlier theoretical works [28][29]. In the present

experiment, each interferometer was operated in a power recycling Michelson configuration

without the arm cavities, thus emulating the configuration of Fermilab Holometer. The

experiment was performed with two types of quantum states injected: a) Two independent

squeezed light states injected into each interferometer b) Twin beam like state which is

similar in properties to the two mode squeezing, where correlation in one of the quadrature

is used.

The future outlook of this experiment is two fold. Firstly to use the quantum light

in the present large scale interferometers at the Fermilab Holometer to enhance the sen-
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sitivity for detection of possible planck scale effects. Secondly to compact the large scale

double Michelson interferometers on a table-top setup and inject the quantum light into

them.

Initially, the experiment was started at INRIM, where I had set up the interferometers and

characterized them in the classical regime. In a second part, when squeezed light injection

was required, the experiment was moved at the Danmarks Tekniske Universitet (DTU) in

Lyngby, under the collaboration with the QPIT group. They provided the squeezed light

sources for the experiment and support for concluding the experiment. During my PhD,

I spent in Denmark for 18 months working on the experiment.

Structure of Thesis

The thesis consists in six chapters, each of them provided with an introduction, a main

development, and conclusions. In the first chapter, I give an overview of some types of

quantum states and their properties, and I discuss in depth, the theoretical framework for

the correlated phase interferometery and its applications. In the second Chapter, I describe

the properties of Fabry-Pérot and Michelson interferometers, and locking techniques used

for stabilizing them. On the basis of the fundamental principles of these two kind of

interferometers, then I discuss the properties of a power recycled Michelson interferometer

which embeds the two technologies.

In the third chapter, I provide a detail description of experimental setup of the double

interferometer and the squeezed light sources. The experimental characterization of the

system is also presented in this chapter. In the fourth chapter, I deal with the shot noise

calibration and measurements discussing the techniques used to evaluate the sensitivity.

In the fifth chapter I present the results of enhancement in correlated phase detection

sensitivity, when two independent squeezed states are injected. In the sixth chapter, I

present the results of sub-shot noise reduction in the subtraction of photocurrents, when

each mode of twin beam like state is injected in each interferometer.

In the Appendix electronic schemes for the PI controllers and photodetectors are pre-

sented. The methodology using Transfer function measurements and open loop measure-

ments to optimize the interferometer system with design of appropriate PI controllers have

been discussed.
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LIST OF SYMBOLS AND ACRONYMS

D(α) Displacement operator

S(ξ) Squeezing operator

Sab(ξ) Two mode squeezing operator

F Fisher information

c Speed of light

h Planck constant

λ Wavelength of the light

PBS Power at the Beam splitter

RPRM Reflectivity of the power recycling mirror

F Finesse of the cavity

RBS Reflectivity at the beam splitter

G Power Recycling Gain

V Visibility of the interferometer

∆Xoffset DARM Position of the fringe

∆Xrms Strain caused by the EOM

r1,r2 squeezing factors

∆X Displacement Sensitivity

ε Contrast defect

η Transmission efficiency

Vπ Half wave voltage of the EOM
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r13 Electro optical coefficient

XjSN Time series of the Shot noise of the jth interferometer

XjWN Time series of the white noise of the jth interferometer

XjSQ Time series of the Squeezed noise of the jth interferometer

XjPN Time series of the Photon noise of the jth interferometer

ρ12(τ) Normalized cross correlation coefficient

R12(τ) Cross correlation function

Rxx(τ) Auto Correlation function

var Variance of a quantity

Cov Covariance of a quantity

PSD Power Spectral Density

CPSD Cross Power Spectral Density

DARM Differential Arm length

CARM Common Arm length

PI controller Proportionality Integral controller

AC output 100kHz High Passed power

DC power optical power measured at low frequencies

TWB state Twin beam state

SNL Shot Noise level
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CHAPTER 1

INTRODUCTION TO QUANTUM STATES OF LIGHT AND

QUANTUM METROLOGY

1.1 Introduction

Quantum metrology is a field of study aiming at using quantum technologies to overcome

the classical approaches in making highly sensitive measurements of physical parameters[12][6].

In general, when N classical probes are used to probe a system for estimation of an un-

known parameter, the precision is limited by a scaling given by 1/
√
N known as the

shot-noise limit. This scaling arises from the central limit theorem of statistics [7]. Con-

sider for example an optical interferometer, where interference of photons at the output

port carries information on the relative optical path difference between the interferometer

arms, when a standard laser is used, the uncertainty in phase estimation is bound by

the limit 1/
√
N where N is the number of photons used in the interferometer. To beat

this shot noise limit, we need to exploit the properties of quantum light. In this chapter,

some types of quantum states and advantages of using them in optical interferometers are

described. I will then, more specifically introduce the experimental scheme of a double

interferometer system with quantum light injected, since it has been my thesis work. The

applications of this scheme would also be discussed.

1.2 Quantization of Electromaganetic Field

Let us consider a plane electromagnetic wave of frequency ωk that is propagating in di-

rection ~k. The electric field and magnetic field are given by [30]

~E(~r, t) = ~eE0e
(i~k·~r−iωkt) + c.c (1.2.0.1)

~B(~r, t) =
(~k × ~e)
k

E0e
(i~k·~r−iωkt) + c.c (1.2.0.2)

where c.c represents the complex conjugate and ~e denotes the polarization vector of

the electromagnetic field and k = |~k| = 2π
λ .
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1.2. QUANTIZATION OF ELECTROMAGANETIC FIELD Chapter 1

For convenience we work with vector potential ~A(~r, t) and in a non relativistic domain.

We adopt the Coulomb gauge and other Maxwell equations, where

∇ · ~A(~r, t) = 0 (1.2.0.3)

~E = −∂A
∂t
, ~B = ∇× ~A (1.2.0.4)

In the case of plane wave we can write,

~A(~r, t) = εA0e
(i~k·~r−iωkt) + c.c (1.2.0.5)

where A0 = − ic
ωk
E0

We would consider that this electromagnetic field is confined in box of volume V with

length of each dimension L. We impose a periodic boundary conditions allowing the values

of ~k as
~k =

2π~n

L
where ~n = (nx, ny, nz) = 0,±1,±2,±3, ... (1.2.0.6)

Here n is an integer with all possible values. Thus we can write the vector potential as

~A(~r, t) =
1

2

∑
k

∑
s

(Akse
i~k·~r−iωkt~eks + c.c.) (1.2.0.7)

where s is the basis of polarization which takes values 1,2. We can then derive E and B

using equation (1.2.0.4) and we get,

~E(~r, t) =
1

2

∑
k

∑
s

Akse
i~k·~r−iωktωk~eks (1.2.0.8)

The energy of the electromagnetic field contained in volume V, is given by

U =
1

2

∫
V

[ε0E
2(r, t) +

B2(r, t)

2µ0
]d3r (1.2.0.9)

Using the equation (1.2.0.9) ,(1.2.0.7) and (1.2.0.8) we get,

U =
1

2π

∑
k

∑
s

ω2
k

c2
| ~Aks|2 (1.2.0.10)

When we quantize the electromagnetic field, all the electric field and magnetic field

vectors ~E, ~B and ~A are changed to operators and the energy U is changed to Hamiltonian

operator. All quantum fields would now be expressed as

~A(~r, t) =
∑
k

∑
s

â~kse
i~k·~r−iωktα ~eks +H.C. (1.2.0.11)

~A∗(~r, t) =
∑
k

∑
s

â+
~ks
e−(i~k·~r−iωkt)α ~eks +H.C. (1.2.0.12)
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1.2. QUANTIZATION OF ELECTROMAGANETIC FIELD Chapter 1

~E(~r, t) = i
∑
k

∑
s

â~kse
i~k·~r−iωktα ~eksωk +H.C. (1.2.0.13)

~B(~r, t) = i
∑
k

∑
s

â~kse
i~k·~r−iωktαωk

(~k × ~eks)

|~k|
+H.C. (1.2.0.14)

where α =
√

2πh̄c2

V , aks is called as the “annihilation operator” and â+
ks is called as the

“creation operator”. The commutation relation holding between â and â+ is given by,

[âks, â+
ks] = 1 (1.2.0.15)

Now the equation (1.2.0.10) can be rewritten as

Ĥ =
1

2

∑
k,s

h̄ωk(â
+
ksâks + âksâ

+
ks) =

∑
k,s

h̄ωk(n̂~ks +
1

2
) (1.2.0.16)

where n̂~ks = â+
ksâks is called the number operator for the frequency ωk is the frequency,

the wave vector being ~k = ωk/c and c is the velocity of light. More on the properties of

the number operator would be discussed in the next subsection 1.2.1.

1.2.1 Fock States

For brevity, we remove the subscript ~ks throughout the discussion of this section and de-

note the single mode photon number operators as n̂. The eigenvectors of number operator

|n〉 are called Fock states, thus we can write:

n̂ |n〉 = n |n〉 (1.2.1.1)

where n represents the eigenvalue of number operator. However the smallest eigenvalue

of the number operator is zero since n̂ is hermitian operator. For n=0, it can be seen that

n̂ |0〉 = â+â |0〉 = 0 (1.2.1.2)

Therefore we can write a |0〉 = 0. The state |0〉 is called the vacuum state as it has

no photons associated with radiation field. Its energy obtained according to the equation

1.2.0.16 is called the zero point energy and its contribution is given by
∑

k,s h̄ωk/2.

Using the commutation relation in equation (1.2.0.15) applying it to the vacuum state

holds the following result:

(ââ+ − â+â) |0〉 = |0〉 (1.2.1.3)

which gives us,

â(â+ |0〉) = |0〉 (1.2.1.4)

Now we apply the creation operator on both sides to the above equation (1.2.1.4), we

get (â+â)â+ |0〉 = â+ |0〉. This implies that â+ |0〉 is the eigenvector of operator â+â whose
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eigenvalue is 1. Hence we can write

â+ |0〉 = |1〉 (1.2.1.5)

The |1〉 is called a single photon state obtained by applying â+ on the vacuum state.

Similarly the state |n〉 is formed by repeated application of the the creation operator â+

for n times on the vacuum state |0〉. The state |n〉 with an appropriate normalizing factor

could then be given by,

|n〉 =
(â+)n√
n!
|0〉 (1.2.1.6)

Furthermore we could deduce the following properties of annihilation and creation

operators as,

â |n〉 =
√
n|n− 1 >, â+ |n〉 =

√
n+ 1|n+ 1 > (1.2.1.7)

1.2.2 Quadrature of field

In the equation (1.2.0.8) the plane wave field has an amplitude E0 which is a complex

number. The information of its real and complex amplitudes can be obtained by per-

forming using certain measurement techniques such as homodyne detection which would

be described it in subsection 1.3.2 where the squeezed states are introduced. In quan-

tum optics however, the amplitude E0 gets replaced by the annihilation operator â and

its complex conjugate as creation operator â+ which do not correspond to any observable

since they are not Hermitian. Since all observables are represented by Hermitian operators

whose expectation values give a certain measurable value [31], we can thus define the two

Hermitian quadrature operators X̂ and Ŷ which measure the Electric field as:

â =
X̂ + iŶ√

2
(1.2.2.1)

â+ =
X̂ − iŶ√

2
(1.2.2.2)

which gives us,

X̂ =
â+ â+

√
2

(1.2.2.3)

Ŷ =
â− â+

√
2i

(1.2.2.4)

Their commutation relation can be evaluated as,

[X̂, Ŷ ] = i (1.2.2.5)

The commutative relation in equation (1.2.2.5) is similar to the position operator and

momentum operator.

The Heisenberg uncertainty relationship for operators Â and B̂ which are non com-

mutative is given by[32],
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∆Â∆B̂ ≥
|
〈

[Â, B̂]
〉
|

2
(1.2.2.6)

Hence we could construct the Heisenberg uncertainty from the equations (1.2.2.5) and

(1.2.2.6) we get,.

∆X̂∆Ŷ ≥ 1

2
(1.2.2.7)

1.3 Quantum states

In this section we discuss properties of various types of quantum states such as Coherent

states, single mode squeezed states and two mode squeezed states.

1.3.1 Coherent States

The coherent states are one of the prominent states in quantum theory of light[30] because

their properties closely resemble the one’s of classical electromagnetic plane wave. A single

mode laser operated well above threshold generates a coherent state excitation [33].

Coherent states are denoted by |α〉 and can be defined as superposition of fock states

|n〉 given by:

|α〉 = e−
|α2|
2

∞∑
n=0

αn√
n!
|n〉 , (1.3.1.1)

where α is a complex number.

Properties of coherent states

1. It can be easily verified that the coherent states are normalized.

〈α|α〉 = e−|α2|∑
n

αn

n!
= 1 (1.3.1.2)

2. The coherent states are non-orthogonal to each other. Lets take two states |α〉 and |β〉.

〈α|β〉 = e(α∗β− |α|
2

2
− |β|

2

2
) (1.3.1.3)

3. It can be seen that coherent states are eigenstates of the annihilation operator with
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eigenvalue α.

a(|α〉) = a(e−
α2

2

∞∑
n=1

αn√
n!
|n〉) = e−

α2

2

∞∑
n=1

αn√
n!

√
n |n− 1〉

= e−
α2

2

∞∑
n=1

αn√
(n− 1)!

|n− 1〉

= α(e−
α2

2

∞∑
n=1

α(n−1)√
(n− 1)!

|n− 1〉)

= α |α〉

(1.3.1.4)

4. The complex parameter α is related to mean photon number of the field. It is given by,

〈n̂〉 = 〈α| n̂ |α〉 = 〈α| â+â |α〉 = |α|2 (1.3.1.5)

The second order momentum of the photon number distribution is given by,

〈
n̂2
〉

= 〈α| n̂2 |α〉 = 〈α| â+ââ+â |α〉 = |α|2(1 + 〈α| â+â |α〉) = |α|2 + |α|4 (1.3.1.6)

Hence the Variance of the photon number is given by

var(n̂) =
〈
n2
〉
− 〈n̂〉2 = 〈n̂〉 (1.3.1.7)

The photon number distribution of p(N) is given by :

p(N) = |〈N |α〉|2 = e−α
2
∞∑
n=0

αn√
n!
|〈N |n〉|2 =

e−〈n̂〉 〈n̂〉N

N !
(1.3.1.8)

The above probability distribution represents a Poissonian distribution with variance in

the photon number as demonstrated to be equal to mean photon number. The relative

intensity noise of a coherent state is given by the ratio of the standard deviation of the

photon number to the expectation value of the mean photon number of the coherent state.

∆I

〈I〉
=

∆n

〈n〉
=

1√
〈n〉

(1.3.1.9)

where I is the intensity of the coherent light. Hence the relative intensity noise is limited

by 〈n〉. This limit is called as Shot noise limit.

5. The coherent states can be generated by displacing the vacuum state, |α〉 = D(α) |0〉,
where D(α) is called as the displacement operator. It is given by:

D(α) = e(αâ+−α∗a) (1.3.1.10)

It is shown pictorially in fig. 1.1 in XY quadrature space.

6. Let us evaluate the uncertainties on the quadratures ∆X̂ and ∆Ŷ using the above

properties.
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∆X̂ =

√〈
X̂2
〉
−
〈
X̂
〉2

=

√
〈α| X̂2 |α〉 − (〈α| X̂ |α〉)2

Using X̂ as in equation (1.2.2.3)

〈
X̂
〉

=
〈â〉+ 〈â+〉

2
= Real(α) (1.3.1.11)

Similarly the second order moment of quadrature X̂ is given by,

〈
X̂2
〉

=

〈
(â2 + â+2 + ââ+ + â+â

〉
4

=
α2 + α∗2 + 2αα∗ + 1

4
=

1 + 4Real(α)2

4
(1.3.1.12)

Hence the uncertainty is evaluated as using equation (1.3.1),

∆X̂ =
1√
2

(1.3.1.13)

In similar way we can show that ∆Y = 1√
2
. Hence the Coherent states are known as

the minimum uncertainty states with the uncertainties in the quadratures ∆X̂ = 1√
2

and

∆Ŷ = 1√
2

with ∆X̂∆Ŷ = 1
2 . The fig. 1.1 represents the quadrature space of the coherent

state.

Figure 1.1: The figure above shows the pictorial representation of coherent state in Quadra-
ture XY space. It can be seen that the coherent state is obtained by the displacement
operator D(α).

8. The phase uncertainty limit based on the Fisher information is given by,

(∆φ) =
1

2
√

var(n̂sig)
=

1

2
√
N

(1.3.1.14)

This fundamental limit is called the shot noise limit. Considering the above equation we

can establish the number-phase uncertainty relationship as:

∆n∆φ =
1

2
(1.3.1.15)
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1.3.2 Single mode Squeezed States

Squeezed states are the type of quantum states which compress the uncertainty in one

quadrature at the expense of the other whilst maintaining the Heisenberg uncertainty

limit. The Squeezing operator is defined as,

S(ξ) = e( ξa
+2

2
− ξ
∗a2
2

), ξ = reiψ (1.3.2.1)

It can be seen that the Squeezing operator satisfies the conditions for unitary operator,

S(ξ)S+(ξ) = S+(ξ)S(ξ) = 1 (1.3.2.2)

The squeezed vacuum state |ξ〉 is given by,

|ξ〉 = S(ξ) |0〉 (1.3.2.3)

The final form of the squeezed vacuum state can be written as [30],

|ξ〉 =
1√

coshr

∞∑
n=0

einψ(tanhr)n
√

(2n)!

n!2n
|2n〉 (1.3.2.4)

Properties of Squeezed vacuum and Squeezing operator

1. The squeezing operator transforms the annihilation and creation operator as b =

S+(ξ)â+S(ξ) and b̂+ = S+(ξ)aS(ξ). The final form of the operator is given by:

b = S+(ξ)â+S(ξ) = âcosh(r) + â+eiψsinh(r)

b̂+ = S+(ξ)aS(ξ) = â+cosh(r) + âe−iψsinh(r)
(1.3.2.5)

where ψ is an appropriate phase and r is the squeezing factor. This transforma-

tion is also known as Bougliubov transform. The evolved operators also satisfy the non-

commutative property as [b, b̂+] = 1

2. The Quadrature operators X̂θ which is a linear combination of quadratures X̂ and

Ŷ are defined as,

X̂θ =
be(−iθ) + b+e(iθ)

√
2

(1.3.2.6)

which for values of θ = 0(π/2) reduces to qudratures X̂ (Ŷ ).

We try to evaluate the uncertainty in the quadratures ∆X̂ and ∆Ŷ by evaluating ∆X̂θ

given by,

(∆X̂θ)
2 =

〈
X̂2
θ

〉
−
〈
X̂θ

〉2
(1.3.2.7)
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The expectation value of the quadrature X̂θ,〈
X̂θ

〉
=

〈
be−iθ + b+eiθ√

2

〉
= 〈ξ| be

−iθ + b+eiθ√
2

|ξ〉

=
〈b〉 e−iθ +

〈
b̂+
〉
eiθ

√
2

(1.3.2.8)

The first term in the above equation (1.3.2.8) is given by,

〈b〉 = 〈a〉+ eiψ
〈
â+
〉

= 0 (1.3.2.9)

where the the mean value 〈.〉 is intended to be evaluated on the Squeezed vacuum state.

Hence the
〈
X̂θ

〉
= 0

The expectation value of X̂2
θ is given by,〈

X̂2
θ

〉
= 〈ξ| X̂2

θ |ξ〉 = 〈ξ| b2e−2iθ + b+2e2iθ + bb̂+ + b̂+b |ξ〉

=
〈
b2
〉

+
〈
b+2
〉

+
〈
bb̂+
〉

+
〈
b̂+b
〉 (1.3.2.10)

For brevity, let us define u = cosh(r) and v = sinh(r) The expectation value of each term

can be evaluated as, 〈
b2
〉

= uveiψ〈
b+2
〉

= uve−iψ〈
b̂+b
〉

= |v|2
(1.3.2.11)

We get the expectation value of X̂2
θ as〈

X̂2
θ

〉
=

1

2
+ v(v +

√
1 + v2cos(2θ − ψ)) (1.3.2.12)

Without loss of generality, we set ψ = 0 and evaluating the
〈
X̂2
θ

〉
at θ = 0 and θ = π/2,

we get

〈
X̂2
〉

=
e2r

2〈
Ŷ 2
〉

=
e−2r

2

(1.3.2.13)

Then evaluating the uncertainties ∆X̂ and ∆Ŷ we get,

∆X̂ =

√〈
X̂2
〉
− (
〈
X̂
〉

)2 =
er√

2

∆Ŷ =

√〈
X̂2
〉
− (
〈
X̂
〉

)2 =
e−r√

2

(1.3.2.14)

The equations (1.3.2.14) shows that they satisfy the uncertainty relation ∆X̂∆Y = 1
2 .

20



1.3. QUANTUM STATES Chapter 1

The squeezed vacuum state in the XY-quadrature space, is pictorially represented as ellipse

as seen in fig. 1.2. One of the quadrature is compressed in uncertainty at the expense of

increase of the other quadrature with uncertainty.

Figure 1.2: The figure above represents the pictorial representation of Squeezed vacuum
state. It can bee seen that the uncertainty in one quadrature is compressed at the expense
of the other.

Squeezed states can be generated, for instance, through a process of parametric down

conversion. This would be eventually discussed in Chapter 3 in section 3.3.1.

3. The amount of squeezing produced by squeezer can be measured by using a bal-

anced homodyne detection scheme. In this scheme, the squeezed light is interfered with

a coherent local oscillator on a beam splitter and the photon number signals between the

output ports c1 and c2 is subtracted. Let b1 port be injected with coherent local oscillator

|α〉 =
∣∣µeiφ〉while b2 has in input squeezed vacuum |ξ〉 . The fig. 1.3 depicts the scheme

of the homodyne detection.

Figure 1.3: The figure above depicts the homodyne scheme for measuring the quadratures.
The output port c1 and c2 are subtracted.

The operators c1 and c2 are given by,

ĉ1 =
b̂1 + ib̂2√

2
, ĉ2 =

b̂2 + ib̂1√
2

(1.3.2.15)

The number of photons exiting in c1 is given by 〈N1〉 =
〈
ĉ+

1 ĉ1

〉
and similarly in port

c2 is given by N2 =
〈
ĉ+

2 ĉ2

〉
. When we perform the subtraction,
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〈N1 −N2〉 =
〈
ĉ+

1 ĉ1

〉
−
〈
ĉ+

2 ĉ2

〉
=
〈
b̂+1 b1 + b̂+2 b̂2 + i(b̂+1 b̂2 − b̂

+
2 b̂1)

〉
−
〈
b̂+1 b1 + b̂+2 b̂2 − i(b̂

+
1 b̂2 − b̂

+
2 b1)

〉
= 2i

〈
((b̂+1 b̂2 − b̂

+
2 b̂1)

〉
= 2
√
µ
〈
ei(φ+π/2)b̂2 − e−i(φ+π/2)b̂+2

〉
=
√

2µ
〈
X̂φ+π/2

〉
(1.3.2.16)

At the same time, it can be shown that the variance in difference of photon number is

proportional to the variance of the quadrature according to the following expression:

var(N1 −N2) =
〈
(N1 −N2)2

〉
− (〈N1 −N2〉)2 = 2µ2(∆Xφ+π/2)2. (1.3.2.17)

It can be inferred from the above two expressions that when we perform the subtraction,

the expectation value and variances are proportional to the quadratures of the field. If

the phase φ = −π/2, we measure the anti-squeezing quadrature of the field, while φ = 0

measures the squeezing quadrature of the field. This phase φ is in general controlled by a

phase shifter which is described in section 5.1

4. Combining squeezing and displacement operator, one can generate the squeezed

coherent states defined by [30][32],

|ξ, β〉 = D(β)S(ξ) |0〉 (1.3.2.18)

i) The annhilation operators are transformed into a(ξ, β) given by,

c = S+(ξ)D+(β)aD(β)S(ξ) = acosh(r) + â+ + eiψsinh(r) + β (1.3.2.19)

It should be noted that D(β) and S(ξ) do not commute with each other.

ii)The expectation values are given by :

〈c〉 = β,
〈
â+a

〉
= |β|2 + sinh2(r) (1.3.2.20)

〈
c2
〉

= β2 +
sinh 2r eiψ

2
,
〈
X̂θ

〉
=
βe−iθ + βeiθ√

2
(1.3.2.21)

Hence the variance in the quadratures is given by,

(∆X̂ψ
2

)2 =
e2r

2
, (∆X̂ψ

2
+π

2
)2 =

e−2r

2
(1.3.2.22)

It can be seen that they satisfy the Heisenberg uncertainty relation ∆X̂ψ
2

∆X̂ψ
2

+π
2

= 1
2 .

(iii) There are two types of Displaced squeezed vacuum states that we can represent

in the XY quadrature space as shown in fig. 1.4. The fig. 1.4 (a) shows the amplitude

squeezed state and fig. 1.4 (b) shows the phase squeezed state
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Figure 1.4: a) Amplitude squeezed b) Phase squeezed where ξ1 = ξei
π
2

The two ellipses represent two orthogonal squeezed states: we observe that one squeezed

state shows less fluctuations than a coherent state in the angular phase (phase squeezing),

while the other state shows less fluctuations in the direction of α (amplitude or intensity

squeezing). This squeezing angle is controlled by a seed beam or control beam which is

discusses in chapter 3 in section 3.3.1. Phase squeezed states have a super-Poissonian

statistics, while amplitude squeezed states, for |α| sufficiently large, are an example of

sub-Poissonian distribution whereas its phase distribution is wider[32][34]. We can estab-

lish the uncertainty in photon number and phase as ∆n =
√
ne−r and ∆φ = er

2
√
n

. Whilst

for the phase-squeezed light, it has reduction of the uncertainty in the phase fluctuations

∆n =
√
ner and ∆φ = e−r

2
√
n

with respect to a coherent state of the same amplitude. The

phase squeezing is useful for injection into the interferometers because of its low phase

fluctuations.

1.3.3 Two Mode Squeezing

A state that is closely related to the single-mode squeezed vacuum in its theoretical de-

scription and experimental procedures, but quite different in properties is the two mode

squeezed vacuum (TMSV), also known as the twin-beam state [35]. We generate two mode

squeezed states by applying the two mode squeezing operator on the two mode vacuum

state |0, 0〉,
Sab(ξ) = e(ξâ+b̂+−ξ∗âb̂), ξ = reiψ (1.3.3.1)

|ξtwb〉 = S(ξ) |0, 0〉 (1.3.3.2)

The final form of the two mode squeezed vacuum state are given by,

|ξtwb〉 =
1

cosh(r)

∞∑
n=0

einψ(tanhr)n |n, n〉 (1.3.3.3)

By evolving the input operator a and b by the two-mode squeezing operator, i.e

ĉ = S+
ab(ξ)âSab(ξ), d̂ = S+

ab(ξ)b̂Sab(ξ) (1.3.3.4)

It turns out that the output operators can be expressed by the following Bogoliubov

equation:
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ĉ = â cosh(r) + b̂+ eiψsinh(r), d̂ = b̂ cosh(r) + â+ eiψsinh(r) (1.3.3.5)

The TWB presents perfect correlations in the photon number between two modes a

N̂a = ĉ+ĉ and mode b N̂b = d̂+d̂ meaning that 〈ξab| (Na − Nb)
M |ξab〉 = 0, ∀M > 0.

It implies for example that variance of the photons numbers difference
〈
δ(Na −Nb)

2
〉

is

identically null if losses are neglected.

The expectation value of correlation between two modes is given by,〈
ĉd̂
〉

= cosh(r) sinh(r) eiψ (1.3.3.6)

The other properties could be evaluated such as
〈
ĉ2
〉

=
〈
d̂2
〉

= 0, 〈ĉ〉 =
〈
d̂
〉

= 0.

The correlation
〈
ĉd̂
〉

between the two modes leads to non-classical properties like single

mode squeezed vacuum state. The non vanishing of
〈
ĉd̂
〉

suggests that we must consider

quadratures of the operators which are linear combinations of ĉ and d̂,

ĝ =
â+ b̂√

(2)
(1.3.3.7)

satisfying [ĝ, ĝ+] = 1 The second order moments for ĝ are given by [30],

〈
g+g

〉
= sinh2 r,

〈
g2
〉

= cosh(r) sinh(r)eiψ (1.3.3.8)

The above expression is similar to the single mode squeezed vacuum with reference to

(1.3.2.11). Hence defining the quadrature operator X̂θ similar to one in the single mode

squeezed vacuum:

X̂
(g)
θ =

ĝe−iθ + ĝ+eiθ√
2

(1.3.3.9)

we would get ∆X̂
(g)
ψ
2

+π
2

= 1
2(1− e−2r)

Similarly we can define another linear combination operator c as

ĥ =
b̂− â√

2
(1.3.3.10)

satisfying the non commutativity [ĥ, ĥ+] = 1.

We can note that (ĥ2−ĝ2)
2 = âb̂ and hence we can rewrite the two mode squeezed

vacuum state as,

e(ξâ+b̂+−ξ∗ab) = e( ξ
2
g+2− ξ

∗
2
g2)e(− ξ

2
h+2+ ξ∗

2
h2) (1.3.3.11)

Thus the two mode squeezing operator can be written as a product of two-single mode

states operators. It can be noted that operators c and d can be realized by 50-50 beam

splitter. Hence the generation of twin beam states can be done using two single mode

squeezed states interfered on the beam splitter as shown in fig. 1.5.
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Figure 1.5: The above figure represents the generation of twin beam state with two single
mode squeezers interfered on a beam splitter.

Since we now know that the two mode squeezed state is generated through two sin-

gle mode squeeezed vacuum states interfered on the beam splitter, we can calculate the

uncertainties in quadratures. There are four quadratures in total to be considered, two

corresponding to each mode of the field defined by,

X̂1,θ =
ĉeiθ + ĉ+e−iθ√

2
, X̂2,θ =

d̂eiθ + d̂+e−iθ√
2

(1.3.3.12)

Let us consider the difference in two quadrature of two modes,

〈
(X̂(1,0) − X̂(2,0))

〉
=

〈
ĉ− d̂+ ĉ+ − d̂+

〉
√

2
= 0 (1.3.3.13)

Now we evaluate the variance of the difference as

var(X̂(1,0) − X̂(2,0)) = var(X̂(1,0)) + var(X̂(2,0))− 2
〈

(X̂(1,0), X̂(2,0))
〉
. (1.3.3.14)

We can evaluate var(X̂(1,0)) =
〈
X̂2

(1,0)

〉
−
〈
X̂(1,0)

〉2
The second term in the above

expression is zero. Hence the second order moment of the operator is given by,

〈
X̂2

(1,0)

〉
=
ĉ2 + ĉ+2 + ĉĉ+ + ĉ+ĉ

2
=

(1 + 2sinh2(r))

2
(1.3.3.15)

Similarly,
〈
X̂2

2,0

〉
= 1

2(1 + 2 sinh2 r).

The covariance of the two quadratures is given by,

〈
X̂(1,0)X̂(2,0)

〉
=
ĉ+d̂+ ĉd̂+ + ĉd̂+ ĉ+d̂+

2
= −sinh(r)cosh(r)sin(ψ) (1.3.3.16)

Without loss of generality we put ψ = π/2

Hence we can evaluate the variance of the difference in quadratures as ,

var(X̂(1,0) − X̂(2,0)) =
e−2r

2
(1.3.3.17)

Similarly when we evaluate the variances of the sum of the other two quadratures we
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Figure 1.6: The figure above shows the generation of twin beam like state by splitting a
single mode squeezer on a beam splitter.

get var(X̂(1,π
2

) + X̂(2,π
2

)) = e2r

2 satisfying the Heisenberg’s uncertainty principle:

∆(X̂(1,0) − X̂(2,0))∆(X̂(1,π
2

) + X̂(2,π
2

)) =
1

2
(1.3.3.18)

5. A twin beam like state which produces anti-correlations can be generated by having

a single mode squeezer split on a beam splitter as shown in fig. 1.6.

Let us now consider the variance of difference between quadratures X̂(1,0) and X̂(2,0).

var(X̂(1,0) − X̂(2,0)) = var(X̂(1,0)) + var(X̂(2,0))− 2
〈

(X̂(1,0), X̂(2,0))
〉

(1.3.3.19)

where, X̂(1,0) = (ĉ+ĉ+)√
2

and X̂(2,0) = (d̂+d̂+)√
2

The expressions of output operators ĉ and d̂ can be written in terms of input operators

ĝ and ĥ through beam splitter,

c =
ĝ + ĥ√

2
, d =

ĝ − ĥ√
2

(1.3.3.20)

From the above expression we can evaluate,

var(X̂(1,0)) =
(1 + cosh(2 r) + sinh(2 r))

4
(1.3.3.21)

var(X̂(2,0)) =
(1 + cosh(2 r) + sinh(2 r))

4
(1.3.3.22)

and 〈
(X̂(1,0), X̂(2,0))

〉
=

(1 + cosh(2 r)− sinh(2 r))

4
(1.3.3.23)

The variance of the difference is then given by,

var(X̂(1,0) − X̂(2,0)) =
e−2r

2
(1.3.3.24)

Similarly when we evaluate the var(X̂(1,π
2

) − X̂2,π
2
) = e2r

2
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1.4 Phase sensing in Michelson interferometers

Michelson Interferometer has been an extremely important tool in phase sensing experi-

ments and are used in applications as gravitational wave detector[36][21]. The Michelson

interferometer consists of a beam splitter and two end mirrors as shown in the fig. 1.7.

More details of the Michelson interferometer are presented in Chapter 2. In this section

we discuss various quantum limits with respect to each state injected in the Michelson

interferometer. We will discuss two types of detection schemes : (i) Balanced homodyne

detection and (ii) Dark port readout.

Figure 1.7: The figure above depicts the Michelson interferometer. The coherent state is
injected in port a1. The port c1 is called the antisymmetric and d1 is called the symmetric
port. When the phase of the arms is set to make the intensity output at the antisymmetric
port it can be called ”dark” port and while the other one becomes ”bright”

1.4.1 Phase Sensing using Dark -port readout

The field of quantum metrology broadly started when Caves showed theoretically that

squeezed states of light could be used to suppress quantum noise in an inteferometric

phase measurement [37]. The effect of squeezed state injected can be seen by looking at

just the dark port output of the interferometer. Let us consider T as transmittivity of the

interferometer given by T = cos2(θ/2) and coherent state
∣∣µeiφ〉 in b1 with µ photons and

squeezed vacuum state with photons n1 in b2 as depicted in fig. 1.8. Then the output port

operators c1 and c2 are given by,

ĉ1 =
√
T b̂1 + i

√
1− T b̂2, ĉ2 =

√
T b̂2 + i

√
1− T b̂1 (1.4.1.1)
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Figure 1.8: The figure above represents the model for Michelson interferometer phase
sensing using dark port readout. The port b1 has coherent state and port b2 has squeezed
light injected into the system. We look at the dark port output c1.

Then the expectation value of number of photons in the output port is given by,

〈
ĉ+

1 ĉ1

〉
= T

〈
b̂+1 b̂1

〉
+ (1− T )

〈
b̂+2 b̂2

〉
+ i
√
T (1− T )

〈
(b̂+1 b̂2 − b̂

+
2 b̂1)

〉
= Tλ+ (1− T )µ+

√
T (1− T )

√
2µ
〈
X̂φ+π

2

〉
= Tλ+ (1− T )µ

(1.4.1.2)

We then evaluate the variance in number of photons,

var(ĉ+
1 ĉ1) =

〈
ĉ+

1 ĉ1ĉ
+
1 ĉ1

〉
−
〈
ĉ+

1 ĉ1

〉2
(1.4.1.3)

〈
ĉ+

1 ĉ1ĉ
+
1 ĉ1

〉
= T 2

〈
n2

1

〉
+ (1− T )2µ2 + (1− T )µ+ T (1− T ) 〈n1〉+ 4T (1− T ) 〈n1〉µ

−T (1− T )µ(e2iψ
〈
b̂+2
1

〉
+ e−2iφ

〈
b̂21

〉
)

(1.4.1.4)

Thus the final form of the variance is given by,

var(ĉ+
1 ĉ1) = T 2var(n1)+T (1−T ) 〈n1〉+(1−T )µ

(
1+2T 〈n1〉−2T u v cos (2φ)

)
(1.4.1.5)

Without loss of generality we choose φ = 0 and put T ≈ 1 (evaluating near to the dark

fringe) in equation (1.4.1.5), we get

var(ĉ+
1 ĉ1) ≈ T 2var(n1) + T (1− T )µe−2r + (1− T )2µ (1.4.1.6)

The variance in photon number of the squeezed light can be evaluated as var(n1) =

var(b+
1 b1) = 2λ+ 2λ2 where λ = sinh2r. Hence we can write the equation (1.4.1.6) as :

var(ĉ+
1 ĉ1) = λT (2Tλ+ T + 1) + T (1− T )µe−2r + (1− T )2µ (1.4.1.7)

We work at a phase where the interferometer is very close to the dark fringe. Although

the output at the anti-symmetric port is near to the dark fringe, it is much stronger than
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the photons in the squeezed light. Hence we consider the condition (1−T )µ >> Tλ giving

the variance as ,

var(ĉ+
1 ĉ1) ≈ T (1− T )µe−2r + (1− T )2µ (1.4.1.8)

Similarly using equation (1.4.1.2),
〈
ĉ+

1 ĉ1

〉
can be written as,

〈
ĉ+

1 ĉ1

〉
≈ (1− T )µ (1.4.1.9)

The uncertainty in the phase is then given by,

∆θsqz =

√
var(ĉ+

1 ĉ1)∣∣∣∣∂〈ĉ+1 ĉ1〉∂θ

∣∣∣∣ (1.4.1.10)

Then the final form of the above equation is given by,

∆θsqz =

√
sin2( θ2) + cos2( θ2)e−2r

cos( θ2)
√
µ

(1.4.1.11)

The classical limit is given by putting sinh2 r = 0 which corresponds to mean number

of photons of the squeezed state field being equating to vacuum state. Hence the classical

limit is given by,

∆θclassical =

√
2√

µ(1 + cosφ)
(1.4.1.12)

and when φ = 0,

∆θclassical =
1
√
µ
∝ 1√

P
(1.4.1.13)

The equation (1.4.1.12) represents the standard quantum limit (SQL), also called the shot

noise limit. This lower bound to the uncertainty in phase measurement is reached by the

coherent states. Hence to further reduce the uncertainty using classical coherent states

we need to increase the input power P where 〈P 〉 = µh̄ω. This cannot be done arbitrarily

because, further increase of the power would lead to additional thermal noise and radiation

pressure noise on the mirrors. Hence the optimal way to reduce the uncertainty is obtained

by injecting quantum states into the interferometers and in particular squeezed state of

light. Hence when we inject the squeezed light, the uncertainty ∆θsqz can be rewritten in

terms of uncertainty in classical limit as,

∆θsqz = ∆θclassical(
√

(1− T ) + Te−2r) (1.4.1.14)

When we are much closer to dark fringe i.e, T ≈ 1 we get ∆θsqz = ∆θclassicale
−r.

In general we have to consider the inefficiency transmission losses η from the optics to

the detector. This inefficiency can be taken into account by representing the dark port

splitting on a beam splitter with a ratio η which is the loss as shown in fig. 1.9,

29



1.4. PHASE SENSING IN MICHELSON INTERFEROMETERS Chapter 1

Figure 1.9: The figure above represents model for taking account of losses η. The dark
port is considered to split on a beam splitter with a ratio of η

d̂ =
√
ηĉ1 + (1−√η)ĉ′1 (1.4.1.15)

After calculation, we get, 〈
N̂
〉

=
〈
d̂+d̂

〉
= η 〈n〉 (1.4.1.16)

where 〈n〉 =
〈
ĉ+

1 ĉ1

〉
Similarly, the Variance is evaluated as ,

V (N̂) = η2V (n̂) + η(1− η) 〈n〉 (1.4.1.17)

Hence the uncertainty in the phase is given by,

∆θ =

√
V (N)∣∣∣∂〈N〉∂θ

∣∣∣ (1.4.1.18)

While when the squeezed state is injected, substituting equations (1.4.1.17) and (1.4.1.8).

Hence this limit is given by [5]

∆θ =

√√√√[ηe−2r + (1− η)

η 〈n〉

]
cos(

θ

2
) +

sin2( θ2)

〈n〉 cos2( θ2)
(1.4.1.19)

and near to the dark fringe we get θ ≈ 0 we get

∆θ =

√
e−2r

〈n〉
+

1− η
η 〈n〉

(1.4.1.20)

The classical limit is given by putting sinh2 r = 0 which gives us,

∆θ =
1√
η 〈n〉

(1.4.1.21)

When the squeezed light is injected referring to equation (1.4.1.20) the uncertainty is

reduced by factor of e−r for r > 0, considering an ideal situation when η = 1. However in

realistic situations, loss term inside the square root of equation (1.4.1.20) often represents

the practical limit to the reduction of the uncertainty. This principle to use squeezed

vacuum to enhance precision beyond the limits of classical technology is currently used in

gravitational wave observatories, and has already been demonstrated in many gravitational
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wave detectors prototypes [38][39] and as well as LIGO, GEO 600[21][40]. The typical

strain sensitivities of the gravitational wave detectors are in the order of 10−22/
√
Hz

around frequencies of 150 Hz [21]. It was reported, as shown in fig. 1.10, around 2.15 dB

of squeezing was achieved in LIGO and around 2dB of in GEO 600 [21],[40].

Figure 1.10: The plot shows the strain sensitivity obtained at LIGO[21]. Around 2.15dB
of enhancement was observed when there was the injection of squeezed light into the
interferometers.

1.4.2 Phase sensing with Balanced homodyne detection

In a balanced homodyne detection, the interferometer output is split on a beam splitter

and interfered with a local oscillator of very high power compared to the output of the

interferometer and subtraction between the two outputs is done as discussed in section

1.3.2.Figure 1.11 depicts the scheme of the homodyne. As demonstrated in the section

1.3.2 when we perform the expectation value of the photon number, it is proportional to the

expectation value of quadrature and variance proportional to variance of the quadrature,

we get similar results as in the case of looking at just the dark port of the interferometer.

The balanced homodyne scheme has already been implemented in many gravitational wave

detector prototypes [38] [39].
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Figure 1.11: The figure above depicts the balanced homodyne scheme. The output of the
interferometer at the dark port c1 is interfered with a local oscillator. The coherent state
is injected through port b1 and the squeezed vacuum state is injected in port b̂2

1.5 Correlated Interferometers

We study in detail a system of two Michelson interferometers aimed at detecting extremely

faint phase fluctuations. This system can represent a breakthrough for detecting a faint

correlated signal that would remain otherwise undetectable even using the most sensitive

individual interferometric devices. A faint correlated phase noise source acting in both the

interferometers can emerge by performing the cross-correlation of their outputs whilst shot

noise being uncorrelated in two interferometers. Given the advantages, this method has

been the main principle in Fermilab holometer [27],[22],[25]. Even in this case injecting

quantum light (Squeezed light/Twin-Beam state) in the system through their dark port

of the interferometer can reduce the uncertainty in the measurement of phase correlation

1.5.1 Experimental Scheme

Let us consider two Michelson interferometers placed closed to each other with two equiv-

alent coherent states
∣∣µeiφ〉 in bk inputs of the interferometer. The quantum state |Ψ〉

(can be two independent squeezed states or two modes of the twin beam state) is injected

from dark ports a1 and a2 of the interferometers. The fig. 1.12 depicts the experimental

scheme. The observable covariance Ĉ(φ1, φ2) between the outputs of the interferometer is

measured. Since we the phase fluctuations due to the holographic noise are expected to

be extremely small, we can expand Ĉ(φ1, φ2) around the chosen central values φ1,0 and

φ2,0 namely.
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Figure 1.12: (i)The figure above represents the experimental scheme. Each interferometer
is represented by Ik with coherent states injected in bk and quantum states in ak of the
interferometers where k=1,2. (ii) The figure represents the Michelson interferometer with
quantum light injected in port ak.

Then the Taylor expansion gives us,

Ĉ(φ1, φ2) = Ĉ(φ1,0, φ2,0) +
∑
i

∂φĈ(φ1,0, φ2,0)δφi +
∑
i

∂2
(φi,φi)

Ĉ(φ1,0, φ2,0)δφ2
i

+
∑
i

∂2
(φ1,φ2)Ĉ(φ1,0, φ2,0)δφ1δφ2 + O(δφ3

i )
(1.5.1.1)

The Variance of the observable Ĉ(φ1, φ2) is given by ,

var(Ĉ(φ1, φ2)) = var(Ĉ(φ1,0, φ2,0))+
∑
k

Akk
〈
δφ2

k

〉
+A12 〈δφ1δφ2〉+var(O(δφ3

i )) (1.5.1.2)

where

Akk =
〈
Ĉ(φ1,0, φ2,0)∂2

(φk,φk)Ĉ(φ1,0, φ2,0)
〉

+
〈
∂φkĈ(φ1,0, φ2,0)

〉2

−
〈
Ĉ(φ1,0, φ2,0)

〉〈
∂(φk, φk)

2Ĉ(φ1,0, φ2,0)
〉 (1.5.1.3)

and

A12 = 2
〈
Ĉ(φ1,0, φ2,0)∂2

(φ1,φ2)Ĉ(φ1,0, φ2,0)
〉

+ 2
〈
∂φ1Ĉ(φ1,0, φ2,0)∂φ2Ĉ(φ1,0, φ2,0)

〉
−
〈
Ĉ(φ1,0, φ2,0)

〉〈
∂(φ1, φ2)2Ĉ(φ1,0, φ2,0)

〉
(1.5.1.4)

Therefore the zero order uncertainty is given by [28],[29],

U (0)(δφ1δφ2) =

√
2var(Ĉ(φ1,0, φ2,0))∣∣∣∂2
(φ1,φ2)Ĉ(φ1,0, φ2,0)

∣∣∣ (1.5.1.5)
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1.5.2 Independent Squeezed states

When independent squeezed states are injected into the interferometer, one can choose the

operator Ĉ(φ1, φ2) given by the product of the photon number operators N̂1N̂2. However

to remove the dc component, we evaluate

Ĉ(φ1, φ2) =

(
N̂1 −

〈
N̂1

〉)(
N̂2 −

〈
N̂2

〉)
. (1.5.2.1)

Since both of them are independent we can evaluate variance of C(φ1, φ2) as

var(Ĉ(φ1, φ2)) =

〈(
N̂1 −

〈
N̂1

〉)2
〉〈(

N̂2 −
〈
N̂2

〉)2
〉

(1.5.2.2)

which gives us

var(Ĉ(φ1, φ2)) = var(N̂1)var(N̂2) (1.5.2.3)

Hence the uncertainty using equation (1.5.1.5) can be written as,

U (0)(δφ1δφ2) =

√
2var(N̂1)var(N̂2)∣∣∣∂var(N̂1)
∂φ1

∂var(N̂2)
∂φ2

∣∣∣ =
√

2∆φIFO1∆φIFO2 (1.5.2.4)

where ∆φIFO1 and ∆φIFO2 are uncertainties in phases of interferometer 1 and 2. Let

η1 and η2 be the inefficiency loss due to optics, µ and be the number of photons of the

coherent state and r1 and r2 be the squeezing parameters of the squeezed states. Since we

know from equation (1.4.1.19) and the uncertainty in phase for each interferometer, we

can evaluate U (0)(δφ1δφ2)sqz as

U (0)(δφ1δφ2)sqz =

[√
2

√√√√[η1e−2r1 + (1− η1)

η1µ

]
cos(

φ1

2
) +

sin2(φ12 )

η1µcos(φ12 )

]
×

[√√√√[η2e−2r2 + (1− η2)

η2µ

]
cos(

φ2

2
) +

sin2(φ22 )

η2µcos(φ22 )

] (1.5.2.5)

Near to the dark fringe by putting condition φ1 = φ2 ≈ 0, we get

U (0)(δφ1δφ2)sqz =

√
2
e−2r1

µ
+

(1− η1)

η1µ

√
e−2r2

µ
+

(1− η2)

η2µ
(1.5.2.6)

It can be seen that in ideal situations when losses are zero i.e. η1 = η2 = 1 we get

U (0)(δφ1δφ2)sqz =
√

2e−r1e−r2
µ . This means the uncertainty is reduced by geometric mean

of two squeezing factors.

For the classical case, i.e., when we consider λ1=λ2=0 (i.e. the mean number of photons

of the squeezed state to be zero) and near to the dark fringe, the uncertainty reduction is
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given by

U (0)(δφ1δφ2)classical =

√
2

√
η1η2µ

(1.5.2.7)

Using equation (1.5.2.5) and mean number of photons of the squeezed light given by

λ = sinh2 r, it can be shown that the uncertainty reduction with respect to classical light

as function of phase φ (assuming both the interferometers are operated at same working

point) and detection efficiencies η1 = η2 = η, is given by [28] [29],

R(0) =
U

(0)
sqz

U
(0)
classical

≈ 1 +
η cos (φ2 )

4λ
−
η(1 + cos (φ2 ))

2
(for λ >> 1) (1.5.2.8)

and similarly,

R(0) =
U

(0)
sqz

U
(0)
classical

≈ 1− η(1 + cos (φ))
√
λ(1−

√
λ) (for λ << 1) (1.5.2.9)

For the limit φ ≈ 0 in case of λ >> 1, we get,

R(0) = 1− η +
η

4λ
(1.5.2.10)

Dotted line in the fig. 1.13 represents the uncertainty reduction with respect to classical

light R(0), for high quantum efficiencies η of the photodetector and close to the dark fringe

plotted as function of φ. It can be seen that for λ >> 1, the uncertainty reduction is flat,

reaches a value of 1− η + η
4λ , for all the values of working phase near to the dark fringe.

1.5.3 Injection of Twin beam states

The twin beam states and its properties have been already discussed in subsection 1.3.3.

This section discusses the effect of uncertainty reduction in correlated phase detection

sensitivity when each mode of the twin beam state when injected into each interferometer.

Since the twin beam state, at its outputs has perfect correlations in photon number, the

general operator for the joint system of interferometers, Ĉ(φ1, φ2) operator unlike in the

case of independent squeezers is chosen to be (N̂1 − N̂2)2. The variance of the general

operator Ĉ(φ1, φ2) can be calculated as var(Ĉ(φ1, φ2)) =
〈

(N̂1 − N̂2)4
〉
−
〈
N̂1 − N̂2

〉4
.

The results of the theoretical uncertainty reduction in correlated phase detection cal-

culated according to equation (1.5.1.5) are thoroughly discussed in [28],[29]. The solid

lines represent the plot of uncertainty reduction as a function of working phase depicted

in fig. 1.13 for the twin beam case. We get to see that, when each mode of the twin beam

state is injected into the interferometers, the uncertainty reduction R(0) =
U

(0)
TWB

U
(0)
classical

eval-

uated as a function of working phase φ, can be divided into two regimes: a) quadrature

correlations regime and b) photon number entanglement regime. For higher efficiencies

and as well as very close to the dark fringe when the classical field component is al-

most zero i.e (1 − T )µ << Tλ (where T = cos2(φ/2), transmission at the outputs of

beam splitters of two interferometers), the photon number correlation from the injected

twin beam state dominates, giving us a dramatic reduction in the uncertainty. While for
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Tλ << (1−T )µ and slightly away from dark fringe, quadrature correlations dominate and

hence the uncertainty reduction behaves as same as for the case of independent squeezed

states.

Figure 1.13: The figure above represents the uncertainty reduction (with respect to the
classical uncertainty), R(0) on the covariance sensitivity as function of the central working
phase around φk = 0 (near to the dark fringe), where k = 1, 2, in both cases of squeezed
light injection and twin beam state injection. η is the overall detection probability, λ is
the number of photon of the quantum light [28][29]. The Dotted lines represent the two
independent squeezer case, where there is an extended range of value of the central working
phase φ of the interferometers in which the uncertainty reduction achievable by adopting
quantum light is stable. While in the twin beam case (given by solid lines), the results
could be divide in two regimes the quadrature correlation regime and the photon number
entanglement regime which are demarcated by the black dashed lines . It can be seen
from the figure (for the curve e), that for higher detection efficiency η and working phase
very close to zero where the classical component is almost zero (Tλ >> (1−T )µ) and the
photon number correlation in the Twin Beam State dominates, it has an advantage in the
uncertainty reduction. While for Tλ << (1−T )µ, where the classical signal dominates, it
gives quadrature correlations and we have similar result as in independent squeezer case
which is flat (apart a factor of

√
2).

However a twin beam like state which has the same non-classical behaviour can be

generated by splitting a single mode squeezer on the beam splitter was used in the ex-

periment. This state when injected into the double interferometers anti-correlations are

observed as similar to the twin beam state as discussed in section 1.3.3.

1.6 Applications of Correlated phase interferometer

Optical interferometers have been the best tools used in sensing methodology fundamental

detectors that have been used as gravitational wave detection [41], [20]. The recent detec-

tion of gravitational waves [20] demonstrated that a major improvement of the precision
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of measuring devices can help unveil fundamental properties of nature. This improvement

in precision can be obtained by injecting quantum states of light into the interferometer.

In particular, this current experimental scheme is used to extract source of noises that

have correlated phase fluctuations in two separated interferometers increasing the chance

of distinguishing them with respect to other classical uncorrelated noises noise sources.

A double interferometer configuration is for instance the basis of the Fermilab holome-

ter [27],[22],[25], a device consisting of two co-located 40 m Michelson interferometers.

The purpose of the holometer is to search for a particular type of correlated background

noise, conjectured in some heuristic Planck scale theories and dubbed holographic noise.

The experiment at Fermilab holometer is being done in two configurations. a) parallel

configuration b) perpendicular configuration as shown in fig. 1.14.

Figure 1.14: Model for probing Planckian scale effects using interferometers [22] a) Each
interferometer is represented as a space-time volume b) The interferometer operated in
parallel configuration. We evaluate cross correlation between two equal Michelson in-
terferometers occupying the same space-time volume c) The interferometer operated in
perpendicular configuration.Reference measurement: HN correlation cancels off by sepa-
rating the space-time volumes of the two interferometers.

It has been argued that light, meanwhile propagating in the arms of an interferometer,

would sum up incremental displacement at each discrete Planck interval step leading to a

measurable effect when the interferometers are kept parallel to each other when the space-

time volume overlap the interferometers while in the perpendicular case, the space time

volume do not overlap and most of the noises are uncorrelated[25]. If holographic noise

is confirmed, it would provide empirical support to theories attempting to unify quantum

mechanics and gravitation. At the moment the holometer is operated with classical light

only. The bandwidth of this noise depends on the arm length of interferometers. For

length L, since the light travels 2L distance, the bandwidth of the noise is given by c/2L.

(For Length=40m, the noise is expected to be present till the frequencies upto 3.75MHz

range). z. The amplitude of the noise is predicted to be fixed by the Planck scale, with

an expected value of about
√
lpL, lp being the planck length [42]. The first measurements

of this double interferometer system was reported in [27]. Figure 1.15 shows that a strain

sensitivity of around 10−21/
√
Hz has been reached.
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Figure 1.15: The first measurements of the Fermilab holometer [27].: With a 165 hours of
measurement they where able to improve the sensitivity of several order of magnitude in
the MHz regime, ruling out the presence of holographic noise up to 10−21/

√
Hz

This double interferometer system has been also been used for search of Stochastic

gravitational wave background in MHz frequency regime at Fermilab holometer using the

same experimental setup that could reveal information on the first few moments of the

universe [26].

However, with quantum light injected into the double interferometer system, the sen-

sitivity would further improve, as discussed in the theoretical analysis[28][29] described

in the above section 1.5. The idea is to exploit properties of quantum light for both

cases namely parallel and perpendicular configuration as shown in fig. 1.16. The quantum

light when injected into the double interferometer system, in perpendicular configuration,

would improve the sensitivity for detecting the uncorrelated noises in two interferometer

system while in parallel configuration it improves the sensitivity for detection of correlated

holographic noise.

With the twin beam light injection as we have discussed in fig. 1.13, if we operate

working point of the michelson interferometer output very close to the dark fringe would

give us a unprecedented correlated phase detected sensitivity. Although when we take

the general operator Ĉ(φ1, φ2) as the difference in photon number leads to cancellation of

the correlated noise if present, the covariance between the two interferometers could be

extracted in the case of correlated holographic noise where the experiment is conducted in

two configurations. Let us re-consider the equation (1.5.1.1) and take expectation value

of it.
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Figure 1.16: The figure is taken from [28][29]. Two measurement configurations with
injected quantum light in two interferometers, namely, one in ‖el and one in ⊥r suggested
in order to detect the holographic noise

〈
Ĉ(φ1, φ2)

〉
=
〈
Ĉ(φ1,0, φ2,0)

〉
+
∑
i

∂φi

〈
Ĉ(φ1,0, φ2,0)

〉
〈δφi〉

+
∑
i

∂2
(φi,φi)

〈
Ĉ(φ1,0, φ2,0)

〉 〈
δφ2

i

〉
+
∑
i

∂2
(φ1,φ2)

〈
Ĉ(φ1,0, φ2,0)

〉
〈δφ1δφ2〉+ O(δφ3

i )

(1.6.0.1)

Since 〈δφi〉 = 0 we can write〈
Ĉ(φ1, φ2)

〉
=
〈
Ĉ(φ1,0, φ2,0)

〉
+
∑
i

∂2
(φi,φi)

〈
Ĉ(φ1,0, φ2,0)

〉 〈
δφ2

i

〉
+
∑
i

∂2
(φ1,φ2)

〈
Ĉ(φ1,0, φ2,0)

〉
〈δφ1δφ2〉+ O(δφ3

i )
(1.6.0.2)

The term 〈δφ1δφ2〉 gives the covariance. Hence for the holographic noise we consider

two cases parallel and perpendicular. The perpendicular configuration as mentioned is

taken as a reference measurement for which covariance is zero since the noises are uncor-

related due to non overlapping of space-time volume between the interferometers while

the parallel case gives us the non-zero covariance since equal Michelson interferometers

occupy the same space-time volume.

Hence we can extract the covariance as

〈δφ1δφ2〉 =

〈
Ĉ(φ1, φ2)

〉
|‖ −

〈
Ĉ(φ1, φ2)

〉
|⊥

∂2〈Ĉ(φ1,φ2)〉‖
∂φ1∂φ2

(1.6.0.3)

where Ĉ(φ1, φ2) = (N1−N2)2 for twin beam case. Hence we can write the above equation

as

〈δφ1δφ2〉 =
var(N1 −N2)|‖ − var(N1 −N2)|⊥

∂2〈Ĉ(φ1,φ2)〉|‖
∂φ1∂φ2

(1.6.0.4)

39



1.7. CONCLUSION Chapter 1

Hence the uncertainty in covariance of phase fluctuations can be calculated as

U (0)(δφ1δφ2) =

√
var(Ĉ(φ1, φ2))|‖ + var(Ĉ(φ1, φ2))|⊥

∂2〈Ĉ(φ1,φ2)〉‖
∂φ1∂φ2

(1.6.0.5)

When we inject two independent squeezed states, to extract the covariance of the sig-

nal we can reconsider equation (1.6.0.3) and use the Ĉ(φ1, φ2) = N̂1N̂2. The uncorrelated

shot noise in two interferometers reduces by the geometric mean of two individual squeez-

ing factors given by e−r1e−r2 of the the two independent squeezed states used in ideal

conditions of no losses in the detection efficiency.

In Chapter 5 and Chapter 6, we discuss how we have experimentally demonstrated

the uncertainty reduction for the double interferometer scheme by injecting quantum light

(both twin beam light as well as squeezed light).

1.7 Conclusion

We have done a rigorous description quantum states and its properties. Various limits on

the phase sensitivity were described in this chapter. The effects of uncertainty reduction

when the quantum states are injected into a single interferometer have been discussed. The

experimental scheme has been described and the consequences of reduction of uncertainty

in correlated phase sensitivity detection when quantum states have been injected are

discussed. The application of this current double interferometer scheme to the Fermilab

holometer and search for stochastic gravitational wave background have been explained.
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CHAPTER 2

BASICS OF POWER RECYCLING INTERFEROMETERS

2.1 Introduction

As we have discussed in section 1.5, to extract source of noises that have correlated phase

fluctuations, we have to consider the ”holometer scheme” i.e two interferometers to be

setup close and parallel to each other. For this purpose, we need to consider specific type of

Michelson interferometers namely Power Recycling Michelson interferometers. These are

the types of interferometer currently operated at large scale gravitational-wave detectors.

They are based on the combination of two fundamental interferometers : the Fabry-Pérot

interferometer and the Michelson interferometer[43].

In this chapter, I discuss in depth, both the properties of Fabry-Pérot cavities and

Michelson interferometer and the locking techniques involved to stabilize them. I will then,

introduce the concept of power recycling interferometers and describe their properties.

2.2 Fabry-Pérot cavity

A Fabry-Pérot cavity is a linear cavity formed by two partially reflecting mirrors as de-

picted in fig. 2.1. When light is incident on this linear cavity, some part is transmitted and

some part is reflected. The beam is transmitted through the cavity only when the length

of the cavity L matches the multiples of wavelength λ of the incident light. Consider the

Fabry-Pérot Cavity in fig. 2.1. Ecav represents the intra-cavity electric field inside the

cavity, Ei represent the incident electric field and Eref the reflected field from the cavity.

Let r1 and r2 be the reflectivities of the two mirrors and t1, t2 are the transmitivities.

Under steady state conditions, when the light has made a complete round trip, the

intra-cavity field can be written as

Ecav = Eit1 + Ecav ∗ r1r2e
2ikL (2.2.0.1)

where k = 2π
λ , λ being the wavelength,
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Figure 2.1: Fabry-Pérot Cavity: Eref , Ecav and ET are electric fields of reflection, cavity,
and transmission

which gives:

Ecav = Ei
t1

1− r1r2e2ikL
(2.2.0.2)

Similarly Eref = −r1Ei + t1r2Ecav leading to,

Eref = −Ei(
−r1 + (r2

1 + t21)r2e
2ikL

1− r1r2e2ikL
) (2.2.0.3)

The transmission of the field is given by, ET = t2 ∗ Ecav

ET = t2Ei
t1

1− r1r2e2ikL
(2.2.0.4)

From equation (2.2.0.4) we obtain the Intensity IT measured on the photodetector as:

IT = E∗TET = |ET |2 =
I0|t1|2|t2|2

|1− r1r2e2ikL|2
, (2.2.0.5)

where I0 = |Ei|2. We get from above equation (2.2.0.5)

IT =
I0|t1|2|t2|2

1 + ρ2 − 2ρcos(φ)
=

I0|t1|2|t2|2

1 + [4 ρ
(1−ρ)2

]sin2(φ/2)
(2.2.0.6)

where ρ = r1r2 and φ = 2kL

IT =
I0|t1|2|t2|2

(1− ρ)2
(

1

1 +Msin2(φ/2)
) (2.2.0.7)

where M = 4ρ
(1−ρ)2

. The above form of IT in equation (2.2.0.7) is an Airy function.The

figure 2.2 plots the transmitted intensity as function of detuning of frequency.

Writing equation (2.2.0.3) as a function of frequency, and assuming, no input loss from

the first mirror, i.e. r2
1 + t21 = 1, we can write

Eref (ω) = −Ei(ω)(
−r1 + r2e

i 2ωL
c

1− r1r2e
i 2ωL
c

) (2.2.0.8)

From the equation (2.2.0.7), it can be seen that the transmission in the cavity is

maximum when phase φ = 2kL is multiple of 2π which implies, whenever the detuning

frequency ν is a multiple of c
2L , the transmission of the cavity is maximum. This spac-

ing of the detuning between two successive maximas or two successive minimas of the
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transmission of the cavity ∆ν = c
2L is called Free Spectral Range.

Figure 2.2: Fabry-Pérot cavity: the transmitted intensity as a function of detuning with
respect to the frequency of the input field. Here in this simulation, length of the cavity
considered was 1m. Hence the spacing betweeen two modes would be around 150 MHz
which is the free spectral range.

Another property, which defines the losses in the cavity, is finesse. It is defined as

the ratio of Free Spectral Range (FSR) of the cavity to the full-Width-at-half-maximum

(FWHM) of the transmitted peak. It defines the quality of the cavity.

From the Airy function properties, the full linewidth can be written as [44]:

FWHM =
c

πL
(sin−1(

1− r1r2

2
√
r1r2

)) (2.2.0.9)

The Finesse is hence given by

F =
FSR

FWHM
=

π

2sin−1( 1−r1r2
2
√
r1r2

)
(2.2.0.10)

The Finesse of the cavity in general is used as a parameter to estimate the round trip

losses in the cavity. The higher is the finesse, the lower are the round trip losses.
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Figure 2.3: Fabry-Pérot cavity: the Finesse of the cavity is plotted as a function of
reflectivity of the cavity.

2.2.1 Pound-Drever-Hall locking

The reflection coefficient is defined as, F (ω) =
Eref (ω)
Ei(ω) . Hence

F (ω) = (
−r1 + r2e

iω2L
c

1− r1r2e
iω2L
c

) (2.2.1.1)

The beam reflected from the first mirror has two components: a) the reflected part of

the incident beam and b) the leakage of the intra-cavity. These two beams have the same

frequency, and near resonance their intensities are almost the same. Their relative phase,

however, depends strongly on the frequency of the laser beam.

The cavity is said to be on resonance when the reflected beam and the leakage beams

have the same amplitude and are exactly out of phase by π, while when the cavity is not

perfectly resonant, the two beams will not perfectly cancel out and there would be some

light out from the reflected side.

To lock the cavity to the resonance, a locking technique using the reflection of the

cavity called Pound-Drever-Hall Technique is utilized[45]. Applying a periodic electronic

signal to electro-optic-modulator, it induces a periodic phase modulation of the laser beam.

The primary result of this phase modulation is to impose new optical fields separated in

frequency from the original field by the RF modulation frequency. These new fields are

usually referred to as phase modulated sidebands, while the central frequency component

is called the carrier.

Concept: Consider the fig. 2.4: Let us consider that the incident carriers electric field

component always lies along the real axis. The part of the carrier that gets reflected from

the Fabry-Pérot cavity is also represented by a vector in this plane. The upper sideband

(ω + Ω) has a higher frequency than the carrier, so its vector rotates counterclockwise in

the plane with angular frequency Ω. The lower sideband (ω−Ω) has a lower frequency and

rotates clockwise at -Ω. The sum of the two sidebands, when they are both completely
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reflected off the cavity, is a single vector that oscillates at frequency 2Ω up and down along

the imaginary axis. While the interference between reflected carrier and the sideband gives

a Ω term.

Figure 2.4: Pound-Drever-Hall [left to right]: the first figure shows the sidebands and
carrier in the frequency domain. The second figure shows the rotation of the sidebands
with angular frequency (ω ± Ω) along the complex plane. The third figure show the
resulting of sidebands beating with carrier and sidebands itself

Derivation of Error Signal

Transmitting the beam through the electro optic modulator (EOM) , its electric field

becomes

Einc = E0e
i(ωt+βsin(Ωt)) (2.2.1.2)

We can expand this expression using Bessel functions:

Einc = E0[J0(β) + 2iJ1(β)sin(Ωt)]eiωt (2.2.1.3)

where Ω is phase modulation frequency and β is modulation depth.

The reflected electric field is given by:

Eref = E0[F (ω)J0(β)eiωt + J1(β)F (ω + Ω)ei(ω+Ω)t − J1(β)F (ω − Ω)ei(ω−Ω)t] (2.2.1.4)

Then the power measured on the reflected on the photo detector is given by

Pref = |Eref |2 = Pc|F (ω)|2 + Ps(|F (ω + Ω)|2 + |F (ω − Ω)|2) + 2
√
PcPs(Re[F (ω)F ∗(Ω + ω)

−F ∗(ω)F (ω − Ω)]cos(Ωt) + Im[F (ω)F ∗(Ω + ω)− F ∗(ω)F (ω − Ω)]sin(Ωt)) + (2Ω terms)

(2.2.1.5)

where Pc = J2
0 (β)P0 and Ps = J2

1 (β)P0 and P0 = |E0|2

The cross term proportional to sin(Ωt) represents the beating of the sidebands with the

reflected carrier. The 2Ω term is the result of the two sidebands beating together as dis-

cussed in fig. 2.4. A mixer as depicted in fig. 2.5 (i) demodulates the signal at frequency

Ω , for which the error signal obtained is then given by
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2.2. FABRY-PÉROT CAVITY Chapter 2

ε = 2
√
PcPs[Im[F (ω)F ∗(Ω + ω)− F ∗(ω)F (ω − Ω)]] (2.2.1.6)
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Figure 2.5: (ii) The Feedback Experimental scheme. The EOM produces sidebands and
the error signal is generated by demodulating the reflection signal and (ii)The Pound-
Drever-Hall error signal of the cavity

It is important to note that the error signal crosses zero when the cavity is on resonance

as shown in fig. 2.5 (ii). In practice, the phase between the local oscillator and photodiode

output should be properly adjusted such that the slope of the error signal is maximized.

This error signal, is sent to the piezo actuator via the feedback for locking the cavity to

resonance as shown in fig. 2.5 (i).

2.2.2 Impedance matching

The reflection coefficient helps in defining the types of cavities. The fig. 2.6 categorizes the

types of cavities based on the reflectivities of the mirrors. The leakage beam is generally π

out of phase with the promptly reflected beam on resonance, so the interference between

the two is destructive. This leakage beam properties depend on the reflectivities of the two
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mirrors. Consider the equation (2.2.1.1), for r1 = r2 i.e if the leakage beam exactly cancels

the reflected beam , then the cavity is said to be impedance matched or critically coupled.

If the leakage beam is too weak to entirely cancel the reflected beam i.e for r2 < r1, the

cavity is called under coupled. If the leakage beam is much stronger than the reflected

beam i.e r2 > r1, the cavity is said to be overcoupled. For instance, in LIGO, overcoupled

cavities are used, which allows having the reflected beam from the Fabry-Pérot cavities

when they are on resonance [45].
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Figure 2.6: Types of the cavities depending on the reflectivities of two mirrors

2.2.3 Modematching

The higher order modes would be enhanced if the laser input TEM00 mode is not mode

matched to that of the cavity mode. Proper lenses must usually be used to shape the

incoming beam. The size and shape of the output mode of the Fabry-Pérot cavities

are determined by two factors: a) the curvature of the partially reflecting mirror b) the

curvature of the highly reflecting end mirrors.

If input mirror and end mirror have the same radius of curvature, the beam waist

should be exactly in the middle of the length L of the cavity, i.e at L
2 . This is because the

radius of the Gaussian beam should effectively match the radius the partially transmitting

mirror as well as radius of curvature of the highly reflecting end mirror.

If we have one partially reflecting end mirror having some radius of curvature and the

highly reflecting end mirror being plane, then the condition should be that the beam waist

is at the end mirror, since the radius of curvature for a plane mirror is ∞.

Here we examine the latter case as it represents our system. The lenses should be

arranged such that, a) the Gaussian beam entering the cavity should have the equal

radius as the radius of curvature of the partially reflecting mirror. b) the waist should be

at the end mirror.

Let us consider the fig. 2.7:
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Figure 2.7: Lenses with focal lengths f1 and f2 are placed to mode match the input beam
to the cavity.

Let R (z) represent the radius of curvature of the Gaussian beam and r represent the

radius of curvature of the partially reflecting mirror,let wc be the waist at the end of the

plane mirror in fig. 2.7 to be matched and w0 be the waist of the input beam.

The radius of the Gaussian beam as a function of distance z is given by[27]

R(z) = z +
z2

0

z
(2.2.3.1)

where z0 =
kw2

0
2 [46] is called as Rayleigh range. The mode matching conditions are hence

accordingly: (a) R(L) = r and (b) The waist wc should be at the end mirror.

Hence we can write, L+
z20
L = r, where z0 is the Rayleigh range which could be written

for waist wc as,

z0 =
kw2

c

2
(2.2.3.2)

Solving it for wc,

wc = (
4L(r − L)

k2
)1/4 (2.2.3.3)

A ray tracing technique called Ray transfer matrix is used for calculating the lenses re-

quired for the mode-matching. A ray transfer matrix

[
A B

C D

]
is used to characterize the

optic element it has gone through from input plane to output plane (Detail description of

Ray matrices can be found in Appendix A).

Solving using Ray transfer matrix method described in Appendix A we can solve for

d1, wb, d2, d3 and wc

d1 =
f1π

2w4
0 + d2

0λ
2 − d0f1λ

2

(f1π2w4
0 + d2

0λ
2 − 2d0f1λ2 + f2

1λ
2)1/2

(2.2.3.4)

wb =
f1w0λ

(f1π2w4
0 + d2

0λ
2 − 2d0f1λ2 + f2

1λ
2)1/2

(2.2.3.5)

d2 = f2 + (
f2

2w
2
bλ

2

w2
c

− π2w4
b )

1/2λ (2.2.3.6)

d3 =
f2π

2w4
b + d2

2λ
2 − d2f2λ

2

(f2π2w4
b + d2

2λ
2 − 2d2f2λ2 + f2

2λ
2)1/2

(2.2.3.7)
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wc =
f2wbλ

(f2π2w4
b + d2

2λ
2 − 2d2f2λ2 + f2

2λ
2)1/2

(2.2.3.8)

In general, if we know the radius of curvatures of the mirror r and length of the cavity,

we could evaluate the waist wc. If we have a fixed initial waist w0,choosing the right lenses

of focal length f1 and f2, the distances d1, d2 and d3 in fig. 2.7 could be evaluated.

Stability of Cavities

Consider a cavity of length L formed by Radius of curvatures of two mirrors R1 and R2.

In general, few range of values of L, R1, R2 allows an optical cavity to be stable. This

could be evaluated using Transfer matrix formalism[45]. The stability condition is given

by 0 < g1g2 < 1, where g1 = 1 − L/R1 and g2 = 1 − L/R2[45]. Figure 2.8 represents

the stability curve of the cavities. Areas bounded by the line g1g2 = 1 and the axes

are considered to be stable. Cavities at points exactly on the line are marginally stable.

Depending on this we could choose appropriate radius of curvature of the mirrors and

length for the cavity for the cavity to be stable.

Figure 2.8: Graphical representation of the stability of a cavity

2.3 Michelson Interferometer

The detection of very weak phase noises requires performing high sensitivity measure-

ments. As a first instance of interferometric scheme let us consider the Michelson inter-

ferometer. A Michelson interferometer consists of a 50/50 beam splitter and two piezo

transducer driven end mirrors (PZT). The laser field propagates down each arm of the

interferometer, before reflecting back towards the beam splitter as shown in fig. 2.9. The

two beams then interfere at the beam splitter and the intensity of the transmission and

reflection depends on differential arm length (DARM) (L1 − L2) and can be sensed by

using a photodetector at the output of the interferometer.
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The power at the anti-symmetric port PAS is given by [47] :

PAS = PBS [(
r1 + r2

2
)2sin2(

2π∆X

λ
) + (

r1 − r2

2
)2cos2(

2π∆X

λ
)] (2.3.0.1)

where r1 and r2 are the reflectivities of the end mirrors in the interferometer and

∆X = (L1 − L2), as the light experiences twice the path difference and PBS is the power

incident on the beam splitter.

Figure 2.9: Scheme of Michelson Interferometer

The photodiode output corresponding to constructive interference is called bright fringe

and destructive interference is called dark fringe. It can be obtained from equation (2.3.0.1)

that the difference between displacement corresponding to maxima and displacement cor-

responding to minima of the fringe is λ/4 as shown in figure fig. 2.10.

Figure 2.10: The figure above plots the photodetector output as a function of phase of the
end mirrors under ideal conditions when there are no losses present,
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2.3.1 Visibility

The figure of merit to quantify the contrast between the dark and bright fringe the inter-

ferometric visibility is given by:

V =
(Pmax − Pmin)

(Pmax + Pmin)
(2.3.1.1)

When the splitting ratio is unequal, the normalized visibility is given by,

V ′ = V/v (2.3.1.2)

where,

v =
2
√

(P1P2)

(P1 + P2)
(2.3.1.3)

and P1, P2 are the optical powers in each branch of interferometer.

2.3.2 Locking of the DARM

The PZT driving the end mirrors are used to stabilize the interferometer near a cer-

tain point on the fringe through a feedback system with a servo/ controller (usually a

proportional- integral controller). The feedback system consists of control unit (PI con-

troller),the detector and PZT attached mirrors. The detector produces the error signal for

locking the point of the fringe. We set a value to be locked , the PI controller processes

the value. The error in the value (ES) is given by:

ES = Processed value− Set value (2.3.2.1)

The feedback loop tries to compensate fluctuations until it reaches the set value. However,

there are different types of techniques used for locking. Some of the techniques used to

lock the DARM are described in the following sections.

DC Locking

In the DC locking, the error signal is the direct DC output at the DARM photodetector.

The error signal obtained from the Michelson interferometer from the photodetector is

directly sent to the PZT actuators. The error signal is sent differentially (i.e by a phase of

π) to both the end mirrors inducing a path difference of 2∆L (∆L = L1 − L2). However

the drawback of this locking technique when one is interested in locking near to the dark

fringe, small fluctuations could disturb the stability of the lock.
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Figure 2.11: DC locking technique: here the photodiode output is directly used as error
signal to be fed-back to the mirrors.

Dither Locking

A small sinusoidal modulation at audio frequency is injected to the piezos to tune the

length of the interferometer, and the output (i.e. transmitted light intensity) is demodu-

lated by a mixer at the same frequency, producing an error signal.Figure 2.12 (ii) shows the

phase-flip that occurs as the system moves through the quadratic point. At the quadratic

point, the error signal is zero,while on either side it attains nonzero values with opposite

signs.

In this locking technique, the two end mirrors are dithered differentially (by a phase

of of π with respect to each other) at frequency ω such that phase of the interferometer

is φ(t) = φ0 +A sin(ωt) Hence the power fluctuations on the Photodiode using the Taylor

expansion can be written as

PAS(φ(t)) = PAS(φ0) + P ′AS(φ(t)) ∗Aω t cos(ωt) + 2ωt terms + Higher order terms.

(2.3.2.2)

The error signal of the interferometer is obtained by demodulating down with frequency

of ω and results to be proportional to the derivative of the power PAS with respect to the

phase shift φ. Hence from equation (2.3.0.1) we can evaluate the derivative as

P ′AS(φ(t)) = PBS [
√
r1r2]sin(2φ(t)), (2.3.2.3)

where φ(t) = 2π∆X(t)
λ

The error signal is then demodulated by a mixer at the same frequency of ω and further

low passed. Hence the error signal we obtain is the first derivative of the power at the

anti-symmetric port. With this technique, the dark fringe on the DC readout corresponds

to the maximum slope point on the error signal.
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(i) Dither locking (ii) Cartoon view

(iii) Error Signal

Figure 2.12: (i)Dither locking Technique: A sine modulation at audio frequency is applied
to the piezos differentially. Here the photodiode output is demodulated by a mixer at
the same frequency used as error signal to feedback it to the mirrors (ii) Cartoon view of
dither locking:The figure shows the phase-flip that occurs as the system moves through
the dark fringe. At the quadratic point (i.e at the dark fringe), the error signal is zero,
while on either side it attains nonzero values with opposite signs. (iii) The error signal of
the dither as a function of phase. It can be seen that the dark fringe corresponds to zero
of the error signal

There are practical limitations that restrict the application of dithering, and in LIGO

based interferometers, it is normally applied to lock auxiliary degrees of freedom where

the signal to noise requirements are less severe. The limitations arise because dithering

is commonly applied by mechanical means, resulting in restricted actuation force [48].

Dithering is, therefore, typically employed to monitor and control slowly varying aspects

of the interferometer. For example, this technique is used in LIGO to counter any angular

misalignment of the mirrors [48].

Schnupp Modulation Locking

In the Schnupp modulation technique the basic idea is to create a controlled modulation

at the output port by applying a phase modulation using an EOM at certain frequency ω
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to the laser beam before it enters the interferometer and introducing an intentional arm

length difference ∆L between the two long arms [48], [49], [50]. By having an arm-length

difference, leads to non-cancellation of side-bands. One can refer [51] for the calculations

of the Schnupp modulation technique and is similar to the Pound-Drever-Hall technique

as described in section 2.2.1. The photodetector signal from the interferometer output is

then demodulated by a mixer at this frequency ωm. It can be shown that the demodulated

output u is given by [32],

u = 2J0(m)J1(m)sinφ sin
ωm∆L

c
(2.3.2.4)

where m is the modulation index and J0(m), J1(m) are Bessel functions.

From the above equation it can be seen that the error signal u obtained is proportional

to sin(φ) in comparison with DC readout, which has an error signal of sin2(φ). Hence

the dark fringe corresponds to the zero of the error signal as shown in fig. 2.13 (ii), which

is similar to the dither locking technique. Hence one can operate precisely near to the

dark fringe using this technique. The phase between the electronic local oscillator and the

output error signal while mixing down should be adjusted properly. This error signal is

then sent differentially to both the mirrors as shown in fig. 2.13 (i).It can be seen that when

∆L = 0, the error signal becomes zero and hence an intentional path length difference is

maintained. It could be calculated from the above equation (2.3.2.4) that the optimum

path difference to be maintained is given by ∆L = λm/4. The simulation in fig. 2.13

(ii) is done using a software called Finesse[52]. The advantage of this method unlike

dither is that since we are not inducing any mechanical motion to the PZTs attached

mirrors we don’t generate any mechanical instabilities in the system, while on the other

side the disadvantage is that there is a reduction in visibility due to the intentional path

length difference that is maintained. However, Schnupp technique has been used in many

gravitational wave detector prototypes[53].
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(i) Schnupp locking technique scheme of the interferometer

(ii) Error signal

Figure 2.13: (i) Experimental scheme using schnupp technique: the light after passing
through the EOM enters the interferometer and an intentional path difference is main-
tained. (ii)The figure above plots the photodiode output and the demodulated output as
a function of phase φ. When sidebands of frequency ωm enter the interferometer and the
signal is demodulated by a mixer, it could be seen that the dark fringe corresponds to the
maximum slope of the error signal

Internal Modulation

In the Internal Modulation technique, the EOM is placed inside the interferometer to

generate sidebands inside the interferometer at a certain frequency ω. The fig. 2.14 (i)

depicts the experimental scheme. The photodiode signal from the interferometer output

is demodulated by a mixer at this frequency ω. The concept is similar to the schnupp

modulation technique since the sidebands itself are generated inside the interferometer,

the error signal would be proportional to sin(φ) in comparison with DC readout, sin2(φ).

Hence the dark fringe corresponds to the zero of the error signal. We can operate precisely

as in Schnupp Modulation technique at the dark fringe as it is on the maximum of the slope

of the error signal as can be seen in fig. 2.14 (ii). This error signal is then sent differentially
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to both the mirrors. The advantage of this method is that this phase modulator could

be used also to simulate signals such as White Noise or single frequency noise. The only

disadvantage of this method is that there would be losses due to EOM as it is placed inside

the interferometer. Hence maximum care should be taken to avoid clipping of the beam

at the EOM by placing appropriate lenses.

(i) Locking Scheme

(ii) Error signal

Figure 2.14: (i) Internal modulation technique: The sidebands are generated inside the
interferometer by placing the EOM in one of the arms of interferometer. (ii) The figure
above plots the photodiode output and the demodulated output as a function of phase φ.
It could be seen that the dark fringe corresponds to zero of the error signal which is on
the maximum slope.

2.4 Power Recycling Interferometer

When a Michelson interferometer is operated near the dark fringe, most of the power

is reflected back towards the laser. This reflected power could be recycled by placing
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a partially transmitting mirror called a power recycling mirror (PRM) and forming a

resonant cavity with the interferometer as shown in fig. 2.15. With this technique, as the

power recycling P in the interferometer is increased by the power recycling, the shot noise

reduces as the uncertainty is proportional to
√
P as discussed in Chapter 1 in section

1.4.1. A Michelson interferometer operated at the dark fringe can be considered as a

high-reflective compound mirror. The recycling mirror forms a recycling cavity with this

compound mirror; the power in the cavity is enhanced when the cavity is resonant with the

input laser beam. Hence the power recycling interferometer is combination of a Fabry-

Pérot cavity and Michelson interferometer. In the next sections we will discuss about

variation of output power as a function of DARM offset, calculation of optical gain

Figure 2.15: Power Recycling Michelson Interferometer: Since power recycling cavity
is combination of both Fabry Pérot cavity and Michelson interferometer we need two
photodetectors to stabilize the power recycling interferometer one for the DARM and the
other for the CARM. More on locking of the interferometer is discussed in section 2.5.

2.4.1 Power Recycling Gain

The optical gain is defined as the ratio of power recycling inside the interferometer to input

power. The PRM and rest of the Michelson interferometer setup as a Recycling cavity

with Ein input electric field, Ecir field circulating inside the interferometer and Eeff the

effective electric field after the reflection from the beam splitter as shown in fig. 2.16.

Figure 2.16: The power recycling Michelson interferometer is equivalent to a Fabry-Pérot
Cavity formed between power recycling Mirror and Compound Michelson mirror

The fields in the recycling cavity are,
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Eeff = tPRMEin + rBSEcir (2.4.1.1)

Ecir = rBSEeff (2.4.1.2)

Eref = −rPRMEin + tPRMEcir (2.4.1.3)

ET = −rPRMEin + tBSEcir (2.4.1.4)

where rBS is the reflectivity of the Michelson Interferometer, rPRM and tPRM are reflec-

tivity and transmittivity of the recycling mirror, tBS is the transmittivity of the interfer-

ometer. From above equations, we obtain the expressions for the amplitude gain of the

recycling cavity g as

g =
Eeff
Ein

=
tPRM

1−
√

(RPRMRBSREM )
(2.4.1.5)

where RBS = r2
BS , REM = r2

EM , RPRM = r2
PRM

Since RBS represents the reflectivity of compound Michelson mirror, it could be written

as RBS = cos2(kx). The reflectivities of both the end mirrors are assumed to be the same

and k is the wavenumber. The ratio of the optical power at the beamsplitter respectively

in presence and in absence of the recycling mirror, G, is called power recycling gain or

power recycling factor:

G = g2 =

∣∣∣∣EeffEin

∣∣∣∣2 =
t2PRM

(1−
√
RPRMREMRBS)2

(2.4.1.6)

When G > 1, the power in the interferometer increases by GPIN , hence the shot noise

level is improved by
√
G.

Similarly, the power at the anti-symmetric port is,

PAS = |ET |2 =
PIN sin2(kx)

(1−
√

(RPRMREMRBS))2
(2.4.1.7)

The Finesse of the power recycling cavity as a function of DARM offset is given by,

F =
π(RPRMRBSREM )

1
4

(1−RPRMRBSREM )
(2.4.1.8)

where RBS = cos2(kx). The simulation of the power at the anti-symmetric port as a

function of DARM offset is presented in fig. 2.17 (i). At φ = 0, the perfect destructive

interference leads to null power. In a narrow region near to this condition, we have a

low-losses cavity, which means a high cavity gain, inducing a sudden increase of PAS .

However, when we move far enough to the φ = 0 condition, losses in the power recycling

cavity start to dramatically reduce the finesse and the cavity gain accordingly, so also PAS

starts decreasing. The results of these two opposing effects is that the dark fringe region

is much narrower than in the case of standard Michelson Interferometer.

The power recycled Michelson interferometers at LIGO/VIRGO consists of 4km linear
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Figure 2.17: (i)Power at anti-symmetric port as a function of DARM offset. (ii) Gain as
function of DARM offset. When rBS is close to one it can be seen that power recycling
gain is very high. (iii)Finesse as a function of DARM offset. It can be seen that as we
move away from dark fringe, the finesse decreases

Fabry-Pérot cavities in their arms known as “arm cavities” along with a signal recycling

mirror. The enhancement in the phase measured, can be achieved by increasing the length,

i.e. by a factor of FL, F being the finesse of the arm cavities and L being the length of

arm cavities. Figure 2.18 depicts the experimental setup of the LIGO. The typical order of

the power recycling gain of the interferometer is around 30-70 times the input power[39].

Figure 2.18: Experimental setup of the power Recycling Michelson interferometers at
LIGO. The interferometers consists of power Recycled Michelson setup with arm cavities
and signal recycling Mirrors in it [21]

The interferometers at Fermilab do not have arm cavities. This is because, the holo-

graphic noise is expected to be present until the frequency c/2L, L being the length of arm
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of interferometer. Since the Fabry-Pérot cavities act as a lowpass filter, the presence of

arm cavities would limit the existence of noise below MHz frequency. Figure 2.19 depicts

the experimental setup of the holometer.

Figure 2.19: Experimental setup of the double power recycling Michelson interferometers
at Fermilab [27]. The interferometers consists of power Recycled Michelson setup without
the arm cavities.

2.4.2 Mode-matching of the Power Recycling Cavity

The size and shape of the output mode of the Power Recycling cavities are determined

by three factors: a) curvature of the partially reflecting mirror b) curvature of the highly

reflecting end mirrors and c) the effective length of the power recycling cavity Leff =

lBS + (L1+L2)
2 (In the remainder of the thesis I would refer this effective length as common

arm length, (CARM)). The Power Recycling cavity needs to be well mode matched to

maximize the power build up and avoid high contrast defects. Proper lenses have to be

arranged such that the cavity is well mode-matched. Since power recycling interferometer

is an equivalent Fabry-Pérot cavity, the lenses could be calculated in the same way as in

section 2.2.3 by choosing the length of the cavity as effective length of the interferometer.

2.5 Locking of the Power Recylcing Interferometers

Since power recycling cavity is a combination of both Michelson interferometer and Fabry-

Pérot cavity, there are two degrees of freedom to be controlled as mention in fig. 2.15 and

two detectors are required for locking the interferometer. The DARM of the interferometer

should be locked near to the dark fringe while the CARM is locked to the resonance i.e

Leff = lBS + L1+L2
2 = mλ. The DARM is locked by using any of the locking techniques

mentioned in section 2.3.2 while the CARM is locked using the Pound-Drever-Hall tech-

nique accordingly in section 2.2.1. The order of locking is important when we stabilize

the power recycling interferometer, since the Finesse of the cavity changes with respect to

the fringe position. Hence the DARM is locked initially to a point on the fringe followed

by locking of the CARM to the resonance.
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In most of the gravitational wave detectors, DC locking technique and Schnupp modu-

lation technique are used to control the DARM. However we have used internal modulation

technique in our experiment which would be mentioned in Chapter 3 of section 3.2.1. In

the following are details in 4 figures representing the different schemes for locking the

Power Recycled Michelson Interferometer.

Figure 2.20: DC locking: The DARM is locked using the DC locking technique and the
CARM is locked using the Pound -Drever-Hall technique. The DARM output signal is
directly sent differentially to end mirrors (i.e by phase shift of π) while the CARM error
signal equally to end mirrors. The error signal of the CARM is obtained by demodulating
the PD output at frequency ω and is locked to the zero which corresponds to the resonance
of the cavity as mentioned in section 2.2.1. PD: Photodiode; HWP :Half wave plate; HVA:
High voltage Amplifier; EOM:Electro optic Modulator.
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Figure 2.21: Dither Locking: The DARM is locked using the Dither locking technique
and the CARM is locked using the Pound -Drever-Hall technique. As we have discussed in
section 2.3.2 the PZT’s are given small modulation at audio frequency range at frequency
ω2 differentially and the DARM PD output is demodulated at same frequency ω2. The
error signal obtained after demodulation is sent differentially to the mirrors (with phase
of π) for locking it near to the dark fringe of the interferometer. The Pound Drever hall
error signal generated after the demodulation at frequency ω1 is sent equally (without
any phase) to mirrors for locking the CARM of the interferometer to the resonance. PD:
Photodiode; HWP :Half wave plate; HVA: High voltage Amplifier; EOM:Electro optic
Modulator.

Figure 2.22: Schnupp Modulation Technique: The DARM is locked using the Schnupp
locking technique and the CARM is locked using the Pound -Drever-Hall technique. An
intentional path length is maintained so that the sidebands of frequency ω2 enter the
interferometer for locking. The frequency ω2 should be chosen such they are within the
bandwidth of the power recycling cavity. The DARM PD output is demodulated at same
frequency ω2 and the error signal is sent differentially (with phase of π) for locking it near
to the dark fringe of the interferometer. The Pound Drever hall error signal generated at
frequency ω1 after the demodulation is sent equally to mirrors for locking the CARM of
the interferometer to the resonance. PD: Photodiode; HWP :Half wave plate; HVA: High
voltage Amplifier; EOM:Electro optic Modulator.
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Figure 2.23: Internal Modulation Technique:The DARM is locked using the Internal
modulation locking technique as discussed in section 2.3.2 and the CARM is locked using
the Pound -Drever-Hall technique. The sideband frequencies ω2 are generated inside the
interferometer by placing EOM inside one of the arms of the interferometer. The DARM
PD output is demodulated at same frequency ω2 and the error signal is used for locking it
near to the dark fringe of the interferometer. The Pound Drever hall error signal generated
after the demodulation is sent equally (without any phase) to mirrors for locking the
CARM of the interferometer to the resonance. PD: Photodiode; HWP :Half wave plate;
HVA: High voltage Amplifier; EOM:Electro optic Modulator.

2.6 Chapter Summary

In this chapter we have introduced Fabry-Pérot cavities, Michelson interferometer and

power recycling interferometers. Since power recycling cavity works on combination of

both Fabry-Pérot cavities and Michelson interferometer both have been studied rigor-

ously. Various properties such as finesse, impedance matching and Pound-Drever-Hall

locking technique corresponding to the Fabry-Pérot Cavity have been thoroughly dis-

cussed. Similarly concepts of Michelson interferometer such as visibility, different types of

locking schemes for Michelson interferometer like DC locking, Schnupp locking technique

and internal modulation technique have been discussed.
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CHAPTER 3

DESCRIPTION OF THE SETUP

3.1 Introduction

In this chapter we provide description of our experimental setup. This can be divided in

two parts:

a) The classical part consisting of the power recycled Michelson interferometers: The

optical and electronic setup (characterization of the fringe described in section 3.2.3) have

been discussed in this present chapter; b) The quantum part that consists of squeezed

light source and its injection in the interferometers. As we have discussed in chapter 1, the

advantage of squeezed light injection has been demonstrated in large scale interferometers

devoted to gravitational wave detectors and in many table top experiments [38], [39]. In

this part we describe the experimental setup of quantum light generation, both squeezed

vacuum as well as for twin beam like states. The quantum noise locking technique used

to lock the interferometer phase to the squeezing quadrature will be discused in section

3.3.3.

3.2 The experimental set-up (semi-classical configuration)

As discussed in section 1.5 of Chapter 1, our system consisted of two Michelson inter-

ferometers (in particular power recycling Michelson interferometers) placed close to each

other with small separation between the two beam-splitters.

Figure 3.1 depicts the simplified schematic of the experimental setup. A Nd-YAG laser

with an output power of 300 mW at wavelength 1064nm was used for the experiment. Some

part of the light was used for generation of the squeezed light setup while some input power

around 1.5 mW for each interferometer was used. For having an efficient TEM00 input

mode, the light from the laser was fiber coupled and was used for the interferometers. Each

interferometer was formed by a power recycling mirror having the radius of curvature being

1.5m with end plain mirrors M1 and M2 (reflectivity around 99.9%) stabilized by a PZT

actuators attached and a 50-50 beam splitter as shown in fig. 3.1. The power recycling

mirror’s reflectivity was choosen to be of 90% to form an over-coupled cavity with end
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mirrors when locked near the dark fringe as discussed in section 2.2.2. The length of each

arm of the interferometer was around 92 cm. The distance between the two beam splitters

was around 8 cm. A set of lenses were placed before the interferometers for mode matching

the power recycling interferometer as described in section 2.2.3 such that the waist of the

beam is at the end mirror. An InGaAs photodiode with high quantum-efficiency (99%)

and low noise (Noise Equivalent Power 1.2e− 11W/
√
Hz) was used for stabilizing the

DARM near the dark fringe while the CARM signal was stabilized using another resonant

photodetector at 20 MHz.

Figure 3.1: Simplified schematic of the double-interferometer setup. Two Michelson Inter-
ferometers with arm length L = 0.92m were co-located, with a distance between the two
balanced beam splitters (BSs) of around 8cm. M1,M2: piezo-actuated high-reflectivity
(99.9%) end mirrors. PRM: partially reflecting (90%) power recycling mirror, radius of
curvature rc = 1.5m.;HWP:Half waveplate; PD: Photodetector; BS: Beam splitter

3.2.1 Locking of the Power Recycling cavities

Figure 3.2 depicts the detailed locking scheme of each interferometer. A resonant Elec-

tro Optic Modulator (EOM) was placed before the interfereometers for generating phase

modulation at frequency 20 MHz to lock the CARM of the interferometer by Pound-

Drever-Hall technique while another phase modulator which consists of Rubidium Titanyle

Phosphate (RTP) crystal (4mm x 5mm area) was placed inside the interferometer, to gen-

erate sidebands at 7.6 MHz for stabilizing the DARM. The phase modulator, inside the

interferometer was placed very close to the end mirror to avoid clipping of the beam, as

the waist of the interferometer was at the end of the mirrors. This phase modulator was

also used to inject signals for simulating phase noises for the current experimental scheme,

which will be discussed in chapter 4. As stated previously in section 2.5, the DARM was

locked near to the dark fringe through the internal modulation technique by generating

the side-bands at 7.6 MHz with the help of the phase modulator placed inside the interfer-

ometer. We have used a set of Proportional-Integral controller (PI controller) lock boxes

which have inbuilt low pass filters for stabilizing the DARM of the interferometer. More
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details of the PI controller circuit are described in Appendix C.

Each DARM photodetector consists of two DC-outputs, two 100kHz high passed AC

outputs and an in-built mixer used for quantum noise locking. One of the AC output was

used for locking the DARM mode while the other AC output was used for data acquisition

(see Appendix C for more information on the electronic circuit of the photodetector). The

100 kHz high passed AC output of the DARM photodetector was down mixed at 7.6

MHz frequency. The phase between the electronic LO and the AC output signal from the

photodetector was adjusted properly to maximize the slope of the error signal and to have

the dark fringe on the zero of the generated error signal. The generated error signal from

the mixer was fed back to the piezo-driven end mirrors differentially (i.e with a phase of

π) with a help of a High voltage Amplifier. The 20 MHz sidebands produced from the

resonant EOM was used for locking the CARM of the interferometer. The output of the

CARM Photodetctor was down mixed at 20MHz and the error signal was fed back to both

the piezo driven end mirrors without no relative phase lag after passing through a high

voltage amplifier (HVA).

3.2.2 Characterization of Michelson Visibility

Before we characterize the fringe of the power recycling Michelson interferometer, it is

necessary to characterize the fringe of non recycling Michelson interferometer by perform-

ing a visibility measurement as mentioned in Section 2.3.1. For this purpose, the PZT

actuator is driven with help of a function generator and high voltage amplifier. The power

at the antisymmetric port is plotted as a function of input voltage Vin given to the PZT.

The curve is fitted with the equation

PAS = (P1 + P2sin2(bVin(t)) (3.2.2.1)

where b is the conversion constant from Volts to meter that could be used to evaluate

sensitivity , P1 is the offset power which gives us the amount of losses while P2 is the power

at the beam splitter. The Visibility V is then evaluated using the equation (2.3.1.1). The

contrast defect ε is defined as the amount of mode mismatch between the two arms of the

interferometer and is given by ε = 1− V . The fig. 3.3 plots the visibility as a function of

Piezo voltage. The Visibility obtained was around (99.01± 0.04)% from the fit.

Balancement

For achieving high visibility, we need to have equal arm length . If the arm lengths are

equal, a change in the frequency of laser does not effect the fringe and the output signal,

when the arm length is different the system is sensitive to the laser (δφ = 2π∆Lδν
c ). To

balance the arms of the Michelson interferometer, the interferometer was stabilized at a

certain point of the fringe and a frequency noise of the laser was introduced outside the

bandwidth of the feedback loop of the interferometer. One of the end mirror was mounted

on a micrometer stage. The height of the noise peak was registered on a spectrum analyzer

at a frequency beyond the unity gain frequency, while moving the micrometer. The point
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(i) Locking scheme of the interferometer

(ii) Connections for the locking

Figure 3.2: (i)Detailed Locking schematic of each interferometer. PZT: piezo-electric
actuator. EOM: electro-optical modulator. HVA: high-voltage amplifier. LO: local oscil-
lator. PD: photo-diode, InGaAs with high quantum-efficiency photodiodes (99%) and low
noise (Noise Equivalent Power 1.2e− 11W/

√
Hz) are used at the read-out port. Beam-

Focusing: set of lenses in order to have Gaussian Optical mode TEM00. δlC , δlD: correction
signals from the CARM and DARM lockbox respectively. The DARM was locked using
the internal modulation technique while the CARM was locked using the Pound-Drever-
Hall technique (ii) Pictorial representation of locking connections of the power recycling
interferometer.

of minimum, where the noise cancels off completely is called the balancement point.

3.2.3 Characterization of Power Recycling Interferometer

When the Michelson interferometer is brought back to the power recycling configuration,

the modes of the cavity can be traced out by locking the DARM of the interferometer and

67



3.2. THE EXPERIMENTAL SET-UP (SEMI-CLASSICAL CONFIGURATION)Chapter 3

-25 -20 -15 -10 -5 0 5 10 15

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Ph
ot

od
io

de
 O

ut
pu

t(V
)

Piezo Voltage(V)

 Photodiode Output(V)
 Sine sqr fit

Model SineSqr

Equation y= y0 + A*(sin(pi*(x-xc)/w))^2

Reduced 
Chi-Sqr

0.0012
4

Adj. R-Squa 0.9985
Value Standard Er

C

y0 -2.5034 0.00194
xc -29.126 0.01958
w 35.2415 0.03094
A 2.52321 0.003
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difference. The height of PSD where minimum was obtained is the point of Balancement.

scanning the CARM of the Power Recycled Interferometer. The figure fig. 3.5 (i) shows

the modes of the power recycled cavity. The main peak represented in the cavity is the

TEM00 spatial mode while the other correspond to higher order modes of the cavity. This

height of the main peak changes as we tune the DARM offset of the Michelson Fringe. The

fig. 3.5(ii) shows the part of TEM00 with the red curve represented by the Pound-Drever-

Hall error signal of the power recycled cavity. As discussed in section 2.2.1 for locking the

cavity to the resonance we need to lock to the zero of the error signal. From the figure

fig. 3.5 (i) we can calculate the mode matching percentage (MM%) as:

MM(%) =
hTEM00∑

i hi
(3.2.3.1)

68



3.2. THE EXPERIMENTAL SET-UP (SEMI-CLASSICAL CONFIGURATION)Chapter 3

Figure 3.5: (i)The figure above shows the modes of the Power recycled cavity when the
DARM is locked at certain point of the fringe. (ii) The figure above shows the DARM
output cavity peak recorded along with its Pound-Drever-Hall error signal of the cavity.

where hTEM00 is height of the TEM00 and hi represents the height of all the modes. In

our case, the mode matching percentage was around 94%.

For characterizing the fringe of the power recycling configuration, the DARM was

locked at each offset of the Michelson fringe simultaneously with CARM. To measure

the power recycled inside the cavity, we picked-off a small percentage (about 0.5%) of

light, which was reflected by the rear surface of the central beam splitter because of the

non- perfect anti-reflection coating (pick -off beam) by using a monitor photodetector as

depicted in fig. 3.2. This picked-off signal was used to calculate the gain as follows :

G =
Pcav

Pcav−misaligned
(3.2.3.2)

where Pcav is the optical power inside the cavity when it is locked, while Pcav−misaligned

is the optical power when the cavity is misaligned.

From the experimental point of view, one could rewrite the power at the antisymmetric

port as a function of DARM offset considering the lossses η as the transmission loss from
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the output of the interferometer to detector as:

PAS = PBSη[ε/2 + (1− ε)sin2(kx)] = PINGη[ε/2 + (1− ε)sin2(k∆Xoffset)] (3.2.3.3)

where PBS is the power at the beam spliiter , PIN is the input power to the interferometer

and G is the power recycling gain given by,

G =
TPRM

(1−
√

(RPRMREMRlossRBS))2
(3.2.3.4)

where TPRM = t2PRM , REM is the reflectivity of the end mirrors, Rloss is a loss term

due to miscellaneous losses which includes also losses due to mode matching, η is the

transmission efficiency from the beam splitter to the photodetctor and ε is the contrast

defect evaluated by visibility of misaligned power recycled cavity forming simple michelson

as discussed in subsection 3.2.2. RBS is the reflectivity at the beam splitter given by

RBS = cos2(k∆Xoffset). The power at the beam splitter can be evaluated as PBS = PING.

Hence we can rewrite PAS in terms of Gain G using equation (3.2.3.3) and (3.2.3.4)

as,

PAS =

[
(1− ε)cos2

(
sin−1(

1√
RPRMREMRloss

(1−
√
T

G
))

)
+
ε

2

]
ηPING (3.2.3.5)

From the fit in fig. 3.3, the contrast defect was evaluated as ε = 0.01. As discussed in

section 2.4.1, as we move away from the dark fringe, the power measured on the output

port increases until certain point and decreases for a displacement corresponding to the

bright fringe of the interferometer without recycling. The power at the anti-symmetric

port PAS as a function of power recycling gain G is plotted and a fit was performed using

the equation (3.2.3.5)in the fig. 3.6. The transmission efficiency η was around 79%. An

independent estimation of TPRM ≈ 0.09 was evaluated from the fit, which was indeed

close to the transmittivity of the PRM. The evaluated Rloss was around 93.5% and this

corresponds to 6.5% of miscellaneous loss. The summary of the parameters evaluated are

given in table 3.1

η (79.3± 0.1)%
TPRM (0.089± 0.001)
Rloss (93.5± 0.1)%

Table 3.1: Evaluated parameters from the fit of PAS vs G in fig. 3.6
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Figure 3.6: Power at the antisymmetric port PAS vs power recycling Gain G

From equation (3.2.3.4) we can evaluate the displacement ∆Xoffset as

∆Xoffset =
λ

2π

[
cos−1

(
1√

RPRMREMRloss
(1−

√
T

G
)

)]
(3.2.3.6)

Therefore, using equation (3.2.3.5) and parameters of the fit fig. 3.6 from table 3.1,

we plot the power at the anti-symmetric port as a function of ∆Xoffset using equation

(3.2.3.3) in fig. 3.7
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Figure 3.7: Power at the anti-symmetric port PAS vs Dispacement ∆Xoffset

3.3 Experimental Setup (Quantum light injection)

Single-mode squeezed vacuum states are generated by a process called spontaneous para-

metric down-conversion. The Hamiltonian of the process is given by [54],[55],

H = κ(â2 − â+2) (3.3.0.1)
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for polarization and frequency degenerate case, where â and â+ are annihilation and

creator operators. The Unitary evolution is given by U = e−iHt/h̄ = e(−itκ(â2−â+2)/h̄) which

is nothing but the squeezed operator represented in Chapter 1 in section 1.3.2

In the process of SPDC, a pump photon with frequency ωp, incident on a dielectric

crystal with a χ(2) non linearity, is converted into two new photons; a signal photon of

frequency ωs and an idler photon of frequency ωi as shown in fig. 3.8 (i). There are two

conditions to be satisfied for SPDC to occur.

The first is the energy conservation condition: h̄ωp = h̄ωi + h̄ωs. For degenerate PDC,

the idler and signal photons are indistinguishable in frequency (ωi = ωs) and polarization.

The second condition is the phase matching condition where the momentum of the involved

fields has to be conserved, that is ~kp = ~ks + ~ki where ~kp is the wave vector for the incident

pump beam while ~ks and ~ki are the wave vectors associated with the signal and idler

beams, respectively. The fig. 3.8 (ii) represents the phase matching condition and fig. 3.8

(iii) represents the energy conservation condition. Hence we can write,

niωi
c

+
nsωs
c

=
npωp
c

(3.3.0.2)

where ni, ns and np represent the refractive index experienced for the idler, signal and

pump beam. These refractive indices are highly dependent on Temperature and hence

the phase mismatch ∆k = ~kp − ~ki − ~ks depends on temperature. Hence fine tuning of

temperature is required in general for satisfying the phase matching condition.

The coupling constant κ in equation (3.3.0.1) is related the nonlinear susceptibility

χ
(2)
eff and geometry of the crystal [54], [56]. The χ

(2)
eff non linearity is, in general, very

weak and hence in order to observe a significant induced polarization of the medium and

efficient squeezing, the crystal is placed inside a cavity and SPDC takes place inside the

cavity. This type of configuration is known as Optical Parametric Oscillator. More on

Optical Parametric Oscillators could be read in [57],[58].

3.3.1 Generating squeezed states

We used two independent squeezed vacuum states to be injected into each interferome-

ter system. Figure 3.9 depicts the experimental scheme for preparation of squeezed light

source. Each squeezer comprises of a ppKTP (periodically poled Potassium Titanyl Phos-

phate) crystal placed inside a semi-monolithic cavity as shown in fig. 3.9 (i) formed by the

edges of the crystal and transparent mirror of reflectivity 90%. A separate 1064 nm beam

known as control beam was passed through a EOM with generation of phase modulation

of 37.22 MHz and 36.5 MHz respectively for each squeezer cavity and was used to lock it

using Pound-Drever-Hall technique with the help of PZT actuator attached to the trans-

parent mirror. An internal module for second harmonic generation provided the 532 nm

radiation as a pump for the generation of squeezed light. The pump beam was initially

sent to a mode-cleaner to have clean TEM00 mode. The output pump beam from the mode

cleaner was then incident on the crystal for having parametric down conversion inside the

locked cavity. To establish a phase-match condition between the pump and the control
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(i)

(ii)

(iii)

Figure 3.8: (i) Parametric down conversion scheme: Light is incident on the non linear

χ
(2)
eff material, splitting into signal and idler, (ii) Phase matching condition, (iii) Energy

conservation condition.

beam, the crystals temperature was actively stabilised with a servo mechanism, a Peltier

element and a thermistor, which was attached to the crystal. The phase relation between

pump and control beam determines the orientation of the squeezing ellipse relative to the

control beam [34]. A PZT attached to a mirror was used to lock this phase. If we lock to

the bright fringe i.e to the amplification, results in phase squeezing and if we lock it to de-

amplification results in ampitude squeezing as discussed in fig. 1.4 of chapter 1. The error

signal for locking the phase of the control beam and pump was phase shifted by π
2 . The

squeezing phase is locked to the de-amplification by sending the error signal to the PZT

attached as shown in fig. 3.9. A Dichroic beam splitter (DBS) was used at the output of

the squeezed source to reflect the 1064 nm and to not allow any 532 nm to be injected into

the interferometer. The output of the squeezer cavity contains a displaced squeezed state

with displacement provided by the control beam. This control beam can be seen as DC
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field, which carries the information of the sidebands (36.5/37.22MHz) from the squeezer

to the interferometer and it perfectly overlaps spatially to the generated squeezed light at

1064nm. Hence, in general, it is used as an aligning tool for adjusting the spatial beam

of the power recycling interferometer mode and the squeezed beam. Since the squeezed

output is very sensitive to losses, very high reflective turning mirrors ( R≈ 99%) were used

to inject into interferometers.

(i) Squeezed light generation

(ii) Double Squeezer injection

Figure 3.9: (i) Experimental setup of each Squeezer: PPKTP: potassium titanyl phosphate
crystal. DBS: dichroic beam splitter. PZT: piezoelectric actuators. EOM: electro-optical
modulator. LO: local oscillator. PD: photo-diode, (ii)Injection of Squeezed light source
from each squeezer into each interferometer.
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3.3.2 Mode Matching

For modematching the power recycling TEM00 interferometer output to the output squeezed

light a reverse injection of interferometer mode was done into the squeezer cavity. Ap-

propriate lenses were used, as calculated in section 2.2.3, to improve the mode-matching

between the interferometer output mode and squeezed light mode. The PZT attached

to the transperent mirror of the squeezing cavity is scanned and modes of the cavity

are observed. The TEM00 mode was enhanced by adjusting the turning mirrors placed

for aligning the squeezed light to the interferometer. The mode-matching obtained was

around 99%.

3.3.3 Quantum Noise Locking

The fig. 3.10 depicts the complete locking scheme for each interferometer. Initially the

interferometer is locked near to the dark fringe as described in section 3.2.1. The squeezed

light after it passes through DBS is injected into the interferometer. The squeezed light

together with the control beam having an output power maintained at 5 µW enters the

interferometer. As stated previously, the control beam carries the information of 37.22

MHz/36.5 MHz when it enters the interferometers. When the squeezed light enters the

interferometer, the DARM photodetector is demodulated at 37.22 MHz/36.5 MHz with

an inbuilt mixer as discussed in section 3.2. The error signal is generated such that the

point of squeezing quadrature corresponds to the maximum slope part of the error signal.

The interferometer is then locked to the squeezing quadrature by help of a phase shifter

with PZT attached.
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(i) Complete locking scheme of the interferometer

(ii) Locking connections for the quantum noise locking

Figure 3.10: (i)Locking scheme of each interferometer including Squeezer: PZT: piezo-
electric actuator. EOM: electro-optical modulator. HVA: high-voltage amplifier. LO:
local oscillator. PD: photo-diode PS: Phase Shifter (ii) Pictorial representation of locking
connections for stabilizing the interferometer to the squeezing quadrature.

3.4 Twin Beam like State

As we have discussed in Chapter 1 in section 1.3.3 the twin beam state is entangled in

number of photons and presents also non classical quadrature correlations between the

two optical modes. Although photon number entanglement would provide in principle

a dramatic enhancement of the sensitivity, as discussed in Section 1.5.3, its practical

realization is extremely challenging. On the other side exploiting non-classical quadrature

correlations is definitely feasible with some slight modification of the previous step.

3.4.1 Generation of Twin Beam State

We use an approximate twin-beam-like state in our experiment as described in Chapter 1.

It is generated by splitting a single mode squeezed vacuum state on a beam splitter as dis-

cussed in section 1.3.3. Each mode of the splitted state is then sent to each interferometer.

The variance of difference of the output signal of two interferometers is then measured.

The fig. 3.11 represents the experimental scheme of the Twin Beam state injected in the

double interferometric system. The quantum noise locking is similar to that of the double
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squeezer setup in fig. 3.10. Since the single mode squeezer is split. each mode of twin

beam has a some amount of control beam field associated with it, which carries the in-

formation of the sidebands at 36.5MHz. The error signal at the DARM photodetector is

then demodulated at 36.5 MHz with the in-built mixer and is sent to each of the phase

shifter for locking.

Figure 3.11: Twin Beam -like configuration: The squeezed light from the squeezer is split
and each mode is sent to each interferometer.

3.5 Chapter Summary

A detail description of both classical and quantum part of the experimental setup have been

presented in this chapter. Important measurements such as visibility, characterization of

power recycling fringe have been described. Generation of squeezed light and twin beam

like state using parametric down conversion has been discussed. The locking schemes used

for stabilizing the interferometer and stabilizing the phase of interferometer to phase of

the squeezing have been presented as well.
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CHAPTER 4

SHOT NOISE AND SENSITIVITY

4.1 Introduction

As we have discussed in section 1.3.1 of Chapter 1, the fundamental limit to the optical

intensity noise for the classical light is known as shot noise. As the standard deviation

measured of the number of photons N at detector in a given interval goes as
√
N , which

is in turn proportional to
√
P , P being optical power used for the incident light. Usu-

ally for a laser, the intensity noise is shot noise limited at higher frequencies while the

lower frequencies are dominated by mechanical noise ,thermal noise and other source of

noises. Similarly, as discussed in section 1.4.1, this shot noise limit propagates inside the

interferometers and the unceratinty in phase is proportional to 1√
P

. When measured by

a photodetector, usually intensity is measured in V and the shot noise limit is evaluated

in units of V/
√
Hz, which should be eventually converted into m/

√
Hz for evaluation of

displacement sensitivity. In section 4.2 we discuss the results of shot noise measurements.

In section 4.3 we discuss the experimental evaluation of sensitivity in m/
√
Hz.

4.2 Shot Noise limit

The light incident from the laser at a certain frequency is shot noise limited only if the

variance of the time series obtained on a photodetector at that frequency scales propor-

tionally with optical DC power (which is proportional to number of photons). Similarly in

the frequency domain, the power spectral density (PSD) is evaluated, which describes how

the power of a certain signal is distributed with respect to the frequency. It is defined as

the Fourier transform of the auto-correlation of the time series. Let X(t) be a stationary

signal, then the auto correlation function Rxx(τ) given by:

Rxx(τ) = 〈X(t)X(t+ τ)〉 (4.2.0.1)

It can be seen that Rxx(0) provides us the variance of the time series.
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The power spectral density is hence defined as,

Sxx(ω) =

∫ ∞
−∞

Rxx(τ)e−2πjωτdτ (4.2.0.2)

While in the discrete form for a time series of length N and sampling frequency Fs,

the PSD can be written as[59],

Sxx(ω) =
1

NFs

N∑
n=0

Rxx(n)e−2πjωn (4.2.0.3)

where Rxx(n) = 〈x(m)x(m+ n)〉, x (m) being the mth element of the time series X. The

units of PSD are expressed in V 2

Hz . However, in our system, the power spectral density is

evaluated using Welch’s method which is discussed in Appendix D.

The mathematical form of shot noise evaluated in frequency domain is similar to white

noise which has equal intensities in a given bandwidth. Similarly in time domain, when

we evaluate the auto-correlation function for shot noise limted time series, has a non-zero

value at τ = 0 and is zero ∀ τ 6= 0. Hence we can write the PSD Sxx(ω) as,

Sxx(ω) =
1

2π

∫ ∞
−∞

Rxx(0)e−2πjωτdτ (4.2.0.4)

Taking the inverse Fourier transform for the equation (4.2.0.4), we get

Rxx(0) =
1

2π

∫ ∞
−∞

Sxx(ω)e−2πjωτdω (4.2.0.5)

For a given bandwidth ∆ω, we can write Rxx(0) as

Rxx(0) =
1

2π
Sxx∆ω (4.2.0.6)

Hence the Variance of the shot noise is proportional to the evaluate Power Spectral density

for shot noise limited cases. Hence for shot noise limited cases, in the frequency domain

since the power spectral density is related to the variance, should also scale with optical

DC power.

4.2.1 Data acquisition

As we have mentioned in section 3.2, the photodetector had two 100kHz high passed

outputs. One of the AC output was used for locking the interferometer while another

AC output was used for measurement. This AC output was down mixed at 13.5MHz,

pre-amplified and low passed at 100kHz as shown in fig. 4.1. Then it is further sent to a

14 bit Data acquisition system which consists of 4 channels (2 for each interferometer).

The sampling rate set was 500kS/s.

Ground loops are an important problem, which occur in electronics arise when we

have different source of grounds between the electronics which causes to have a potential

between them. These produces unwanted resonances at MHz frequencies and shoot up

the variance of the time-series. To avoid unnecessary ground loops, all the power supplies
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of the electronics used were connected to a single power strip in order to have a common

ground source.

Figure 4.1: The figure above depicts the Data Acquisition system. The AC output which
was down mixed at 13.5MHz along with DC-output was sent to the Data Acquisition card.

Shot Noise scaling

The laser optical power was controlled with help of half waveplate and Faraday isolator

and was incident on a photodiode as shown in fig. 4.2. The input power was measured

with a power meter to calibrate the conversion from voltage to watt in DC. The DC

value and down mixed output at 13.5MHz were recorded together on the data acquisition

system. It is known that for coherent states, as discussed in chapter 1 that the variance is

Figure 4.2: The figure above depicts the scheme of how the
√
P was verified for the laser.

proportional to the mean number of photons (which is proportional to the optical power

P). At the varying of the optical power, the variance of the time series after down mixing

was evaluated. Figure 4.3 shows the variance normalized by the one at the smallest

recorded power of 100µW . The theoretical variances is expected to be proportional to the

normalized optical power as:
var(XP )

var(XPR)
=

P

PR
(4.2.1.1)

where XP is the time series of the down-mixed output corresponding to optical power P

, XPR corresponds to the time series of optical power corresponds to smallest recorded

power PR which in our case is 100µW . It can be seen from the plot in fig. 4.3 that the

mean value of variance start to deviate at 780µW .
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Figure 4.3: The Normalized variance plotted against input optical power of the laser. The
red dashed line represents the theoretical prediction for the normalized variance. It can
be seen that the laser is shot noise limited until around 600µW .

The shot noise scaling has also been obtained in spectral domain by evaluating the

PSD. Figure 4.4 depicts the normalized power spectral density to the power spectral

density evaluated. It can be seen from the fig. 4.4, at 13.5 MHz the maximum output

power that was shot noise limited was around 600µW.
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Figure 4.4: The Normalized PSD plotted against input optical power of the laser. It can
be seen that the laser is shot noise limited until around 600µW . The theoretical value
normalized in the plot are obtained from the equation (4.2.1.1)

Similarly, for the power recycling interferometer, the shot noise scaling for output power

of the interferometer should be verified. This was done by locking the interferometer close

to the dark fringe as described in section 3.2.1, while the input power to the interferometer

was varied . The shot noise scaling in both time domain as well as in frequency domain

yields same results as in fig. 4.3 and fig. 4.4 being shot noise limited until optical power
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of 600µW at frequency 13.5MHz. This is expected because the interferometer act as an

attenuator for the input light. Since we are locking it close to the dark fringe, the output of

the interferometer is highly attenuated, for which the technical noise at higher frequencies

becomes negligible with respect to the shot noise component. Hence we expect the same

results as in case of scaling of the intensity noise as in fig. 4.2, unless the power recycling

cavity provides some spectral filtering.

4.3 Shot Noise Sensitivity

The noise floor evaluated from PSD as in section 4.2, when converted from V 2/Hz to

strain spectral density in m/
√
Hz is often referred to as the Displacement Sensitivity.

As stated previously in the introduction, at higher frequencies this noise floor is limited

by shot Noise. In an ideal case for both power recycled Michelson interferometer and

Michelson interferometer, the theoretical shot noise limit ∆Xshot is given by [39]:

∆Xshot = 2

√
h̄cλ

πPBS
(4.3.0.1)

where PBS represents the optical power at the beam splitter.

However in practice , we have to consider the transmission losses, contrast defect and

the quantum efficiency of the detector.

The shot noise limited sensitivity is dependent on the following parameters:

• The input power Pin

• The power recycling gain G as mentioned in section 2.4.1.

• The transmission efficiency η from the anti-symmetric port of the beam splitter to

the photodetctor .

4.3.1 Theoretical Sensitivity

Let us re-consider the equation (3.2.3.3). As discussed in section 3.2.3 where PBS can be

written as PBS = PinG, ε being the contrast defect η is the transmission efficiency for a

power recycled cavity.

PAS = ηPBS(
ε

2
+ (1− ε)sin2(k∆Xoffset)) (4.3.1.1)

The strain sensitivity is given by,

∆Xrms =
d(∆Xoffset)

dPAS
∆PAS (4.3.1.2)

The term ∆PAS is called as the Amplitude spectral density. If the Amplitude Spectral

density is shot noise limited, then ∆PAS can be evaluated as:

∆PAS = ∆nAS h̄ω (4.3.1.3)
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where nAS is the number of photons exiting the anti-symmetric port. For shot noise

limited case, since ∆nAS = 1√
nAS

we can evaluate ∆PAS as,

∆PAS =

√
hc

λ
PAS (4.3.1.4)

Therefore we can evaluate the shot noise limited strain sensitivity,for the conditions

that we operate the interferometer near to the dark fringe and for a low contrast defect

(∆Xoffset ≈ 0;ε ≈ 0) as,

∆Xshot =
1

2π

√
hcλ

ηGPin
(4.3.1.5)

4.3.2 Experimental estimation of sensitivity from the phase modulator

As we have discussed in section 3.2, we have a phase modulator placed inside the in-

terferometer. The experimental strain sensitivity could be obtained by evaluating the

strain caused by the phase modulator. When a certain voltage V is applied to the phase

modulator, the equivalent strain caused by the phase modulator is given by [60],

∆Xrms =
λVrms
2Vπ

(4.3.2.1)

where Vπ is the half wave voltage of the EOM.

The half wave voltage is defined as the voltage required for inducing a phase shift of

π. In the next subsection 4.3.2 we discuss about the evaluation of Vπ. In order to evaluate

the sensitivity, we can inject a single frequency signal or a white noise over a bandwidth.

Let h be the height of the single frequency signal with respect to the noise floor as shown

in fig. 4.5.
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Figure 4.5: The above figure plots a PSD of a simulated linear spectral density of noise
added to the single frequency signal at 100kHz

The sensitivity (m/
√
Hz) when a single frequency signal is given to the system can
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then be evaluated by,

∆Xrms =
λV

2Vπ
= (∆Xpeak −∆X)

√
∆ω = ∆X(h− 1)

√
∆ω (4.3.2.2)

where ∆X is sensitivity evaluated in m/
√
Hz and ∆ω being the equivalent noise

bandwidth (ENBW) evaluated accordingly in Appendix D. The above equation (4.3.2.2)

can then be written as,

∆X(m/
√
Hz) =

λV

2Vπ
√

∆ω(h− 1)
(4.3.2.3)

Similarly, when white noise is injected into the interferometer system with an input

voltage Vrms measured in a resolution bandwidth ∆ω , the sensitivity ∆X(m/
√
Hz) is

evaluated by

∆Xrms =
λV

2Vπ
√

∆ω
= n∆X −∆X (4.3.2.4)

where n is the fraction of shot noise raised by white noise injection. Hence the sensitivity

of the interferometer ∆X is given by

∆X =
λV

2Vπ
√

∆ω(n− 1)
(4.3.2.5)

Evaluation of Vπ

As we have discussed in the above section 4.3.2, it is necessary to evaluate the Vπ for the

evalution of the sensitivity. Usually the half wave voltage depends on the length of the

crystal L and the thickness of the RTP crystal of the EOM d. Theoretically, it is given by

[43]

Vπ =
λL

r13n3
0d

(4.3.2.6)

where r13 is called the electro-optic coefficient and n0 is the refractive index of the material.

However, we can evaluate the Vπ operating the interferometer in a standard, not power

recycling, modality, by simply misaligning the power recycling mirror. As we have dis-

cussed in section 2.3, the distance between the maximum and minimum of the fringe is

λ/4. This corresponds to a phase shift of π/2.

Firstly, the maximum and minimum values of the voltage were recorded by giving a

modulation to the PZT of the mirrors. For the two interferometers the maxima were

estimated to be 1.88V and 3.12V respectively for both interferometers. Then, a ramp

function was induced with a function generator with frequency of 1kHz and high voltage

amplifier (HVA) to the EOM and the trace of the fringe is recorded with the photodetector

on the oscilloscope as shown in fig. 4.6.
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Figure 4.6: The figure above depicts the experimental scheme of how the Vπ was eval-
uated. A ramp function was induced to the EOM at 1kHz frequency and fringe of the
interferometer was traced out such that the curvature of the bright portion of the fringe
seen.

Since the DARM locking bandwidth is larger than 1 kHz, this measurement must be

done without locking the interferometer, because otherwise it would compensate for the

fluctuation induced by EOM. However, it was necessary to temporally operate at the bright

fringe of the interferometer as described in [61] so that the curvature of the fringe trace

could be seen. This is done by a properly tuning the DC voltage to the PZT actuators.

Then the voltage, at the antisymmetric port VAS is fitted with equation:

VAS =
Vmax

2

(
1 + η0.cos(

2πVin
Vπ

+ b)

)
(4.3.2.7)

where η0 is the insertion loss caused by the EOM, Vmax is the voltage output when it is

at the bright fringe , Vin is the ramp voltage given to the EOM.

The Vπ calculated from the fits were (988± 7) V and (1000± 11) V for both the phase

modulators placed in each interferometer respectively. The estimate of the Vmax obtained

from the fit matches with Vmax obtained by modulating the PZT. The fig. 4.7 shows the

fitted VAS curves against voltage given to the phase modulator for each interferometer.

It should be noted that since the input modulation to the EOM was given at 1kHz, the

Vπ evaluated above from the fit corresponds to the value at 1kHz. Since we are interested

in evaluating the sensitivity at 13.5 MHz, we need to evaluate Vπ at MHz frequencies, for

which the transfer function of the EOM has to be evaluated. Since our detectors are high

passed at 100kHz, we used a Thorlabs detector PDA10CF for the measurement which has

response from DC-150MHz. The DARM of the interferometer was locked at mid position

of the fringe using DC locking technique as described in subsection 2.3.2 while the phase

modulator was probed with a network analyzer from frequencies across 1kHz-30MHz.

Since we lock the DARM, near the mid-position of the fringe where the trace of the

fring is linear, the photodetector output voltage (V) at the anti-symmetric port can be

approximated as,
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Figure 4.7: Figures (i) and (ii) represents the fitted curves of photodetector output voltage
VAS against input voltage V to the EOM
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VAS ≈ Vmax
(
η0πVin
Vπ

)
(4.3.2.8)

Hence in the frequency domain the VAS(ω) is inversely proportional to Vπ(ω)

The photodetector response at all frequencies was recorded on the network analyzer as

shown in fig. 4.8 (i). This measurement is known as S21 as the network analyzer measures

the ratio of power at the anti-symmetric port to that of power given to the EOM at all

frequencies. The fig. 4.8 (ii) and fig. 4.8 (iii) plots the evaluated S21 as a function of

frequency. It can be seen that there was around 1.4dB drop at 13.5MHz in the transfer

function with reference to the value at 1kHz.
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Figure 4.8: Figure (i) is the experimental scheme for performing S21 measurement. The
DARM is locked using DC locking while the network analyzer probes the phase modulator
placed inside the interferometer. Figures (ii) and (iii) represents the plots of S21 as a
function of frequency.

It is also necessary to evaluate the transfer function of the photodetector used in the

interferometer. The transfer function of the photodetector was evaluated with help of
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fiber based amplitude modulator. The Amplitude modulator was probed with a network

analyzer and the photodetector response was recorded at all frequencies. The fig. 4.9 plots

the transfer function of the photodiode as a function of frequency. There is also a drop of

1.3dB at 13.5MHz in the transfer function evaluated for the photodetector with reference

to 1kHz frequency.

Figure 4.9: The S21 measurement of the photodetector plotted as a function of frequency

Hence we can evaluate Vπ(13.5MHz) as

Vπ(13.5MHz) = Vπ(1kHz)

(
S21, PD(13.5MHz)

S21, PD(1kHz)

S21, EOM (1kHz)

S21, EOM (13.5MHz)

)
(4.3.2.9)

where S21, PD corresponds to the evaluated transfer function of photodetector and S21, EOM

corresponds to the evaluated transfer function of EOM. It was found that after applying

above corrections of transfer function ,there was no change in Vπ value at 13.5 MHz which

was the desired frequency of measurement.

This information of evaluated Vπ and discussion in section 4.3.2 would be used in the

evaluating the displacement sensitivity, described in chapter 5.

4.4 Summary

We have discussed in details about shot noise measurements. Our laser is shot noise

limited until 600µW of output power at 13.5 MHz frequency. We have also discussed in

details of evaluation of theoretical sensitivity using the position of the fringe. We have

experimentally evaluated the half wave voltage Vπ which would be used for calculating

the strain caused by the EOM in the interferometer. The experimental evaluation of

displacement sensitivity can be established by calculating the equivalent strain caused by

the EOM which is discussed in chapter 5.
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CHAPTER 5

RESULTS WITH INDEPENDENT SQUEEZERS

5.1 Introduction

The effect of squeezing in single interferometers of reducing shot noise has already been

demonstrated in large scale interferometers for detection of gravitational waves[36][23] as

discussed in section 1.4.1. In section 1.5.1, we have described theoretically the results of

the effect of two independent squeezed vacuum states when injected into the two interfer-

ometers and cross correlation between them is measured. In this chapter we present the

experimental results we have obtained in that configuration.

5.2 Initial squeezing Evaluation

The squeezed light before entering the interferometers, was initially measured on a ho-

modyne detector. In a homodyne measurement, the squeezed beam and local oscillator

(LO) are interfered on a balanced beam splitter and the difference between the outputs is

measured as depicted in fig. 5.1. As we have shown in section 1.3.2, this scheme allows to

access the quadrature of the field.

The LO was made to pass through a mode cleaner and through a set of lenses to mode

match the squeezed beam. The resulting mode matching was around 99%. Firstly the shot

Figure 5.1: The figure above depicts the scheme of homodyne measurement. The squeezed
beam and local oscillator are interfered. The phase is varied by a phase shifter and the
subtracted output is sent to a spectrum analyzer.
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Figure 5.2: Initial squeezing measured before the interferometer via homodyne detection
scheme in function of the phase shift between LO and the squeezed field. The blue line
represents the shot noise level and the green curve represents the squeezing value with
respect to the local oscillator.

noise of level is calibrated by performing the measurement with solely the LO, blocking the

squeezed beam using the homodyne scheme at 13.5 MHz by a spectrum analyzer. Then,

the squeezing was injected and homodyne measurement was performed. As we have shown

in section 1.3.2, this corresponds to a change of phase of the measured quadrature, the

fig. 5.2 shows the plot of squeezing as function of the phase shifter phase. The phase of

the squeezing with respect to the LO was varied with a phase shifter (PS). The minima

in the fig. 5.2 corresponds to the estimation of the noise in the squeezed quadrature ,Vsqz

, while the maxima represent the measurement of the anti-squeezed one, Vanti−sqz.

By using equation (1.4.1.17), one can write the following relations:

Vsqz = ηmmηV + (1− ηηmm)

Vanti−sqz =
ηηmm
V

+ (1− ηηmm)
(5.2.0.1)

where V = e−2r is the amount of squeezing produced by the squeezer output ideally pro-

duced in the lossless scenario and η includes the transmission efficiency from the squeezer

cavity to photodetector and ηmm is the mode-matching loss between the LO and the

squeezed light. Introducing the measured value of Vsqz and Vanti−sqz (6.5 dB and 10 dB

respectively), in equations (5.2.0.1) allows estimating the the initial squeezing produced

into the cavity and the loss component, independently. The amount of squeezing mea-

sured was around 6.5 dB with respect to shot noise level and anti-squezing measured was

around 10dB. Since we know that ηmm = 0.99, we can evaluate the values of V and η

using equation (5.2.0.1), which are given in the table 5.1:

V 0.0862

η 0.85

Table 5.1: Results of the parameters of V and η. The value of V gives us the initial
squeezing produced by the squeezer which is around 10logV = 10dB
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5.3 Squeezing in the interferometers

When we inject the squeezed light in each interferometer, the variance in single inter-

ferometers will be reduced by a factor of

(
e−2r + 1−ηloss

ηloss

)
, where ηloss includes all the

losses such as detection losses of the photodiode, transmission losses due to isolators,losses

due to other optics and losses due to mode-matching between the squeezed light and

interferometer mode as demonstrated in chapter 1 of section 1.4.1.

Firstly, the output power of the interferometers were aimed to be maintained at 500µW

for the interferometers to be shot noise limited at 13.5MHz as discussed in section 4.2.1.

The AC output of the DARM photodetector was down mixed at 13.5MHz as mentioned

in section 4.2.1 to measure the shot noise on the acquistion board. The squeezed output

from the squeezer cavity was then injected to interferometers. For modulating the phase

between the squeezed mode and the interferometer mode, a phase shifter was used to

modulate the phase of the squeezer with respect to the interferometer as described in

section 3.3.3

Figure 5.3 (i) depicts the shot noise level as a function of the phase of interferferometer.

The interferometer was then locked to the squeezing quadrature using the quantum noise

locking technique with the help of the phase shifter as mentioned in section 3.3.3. The

fig. 5.3 (ii) depicts the interferometer locked to the squeezing quadrature. The data was

recorded as shown in fig. 4.1 and PSD of the down mixed outputs were evaluated as

described in Appendix D. There was around 2.5 dB and 3dB of squeezing observed in

each of the interferometers.

The auto correlation ρ11(τ) of the time series can also be defined as [59]:

ρ11(τ) = Cov(X1(t)X1(t+ τ)), (5.3.0.1)

At τ = 0, the auto correlation function ρ11(0) should be equal to variance of the time

series X1. The fig. 5.4 depicts the plot of evaluated auto-correlation of each interferometer

in both classical and squeezed light injected cases. It can be seen that the height of the

peak reduces by 3dB and 2.5dB respectively at delay τ = 0 when the squeezed light is

injected.
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Figure 5.3: (i)The plot represents normalized shot noise as a function of phase between
the squeezer and the interferometer recorded on a spectrum Analyzer. The blue curve
represents the Shot noise level and the green curve represents the squeezed injected shot
noise fluctuations (ii) The plot represents the locked squeezed quadrature. Around 2.4dB
and 3dB of squeezing was observed for each interferometers
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Figure 5.4: The figure above plots the auto-correlation in both cases of classical and
squeezed light individual cases. It can be seen that the height of peak reduces when the
squeezed light is injected.

5.4 Correlation in Time domain

We have performed the experiment in three different cases:
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(i) with correlated white noise injected (ii) with uncorrelated white noise injected (iii)

with no noise injected (limited by shot noise)

But we concentrate mainly on the measurements with injection of correlated white

noise as it encompasses the discussion of all the three cases.

5.4.1 Measurements with Injection of Correlated white noise

Temporal Cross Correlation

As we have discussed in section 1.5.1, when we use the double squeezer setup, the cross

correlation between the outputs of the interferometer is performed. As stated in section

3.2 white noise was injected with the help of the phase modulators placed inside the arms

of the two interferometer.

As a first approximation the ouput signal of the jth inferferometer, Xj(t), is given

by the sum of the photon noise fluctuation XJSN (t) and the photocurrent fluctuation

induced by the injected white noise XjWN (t). Thus, the variance of the interferometer

output signals is given by:

var(X1) = var(X1SN ) + var(X1WN )

var(X2) = var(X2SN ) + var(X2WN )
(5.4.1.1)

Similarly, the covariance could be written as,

Cov(X1, X2) = Cov(X1SN , X2SN ) + Cov(X1WN , X2WN ) (5.4.1.2)

Then the variance of the difference between the two output time series is evaluated as,

var(X1 −X2) = var(X1) + var(X2)− 2Cov(X1, X2) (5.4.1.3)

The cross correlation function R12(τ) between the two output time-series of the inter-

ferometers X1 and X2 is defined as

R12(τ) = Cov(X1(t), X2(t+ τ)) = 〈X1(t)X2(t+ τ)〉 (5.4.1.4)

Using equtaion (5.4.1.2) we can write the cross correlation function as,

R12 = Cov(X1(t), X2(t+ τ)) = Cov(X1SN (t), X2SN (t+ τ)) + Cov(X1WN (t), X2WN (t+ τ))

(5.4.1.5)

Since photon noises of two interferometers are uncorrelated, the first term

Cov(X1SN (t), X2SN (t + τ)) in equation (5.4.1.2) is negligible and the second term

Cov(X1WN (t), X2wN (t+ τ)) emerges out at τ = 0 depending on the strength of the signal

injected and number of samples acquired. Hence, when we performed the cross-correlation

between the two time-series, the phase between the two electronic local oscillator between

the down-mixed outputs were adjusted such that the peak emerging from the correlation
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was maximized as shown in fig. 5.5. The sampling rate set was around 500kS/s and the

total acquisition time was around 1s.

Figure 5.5: The figure above represents the scheme of data acquisition for both the inter-
ferometers. The phase between the two electronic local oscillator between the down-mixed
outputs were adjusted to maximize the peak.

As a figure of merit, for quantifying this cross correlation, we consider the cross corre-

lation normalized to shot noise of each interferometer. The normalized cross correlation

coefficient ρ12(τ) is defined as

ρ12(τ) =
|R12(τ)|√

var(X1SN (t))var(X2SN (t))
, (5.4.1.6)

where X1SN (t) (X2SN (t)) is the time series of the read-out signal of the first (second)

interferometer recorded in the coherent case and τ is the time delay between the two

timeseries. Let us consider the case of coherent light in both interferometers. The above

equation (5.4.1.6) can be written as,

ρ12(τ) =
|R12(τ)|√

var(X1SN (t))var(X2SN (t))

=
|Cov(X1(t)X2(t+ τ))|√

var(X1SN (t))var(X2SN (t))

ρ12(τ) =
|Cov(X1SN (t)X2SN (t+ τ))|+ |Cov(X1WN (t)X2WN (t+ τ))|√

var(X1SN (t))var(X2SN (t))

(5.4.1.7)

It should be noted that in above equation (5.4.1.7) as we consider the absolute value

of the covariance of the two interferometers for the normalized cross correlation, we have

a non-zero value for the 〈|Cov(X1SN (t)X2SN (t+ τ))|〉.
Figure 5.6 depicts the evaluated normalized cross correlation in time domain for the

coherent case using equation (5.4.1.6) as a function of the number of samples. To quantify

the background floor of the noise as a function of the number of samples, let us evaluate

the quantity var(ρ12(τ)).
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var(ρ12(τ)) =
〈
ρ12(τ)2

〉
− 〈ρ12(τ)〉2

=
1

〈var(X1SN (t))〉 〈var(X2SN (t))〉
(
〈
Cov2(X1(t), X2(t+ τ))

〉
− 〈Cov(X1(t), X2(t+ τ))〉2

(5.4.1.8)

Let us try to evaluate
〈
Cov2(X1, X2)

〉
, it can be written as following:

〈
Cov2(X1, X2)

〉
=

1

N2

∑
i,j

〈X1iX2iX1jX2j〉

=
1

N2

∑
i=j

〈
X2

1iX
2
2i

〉
+

1

N2

∑
i 6=j
〈X1iX2i〉 〈X1jX2j〉

=
1

N2

[
N
〈
X2

1X
2
2

〉
+N(N − 1) 〈X1X2〉2

]
=

〈
X2

1X
2
2

〉
N

+ (1− 1

N
) 〈X1X2〉2 ,

(5.4.1.9)

where N represents the number of samples.

Thus the variance of the normalized cross correlation, using equation (5.4.1.9) could

be evaluated as,

var(ρ12(τ)) =

〈
Cov2(X1, X2)

〉
− 〈X1, X2〉2

var(X1SN )var(X2SN )

=
var(Cov(X1, X2))

Nvar(X1SN )var(X2SN )

(5.4.1.10)

Hence the width of the noise floor (standard deviation of the ρ12(τ)) scales inversely

proportional to
√
N as the number of samples.

Now substituting Xj = XjSN +XjWN , (for j=1,2) we can get an expression:

var(ρ12(τ)) =

(
var(X1SN (t))var(X2SN (t)) + var(Cov(X1WN (t), X2WN (t+ τ))

)
Nvar(X1SN (t))var(X2SN (t))

=
1

N
+

var(Cov(X1WN (t), X2WN (t+ τ))

Nvar(X1SN (t))var(X2SN (t))

(5.4.1.11)
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Figure 5.6: The figure above plots the evaluated cross correlation in time domain for
coherent light case. Although the integration time was around 1s, for better visualization
of peak we plot the time delay between −200µs and 200µs. It can be seen that the peak
emerges out as we increase the number of samples since the normalized cross correlation
for uncorrelated shot noise scales with

√
N .

To contrast the quantum enhancement, lets similarly evaluate the var(ρ12) for the

squeezed light injection case. Using equation (5.4.1.9) and substituting Xj = XjSQ +

XjWN , (for j=1,2) we can get an expression:

var(ρ12(τ)) =

(
var(X1SQ(t))var(X2SQ(t))

N + var(Cov(X1WN (t),X2WN (t+τ))
N

)
var(X1SN (t))var(X2SN (t))

(5.4.1.12)

var(ρ12(τ)) =
var(X1SQ(t))var(X2SQ(t))

Nvar(X1SN (t))var(X2SN (t))
+

var(Cov(X1WN (t), X2WN (t+ τ))

Nvar(X1SN (t))var(X2SN (t))
(5.4.1.13)

Hence the above quantity shows that the reduction of the background is effected by

the quantity
var(X1SQ)var(X2SQ)
var(X1SN )var(X2SN ) for given N number of samples compared to the coherent

case of equation (5.4.1.11).

This can be clearly noticed in the fig. 5.7 where the correlated noise peak, which

is initially hidden in background noise, is resolved for shorter integration times (shorter

number of samples) when squeezing is used (red traces), compared to the classical case of

no squeezing (blue traces).

Signal to Noise ratio

The Signal to Noise ratio of the normalized cross correlation function is defined as,

SNR =
〈ρ12(τ = 0)〉 − 〈ρ12(τ 6= 0)〉

〈ρ12(τ 6= 0)〉
(5.4.1.14)

The absolute value of the cross correlation of the interferometer readouts can be eval-

uated as the following:

|R12(τ)| = |Cov(X1(t)X2(t+ τ))| ≈
√
〈Cov2(X1, X2)〉 (5.4.1.15)
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Figure 5.7: The figure above plots the evaluated cross correlation in time domain for
classical case as well as for squeezed case. Although the integration time was around 1s,
for better visualization of peak we plot the time delay between −200µs and 200µs. It can
be seen clearly that the correlation peak which was not seen in classical case (blue traces)
for shorter integration time can be resolved earlier in the injected squeezed light cases (red
traces).

The above approximation in equation (5.4.1.15) holds for large N, as for the limit N →∞,

the equation (5.4.1.9) becomes,

〈
Cov2(X1, X2)

〉
= 〈X1X2〉2 (5.4.1.16)

and therefore, √
〈Cov2(X1, X2)〉 = |〈X1X2〉| (5.4.1.17)

Now, let us consider the normalized cross correlation function ρ12(τ). Using equa-

tion(5.4.1.9) we can write the cross correlation function ρ12(τ)

〈ρ12(τ)〉 =

√
〈Cov2(X1, X2)〉√

var(X1SN)var(X2SN)

=

√
〈X2

1X
2
2〉

N + (1− 1
N ) 〈X1X2〉2√

var(X1SN)var(X2SN)

(5.4.1.18)

Let us look into the case τ 6= 0 in fig. 5.6, where the two outputs of the interferometer

are shot noise limited, while the injected white noise is very much lower than shot noise of

the individual interferometers, the cross correlation of the readout time series are uncor-

related away from τ = 0. However the mean value of this uncorrelated noise fluctuation is

non-zero as discussed before, as we consider the absolute value of the covariance. Hence

for τ 6= 0, we get:

〈ρ12(τ 6= 0)〉 =

√
〈X2

1X
2
2〉

N + (1− 1
N ) 〈X1X2〉2√

var(X1SN)var(X2SN)
(5.4.1.19)

Since X1SN and X2SN are independent,
〈
X2

1X
2
2

〉
can be written as var(X1)var(X2)
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and using 〈X1X2〉 = 0, we get

〈ρ12(τ 6= 0)〉 =

√
var(X1)var(X2)

Nvar(X1SN )var(X2SN )
(5.4.1.20)

(ii) For the case of τ = 0, we can write similarly using equation (5.4.1.19)

〈ρ12(τ = 0)〉 =

√
〈X2

1X
2
2〉

N + (1− 1
N ) 〈X1X2〉2√

var(X1SN)var(X2SN)
(5.4.1.21)

Since we have a non zero-covariance at τ = 0, due to injection of white noise the term

〈X1X2〉2 = 〈X1WNX2WN 〉2. Hence we can evaluate 〈ρ12(τ = 0)〉 as,

〈ρ12(τ = 0)〉 =

√
var(X1)var(X2)

N + (1− 1
N ) 〈X1WNX2WN 〉2

var(X1SN )var(X2SN )
(5.4.1.22)

Hence the SNR as defined in equation (5.4.1.14) can be written as

SNR =
〈ρ12(τ = 0)〉 − 〈ρ12(τ 6= 0)〉

〈ρ12(τ 6= 0)〉

≈

√
1 +

N 〈X1WNX2WN 〉2

var(X1)var(X2)
− 1

(5.4.1.23)

Figure 5.8 shows the signal-to-noise ratio (SNR) of the measurement. Each data point

as described in equation (5.4.1.14) is calculated as the ratio between the cross correlation

peak height for τ = 0 and the floor level as defined in equation (5.4.1.14).

It can be seen that from equation (5.4.1.23), for higher values of number of samples,

SNR scales as N
1
2 .

Similarly,the enhancement factor R defined as ratio of SNRsqz to SNRcoh is given by,

R =
SNRsqz

SNRcoh
=

[√
1 + N〈X1WNX2WN 〉2

var(X1SQ)var(X2SQ) − 1

]
[√

1 + N〈X1WNX2WN 〉2
var(X1SN )var(X2SN ) − 1

] (5.4.1.24)

where X1SQ and X2SQ represent the readout time-series of interferometers when the

squeezed light is injected. For higher N number of samples the ratio of SNRsqz to SNRcoh

is written as,

R ≈

√
var(X1SN )var(X2SN )

var(X1SQ)var(X2SQ)
(5.4.1.25)

The SNRcoh (SNRsqz) evaluated for the data points as function of number of samples

N is fitted with the function described below:

SNRcoh/sqz =
√

1 +Nkcoh/sqz − 1 (5.4.1.26)

where kcoh/sqz is a parameter estimated from the fit. From equation (5.4.1.23), the value
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of kcoh can be written as 〈X1WNX2WN 〉2
var(X1SN )var(X2SN ) when we evaluate SNRcoh. Similarly the value

of ksqz can be written as 〈X1WNX2WN 〉2
var(X1SQ)var(X2SQ) when we evaluate SNRsqz. The values kcoh and

ksqz estimated from the fit are reported in the table 5.2.

The enhancement factor R defined in equation (5.4.1.25) which was evaluated from

the data, matches the independent estimation of the ratio
√

ksqz
kcoh

which is around 2 times

more than the coherent case.
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Figure 5.8: SNR of the cross-correlation as a function of the number of samples. Dots
represent experimental data (error bars are too small to be appreciated). Data are well
fitted by the function defined in the equation (5.4.1.26) (blue and red traces). Black trace
is the ratio between squeezed and coherent SNR values.

kcoh (3.70± 0.17)× 10−4

ksqz (1.51± 0.03)× 10−3

R (2.12± 0.05)

Table 5.2: Evaluated parameters from SNR vs Number of samples fit in fig. 5.8

Noise Reduction factor

Another way for calculating the quantum enhancement is by evaluating the quantum noise

reduction factor (NRF), which is defined as

NRF =
var(X1SQ −X2SQ)

var(X1SN −X2SN )

=
var(X1SQ) + var(X2SQ)

var(X1SN ) + var(X2SN )

(5.4.1.27)

where X1SQ, X2SQ are time series of interferometer outputs when the squeezed light is

injected and X1SN , X2SN are the time series of interferometer outputs recorded with the

coherent light. This factor should be less than unity. This quantity estimates the amount

of equivalent noise reduction of the combined system when two independent squeezed light

are injected into the interferometers.

The NRF in our case was around 0.56, which indicates that there was around 2.5dB

equivalent reduction in the quantum noise due to the injection of squeezing.
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5.5 Cross correlation in Frequency domain

In the spectral domain, correlated signals can be extracted by performing the cross-power

spectral density (CPSD) S12(ω) of the two interferometers[59].

S12(ω) =
N∑
n=0

R12(n)e−jωn (5.5.0.1)

where R12 =< x1,n+mx2,m >, x1,n and x2,n are the nth elements of the two time series

of the interferometers. The CPSD was evaluated using the Welch method as described in

section D.2 of Appendix D, implemented by a labview code. It consists in dividing the

time series in Nspectra bins and for each bin the CPSD is calculated as the discrete Fourier

transform of the cross-correlation [62]. The average of the Nspectra CPSD values is then

evaluated. The cross spectral density on contrary to the power spectral density, contains

both real and complex parts and thus we considered its magnitude.

In analogy with the time-domain (see equation (5.4.1.9)), the evaluation of the cross

power spectral density S12(ω) when correlated phase noise is injected gives,

S12(ω) = FFT (R12(τ)) =

√
PSDX1PSDX2

Nspectra
+ (1− 1

Nspectra
)

[
S

(w)
12 (ω)

]2

≈

√
PSDX1PSDX2

Nspectra
+

[
S

(w)
12 (ω)

]2
(5.5.0.2)

where S
(w)
12 (ω) gives the estimate of CPSD of the injected phase noise in two interfer-

ometers. The cross linear spectral density (CLSD) is then evaluated by calculating the

square root of the CPSD. The motivation for choosing the CLSD over CPSD is because the

CLSD evaluated in units of V/
√
Hz and it could be used for estimation of Displacement

sensitivity (m/
√
Hz) as described in section 4.3.2.

When no phase noise is injected we deal only with the photon noise of the interferom-

eters. Using the equation (5.5.0.2), we can write:

CLSD =
√
S12(ω) = (

√
PSDX1SN

PSDX2SN

N
1/2
spectra

)1/2 (5.5.0.3)

The CLSD evaluated reduces the contribution of the uncorrelated signals (are which

correspond to the shot noise of the two interferometers in our case) and it is enhanced

by a factor N
1
4
spectra. However when a correlated phase noise injected into the system,

contribution of the uncorrelated signals by a factor N
1
4
spectra, while the correlated contribu-

tion is unaffected. When Nspectra is sufficiently high, the CLSD reaches a plateau, which

represents the correlated noise contribution.

When the squeezed light is injected, the uncertainty reduction of the uncorrelated

photon noise contribution is expected to be the geometric mean of the two enhancement

factors of each interferometer, i.e
√

(e−2r1 +
1−ηloss,1
ηloss,1

)(e−2r2 +
1−ηloss,2
ηloss,2

) where r1 and r2

are the squeezing factors in the individual interferometers, ηloss,1 and ηloss,2 are the losses
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in each interferometer.

Figure 5.9 shows the average value of the CLSD evaluated as a function of Nspectra in

a bandwidth of 100kHz without injecting the white noise (dealing only with the photon

noise of the interferometers) for both coherent case (blue trace) as well as in squeezed case

(red trace).

Figure 5.9: The Cross linear spectral density plotted as a function of Nspectra. It can be

seen that in the case of no noise injected the CLSD scales as N
− 1

4
spectra. The blue trace

corresponds to coherent states while the red trace corresponds to squeezed light injection.

Since the CLSD in the photon noise case scales inversely proportional to N
1/4
spectra, as

discussed in equation (5.5.0.3), the CLSD was fitted with:

CLSD =

(
A

Nspectra
+ c

)1/4

(5.5.0.4)

where A is a parameter that could be evaluated from the fit, which represents the square

root of geometric mean of the PSD’s of the individual interferometers as described in equa-

tion (5.5.0.3). When there is no correlated noise injected in the system, the CLSD(Nspectra =

1) = A1/4. If the two interferometers are having equal values of PSD, then A1/2 represents

the average PSD level of single interferometer. The fit parameters are displayed in table

5.3.

A1 (1.296± 0.001)× 10−12

c1 1.601× 10−5 ± 1.861× 10−20

A2 (4.174± 0.002)× 10−13

c2 7.154× 10−21 ± 1.051× 10−20

Table 5.3: The parameters A and c values of equation (5.5.0.4) evaluated from the fit of
CLSD vs Nspectra in both classical as well as squeezed case.

It is to be noted that the constants c1 and c2 are compatible uncertainty with the

estimated mean values and hence can be approximated to zero. The ratio of (A2/A1)0.25 =
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1.35 gives us the uncertainty reduction in the evaluated CLSD for the squeezed light

injected case with respect to the coherent case . The smallest value of CLSD obtained

due to squeezed light injection in this measurement at Nspectra = 105 is around 1
20 times

reduction with respect to the value of PSD of a single interferometer (which corresponds

to CLSD (Nspectra = 1)).

The fig. 5.10 (i) shows the plot of CLSD vs Nspectra when a correlated noise is injected.

For comparison with the photon noise case, the fig. 5.9 has also been depicted in the same

plot. It can be seen that for lower Nspectra, the CLSD value confides with the photon

noise and scales with N
−1/4
spectra. However, for higher Nspectra, the CLSD reaches a plateau

representing the correlated noise contribution. The difference between the photon noise

case and the correlated noise injected case can be seen at Nspectra = 1000 described in

fig. 5.10 (ii) where we plot the CLSD spectra as a function of frequency in a bandwidth

of 100kHz.
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Figure 5.10: (i)The figure above presents the Cross linear Spectral density as a function

of Number of Spectra. It can be seen that for low values of Nspectra it scales as N
−1/4
spectra

while for higher values of Nspectra it reaches a plateau. (ii) The figure above corresponds
to the CLSD evaluated at Nspectra = 1000 and PSDs of the first interferometer.

Since the Nspectra is proportional to integration time, a clear advantage appears when

we use squeezing, since the plateau is reached earlier for shorter Nspectra (corresponding

to around 3.3 times of integration time reduction) compared to coherent case.
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5.6 Evaluation of Sensitivity

We have measured the CLSD in V√
Hz

and we now need to convert it into m√
Hz

for evalu-

ating the displacement sensitivity. For this reason, the input voltage Vrms = 40µV of the

white noise given to the EOM was measured using a spectrum analyzer with a resolution

bandwidth of 100kHz at 13.5MHz. The conversion from CLSD (V/
√
Hz) to Displacement

sensitivity, we need to consider the equivalent strain ∆Xrms caused by the EOM as dis-

cussed in section 4.3.2. The point where we reach a plateau in the plot of CLSD as a

function of Nspectra in fig. 5.10 corresponds to this equivalent strain ∆Xrms. Also as we

know that displacement sensitivity ∆X for CLSD (Nspectra = 1) corresponds to displace-

ment sensitivity of single interferometer as we have discussed in section 5.5. Hence we can

write the following equation as:

∆X(m/
√
Hz)

∆Xrms(m/
√
Hz)

= r (5.6.0.1)

where r is the ratio of the CLSD (V/
√
Hz) evaluated for Nspectra = 1 to the CLSD

(V/
√
Hz) evaluated when it reaches the plateau and in our case it was around 1

5 .

However, as discussed in section 4.3.2 we can calculate the ∆Xrms as

∆Xrms =
λVrms

2Vπ
√

∆ω
(5.6.0.2)

and the value of Vπ evaluated for the EOM was around 980 V as discussed in section

4.3.2. Hence the displacement sensitivity (m/
√
Hz) ∆X can be written as:

∆X =
λVrms

2Vπ
√

∆ω
r (5.6.0.3)

The fig. 5.11 shows the evaluated version of displacement sensitivity ( m√
Hz

). The sensitivity

obtained in each interferometer (which corresponds to Nspectra = 1) was (6.745± 0.002)×
10−16 m√

Hz
. The maximum sensitivity reported in the plot corresponding to Nspectra = 105

with independent squeezed states was evaluated to be (3.21× 10−17 ± 0.16× 10−18) m√
Hz

,

which is 1/20 of the sensitivity of each interferometer.

105



5.7. SUMMARY Chapter 5

10
0

10
1

10
2

10
3

10
4

10
5

N
spectra

10
-16

10
-15

D
is

p
la

c
e
m

e
n
t 
(m

 /
H

z
)

(b)

Photon noise 

Coherent (SNL)

Photon noise 

Squeezed

Correlated stochastic noise 

Squeezed

Correlated stochastic noise 

Coherent

(i)

10 20 30 40 50 60 70 80 90 100

Frequency (kHz)

10
-16

10
-15

D
is

p
la

c
e
m

e
n
t 
(m

 /
H

z
)

(a)

CLSD 

Coherent

CLSD 

Squeezed

CLSD correlated 

stochastic noise

Coherent

Linear spectral density MI 1

Coherent     Linear spectral density MI 1

Squeezed     

CLSD correlated 

stochastic noise

Squeezed

(ii)

Figure 5.11: (i)The figure above presents the Displacement sensitivity ( m√
Hz

) as function

of Number of Spectra. (ii) The figure above corresponds to the Displacement Sensitivity
(evaluated at Nspectra = 1000 and PSDs of the first interferometer.

5.7 Summary

We have discussed in details the results of the double squeezer experiment both in time

domain as well as in frequency domain. The injection of squeezing helped us reducing

the background of the shot noise in each interferometer as well as in the normalized cross

correlation function in time domain for revealing the signal for shorter integration time

and increasing the Signal to noise ratio by factor of 2. The concepts such as CLSD have

been discussed and evaluated. We have clearly shown the advantage of performing cross

correlation. Around 1/20 times reduction was observed in correlated phase detection sen-

sitivity with respect to shot noise of single interferometer and around 3.33 times reduction
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in integration time was observed in the CLSD when squeezed light was injected. This

experimental results would help us pave path to consider squeezing as a helpful tool in

reducing the sensitivity and to consider it as a strategy in applications such as determina-

tion of holographic noise, Stochastic Gravitational wave background [23] as discussed in

section 1.6.
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CHAPTER 6

RESULTS WITH TWIN BEAM STATE

6.1 Introduction

In the experimental scheme as described in Chapter 1 in section 1.5.1, when each mode

of the twin beam state is injected in the two interferometer and subtraction between the

ouptuts is measured, the nonclassical quadrature correlation is expected to provide a noise

reduction. Any phase difference between the two MIs produces a change in the relative

photo-currents, which can be detected with sub shot-noise sensitivity. However,as far as

only correlation in one of the quadrature is used, instead of an actual twin beam, we used

a twin beam like state as mentioned in section 1.3.3, which was produced by a single

mode squeezed state split on a beam splitter. The experimental setup and details of the

locking scheme are already described in chapter 3 in section 3.4. As we have discussed,

this experimental scheme is useful for detection of uncorrelated noise or small phase signal

difference between the interferometers. In this chapter we present the effect of reduction in

shot noise of the interferometers photocurrent subtraction due to the bipartite non-classical

state with the consequence of a better sensitivity in identifying uncorrelated noise. We

present this analysis in both time domain as well as the frequency domain .

6.2 Results in Time Domain

As mentioned in chapter 1 in section 1.5.3, the task is to measure the variance of difference

between the two outputs of interferometers. Let X1 and X2 represent the output pho-

tocurrents of interferometer 1 and interferometer 2. The variance of difference between

the outputs is given by:

var(X1(t)−X2(t+ τ)) = var(X1(t)) + var(X2(t))− 2cov(X1(t), X2(t+ τ)) (6.2.0.1)

Since the single mode squeezer output is split on a balanced beam splitter as shown in

fig. 1.6, the first two terms, which are variances of individual interferometers, are squeezed
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although the individual squeezing level is reduced by 50% losses of the input squeezed

light. However we have a non-zero covariance as discussed in properties of twin beam state

in section 1.3.3 of chapter 1 as opposed to the classical case or to the two independent

squeezers case. Hence the entire input squeezing should be recovered in the var(X1−X2)

We have performed the twin beam injection in the double interferometer system in three

conditions: (i)No noise injected in two interferometers (just dealing with the photon noise)

(ii)uncorrelated noise injected in two interferometers (iii) Correlated noise injected in two

interferometers

6.2.1 Photon noise

Let us consider the case when no artificial noise is injected in interferometers. When

TWB state is injected in the interferometer, as we know from section 1.3.3, there is a non

zero covariance between the outputs of two interferometer outputs. This cross correlation

between the two interferometers is maximized by adjusting the phase between the two

down mixed outputs (AC outputs of interferometers) as shown in fig. 5.5.

The cross correlation between the two outputs is evaluated both in coherent case and

in twin beam case as shown in fig. 6.1. It can be seen that for the twin beam case there

is a non-zero correlation at delay τ = 0 while it vanishes in the classical case.
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Figure 6.1: The figure above plots the cross-correlation coefficient as a function of time
delay τ . The figure on the left corresponds to cross correlation coefficient in the classical
case and the figure on the right corresponds to the TWB state injection. It can be seen
there is a non-zero covariance at τ = 0 in the TWB case while the noise is uncorrelated
in the classical case.

We have also evaluated, more specifically, the variance as function of time delay. The

variance evaluated as a function of delay τ is given by,

var(X1PN (t)−X2PN (t+τ)) = var(X1PN (t))+var(X2PN (t))−2 cov(X1PN (t), X2PN (t+τ))

(6.2.1.1)

where X1PN and X2PN represent the photon noise in both interferometers.

While evaluating the variance of the difference, we should make appropriate normal-

izations in the gain of the detector. Let g1 and g2 be the gain in detectors of interferometer

1 and interferometer 2 with output time series X1 and X2. The gain in detector is then

evaluated as,
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g1 =
var(X1)

P1
, g2 =

var(X2)

P2
(6.2.1.2)

where P1 and P2 are DC optical powers. Ideally these 2 factors g1 and g2 should

be equal if the interferometers are shot noise limited. However, the difference in gain in

electronics prevents them to be same.

Thus, one has to compensate for this electronic gains difference, evaluating the variance

of the photocurrent as var(X1(t)−
√

g2
g1
X2(t+ τ))

The fig. 6.2 evaluates the difference as a function of delay τ . Firstly the shot noise level

(SNL) is obtained by blocking the non-classical light and measuring the var(X1SN (t) −
X2SN (t + τ)). When the TWB like state is injected, at delay τ = 0, we have the effect

of the the correlation between the two modes due to non zero covariance which leads to a

noise reduction of 2.5 dB with respect to the SNL, is that appears as a dip in the variance.

While away from τ = 0, the covariance goes to zero and the shot noises reduces to the

squeezing registered in each interferometers (which is around 50% of input squeezing).
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Figure 6.2: The figure above represents the variance of photocurrent difference as in
equation (6.2.1.1) as function of delay τ , when no artificial noise is added. The blue trace
represents the case in which only coherent light travels in the interferometer, while the red
trace concerns the case in which twin beam (TWB) like state is injected. The measured
noise reduction is of 2.5 dB with respect to the SNL.

6.2.2 Injection of uncorrelated noise

Let us now consider the case when the uncorrelated phase noise is injected. Let X1WN

and X2WN be the uncorrelated noise injected in the interferometers and X1PN and X2PN

be the photon noise. Then the variance of the difference is given by

var(X1 −X2) = var((X1PN +X1WN )− (X2PN +X2WN ))

= var(X1PN −X2PN ) + var(X1WN −X2WN )

= var(X1PN −X2PN ) + var(X1WN ) + var(X2WN )− 2cov(X1WN , X2WN )

(6.2.2.1)
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Since they are uncorrelated, cov(X1WN , X2WN ) = 0. Hence the above equation can be

written as

var(X1 −X2) = var(X1PN −X2PN ) + var(X1WN ) + var(X2WN ) (6.2.2.2)

The above equation (6.2.2.2) shows that the dip at τ = 0 decreases by the amount

var(X1WN ) + var(X2WN ).

When two uncorrelated stochastic signals are injected in the two interferometers, the

dip reduces by ≈ 1 dB, as shown by the red faint line as shown in fig. 6.3. This must be

compared with the change between classical coherent trace levels with and without noise

injection (blue thick and faint line respectively), which is only ≈ 0.3 dB
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Figure 6.3: Variance on the read-out signal subtraction with varying relative time delay.
Red curves refer to the twin beam - like case and blue curves to the classical coherent one.
Faint lines refer to the addition of an uncorrelated stochastic noise in the two MIs.

6.2.3 Injection of Correlated noise

When we inject correlated noise, the signals get cancelled by the subtraction, and the

variance is not changed. Let X1WN and X2WN be the correlated noises injected in two

interferometers and X1PN and X2PN be the photon noise. Then variance of difference is

given by

var(X1 −X2) = var((X1PN +X1WN )− (X2PN +X2WN ))

= var(X1PN −X2PN ) + var(X1WN −X2WN )

= var(X1PN −X2PN ) + var(X1WN ) + var(X2WN )− 2cov(X1WN , X2WN )

(6.2.3.1)

If X1WN = X2WN = XWN and since they are correlated, cov(X1WN , X2WN ) =

var(XWN ). Hence var(X1WN ) + var(X2WN ) − 2cov(X1WN , X2WN ) = 0. Thus we can

write,

var(X1 −X2)|correlated noise = var(X1PN −X2PN ) (6.2.3.2)
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Figure 6.4: Variance on the read-out signal subtraction with varying relative time delay.
Red curves refer to the twin beam - like case and blue curves to the classical coherent
one. It can be seen that at delay τ = 0 unlike in the uncorrelated case, the variance
of difference of the photon currents when the correlated noise is injected is equal to the
variance of difference of the photon noise case.

The fig. 6.4 plots the variance of difference of the outputs of the interferometers as a

function of τ . It can be seen that the depth of the dip is unchanged as opposed to the

uncorrelated case.

However,the case of correlated noise is much more useful in application for search of

holographic noise. As discussed in section 1.6, the experiment has to be performed in

two configurations (i) ‖el (ii) ⊥r. The covariance between two interferometer according to

equation (1.6.0.4) can then be evaluated.

6.3 Results in Frequency domain

The power spectral density of the difference of the photocurrent outputs of the interferom-

eters are evaluated. The photocurrents outputs are compensated for the electronic gains

and power spectral density of PSD(X1 −
√

(g2g1 )X2) is evaluated as discussed in section

6.2.1. The same amount of quantum enhancement as in fig. 6.3 has been demonstrated in

the frequency domain as shown in fig. 6.5.
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Figure 6.5: Power Spectral Density (PSD) of the read-out signals subtraction calculated
from the read-out signals down-mixed at 13.5 MHz. Red curves refer to the twin beam -
like case and blue curves to the classical coherent one. Faint lines refer to the addition of
an uncorrelated stochastic noise in the two MIs.

As a further example, a single tone frequency was also injected in one of the interfer-

ometers. The fig. 6.6 shows the power spectral density of X1(t)−
√

(g2g1 )X2(t) for a single

frequency tone applied to one of the MIs. Also in this case the quantum-enhancement is

clearly visible. The quantum enhancements of the individual interferometers are 1.1 and

0.8 dB respectively, resulting in a collective enhancement of 2 dB in the output subtrac-

tion, due to the non-classical correlation among the modes. This enhancement might be

applied to identify uncorrelated noise sources, such as scattering or unwanted resonances

[19].

113



6.4. SUMMARY Chapter 6

48 49 50 51 52

Frequency(kHz)

0

5

10

P
S

D
(d

B
/H

z
)

MI 1

48 49 50 51 52

Frequency(kHz)

-2

0

2

4

6

P
S

D
(d

B
/H

z
)

MI 2a) b)

Single Frequency 

Coherent
Single Frequency 

TWB like

1.1 dB
0.8 dB

Photon noise 

Coherent(SNL) Photon noise

TWB like

48 48.5 49 49.5 50 50.5 51 51.5 52

Frequency(kHz)

-4

-2

0

2

4

6

8

10

P
S

D
(d

B
/H

z
)

Output Subtractionc)

Single Frequency in

MI 1: Twin Beam like

2 dB

Single Frequency in

MI 1: Coherent

Figure 6.6: Single-frequency tone injected in the first interferometer at 13.55 MHz. (a),
(b): PSDs of the read-out signal in each interferometer show 1.1 dB and 0.8 dB quantum-
enhancement in MI 1 and MI 2 respectively. (c): PSD of the read-out signals subtraction.
The correlation between the two modes leads to 2 dB of squeezing. The frequency axis of
all plots correspond to the recorded data after down-mixing at 13.5 MHz.

6.4 Summary

We have demonstrated an approach that uses the non-classical correlation between two

modes of an evenly split squeezed state. This approach, as discussed above could be used

to detect uncorrelated noise sources such as scattering or resonances. This also opens

the perspectives of an extremely high advantage in case of two-mode squeezing (true twin

beam entanglement) injection and large detection efficiencies as discussed in chapter 1 in

section 1.5.3 where the uncertainty would reduce dramatically when we lock very close to

the dark fringe.
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CONCLUSION

Quantum metrology is a field that studies the application of quantum states of light for

surpassing the classical limit. One of the tool that could be used in performing sensing

experiments devoted to fundamental research are optical interferometers. The recent de-

tection of gravitational waves [20] being a prime example, where power recycled Michelson

interferometers are used. In 1981, Caves [37] proved theoretically that injection of quan-

tum states of light in these type of interferometers, would provide further enhancement in

the sensitivity of the system. The application of injection of squeezed states of light into a

single interferometer has already been demonstrated in many gravitational wave detector

prototypes[38],[39] as well as in LIGO[21] and GEO 600[40] gravitational wave detectors.

One of the current trends in modern physics for application of the optical interferome-

ters is the search and study of omnipresent stochastic sources of noise such as exotic sources

due to conjectured Planck scale effects[27],[42] or gravitational wave background[26]. In

particular, these sources of noise can produce correlated phase fluctuations in two sepa-

rated interferometers increasing the chance of distinguishing them with respect to other

noise sources. Hence, the idea is to use a double interferometric system to detect these

stochastic sources of noise. A double interferometer configuration is for instance the basis

of the Fermilab holometer [26],[27], a device consisting of two co-located 40 m Michelson

interferometers. The purpose of the holometer is to search for a particular type of corre-

lated background noise, conjectured in some heuristic Planck scale theories and dubbed

holographic noise. If confirmed, it would provide empirical support to theories attempting

to unify quantum mechanics and gravitation. The first measurements of the Fermilab were

reported in [27] and they have reached a strain sensitivity of 10−21/
√
Hz. At the moment

the holometer is operated with classical light only.

However, it has been demonstrated theoretically in [28],[29] that when quantum states

of light such as squeezed states and Twin beam state are injected into this double interfer-

ometric system, it would further enhance the correlated phase detection sensitivity. When

two independent squeezed states are injected the uncertainty in the correlated phase de-

tection sensitivity would be reduced by a factor of
√

(e−2r1 +
1−ηloss,1
ηloss,1

)(e−2r2 +
1−ηloss,2
ηloss,2

)

where r1 and r2 are the squeezing factors. While in the latter case, it has been demon-

strated that, when the twin beam state is injected, while the Michelson interferometers
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are operated near to the dark fringe and have high efficiencies, the uncertainty reduction is

divided into two regimes: a) when the classical component of light is almost zero and pho-

ton number entanglement dominates and for high detection efficiencies (Tλ >> (1−T )µ),

a dramatic enhancement in the correlated phase detection sensitivity can be obtained.

However, when the classical field component dominates (Tλ << (1 − T )µ), the uncer-

tainty reduction in correlated phase detection sensitivity is contributed by the quadrature

correlations and the system behaves the same as for the independent squeezed states.

In the present thesis, I have reported a first feasibilty test for realization of quantum

enhanced correlated phase interferometery. Based on previous theoretical investigation

described in [28],[29], we proved experimentally the advantage of using quantum light

(squeezing and bipartite correlations) in the measurement of correlation among phase

signals in two interferometers whose outputs are jointly measured. Each interferometer was

operated in a power recycling Michelson configuration, thus emulating the configuration

used in large scale experiments such as the gravitational wave detectors [36] [21] or the

Fermilab “Holometer” [27], dedicated to the investigation of possible Planck scale exotic

effects. We have given a complete overview of the locking techniques involved for stabilizing

the Power recycling Michelson interferometers. A detail description of the experimental

setup of both, double interferometer system and squeezed light sources was provided.

When two independent squeezed states were injected, we have demonstrated an en-

hancement in the correlated phase detection sensitivity. For the test, a faint correlated

white noise was injected with amplitude 1/5 of the shot noise of the individual interfer-

ometer. Firstly, we have observed around, 2.5dB and 3dB enhanced sensitivity in each

interferometer. Then, exploiting a joint measurement, we have shown that Signal to Noise

ratio was enhanced by a factor of 2 (which corresponds to around 3dB of quantum en-

hancement) compared to the classical case. This allows us to identify this correlated signal

for smaller number of samples, in particular reducing the measurement time of 4 times

with respect to the classical case . At the same time, we had evaluated a quantity called

Cross Linear Spectral Density (CLSD), representing the actual sensitivity to the correlated

component of the noise in the two inferferometer in the frequency domain. The absolute

sensitivity obtained after only 20 s of measurement time was (3.21±0.16)×10−17m/
√
Hz

which corresponds to around 1/20 times the sensitivity of a single, shot noise limited

interferometer. This work has a possible applications in the research about fundamen-

tal quests, such as detection of holographic noise, gravitational wave background or to

finding traces of primordial blackholes [63],[42]. The second experiment was performed,

by considering a twin-beam like state injection in the double interferometer system. A

twin beam-like state was produced by splitting a single mode squeezer on a beam split-

ter and each mode was sent to each interferometer. Firstly, the squeezing observed in

individual interferometers were reported to be 1.1dB and 0.9dB (around 50% loss of the

initial amount of squeezing is due to splitting ratio of the beam splitter). However, due

to non zero covariance property of the twin beam like state, there was around 2.6 dB of

noise reduction observed below the shot noise level in the subtraction of the two output

photocurrents of the interferometers. This approach is quite useful in detection of un-
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correlated noise sources such as scattering, resonances. For testing this, an uncorrelated

white noise was injected in both the interferometers slightly above the shot noise (as well

as a single frequency signal in one of the interferometers) and a quantum enhancement

of around 1dB in detection of this uncorrelated noise was observed. This experiment also

represents the first step towards perspectives of reaching an unprecedented sensitivity ex-

ploiting entanglement in two mode squeezed state . However, it would require very high

detection efficiency and a strict control of the dark fringe point, still challenging for the

present possibility [28],[29] .

Thus, with these two interesting approaches we have shown a quantum enhancement

in the correlated phase detection sensitivity paving a route for practical applications.

The future outlook of the experiment is two-fold. Firstly, the results shown in this the-

sis demonstrate the advantages in terms of correlated phase sensitivity provided by the

described technique, which can be directly applied to improve precision in present exper-

iments, e. g. by injecting the quantum states of light in the current fermilab holometer

which consists of 40m interferometers. Secondly, the same results in principle would allow

to compact the large scale interferometers onto a table-top setup, by virtue of the en-

hancement due to quantum light injection, reproducing the performance of current large

scale interferometers.
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APPENDIX A

MODE MATCHING CONDITIONS FOR THE CAVITIES

A.1 Gaussian Beam

The gaussian beam is a Transverse Electro magnetic field mode (TEM00) and is given by,

E(r, t) = E0exp(i(ωt− kz)− r2

w2(z)
− ik r2

2R(z)
− iφ(z)) (A.1.0.1)

Figure A.1: The pictorial representation of gaussian beam.

where r is the radial distance (
√
x2 + y2) and z is the axial distance. Let w0 be the

minimum waist of the gaussian beam as shown in fig. A.1. The gaussian beam can be

completely described by its beam waist w (z), the radius of curvature R (z). They are

given by

w(z) = w0

√
1 +

z2

z2
0

(A.1.0.2)

where z0 =
kw2

0
2 is known as the Rayleigh length. and R (z) the radius of curvature of the

gaussian beam given by,

R(z) = z +
z2

0

z
(A.1.0.3)

The angle θ represents the divergence of the gaussian beam given by,

θ ≈ w(z)

z
≈ λ

πw0
(A.1.0.4)
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The beam propagation along the optical axis is described by the complex variable q(z)

1

q(z)
=

1

R(z)
− i 2

kw2(z)
(A.1.0.5)

The complex parameter q usually describes the properties of the gaussian beam at

particular point z.

When this gaussian beam which had an initial complex parameter qi, propagates

through an optical system whose Transfer Matrix given by O =

[
A B

C D

]
, the resulting

complex parameter qf of the gaussian beam can be written as,

qf =
Aqi +B

Cqi +D
(A.1.0.6)

A.2 Mode matching

For mode matching the inital gaussian beam to the Fabry Pérot cavity of length l, we use

a set of lenses f1 and f2 Fabry Pérot cavity as shown in the fig. A.2

Figure A.2: Optical modematching for Fabry Pérot cavity

The Ray matrix M1 of a beam traveling a distance d through free space, is given by

[46]:

M1 =

[
1 d

0 1

]
(A.2.0.1)

The Ray matrix M2 of a beam travelling through a thin lens of focal length f, is given

by [46]:

M2 =

[
1 0

− 1
f 1

]
(A.2.0.2)

The complex parameter q can be defined as [46]:

1

q
=

1

R(z)
− iλ0

πw2(z)
(A.2.0.3)

In this section we develop the calculations for the modematching of the intial gaussian

beam to the fabry Pérot cavity, using equations (A.2.0.1) and (A.2.0.2)

Let A, B and C be the transfer matrices of the Gaussian beam after passing through

lens f1 in fig. A.2 and till the waist wb are given by
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A =

[
1 d0

0 1

]

B =

[
1 0

− 1
f1

1

]

C =

[
1 d1

0 1

]
The net transfer matrix is hence O1 = ABC given by,

O1 =

[
1− d1

f1
d1 + d0(1− d1

f1
)

− 1
f1

1− d0
f1

]
(A.2.0.4)

While at the initial waist w0, R(z) =∞. Hence we can write ,

1

q0
=

1

R(z)
− λi

πw2
0

q0 =
iπw2

0

λ

(A.2.0.5)

The subsequent parameter q1 after passing through the lens f1 and distance d1 until

the waist wb, using equation (A.1.0.6) can be written as,

q1 =
a1q0 + b1
c1q0 + d1

(A.2.0.6)

a1, b1, c1, d1 being the elements of matrix O1.

Also according to equation (A.2.0.5), q1 can be written as q1 =
iπw2

b
λ , since after the

lens the gaussian beam has a waist wb.

Similarly the transfer matrices after passing through lens f2 and through distance d2

and d3 are given by,

A2 =

[
1 d3

0 1

]

B =

[
1 0

− 1
f2

1

]

C =

[
1 d2

0 1

]
The equivalent transfer matrix O2 = A2B2C2 is given by:

O2 =

[
1− d3

f2
d3 + d2(1− d3

f2
)

− 1
f2

1− d2
f2

]
(A.2.0.7)

Similarly, the complex parameter q2 after passing through the lens f2 using equation

(A.1.0.6) is given by,

q2 =
a2q1 + b2
c2q1 + d2

(A.2.0.8)

where a2, b2 , c2 and d2 are the elements of matrix O2.

Similarly, with reference to equation (A.2.0.5), q2 = iπw2
c

λ ,since the waist of the cavity

wc at the end mirror .
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Hence using all the above equations, we can solve for the parameters d1, d2, d3, wb

and wc as:

d1 =
f1π

2w4
0 + d2

0λ
2 − d0f1λ

2

(f1π2w4
0 + d2

0λ
2 − 2d0f1λ2 + f2

1λ
2)1/2

(A.2.0.9)

wb =
f1w0λ

(f1π2w4
0 + d2

0λ
2 − 2d0f1λ2 + f2

1λ
2)1/2

(A.2.0.10)

d2 = f2 + (
f2

2w
2
bλ

2

w2
c

− π2w4
b )

1/2λ (A.2.0.11)

d3 =
f2π

2w4
b + d2

2λ
2 − d2f2λ

2

(f2π2w4
b + d2

2λ
2 − 2d2f2λ2 + f2

2λ
2)1/2

(A.2.0.12)

wc =
f2wbλ

(f2π2w4
b + d2

2λ
2 − 2d2f2λ2 + f2

2λ
2)1/2

(A.2.0.13)
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APPENDIX B

TRANSFER FUNCIONS AND OPEN LOOP

B.1 Introduction

For designing the PI lockboxes and to characterize the feedback loop of the lock, it is

necessary to measure the closed loop transfer function and open loop transfer function of

the system. In this Appendix, I will give a complete description of how the lockboxes are

designed based on measurement of closed loop transfer function. We will also evaluate the

unity gain frequency from the measured open loop transfer function.

B.1.1 Transfer function and Open loop

In a control system, the ratio of its output to input in the Laplace domain is called Transfer

function [64]. If we have an input property xin(s) and an output property xout(s) as in

fig. B.1, then the transfer function T is given as,

Figure B.1: Transfer Function with xin(s) as input xout(s) as output. T is considered as
Transfer function.

T (s) = xout(s)/xin(s) (B.1.1.1)

Let us consider a closed loop control system in fig. B.2

Figure B.2: Closed loop system with xin as input xout as output.
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Then we can write xout as,

xout = xinG1 −G1G2xout (B.1.1.2)

Then the effective transfer function Heff ,

Heff =
xout
xin

=
G1

1 +G1G2
(B.1.1.3)

The term G1G2 is called open loop transfer function. The system becomes unstable if the

open loop transfer function G0(s) = G1(s)G2(s) = −1. In general,Bode plots are used to

assess the stability of a control system.

Measurement in our system

To estimate the unity gain frequency of the system, it is necessary to perform an open loop

measurement and perform the gain-phase analysis. The unity gain frequency is defined

as the frequency at which magnitude of gain, |Heff (jω)| = 1(0dB). Since the unity gain

frequency is related to the bandwidth of the lock, it is better to have a higher unity gain

frequency, for compensation of the fluctuations. However, the system becomes unstable if

there is a resonance at the unity gain frequency. Hence the design of the lockboxes should

be done such that there is enough gain towards the lower frequencies for compensating

weak disturbances whilst keeping the resonances at higher frequencies at low gain.

The open loop measurement can in theory be just be performed by removing the

feedback loop in fig. B.2. However in practice we can obtain it by probing the system

through a Network analyzer at all frequencies and measuring transmission and reflection

(T/R) response.

Figure B.3: Open loop measurement scheme for our interferometer system.

Let GL represents transfer function of lock-box (PI controller), GI represents transfer

function of interferometer (including High voltage Amplifier (HVA) and PZTs of the end

mirrors), and GD represent the transfer function of photodetector. The open loop transfer

function of the system is G0 = GLGIGD. The parameters xt and xr at probes T and R

can be written as

xt = xin − zG0 − xoutGD (B.1.1.4)
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xr = xin − xoutGD + z (B.1.1.5)

If we remove the probes T and R of the Network analyzer and solve for xout and xin,

xout = (xin + z)
GLGI
1 +G0

(B.1.1.6)

Subtracting equation B.1.1.4 from equation B.1.1.5 we get the information about the

open loop funtion G0.

X = xt − xr = z(1 +G0) (B.1.1.7)

It is to be noted that the space of our algebra is in Laplace space. However the network

analyzer only has the function of providing the ratio T/R and it performs Gain-Phase

analysis on a Bode plot which is in frequency domain. This is not a problem as the

multiplicative amplitudes are additive in log scale [64],[65] and would yield the same result

of singling out G0.

The fig. B.4 shows us how to evaluate the transfer function. This kind of circuit helps

in singling out the transfer function of GIGD. The system needs to be locked while the

network analyzer probes the system at all frequencies.

Figure B.4: The figure represents open loop measurement scheme for our interferometer
system.

Let us analyze the full circuit without the probes of T and R. Hence we can write:

xout =
(xinGL + z)GIGD

1 +GIGD
(B.1.1.8)

The equation (B.1.1.8) shows that we can single out the closed loop transfer function of

GIGD. Hence when we probe the system at T and R ,the parameters xt and xr can be

written as:

xt = xin − zGIGD − xoutGD
xr = xinGL + z − xoutGDGL

(B.1.1.9)

Since the probing only works for a system which is already locked system at fixed bias point,

the terms involving xin and xout can be neglected[52]. Thus using equations (B.1.1.8) and
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(B.1.1.9) , we can evaluate the xt − xr as

xt−xr = xin−zGIGD−xoutGD−(xinGL + z − xoutGDGL) ≈ z(1+(GIGD)) (B.1.1.10)

In the bode plot for gain-phase analysis of the T/R ratio, we expect to yield the same

result as in equation (B.1.1.10) where we single out the term GIGD.

Characterization of Transfer functions and open loop transfer functions

Bode plots in general are used to assess the stability of a control system in general.

Firstly, the frequency response of the closed loop transfer function for both DARM and

CARM degree of freedom are evaluated as shown in fig. B.5 with a help of newtwork

analyzer. The network analyzer probes the system at all frequencies while the system is

locked. The DARM closed loop transfer function is measured by misaligning the power

recycling cavity to the michelson interferometer configuration and locking it to a point

on the fringe while the network anlyzer probes the PZT actuators of the end mirrors

differentially (i.e by a phase of π) at all frequencies. On the other hand, the CARM

closed loop transfer function is measured in the power recycling configuration by locking

both degrees of freedom (DARM and CARM) while the network anlyzer probes the PZT

actuators of the end mirrors with no relative phase lag at all frequencies.

For evaluating the unity gain frequency from the measured transfer function, a simula-

tion was done by placing approximate values of the integrators, and low pass filters of the

PI controller on the measured transfer function. The values of the proportionality, integra-

tors are put in the simulation such that there is enough gain towards the lower frequencies

for compensating weak disturbances whilst keeping the resonances at higher frequencies at

low gain (since an instability occurs when resonance exceeds 0dB) as discussed in section

B.1.1. The fig. B.6 shows the simulation on the evaluated transfer function. Also in the

phase measurement, the phase should not be less than −1350 as some op-amps used in

the PI controller can get unstable.
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Figure B.6: Simulation on the measured transfer function. The servo was designed with
intergrator frequency 1.6 KHz and propotionality factor of 60dB. The expected unity gain
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(i) Transfer function for Differential Arm

(ii) Transfer function for Common Arm
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Figure B.5: The network analyzer probes the PZTs at different frequencies from 5 Hz-100
kHz and T/R ratio is evaluated while the system is locked. (i) When charecterizing the
DARM response, the Network analyzer is probed differentially. (ii) When Characterizing
the CARM response, the newtwork analyzer is probde equally. (iii) The evaluated transfer
function for Differential arm of the interferometer

It is to be noted however that, the unity gain frequency obtained from the simulation

gives only an approximate estimation. The real estimation of the unity gain frequency is

obtained by measuring the open loop function of the system with the newly designed servo

for both DARM and CARM as depicted in fig. B.3. There is a discrepancy of the value in
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the unity gain frequency, between the one estimated from the simulation and the obtained

value. This is because for eliminating or shifting the resonances to higher frequencies,

the mechanics was further improved after the measurement of transfer function. This was

done by clamping the end mirrors with a metallic base and adjusting the torque on the

screws of the metallic base, and this might have changed the measured transfer function.

The fig. B.7 plots the open loop transfer function as a function of frequency. The unity

gain frequency obtained for our system is around 1.3 kHz.

(i) Open loop DARM
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Figure B.7: (i) Open loop measurement for the DARM, (ii)Open loop measuremenmt fopr
CARM. The unity gain frequency obtained was around 1.3 kHz
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APPENDIX C

ELECTRONICS

C.1 Electronics schematic of the PI controller
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C.2 Electronic schematic of photodetector
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Figure 2: Project schematics (sheet 2)

4 HolometerPD_ver1-documentation.tex (2017-11-28, 13:17) – 8 pages
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Figure 3: Project schematics (sheet 3)

HolometerPD_ver1-documentation.tex (2017-11-28, 13:17) – 8 pages 5
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APPENDIXD

PSD EVALUATION

D.1 Evaluation of PSD

Most of this section describing the evaluation of the power spectral density is taken from

[62]. The power spectral density is obtained by using Welch’s method. Let us consider fS

to be the sampling frequency and N as the length of the sample. The frequency resolution

is given by fres = fS
N . Before evaluating, the PSD we need to apply the basics of the

discrete Fourier transform (DFT). For N discrete time variables xn the discrete Fourier

transform gives vector of length N of ym where m = 0, 1, ...N − 1. Hence the DFT of each

ym is given by,

ym =

∑N−1
n=0 xne

(−2πimn
N

)

N
, m = 0, ...N − 1 (D.1.0.1)

The frequencies fm corresponding to ym is given by fm = mfs
2 . However if we use the

equation (D.1.0.1) in case of finite length data, leads to the presence of artifacts in the

frequency spectrum, which is not a faithful representation of the physical signal [66]. A

window function in general is used to reduce this effects that occurs in an DFT of data.

There are many window functions such as Hanning, Hamming, Flat top etc. that are used

for evaluating the DFT. For most of the cases, Hanning window wj = 1
2 [1 − cos(2πj

N )] is

applied while for more accurate measurements we need to use specialized window functions.

ym =

∑N−1
n=0 wnxne

(−2πimn
N

)

S1
, m = 0, ...N − 1 (D.1.0.2)

where S1 =
∑N−1

n=0 wn The power spectrum is given by[54]

PSrms =
2|ym|2

S2
1

(D.1.0.3)

and the power spectral density is then defined as the ratio of power spectrum to

effective noise band width ( ENBW)[52]. The ENBW is given by ENBW = fsS2

S2
1

. Hence

the PSD is given by,
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PSD =
2|ym|2

S2fS
(D.1.0.4)

where S2 = sumN−1
n=0 w

2
n Sometimes the above expression in equation (D.1.0.4) is called

a periodogram which correponds to computation of only one estimate. If we compute only

for one estimate, practically the spectra obtained will be noisy. Hence we need to average

uponNspectra estimates to reduce the standard deviation of the spectra by 1√
Nspectra

. Hence

it requires to split the time series into several parts and slightly overlap the segments.

Then we evaluate the power spectral density for each segment as in equation (D.1.0.4)

and perform the average of the obtained power spectral density over all the Nspectra parts.

Usually the overlap percentage depends on the type of window we would like to use. For

example, Hanning window the optimal overlap percentage is taken to be 50%.

More detailed information for computing the PSD of a time-series using Matlab func-

tion ”pwelch” is given in [62],[67].

D.2 Cross Power Spectral Density

As discussed in section 5.5, the cross power spectral density is evaluated as in equation

(5.5.0.1) using Welch’s method. Initially the DC offset is removed for each timeseries

by subtracting the timeseries with its mean value. In analogy with the DFT estimation,

CPSD periodogram with window functions wj is

S12(m) =
1

S2fS

∑
j

wjR12(j)e−2πimj
N (D.2.0.1)

where R12(j) = 〈x1(j)x∗2(j +m)〉. with respective frequencies fm = mfs
2 As discussed in

analogy with the evaluation of PSD, window functions such as hanning, Flat top windows

are applied. However the equation (D.2.0.1) evaluates only for one estimate. which will

have a noisy spectra. Hence Welch’s method is used to scale down this noisy spectra.

In the Welch’s method, similar to the evaluation of the PSD, each of the time series are

divided into Nspectra bins, the CPSD is evaluated for each bin and average of Nspectra bins

are evaluated so that the uncorrelated noise scales as 1/
√
Nspectra. However unlike in the

power spectral density evaluation there is no overlap taken between the several segments,

additional correlations would be added due to overlapping, which would give us an error in

the estimate of the CPSD. The estimation of CPSD was implemented by using a labview

program.
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