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Abstract 

The problem of collective decision by design teams has received considerable attention in the scientific 

literature of engineering design. A much debated problem is that in which multiple designers formulate their 

individual preference rankings of different design alternatives and these rankings should be aggregated into a 

collective one.  

This paper focuses the attention on three basic research questions: (i) “How can the degree of concordance of 

designer rankings be measured?”, (ii) “For a given set of designer rankings, which aggregation model provides 

the most coherent solution?”, and (iii) “To what extent is the collective ranking influenced by the aggregation 

model in use?”. 

The aim of this paper is to present a novel approach that addresses the above questions in a relatively simple 

and agile way. A detailed description of the methodology is supported by a practical application to a real-life 

case study.  

Keywords: Engineering design, collective decision-making, design teams, preference ranking, collective 

ranking, degree of concordance. 

 

1.   Introduction 

A general problem, which may concern many design contexts, is to aggregate multiple rankings of 

different design alternatives into a collective (social) one. This problem may concern the early design 

stages, in which designers often have conflicting opinions [Fu, Cagan, Kotovsky 2010; Frey et al. 

2009; Hoyle, Chen 2011; Keeney 2009; Weingart et al. 2005].  

Let us consider the case in which m designers (or, more in general, decision-making agents: D1 to 

Dm) formulate their corresponding m preference rankings among n design alternatives (or, more in 

general, objects: O1, O2, O3, etc.). It is assumed that the preference rankings of designers are complete; 

i.e. all designers are able to rank all the alternatives of interest, without omitting any of them.  

Each ranking can be decomposed into paired-comparison statements like O1 > O2, O1 ~ O2, O2 > O1, 

where symbols “>” and “~” respectively mean “strictly preferred to” and “indifferent to”. 
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Additionally, designer rankings – which will hereafter also be referred to as “preference profiles” –

may be more or less concordant with each other. 

The collective ranking is supposed to reflect the m rankings as much as possible, even in the presence 

of diverging preferences. For this reason, it can also be defined as social, consensus or compromise 

ranking [Cook 2006; Herrera-Viedma et al., 2014; Franceschini, Maisano, Mastrogiacomo 2016].  

The aggregation problem of interest may also take into account the importance of designers, which 

could not necessarily be equal for all of them. However, for the purpose of simplicity, in the rest of 

the paper designers will be assumed to be equally important. 

Decision-making problems based on rankings are very diffused in the scientific literature for two 

reasons: (i) rankings are probably the most intuitive and effective way to represent preference 

judgments of design alternatives, and (ii) rankings do not require a common reference scale – neither 

numeric, linguistic or ordinal – to be shared by designers [Yager 2001; Chen et al., 2012]. 

Many approaches have been proposed in the literature to address the problem of aggregating rankings 

by multiple decision-making agents [Arrow 2012, Rayanaud 1986; Franssen 2005; Cook 2006; 

Hazelrigg 1999; Frey et al., 2010; Katsikopoulos 2009; Ladha et al. 2003; Reich 2010]. In general, 

different aggregation models may lead to different collective rankings of the alternatives under 

consideration (social choice) [Arrow and Rayanaud 1986; McComb et al., 2017]. The fact remains 

that it is not easy to identify the model that provides the collective ranking that best reflects the m-

rankings. This paper will try to address this problem. 

In recent years, a long and passionate debate on the applicability and effects of the Arrow's theorem 

on design decisions has characterized the engineering design literature [Arrow 2012, Rayanaud 1986; 

Reich 2010; Hazelrigg 1996, 1999, 2010; Scott and Antonsson 1999; Franssen 2005; Yeo et al. 2004; 

McComb et al. 2017]. In a nutshell, this theorem establishes the impossibility of a generic aggregation 

model to provide a solution (i.e., a collective ranking) that is always fair1. 

In line with the hypotheses of McComb et al. (2017), this paper is concerned with team decisions in 

the early design stages. Since design outlines are not yet well defined at this stage, the debate on the 

most relevant design criteria and methods to quantify/prioritize them is potentially very intense 

[Weingart 2005; Kaldate 2006; McComb et al. 2015; 2017]. Although there is a substantial agreement 

on the criteria that may condition the design process, the selection of design alternatives is generally 

                                                            
1 This concept will be clarified later. 
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driven by the different personal experience of designers [Dwarakanath and Wallace 1995].  

It is then necessary to adopt appropriate aggregation models to “transform” the decisions of individual 

designers into a collective design decision. In this scenario, the Theorem of Arrow finds grounds for 

its application, with some important practical effects [Hazelrigg 1999; Saari and Sieberg 2004; 

Franssen 2005; Jacobs et al. 2014]. The first effect – as the theorem itself shows – is that there is no 

aggregation model that can always satisfy several properties, also known as fairness criteria [Arrow 

2012, Fishburn, 1973a, Nisan et al., 2007, Saari 2011]: 

(i) Unrestricted domain (universality). The aggregation model is defined for problems characterized 

by any number of decision-making agents, any number of alternatives and any composition of 

preference rankings over alternatives. 

(ii) Non-dictatorship. The aggregation model does not simply return the very same preference 

ranking of a specific decision-making agent (i.e., the so-called dictator). 

(iii) Independence of irrelevant alternatives (IIA). The collective preference between alternatives x 

and y must depend solely on the relative preferences between x and y in the individual rankings. 

(iv) (Weak) monotonicity. If any decision-making agent modifies his or her preference ranking by 

promoting a certain alternative, then the collective preference ranking should respond only by 

promoting the same alternative or remaining unchanged.  

(v) Pareto efficiency (unanimity). If all decision-making agents prefer x to y, then the collective 

ranking must also prefer x to y. 

The second effect of the Arrow’s theorem is that one cannot establish ex ante the aggregation model 

that most consistently reflects the preference rankings by decision-making agents. Several 

quantitative attempts of measuring this coherence (or consistency) are discussed in [Chiclana 2002, 

Franceschini and Maisano 2015a; 2017]. We also recall McComb et al. (2017), who hypothesized a 

relationship between the concept of aggregation-model fairness and that of implicit agreement. The 

most coherent aggregation model can generally be identified ex-post, since it may depend on the 

preference profile. 

The third effect of the Arrow’s theorem is that it is very difficult to measure the impact of the 

aggregation model on the collective ranking, for a problem characterized by a certain preference 

profile [Saari, Decision and Elections, 2001 page.13]: “…the winner of an election may more 

accurately reflect the choice of a decision procedure rather than the view and preferences of voters”. 

The scientific literature includes a wide number of aggregation models, which have been analyzed 

extensively from the perspective of different axioms and properties [Arrow, 2012; Fishburn, 1973; 
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Cook, 2006; Saary 2011; Nurmi 2012]. Some researches demonstrate the effectiveness of specific 

aggregation models, even though they do not satisfy some of the Arrow's fairness criteria. For 

instance, Dym, Wood and Scott (2002) showed that, although the Borda aggregation model may not 

satisfy the IIA condition, this rarely affects the most preferred alternatives. In other words, Arrow's 

theorem poses a considerable theoretical problem, but the practical implications are often not so 

worrisome.  

Another research by See and Lewis (2006) proposes a structured approach to avoid severe theoretical 

conflicts. The paper by Katsikopoulos (2009) expressed the need for greater clarity in the discussion 

of design decision models; a distinction between the concepts of coherence and correspondence is 

necessary to structure design activities. Coherence is used to characterize the internal consistency of 

a model, while correspondence refers to the representation of the external performance. Additionally, 

Katsikopoulos (2009) suggested that the arguments by Scott and Antonsson (1999) are rooted in the 

framework of correspondence, while the arguments introduced by Franssen (2005) in that of 

coherence. Jacobs, van de Poel and Osseweijer (2014) recognized several additional issues on the 

concepts of uncertainty, comparability and measurability concerned with aggregation models.  

Considering the above implications of the Arrow's theorem, the choice of the aggregation model 

depends on the specific objective(s) of the decision-making team [Dong et al. 2004; Cagan and Vogel 

2012]. Selecting an adequate aggregation model is not an easy task, since this choice can importantly 

affect the collective ranking [Li et al. 2007; Paulus et al. 2011; Franceschini et al. 2019]. For the 

purpose of example, possible selection strategies could be: 

(i) designers select only the most preferred alternative; 

(ii) designers select the two most preferred alternatives; 

(iii) designers reject the least preferred alternative(s); 

(iv) … 

In this paper, we try to face three basic research questions:  

• “How can the degree of concordance of designer rankings be measured?”;  

• “For a given set of designer rankings, which aggregation model provides the most coherent 

solution2?”; 

• “To what extent, is the collective ranking influenced by the aggregation model in use? 

The remainder of this article is organized into six sections. Sect. 2 introduces a case study concerning 

                                                            
2 I.e., the solution that best reflects designer rankings. 
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the design of an automatic pallet stretch-wrapping machine, which will accompany the theoretical 

description of the proposed methodology. Sect. 3 focuses on the estimation of the concordance of 

designer rankings, presenting some popular aggregation models. Sects. 4 proposes a novel method 

for testing the coherence of the collective ranking with designer rankings, trying to quantify the 

influence of the aggregation model in use. Sect. 5 summarizes the original contributions of this paper, 

practical implications, limitations and suggestions for future research.  

2.   Real-life case study 

The conceptual description of the proposed approach will be accompanied by a practical application 

to a real-life case study, which is illustrated below. Suppose a company designs and manufactures 

automatic machines for stretch-wrapping pallets. Four design concepts (O1 to O4, i.e., the alternatives 

or objects of the problem) of automatic machines have been generated by a team of designers during 

the conceptual design phase (see the short description in Fig.1): 

(O1) conveyorized turntable; 

(O2) non-conveyorized turntable; 

(O3) rotary ring; 

(O4) conveyorized rotary arm. 

(O1) Conveyorized turntable (O2) Non-conveyorized turntable (O3) Rotary ring (O4) Conveyorized rotary arm 

Unlike traditional turntables or rotary 
arms, these machines rotate only the 
carriage itself. Featuring a compact 
design, these machines allow to reduce 
film costs dramatically, since they can 
start and stop the cycle anywhere on 
the load. 

Operators just have to place the pallet 
on the stretch wrapper and press the 
button to begin the automatic cycle. 
These machines eliminate the need for 
operators to get off the forklift to 
stretch wrap pallets and are available 
for both “low profile” and “high 
profile” wrapping operations. 

These machines eliminate the need to 
rotate the pallet being stretch wrapped. 
Heavy or unstable loads can quickly 
and efficiently be wrapped with these 
machines. These machines are most 
commonly used in-line with the rest of 
the packaging line. 

These machines offer a relatively 
flexible and economical stretch-
wrapping solution (i.e., relatively high 
load rate and reasonable weight 
capacity). Featuring a compact design, 
these machines are generally best when 
faced with tight fitting applications. 

 

Fig. 1. Schematic representation and short description of four design concepts of automatic stretch-wrapping machines. 

 

The objective is to evaluate the afore-mentioned design concepts in terms of user friendliness, i.e., a 

measure of the ease of use of a machine, which generally implies a certain level of automation and a 

good user interface [Önüt et al., 2008]. Some of the factors that can positively influence user 
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friendliness are: (i) the ability of a machine to adapt to loads with different mass, (ii) the ability to be 

integrated within various production lines, or (iii) the reduced set-up operations. 

A collective judgment should be obtained by merging the individual (subjective) evaluations of ten 

design engineers (i.e., the decision-making agents of the problem: D1 to D10). The case study actually 

involved a team of designers in an important company based in north-western Italy. For reasons of 

confidentiality, the company is kept anonymous. 

The preference profile provided for the four design concepts is shown in Tab. 1. 

Designer Preference ranking

D1 4321 OOOO   

D2 4321 OOOO   

D3 2431 OOOO   

D4 2341 OOOO   

D5 2341 OOOO   

D6 1423 OOOO   

D7 1423 OOOO   

D8 1324 OOOO   

D9 1324 OOOO   

D10 1324 OOOO   

Tab. 1. Preference profile provided by ten design engineers (D1 to D10) for the four design concepts (O1 to O4). 

 

3.   Concordance of designers 

3.1.   The W coefficient 

The problem of evaluating the degree of concordance/agreement of a set of preference rankings 

(preference profile variability) can be traced back to the so-called problem of m-rankings. In this 

context, Kendall and Smith (1939) proposed the variance of the sum of the rank positions as a measure 

of this concordance. Precisely, a coefficient of concordance 𝑊 can be defined as [Kendall, Smith 

1939; Kendall, 1962, Fishburn, 1973b; Legendre 2005; 2010]: 

𝑊 .                                                                                                                                                 1  

The term S in Eq. (1) corresponds to the observed sum of squares of the deviations of the sums of the 

rank positions with respect to the mean value: 

𝑆 ∑ 𝑅 𝑅 .  (2) 

The term 𝑚 𝑛 𝑛 /12 is the maximum possible value of S, which occurs in the case of complete 

unanimity in the rankings (𝑊 1). 
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The first term 𝑅  in the brackets of eq.(2) is the sum of the rank positions for the i-th object: 

𝑅 ∑ 𝑟 , 3  

in which terms rij represent the rank of object Oi, according to the j-th designer, n being the total 

number of objects and m the total number of rankings. The second term in the brackets in Eq. 2 is the 

mean value of the Ri values: 

𝑅 ∑ 𝑅 . 4  

𝑊 is defined in the dominion [0, 1]; 𝑊 0 indicates the absence of concordance, while 𝑊 1 

indicates the complete concordance (unanimity). By replacing Eqs. (2), (3) and (4) within Eq. (1), the 

following expression can be obtained: 

𝑊
∑

 , (5) 

The coefficient W may be slightly modified if, apart from strict-preference relationships, preference 

rankings also include tied values, characterized by indifference relationships (e.g., O1 ~ O2) (Kendall, 

1962; Legendre, 2010).  

The effect of ties is to reduce the value of W; however, this effect is small unless the number of ties 

is large. To correct for ties, we introduce the following correction factor: 

𝑇 ∑ 𝑡 𝑡 ;      ∀𝑗 1, … , 𝑚,  (6) 

where 𝑡  is the number of tied ranks in the i-th group of tied ranks (where a group is a set of values 

having the same (tied) rank), and 𝑔  is the number of groups of ties in the set of ranks (ranging from 

1 to n) for the j-th designer. Thus, 𝑇  is the correction factor required for the set of ranks related to the 

j-th designer. Note that if there are no tied ranks for the j-th designer, then 𝑇 0. 

With the correction for ties, the formula of W (Eq. (5)) becomes that of 𝑊 :  

𝑊
∑

∑
 , (7) 

where  ∑ 𝑇  is the sum of the values of 𝑇 . 𝑊  is also defined in the dominion [0, 1] 

Returning to the case study concerning the four design concepts of automatic stretch-wrapping 

machines, Tab. 2 shows the calculation of their ranks. 

Since there are no tie-break conditions, we may immediately calculate the coefficient of concordance 

for the m-rankings using Eq. (5):  

𝑊
∙ ∙

0.004 0.4%. (8) 
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Designer Rank positions 

𝑂 𝑂  𝑂 𝑂  

D1 1 2 3 4 

D2 1 2 3 4 

D3 1 4 2 3 

D4 1 4 3 2 

D5 1 4 3 2 

D6 4 2 1 3 

D7 4 2 1 3 

D8 4 2 3 1 

D9 4 2 3 1 

D10 4 2 3 1 

𝑹𝑶𝒊
 25 26 25 24

Tab. 2. Ranks for the four design concepts (O1, O2, O3 and O4), obtained from the designer rankings in Tab.1. 

 

The subscript “(m)” indicates that this indicator is determined by considering the m-rankings of the 

designers. The low value of 𝑊  denotes a very low concordance of the m-designer rankings in the 

evaluation of the four design concepts. Section A.1 (in the Appendix) analyses the W indicator from 

a statistical point of view and provides a practical method for testing its significance. 

3.2.   Choice of the aggregation model 

The choice of the aggregation model usually reflects the strategy of a team of designers. The 

aggregation models are inspired by the need to take into account all information provided by 

designers, ensuring fairness criteria in the treatment of information [McComb et al. 2017]. With 

reference to the case study (see Sect. 2), we now consider four different aggregation models, inspired 

by four corresponding strategies of the design team. 

(i) Best of the best model (BoB or standard plurality vote)  

For each designer, the most preferred design concept is selected. With reference to Tab. 1, 𝑂  

gets 5 preferences, 𝑂  gets 0 preferences, 𝑂  gets 2 preferences and 𝑂  gets 3 preferences. The 

collective ranking is therefore 2341 OOOO   and the preferred design concept is 𝑂 . 

(ii) Best two model (BTW or vote for two)  

For each designer, the two most preferred design concepts are selected. With reference to Tab. 

1, 𝑂  gets 5 preferences, 𝑂  gets 7 preferences, 𝑂  gets 3 preferences and 𝑂  gets 5 preferences. 
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The collective ranking is therefore 3412 ~ OOOO   and the preferred design concept is 𝑂 . In 

this case we observe an equivalence condition between 𝑂  and 𝑂 . 

(iii) Best three model (BTH or vote for three)  

For each designer, the three most preferred design concepts are selected (i.e., the worst solution 

of each designer is not considered). In this case 𝑂  gets 5 preferences, 𝑂  gets 7 preferences, 𝑂  

gets 10 preferences and 𝑂  gets 8 preferences. The collective ranking is therefore 

1243 OOOO   and the preferred design concept is therefore 𝑂 . 

(iv) Borda count model (BC) 

For each rank position a score is assigned [Borda, 1781]: respectively 3 points to the first one, 2 

points to the second, 1 point to the third, and 0 points to the fourth one. With reference to Tab.1, 

we obtain: 

BC 𝑂 5 ∙ 3 0 ∙ 2 0 ∙ 1 5 ∙ 0 15;   BC 𝑂 14     (9) 

BC 𝑂 15;      BC 𝑂 16  

BC 𝑂 , BC 𝑂 , BC 𝑂  and BC 𝑂  being respectively the Borda scores calculated for the four 

design concepts. The collective ranking is therefore 2314 ~ OOOO   and the preferred design 

concept is 𝑂 . Also in this case we observe an equivalence condition between 𝑂  and 𝑂 . 

The four aggregation models reflect different selection strategies, leading to four different collective 

rankings and four corresponding preferred design concepts. Which collective ranking best reflects 

the m-designer rankings? 

From a conceptual point of view, all these models deserve equal dignity, since they are all potentially 

plausible and justifiable. However, the fact remains that they may importantly affect the solution. The 

following section will try to answer the above question. 

Finally, we point out that the four aggregation models considered above can be classified as 

“positional models” and allow to determine a collective ranking in a single round. Alternatively, we 

could have used so-called “multi-round” aggregation models, in which the alternatives can be phased 

out in different rounds [Saari 2011; Bormann and Golder, 2013;]. 

4.   Coherence of the collective ranking 

4.1.   The W(m+1) technique 

This approach follows the conceptual scheme seen in section 3.1. The idea is to analyse the level of 

coherence of the m-designer rankings and the collective ranking resulting from the application of the 
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aggregation model, constructing the new coefficient of concordance 𝑊 . As an example, Table 

3 shows the construction of 𝑊  for the BoB aggregation model. 

Designer Preference 
ranking 

Rank positions 

𝑂  𝑂  𝑂  𝑂  

D1 4321 OOOO   1 2 3 4 

D2 4321 OOOO   1 2 3 4 

D3 2431 OOOO   1 4 2 3 

D4 2341 OOOO   1 4 3 2 

D5 2341 OOOO   1 4 3 2 

D6 1423 OOOO   4 2 1 3 

D7 1423 OOOO   4 2 1 3 

D8 1324 OOOO   4 2 3 1 

D9 1324 OOOO   4 2 3 1 

D10 1324 OOOO   4 2 3 1 

BoB model 2341 OOOO   1 4 3 2 

𝑹𝑶𝒊
  26 30 28 26

Tab. 3. m-rankings and corresponding rank positions of (i) the four design concepts (O1 to O4) formulated by ten designers 
(D1 to D10) (see Table 1), and (ii) the collective ranking obtained through the BoB model. 

 

The overall coefficient of concordance 𝑊  for the BoB model can be obtained by applying Eq. 

(8) to the eleven rankings in Tab. 3: 

𝑊
∙ ∙

0.0182 1.82%    (10) 

We observe that 𝑊  𝑊 , i.e., the overall degree of concordance between the (10 + 1) 

rankings has increased. This output appears reasonable since the collective ranking resulting from the 

BoB model is a “composition” of the 10 previous rankings and is therefore supposed to reflect them 

all. 

Repeating the construction for the other aggregation models (BTW, BTH and BC), results in Table 4 

are obtained. The same table compares the 𝑊  values with the respective 𝑊  value (the same 

for all aggregation models) for the four aggregation models of interest. 

It can be noticed that the Borda Count model obtains the highest value of 𝑊 ; it is therefore the 

aggregation model with the collective ranking that best fits with the m rankings. 
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Aggregation Model 𝑾𝒊
𝒎 𝟏 𝑾 𝒎  

Best of the Best (BoB) 1.82% 0.4% 

Best two (BTW) 0.58% 0.4% 

Best three (BTH) 1.48% 0.4% 

Borda Count (BC) 2.00% 0.4% 

Tab. 4. Wi
(m+1) values for the four aggregation models (i: BoB, BTW, BTW, BC) compared to the relevant W(m) values. 

 

4.2.   Further considerations on the W(m+1) technique 

If designer rankings are very polarized (i.e., they are characterized by a relatively low variability), 

we expect that the output of different aggregation models converge towards a common collective 

ranking. E.g., in the extreme case in which all the m-designer rankings coincide, the four aggregation 

models would converge into that very specific (collective) ranking. 

As a pedagogical example, let us consider a new problem characterized by the set of m-rankings in 

Tab. 6. With reference to Tab. 1, we imagine that the three designers who indicated the ranking 𝑂

𝑂 𝑂 𝑂  (i.e., D8, D9 and D10) converted their preference into the ranking 𝑂 𝑂 𝑂 𝑂 ; 

see the corresponding rank positions on the right hand side of Table 5.   

Designer Preference ranking Rank positions 

𝑂  𝑂  𝑂  𝑂   

D1 4321 OOOO   1 2 3 4 

D2 4321 OOOO   1 2 3 4 

D3 4321 OOOO   1 4 2 3 

D4 4321 OOOO   1 4 3 2 

D5 4321 OOOO   1 4 3 2 

D6 2431 OOOO   4 2 1 3 

D7 2341 OOOO   4 2 1 3 

D8 2341 OOOO   4 2 3 1 

D9 1423 OOOO   4 2 3 1 

D10 1423 OOOO   4 2 3 1 

𝑹𝑶𝒊
  26 30 28 26 

Tab. 5. New m-rankings and corresponding rank positions of the four design concepts (O1 to O4) formulated by ten 
designers (D1 to D10). 

In this case, the 𝑊  is supposed to increase with respect to that of Tab.1, due to the reinforced 

polarization of preferences. Applying Eq. (5), we obtain:  

𝑊
∙ ∙

0.29 29%. (11) 
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Not surprisingly, this value is conspicuously higher than that in Eq. (8). 

Tab. 6 summarizes the collective rankings resulting from the m-rankings in Tab.5, for each (i-th) 

aggregation model and corresponding 𝑊  and 𝑊  values. 

Aggregation Model Collective ranking 𝑾𝒊
𝒎 𝟏 𝑾 𝒎  

Best of the Best (BoB) 𝑂 𝑂 𝑂 ~ 𝑂 32.6% 29% 

Best two (BTW) 𝑂 𝑂 𝑂 𝑂 33.2% 29% 

Best three (BTH) 𝑂 𝑂 𝑂 𝑂 30.6% 29% 

Borda Count (BC) 𝑂 𝑂 𝑂 𝑂 33.5% 29% 

Tab.6. Collective rankings provided by four different aggregation models (BoB, BTW, BTW, BC) for the (m) designer 

rankings reported in Tab.5, and corresponding 𝑊  and 𝑊  values. 

 

Even in this second scenario, the Borda Count model shows the highest coefficient of concordance. 

This is not a general rule, since – when changing the preference profile – the model that best reflects 

it may change. 

In addition, we note that the condition 𝑊 𝑊  holds for each of the four aggregation 

models, when considering both the preference profiles in Tab. 2 and Tab. 5. However, this is not a 

general rule, as shown by the counterexample in Tab. 7. 

Designer Preference ranking Rank positions 

𝑂  𝑂  𝑂  𝑂   

D1 𝑂 𝑂 𝑂 𝑂 1 2 3 4 

D2 𝑂 𝑂 𝑂 𝑂 1 2 3 4 

Collective ranking 
by the H-model 

𝑂 𝑂 𝑂 𝑂 4 3 2 1 

Tab. 7. m-rankings and corresponding rank positions of (i) four design concepts (O1 to O4) formulated by two designers 
(D1, D2), and (ii) the collective ranking obtained through a hypothetical aggregation model (H-model). 

 

Suppose we use a hypothetical aggregation model (H-Model) that provides the following collective 

ranking 𝑂 𝑂 𝑂 𝑂 , which is the opposite to those by the two designers of interest. In this 

case, it can be verified that 𝑊 1, while: 

𝑊
∙ ∙

0.111 11.1%.  (12) 

Although this exercise may seem somewhat implausible, it does show that – from a formal point of 

view – the condition 𝑊 𝑊  does not necessarily hold. 
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The 𝑊 -technique considers the coefficient of concordance 𝑊  as the fulcrum for checking the 

concordance of the m-rankings and the coherence with the collective ranking. The same technique 

can also be applied with other potential coefficients of concordance, such as, for example, the mean 

value of the Spearman coefficient (rho) between the 
𝑚
2  possible pairs of designers [Kendall, 1962]. 

4.3.   Impact of the aggregation models 

This section deals with the problem of measuring the impact of the aggregation model in use on the 

collective ranking. Consistently with the contents of the previous sections, the following synthetic 

indicator can be considered: 

𝑏  . (13) 

It can easily be proved that 𝑏 ∈ 0, ∞ . For a certain set of m-rankings, if 𝑏  ≥ 1, it means that 

the i-th aggregation model provides a somehow coherent collective ranking (positive impact). On the 

contrary, if 𝑏 1, it means that the i-th aggregation model provides a somehow incoherent 

collective ranking (negative impact). 

In practice, for a specific set of m-rankings, 𝑏  allows to identify the most coherent aggregation 

model, i.e., that with: 

𝑏 ∗ 𝑚𝑎𝑥 𝑏            (14) 

By way of example, Table 8 reports the value of  𝑏  for the four discussed aggregation models, 

considering the m-rankings in Tab.6. 

Aggregation Model 𝑾𝒊
𝒎 𝟏 𝑾 𝒎 𝒃𝒊

𝒎

Best of the Best (BoB) 32.6% 29% 1.12

Best two (BTW) 33.2% 29% 1.14

Best three (BTH) 30.6% 29% 1.06

Borda Count (BC) 33.5% 29% 1.16

Tab. 8. bi
(m) values for the four aggregation models of interest, considering the m-rankings in Tab. 6. 

 

In this case, the BC is the aggregation model that produces the collective ranking that best reflects 

the m-rankings.  

To test the significance of an observed value of 𝑏 , one should consider the relevant distribution, 

which arises from the composition of the two distributions of 𝑊  and 𝑊  (see also Sect A.1, 
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in the Appendix). Precisely, one can consider the distribution of 𝑏  in the 𝑛!  possible sets 

of rank positions and use it to reject or accept the hypothesis that designer rankings are concordant or 

not [Kendall 1962].  

As a further example, Tab. 9 shows the value of 𝑏  for the four aggregation models discussed in 

Sect. 3.2, related to the (m) designer rankings in Tab.3. 

Aggregation Model 𝑾𝒊
𝒎 𝟏 𝑾 𝒎 𝒃𝒊

𝒎

Best of the Best (BoB) 1.82% 0.4% 4.55

Best two (BTW) 0.58% 0.4% 1.45

Best three (BTH) 1.48% 0.4% 3.70

Borda Count (BC) 2.00% 0.4% 5.00

Tab.9. bi
(m) values for the four aggregation models of interest, considering the m-rankings in Tab. 3. 

Even in this case, the BC is the aggregation model that produces the collective ranking that best 

reflects the m-rankings. 

In practice, 𝑏 can be used to provide a kind of metric for evaluating the relative impact of two 

compared models. For a certain preference profile, we define as relative impact the ratio 𝑠  between 

the values 𝑏  of two generic models: 

𝑠       (15) 

 As an example (see Tab.9), for BoB e BTW models we obtain: 

𝑠 ,
.

.
3.14         (16) 

The relative impact 𝑠 , 3.14 shows how strongly the BoB model proposes the 𝑂  alternative 

as opposed to the BTW model, which supports the 𝑂  alternative (see section 3.2). 

Let us now analyse in detail the 𝑏  indicator (Eq. 13). The denominator (𝑊 ) depends exclusively 

on the m-rankings, while the numerator (𝑊 ) depends both on the m-rankings and the collective 

ranking. For problems characterized by a relatively large number (m) of rankings, the contribution of 

the collective ranking will therefore tend to have a lower “weight”, i.e., 1/(m+1). 

Moreover, 𝑏  values tend to be higher for problems characterized by relatively discordant m-

rankings (and therefore lower 𝑊  values). For example, the 𝑏  values in Table 9 are significantly 
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higher than those in Tab. 8, as they result from a problem with significantly more discordant m-

rankings and therefore relatively lower 𝑊  values. 

5.   Discussion 

This paper proposed a novel method to support the decisions of teams of designers in early design 

stages, trying to provide a plausible answer to three different research questions: (i) how can the 

degree of concordance of designer rankings be measured? (ii) For a given set of designer rankings, 

which aggregation model provides the most coherent solution? (iii) To what extent is the collective 

ranking influenced by the aggregation model in use? 

The answer to the first research question is represented by the Kendall’s coefficient of concordance 

W, or by other similar multi-rater coefficients of agreement. The next two research questions were 

interpreted as consequences of Arrow’s theorem, when deployed in the context of engineering design. 

In this field, designers are often in contrast on alternative design solutions and it is not easy to decide 

how aggregate the choices of individual designers into a single collective one. The answer to the 

second research question was given by a special use of the coefficient W. This coefficient of 

concordance is applied not only to m-rankings but also to the collective ranking produced by the 

aggregation method of interest. The new indicator W(m+1) allows a quick comparison between 

alternative aggregation models, if they are applied to the same specific problem, describing their 

“effectiveness”. 

For the third research question, paraphrasing Arrow’s theorem, it is difficult to understand if and to 

what extent a certain aggregation model impact on the collective ranking. A practical answer is given 

by the 𝑏  indicator, which depicts the ability of a certain aggregation model to provide a plausible 

synthesis. 𝑏 can also be used to provide a quantitative metric for evaluating the relative impact of 

different models. 

Having said that, let us now consider the proposed approach in its entirety. This approach is easily 

implementable and, with few additional adjustments, can also be applied to problems including 

partial preference rankings [Franceschini, Maisano 2018].  

The main limitations of the proposed approach are: 

 the method does not consider nor the (possible) uncertainty in designer rankings, neither possible 

incompleteness in preference rankings; 

 the method allows only an ex-post analysis of the impact of aggregation models.  

Regarding the future, we plan to develop an interactive on-line tool for supporting the activity of 

design teams. In addition, this tool will be used for more structured problems in the field of design 
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for manufacturing and quality engineering/management (e.g. integrating it with the Quality Function 

Deployment and other design support tools) [Olewnik, Lewis 2008; Franceschini, Maisano, 

Mastrogiacomo 2015b; 2015c; Chen et al., 2017]. Finally, we plan to consider problems in which 

designers may have a different (ordinal or cardinal) weight, for example due to a different design 

experience. 
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Appendix 

A.1 Statistical meaning of W  

This subsection analyses the statistical significance of W. In general, the W distributions are available 

in tabular terms for small values of m and n [Kendall, 1962]. For higher values, the Fisher distribution 

can be used: 

F ∙
 ,  (A.1) 

with parameters ν  and ν  defined respectively as: 

𝜈 𝑛 1

𝜈 𝑚 1 𝑛 1
 . (A.2) 

When n > 7, 𝑊  can be described by a chi-square distribution 𝜒 𝑚 𝑛 1 𝑊 . 𝜒  is 

distributed as a 𝜒  with 𝜈 𝑛 1 degrees of freedom. 

For example, considering the data in Tab.6, where 𝑚 10 designers and 𝑛 4 design concepts, 

𝑊 0.29. Applying Eq. (8), it can be obtained: 

F ∙ .

.
3.67,                                                                                                                    (A.3)  

The degrees of freedom are respectively: 

ν 4 1 2.8 3

ν m 1 n 1 25.2 25
  (A.4) 
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From the tables of the Fisher distribution for a significance of 5%, it is obtained F %; ; 2.99. 

Since F F %; ; , the significance of the coefficient of concordance for the preference profile in 

Tab.6 is confirmed. 
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