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Two boundary integral equation methods for linear
elastodynamics problems on unbounded domains ∗

S. Falletta†, G. Monegato‡, L. Scuderi§

Abstract

We consider (transient) 3D elastic wave propagation problems in unbounded isotropic ho-
mogeneous media, which can be reduced to corresponding 2D ones. For their solution, we
propose and compare two boundary integral equation approaches, both based on the coupling
of a discrete time convolution quadrature with a classical space collocation discretization. In
the first approach, the PDE problem is preliminary replaced by the equivalent well known (vec-
tor) space-time boundary integral equation formulation, while in the second, the same PDE is
replaced by a system of two (coupled) wave equations, each one of which is then represented
by the associated boundary integral equation. The construction of these two approaches is
described and discussed. Some numerical testing are also presented.

KEY WORDS: elastic wave propagation; space-time boundary integral equations; discrete
convolution quadrature; collocation method.

1 Introduction

In this paper we consider (transient) 3D elastic wave propagation problems in unbounded
isotropic homogeneous media, which can be reduced to corresponding 2D ones. This is the
case, for example, of problems defined on the exterior of a bounded rigid domain, which are
invariant in one of the cartesian directions.

For their solution, in the next section we first apply a classical space-time boundary integral
formulation approach (see, for example, [4, 18]), which is then discretized by combining a
discrete time convolution quadrature with a classical space collocation method (see [7, 8]).
Approaches of this type, with the collocation discretization replaced by a Galerkin one, have
been already used by several authors to solve 3D elastodynamic interior problems (see, for
example, [10, 2, 13]); for 2D problems see [17].
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In Section 3, by applying a classical Helmholtz decomposition, we split the elastic (vector)
equation into a couple of scalar wave equations, describing, respectively, the propagation of
P -waves and S-waves. The two equations are coupled by the problem Dirichlet boundary
conditions. This splitting has been used in [3] to solve an interior problem by a finite element
method. Instead, here the two aforesaid scalar equations are reformulated in terms of their
associated space-time BIE representations, which are then discretized by the corresponding
time convolution quadratures and a space collocation method. This approach, inherently
allows to include P - and S-wave sources.

In Section 4 we perform some testing and comparison on the two approaches.

2 The standard BIE formulation for elastodynamics

Because of the assumptions we have made in the introduction, we define by Ωi ⊂ R2 an open,
bounded and rigid domain, whose boundary Γ is assumed to be a closed and smooth (at least
C3-continuous) curve, or the union of a finite number of separated domains of this type. Then,
we set Ωe = R2 \ Ωi and Ωe = R2 \ Ωi.

The linear elastodynamics problem that characterizes small variations of a displacement
field u(x, t) = (u1(x, t), u2(x, t)), x = (x1, x2) in a homogeneous isotropic elastic medium Ωe,
caused by a body force f , initial conditions u0,v0 locally supported and a Dirichlet datum g,
is defined by the following system:

ρ
∂2u

∂t2
(x, t)− (λ+ µ)∇(divu)(x, t)− µ∇2u(x, t) = f(x, t) (x, t) ∈ Ωe × (0, T )

u(x, t) = g(x, t) (x, t) ∈ Γ× (0, T )

u(x, 0) = u0(x) x ∈ Ωe

ut(x, 0) = v0(x) x ∈ Ωe,

(1)

where ρ > 0 is the constant material density, λ > 0 and µ > 0 are the Lamé constants.
The time-domain boundary integral equation (TDBIE) for the displacement u(x, t) of Prob-

lem (1) with f = (f1, f2), g = (g1, g2), u0 = (u1,0,u2,0) and v0 = (v1,0, v2,0), is formulated in a
usual manner as

2∑
`=1

∫ t

0

∫
Γ
U∗i`(x− y, t− s)t`(y, s) dΓyds −

2∑
`=1

∫ t

0

∫
Γ
T ∗i`(x− y, t− s)u`(y, s) dΓyds

+Iui,0(x, t) + Ivi,0(x, t) + Ifi(x, t) =

 ui(x, t) x ∈ Ωe (2a)

1

2
ui(x, t) x ∈ Γ (2b)

where U∗i` and T ∗i`, i = 1, 2, are the displacement and traction fundamental solutions, respec-
tively, and t` is the `-component of the traction vector t associated with u. The expression of
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U∗i` and T ∗i` can be found in [18], while the volume integrals are defined by

Iui,0(x, t) :=
2∑
`=1

∂

∂t

∫
Ωe
U∗i`(x− y, t)u`,0(y, t)dy

Ivi,0(x, t) :=
2∑
`=1

∫
Ωe
U∗i`(x− y, t)v`,0(y, t)dy

Ifi(x, t) :=

2∑
`=1

∫ t

0

∫
Ωe
U∗i`(x− y, t− s)f`(y, s)dyds.

(3)

The details of the TDBIE reformulations (2a)-(2b) of Problem (1) can be found, for example,
in [17, 4].

In this paper we assume that the problem data satisfy the smoothness and compatibility
conditions which guarantee the solution u(x, t) to be at least C2 continuous in Ωe × [0, T ].

2.1 Numerical resolution of the standard TDBIE formulation

In this section, we describe the numerical procedure we adopt to solve (2b) in the unknowns t`,
` = 1, 2, being u` = g` known on Γ. Once the solution t = (t1, t2) is retrieved, the displacement
u(x, t) is computed at any exterior point x of Ωe and at any time t by using (2a).

For the solution of (2b), we consider the numerical approach which combines the time
integral discretization by using a Lubich second-order time convolution quadrature (see [11]),
recalled in the Appendix, with a (continuous) piecewise linear space collocation method.

2.1.1 Time discretization

We consider a uniform partition of the interval [0, T ] into N steps of equal length ∆t = T/N
and we collocate equations (2b) at the time instants tn = n∆t, n = 0, . . . , N . After having
exchanged the order of integration, we approximate the time integrals by means of (A1) (see
Appendix for details). Then, setting Û∗i`(r)) := Û∗i`(r, s), T̂

∗
i`(r)) := T̂ ∗i`(r, s), we obtain the

following integral equations on Γ: for i = 1, 2 and n = 0, . . . , N

2∑
`=1

n∑
j=0

∫
Γ
ωn−j(∆t; Û

∗
i`(r)) tj`(y) dΓy =

1

2
gni (x) +

2∑
`=1

n∑
j=0

∫
Γ
ωn−j(∆t; T̂

∗
i`(r)) gj`(y) dΓy

− Iui,0(x, tn)− Ivi,0(x, tn)− Ifi(x, tn)

(4)

in the unknowns tn` (x) ≈ t`(x, tn), with r = ‖x − y‖. In (4) ωn−j(∆t; Ŵ
∗
i`(r)) denotes the

quadrature coefficient associated with the Laplace transform of the convolution kernel W ∗i` =
U∗i`, T

∗
i`, which is then approximated by formula (A3).

The expressions of the Laplace transforms Ŵ ∗i`, involved in (A3), can be found in [4] and
are reported here for completeness. These are:

Û∗i`(r, s) =
1

2πρv2
S

(
ψ(r, s)δi` − χ(r, s)r,ir,`

)
(5)

T̂ ∗i`(r, s) =
1

2π

{[
∂ψ

∂r
(r, s)− χ(r, s)

r

](
δi`
∂r

∂n
+ r,`ni

)
− 2

χ(r, s)

r

(
r,in` − 2r,ir,`

∂r

∂n

)
−2

∂χ

∂r
(r, s)r,ir,`

∂r

∂n
+

(
v2
P

v2
S

− 2

)[
∂ψ

∂r
(r, s)− ∂χ

∂r
(r, s)− χ(r, s)

r

]
r,in`

}
,

(6)
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where r,i := ∂yir, δi` is the Kronecker delta and vP , vS denote the so-called P - and S-wave
speeds defined by (see Section 3)

vP =

√
λ+ 2µ

ρ
, vS =

√
µ

ρ
. (7)

The functions ψ and χ in (5) and (6) are defined as follows:

ψ(r, s) = K0

(
rs

vS

)
+
(vS
rs

)[
K1

(
rs

vS

)
− vS
vP
K1

(
rs

vP

)]
, (8)

χ(r, s) = K2

(
rs

vS

)
−
(
vS
vP

)2

K2

(
rs

vP

)
, (9)

where K0, K1 and K2 are the second-kind modified Bessel functions of order 0, 1 and 2,
respectively.

By using the relations K ′0(z) = −K1(z), K ′1(z) = −K0(z) − 1/zK1(z) and K ′2(z) =
−2/zK2(z)−K1(z), easy calculations yield (see [9])

∂ψ

∂r
(r, s) = −1

r

[
χ(r, s) +

rs

vS
K1

(
rs

vS

)]
(10)

and
∂χ

∂r
(r, s) = −1

r

[
rs

vS
K1

(
rs

vS

)
−
(
vS
vP

)2 rs

vP
K1

(
rs

vP

)
+ 2χ(r, s)

]
. (11)

2.1.2 Space discretization

In order to describe the space discretization, we assume that the boundary Γ is defined, for
simplicity, by a global (C3-continuous) parametric representation

x = η(ϑ) = (η1(ϑ), η2(ϑ)), ϑ ∈ [0, 1]. (12)

After having introduced the parametric representation (12), hence reduced the integration
on Γ into the equivalent one defined on the parametrization interval [0, 1], we apply a nodal
collocation boundary element method with piecewise linear basis functions {Nk}M+1

k=1 associated

to a uniform partition {ϑk}M+1
k=1 of [0, 1].

By approximating the unknown functions tn` (x), ` = 1, 2, for x ∈ Γ by

tj`(η(ϑ)) ≈
M+1∑
k=1

tj`,kNk(ϑ), (13)

we end up with the following block lower triangular Toeplitz system

2∑
`=1

n∑
j=0

Un−j
i` tj` =

1

2
gni +

2∑
`=1

n∑
j=0

Tn−j
i` gj` − Inui,0 − Invi,0 − Infi =: bni , i = 1, 2 (14)

in the unknowns tn` = (tn`,1, . . . , t
n
`,M+1)T , with ` = 1, 2 and n = 0, . . . , N . The entries of the

matrices Un
i` and Tn

i` in (14) are

(Un
i`)m,k =

1

2π

%−n

L

L−1∑
l=0

(∫ 1

0
Û∗i` (rm, z)Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L (15)
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and

(Tn
i`)m,k =

1

2π

%−n

L

L−1∑
l=0

(∫ 1

0
T̂ ∗i` (rm, z)Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L , (16)

where z := γ(%eı̇l2π/L)/∆t, rm = ‖η(ϑm)−η(ϑ)‖, being ϑm, m = 1, . . . ,M + 1, the collocation
points.

In matrix form, the solution of system (14) at each time instant t = tn is determined by
solving the following 2× 2 block linear systemU0

11 U0
12

U0
21 U0

22

tn1

tn2

 = −
n−1∑
j=0

Un−j
11 Un−j

12

Un−j
21 Un−j

22

tj1

tj2

+

bn1

bn2

 . (17)

for n = 0, . . . , N .

2.1.3 Efficient computation of the matrix elements

In order to compute accurately the integrals appearing in (15) and (16), it is important to
make some preliminary remarks on the behaviour of the involved integrand functions.

We start by detailing the numerical procedure to compute the matrix entries of Un
i`. To

this aim, we rewrite (8) as follows

ψ(r, s) = K0

(
rs

vS

)
+ ψ1(r, s), (18)

where

ψ1(r, s) :=
(vS
rs

)
K1

(
rs

vS

)
−
(
vS
vP

)2 (vP
rs

)
K1

(
rs

vP

)
.

We recall the series expansion of the Bessel function K0 appearing in (18) (see [1] formula
(9.6.13)):

K0(z) = −
(

ln
z

2
+ γ
)
I0(z) +

∞∑
k=1

ak

(
z2/4

)k
(k!)2

I0(z) =
∞∑
k=0

(
z2/4

)k
(k!)2

, a1 = 1, ak+1 = ak +
1

k + 1
,

(19)

γ = 0.5772156649... being the well known Euler’s constant. Formula (19) highlights the log-
behaviour of the first term in ψ for small values of z. Moreover, the remaining term ψ1 in (18)
involves two functions of the form K1(z)/z which, separately, are hypersingular. However,
these hypersingularities are only apparent because, by properly manipulating the expressions
therein, the hypersingularities cancel each other out and the overall sum has only a log-
singularity. Indeed, by using the series expansion of the Bessel function K1(z) (see [1] formula
(9.6.11))

K1(z) =
1

z
+ log

(z
2

) z
2

+
z

2

{
log
(z

2

) ∞∑
k=1

(z2/4)k

k!(k + 1)!
− 1

2

∞∑
k=0

[Ψ(k + 1) + Ψ(k + 2)]
(z2/4)k

k!(k + 1)!

}
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with Ψ(k) = −γ +

k−1∑
n=1

1

n
defined by (6.3.2) in [1], easy calculations yield

ψ1(r, s) =
1

2

[
log

(
rs

2vS

)
−
(
vS
vP

)2

log

(
rs

2vP

)]
+

1

2

[
R

(
rs

vS

)
−
(
vS
vP

)2

R

(
rs

vP

)]
(20)

where

R(z) = −1

2
[Ψ(1) + Ψ(2)] +

∞∑
k=1

{
log
(z

2

)
− 1

2
[Ψ(k + 1) + Ψ(k + 2)]

}
(z2/4)k

k!(k + 1)!
. (21)

Therefore, by taking into account (19), (20) and (21), we can state that the overall behaviour
of the function ψ in (18) is of log-type.

For what concerns the expression of χ in (9), we remark that K2(z) is hypersingular at
z = 0. However, by using the relation K2(z) = K0(z) + 2K1(z)/z, we can rewrite χ as follows:

χ(r, s) = K0

(
rs

vS

)
−
(
vS
vP

)2

K0

(
rs

vP

)
+ 2ψ1(r, s), (22)

where some log-singularities formally appear. However these cancel each other out after in-
serting in (22) the series expansions (19) and (20). Indeed we obtain:

χ(r, s) = γ

[(
vS
vP

)2

− 1

]
+R

(
rs

vS

)
−
(
vS
vP

)2

R

(
rs

vP

)
+R1

(
rs

vS

)
−
(
vS
vP

)2

R1

(
rs

vP

)
, (23)

where

R1(z) =
∞∑
k=1

{
−
[
log
(z

2

)
+ γ
]

+ ak

} (z2/4)k

(k!)2
. (24)

Therefore, we can conclude that actually the function χ tends to zero as z → 0.

For what concerns the computation of the entries of the matrices Tn
i`, by taking into account

(10) and (11), we can rewrite (6) as follows:

T̂ ∗i`(r, s) =
1

2π

{[(
∂ψ

∂r
(r, s)− χ(r, s)

r

)
δi` +

(
4
χ(r, s)

r
− 2

∂χ

∂r
(r, s)

)
r,ir,`

]
∂r

∂n

+

[
∂ψ

∂r
(r, s)− χ(r, s)

r

]
r,`ni

+

[(
v2
P

v2
S

− 2

)(
∂ψ

∂r
(r, s)− ∂χ

∂r
(r, s)− χ(r, s)

r

)
− 2

χ(r, s)

r

]
r,in`

}
=(T1)i`(r, s) + (T2)i`(r, s)

(25)

where

(T1)i`(r, s) :=
1

2π

{
−
[
2χ(r, s) +

rs

vS
K1

(
rs

vS

)]
δi`

+

[
8χ(r, s) + 2

rs

vS
K1

(
rs

vS

)
− 2

(
vS
vP

)2 rs

vP
K1

(
rs

vP

)]
r,ir,`

}
1

r

∂r

∂n

(26)
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and

(T2)i`(r, s) :=− 1

2π

{[
2χ(r, s) +

rs

vS
K1

(
rs

vS

)]
r,`ni

+

[
2χ(r, s) +

rs

vP
K1

(
rs

vP

)
− 2

(
vS
vP

)2 rs

vP
K1

(
rs

vP

)]
r,in`

}
1

r
.

(27)

Noting that ∂r/∂n ∼ r for r → 0, and recalling the previous statements, the term (T1)i`
turns out to be integrable in the classic sense. On the contrary, the term (T2)i` has a singularity
of the type r−1 as r → 0; thus the corresponding integral has to be defined in the Cauchy
principal value sense and properly treated.

Because of the above remarks, to compute the matrix entries (Un
i`)m,k and (Tn

i`)m,k we
proceed as follows. When rm is smaller than a prescribed tolerance εm, to efficiently compute
the integrals having the kernels Û∗i` and T̂ ∗i`, we have first to take into account the behaviours
of the kernel single components given in (8)–(11) and, using the series expansions of the latter,
cancel their apparent higher order singularities. After this analytic cancelation, the remaining
singularities are of the type log rm for Û∗i` and r−1

m for T̂ ∗i`.
To compute the integrals having the log term, we apply the very simple and efficient

polynomial smoothing technique proposed in [15] and [16], coupled with a ν-point Gauss-
Legendre quadrature rule. The series in (21) and (24) are truncated to k = N0, for a suitable
N0. In the simpler case where rm is larger than the prescribed tolerance εm, to compute the
integrals in (15) we directly apply to them the above chosen ν-point Gauss-Legendre rule; the
evaluation of their kernel functions are performed using directly expressions (8)–(11).

For what concerns the integrals in (16), by taking into account the behaviour of T̂ ∗i` given by
(25)–(27), the integrals containing the regular terms (T1)i`, and (T2)i` for k 6= m, are computed
by the ν-point Gauss-Legendre rule. On the contrary, for the evaluation of the matrix elements
defined by (16) with k = m, and in particular those having the kernel singular component T2

(see (27)), we proceed as follows. First we split the integration interval in two parts∫ 1

0
− (T2)i` (rm, s)Nm(ϑ) ‖η′(ϑ)‖dϑ =

(∫ ϑm

ϑm−1

= +

∫ ϑm+1

ϑm

=

)
fi` (ϑ)

rm
dϑ, rm = ‖η(ϑm)− η(ϑ)‖

where fi`(ϑ) = (T2)i` (rm, s)Nm(ϑ) ‖η′(ϑ)‖rm denotes the smooth part of the integrand func-
tion; then, following [14], we compute the hypersingular integrals as follows:∫ ϑm

ϑm−1

fi` (ϑ) (ϑm − ϑ)/rm − f−i`
ϑm − ϑ

dϑ + f−i` log(ϑm − ϑm−1),

(28)∫ ϑm+1

ϑm

fi` (ϑ) (ϑ− ϑm)/rm − f+
i`

ϑ− ϑm
dϑ + f+

i` log(ϑm+1 − ϑm),

with f±i` = ± limϑ→ϑ±m fi` (ϑ) (ϑ− ϑm)/rm. Finally, the regular integrals in (28) are computed
by using the same ν-point Gauss-Legendre rule already used for the preceding integrals.

Further details on the choice of the number of quadrature points ν and on the parameters
εm and N0 are given in Section 4.

Remark 2.1 We recall that (see [8]) the efficient and accurate evaluation of all the integrals
required by the proposed method is a key ingredient for its success. In particular, the more
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accurate is the integral evaluation, the larger is the length of the time integration interval that
one can choose, whenever this is needed (see Example 3).

We further note that once the BIE has been solved, the (unknown) u(x, t) is evaluated
at a point x ∈ Ωe by using its representation (2a), whose kernels are all smooth functions.
However, for x very closed to the boundary Γ, these kernels have quasi-singularities that have
to be properly treated.

3 A novel approach

It is well-known (see [5]) that under the assumptions we have previously made on the domain
boundary Γ and on the problem data, by taking first the divergence and then the curl of
the elastodynamic equation in R3, we can always replace the unknown displacement by two
unknown potentials, the first scalar and the second vectorial, ϕP and ϕS , solutions of the
following two wave equations:

∂2ϕP
∂t2

(x, t)− v2
P∇2ϕP (x, t) =

1

ρ
fP (x, t)

∂2ϕS
∂t2

(x, t)− v2
S∇2ϕS(x, t) =

1

ρ
fS(x, t),

(29)

where f = ∇fP + curl fS and u = ∇ϕP + curl ϕS =: uP + uS . The unknowns ϕP and ϕS
are called Primary (or longitudinal) and Secondary (or transverse) waves, since, being always
vP > vS , the first travel faster. The vector fields uP ,uS denote the corresponding displacement
components.

This is the well-known Helmholtz decomposition of a vector field, which is used in many
applications of Physics. Formulation (29) is of particular interest, for example, when the
problem source is a P -wave or a S-wave, and the knowledge of the propagation of the P - and
S-waves generated by this source is required. However, this approach requires corresponding
boundary conditions for system (29), which must couple the two wave equations. This is the
major issue for the application of this alternative approach. For example, when the interior
domain Ωi is a cavity, a null traction must be imposed on Γ. But this means to use the
representation of the traction in terms of ϕP and ϕS , which involves the evaluation of all
second order partial derivatives of the latter two functions, a computation that turns out to
be costly.

In the 2D case mentioned in the first paragraph of the introduction, after defining the new
operators

curl w =

(
∂x2w
−∂x1w

)
, curlu = ∂x1u2 − ∂x2u1,

the following alternative expression of (1) is obtained (see [3]):


ρ
∂2u

∂t2
(x, t)− (λ+ 2µ)∇(divu)(x, t) + µ curl (curlu)(x, t) = f(x, t), (x, t) ∈ Ωe × (0, T )

u(x, t) = g(x, t) (x, t) ∈ Γ× (0, T )

u(x, 0) = u0(x) x ∈ Ωe

ut(x, 0) = v0(x) x ∈ Ωe.

(30)
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Note that this new problem representation is the 2D analogue of the corresponding 3D one
we are considering in this paper.

In the same paper [3], by proceeding as in the 3D case, and taking into account the identities

−∇2u = −div (∇u) = curl (curlu), div (curlu) = 0, curl (∇u) = 0, (31)

the following decoupled equations have then been obtained:
∂2ϕP
∂t2

(x, t)− v2
P∇2ϕP (x, t) =

1

ρ
fP (x, t)

∂2ϕS
∂t2

(x, t)− v2
S∇2ϕS(x, t) =

1

ρ
fS(x, t)

(32)

where now also ϕS is a scalar function and f = ∇fP + curl fS .
The two equations in (32) are however coupled on the boundary Γ by the problem Dirichlet

condition. This takes the new form

∇ϕP + curlϕS = g on Γ. (33)

With reference to the domain Ωi, we introduce along Γ, anti-clockwise oriented, the ingoing
unit normal vector n = (n1, n2)T and the corresponding unit tangent vector τ = (n2,−n1)T ,
so that the identities

∂φ

∂n
= ∇φ · n, ∂φ

∂τ
= ∇φ · τ

hold on Γ for any smooth enough scalar function φ.
Following [3], by applying the scalar products, first by n and then by τ , to both sides of

(33), hence using the following identities:

curlφ · n = −∂φ
∂τ

, curlφ · τ =
∂φ

∂n
on Γ,

the relations
∂ϕP
∂n
− ∂ϕS

∂τ
= g · n, ∂ϕS

∂n
+
∂ϕP
∂τ

= g · τ on Γ (34)

are obtained.
Finally, after setting

ϕP,0(x) := ϕP (x, 0), ϕS,0(x) := ϕS(x, 0)
ϕ̄P,0(x) := ∂tϕP (x, 0), ϕ̄S,0(x) := ∂tϕS(x, 0)

(35)

and decomposing the initial data u0, v0 and the Dirichlet datum as follows

u0(x) = ∇ϕP,0(x) + curlϕS,0(x)
v0(x) = ∇ϕ̄P,0(x) + curl ϕ̄S,0(x)

(36)

g(x, t) = ∇gP (x, t) + curl gS(x, t), (37)

9



we obtain that the elastodynamics problem (1) is formally equivalent (see [3]) to the following
potentials problem:

∂2ϕP
∂t2

− v2
P∇2ϕP =

1

ρ
fP (x, t) ∈ Ωe × (0, T ) (38a)

∂2ϕS
∂t2

− v2
S∇2ϕS =

1

ρ
fS (x, t) ∈ Ωe × (0, T ) (38b)

∂ϕP
∂n

=
∂ϕS
∂τ

+ g · n=:
∂ϕS
∂τ

+ gn (x, t) ∈ Γ× (0, T ) (38c)

∂ϕS
∂n

= −∂ϕP
∂τ

+ g · τ=: −∂ϕP
∂τ

+ gτ (x, t) ∈ Γ× (0, T ) (38d)

ϕP (x, 0) = ϕP,0(x) x ∈ Ωe (38e)

ϕS(x, 0) = ϕS,0(x) x ∈ Ωe (38f)

∂ϕP
∂t

(x, 0) = ϕ̄P,0(x) x ∈ Ωe (38g)

∂ϕS
∂t

(x, 0) = ϕ̄S,0(x) x ∈ Ωe. (38h)

Note that, if we consider the Helmholtz decomposition (37) of the datum g, the functions gn
and gτ are given by

gn(x, t) =
∂gP
∂n

(x, t)− ∂gS
∂τ

(x, t)

gτ (x, t) =
∂gP
∂τ

(x, t) +
∂gS
∂n

(x, t).

The novel approach we propose to solve elastodynamic problems of form (1) is based on
the TDBIE formulation of the above system (38a)-(38h). To this end, we start by recalling
the expression of the fundamental solution of the 2D scalar wave equation, related to the
propagation of a planar wave travelling with speed c:

∂2ϕ

∂t2
(x, t)− c2∇2ϕ(x, t) = f̃(x, t). (39)

It is well known that the fundamental solution of (39) is given by

G̃(x, t) =
1

2πc2

H

(
t− ‖x‖

c

)
√
t2 − ‖x‖

2

c2

, (40)

and satisfies the equation

∂2G̃

∂t2
(x, t)− c2∇2G̃(x, t) = δ(x)δ(t).

Proceeding as in [7] and setting G(x, t) := c2G̃(x, t), the following TDBIE for the exterior
problem associated to (39) with initial condition ϕ(·, 0) = ϕ0(·) and initial velocity ϕt(·, 0) =
ϕ0(·) can be derived:∫ t

0

∫
Γ
G(x− y, t− s)∂nϕ(y, s) dΓyds −

∫ t

0

∫
Γ
∂nG(x− y, t− s)ϕ(y, s) dΓyds

+
1

c2

∂

∂t

∫
Ωe
G(x− y, t)ϕ0(y, t)dy +

1

c2

∫
Ωe
G(x− y, t)ϕ0(y, t)dy

10



+
1

c2

∫ t

0

∫
Ωe
G(x− y, t− s)f̃(y, s)dyds =

 ϕ(x, t) x ∈ Ωe (41a)

1

2
ϕ(x, t) x ∈ Γ. (41b)

Therefore, by applying this latter TDBIE representation to both equations (38a) and (38b),
and by considering the coupling relations on the boundary Γ (38c) and (38d), we can analo-
gously reformulate (38a)–(38h) as follows:

1

2
ϕP (x, t) + (KPϕP )(x, t)− (VP (∂τϕS))(x, t)

= (VP gn)(x, t) + IϕP,0(x, t) + Iϕ̄P,0(x, t) + IfP (x, t), x ∈ Γ

1

2
ϕS(x, t) + (KSϕS)(x, t) + (VS(∂τϕP ))(x, t)

= (VS gτ )(x, t) + IϕS,0(x, t) + Iϕ̄S,0(x, t) + IfS (x, t), x ∈ Γ

(42)

where

(V?ψ)(x, t) :=

∫ t

0

∫
Γ
G?(x− y, t− s)ψ(y, s) dΓyds

(K?λ)(x, t) :=

∫ t

0

∫
Γ
Gn,?(x− y, t− s)λ(y, s) dΓyds

(43)

are the well known single and double layer operators associated to the scalar wave equation,
having set ? := P, S and Gn,? := ∂nG?. Moreover

Iϕ?,0(x, t) :=
1

v2
?

∂

∂t

∫
Ωe
G?(x− y, t)ϕ?,0(y, t)dy

Iϕ̄?,0(x, t) :=
1

v2
?

∫
Ωe
G?(x− y, t)ϕ̄?,0(y, t)dy

If?(x, t) :=
1

ρv2
?

∫ t

0

∫
Ωe
G?(x− y, t− s)f?(y, s)dyds.

(44)

are the volume integrals (38e)-(38h) due to the initial data and the body force. In (43) and
(44), the fundamental solutions are GP (x, t) := v2

P G̃P (x, t) and GS(x, t) := v2
SG̃S(x, t), where

G̃P and G̃S are given by (40), with c replaced by the velocities vP and vS of the P - and
S-waves, respectively.

Therefore the potentials problem (38a)-(38h), reformulated in terms of TDBIEs, consists
in finding the two scalar functions

ϕP : Γ× [0, T ]→ R and ϕS : Γ× [0, T ]→ R

which satisfy the TDBIE system (42). Note that all the data of this new formulation are one
order smoother than the corresponding ones in (1).

Remark 3.1 Once the functions ϕP and ϕS are known, the solution u = (u1,u2) of Problem
(1) in Ωe is retrieved from the expression u = ∇ϕP +curlϕS. Indeed, by differentiating (41a)
with respect to xi, for i = 1, 2, we obtain

u1(x, t) = ∂x1ϕP (x, t) + ∂x2ϕS(x, t)

u2(x, t) = ∂x2ϕP (x, t)− ∂x1ϕS(x, t),
(45)
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where

∂xiϕP (x, t) =−
∫ t

0

∫
Γ
∂xiGn,P (x− y, t− s)ϕP (y, s) dΓyds

+

∫ t

0

∫
Γ
∂xiGP (x− y, t− s)∂τϕS(y, s) dΓyds

+ ∂xi

[
(VP gn)(x, t) + IϕP,0(x, t) + Iϕ̄P,0(x, t) + IfP (x, t)

] (46)

and

∂xiϕS(x, t) =−
∫ t

0

∫
Γ
∂xiGn,S(x− y, t− s)ϕS(y, s) dΓyds

−
∫ t

0

∫
Γ
∂xiGS(x− y, t− s)∂τϕP (y, s) dΓyds

+ ∂xi

[
(VS gτ )(x, t) + IϕS,0(x, t) + Iϕ̄S,0(x, t) + IfS (x, t)

]
.

(47)

According to Remark 3.2 below, the behaviour of the kernels ∂xiGn,?(r, t − s) as r → 0 is
O(r−2), while that of the remaining two kernels is O(r−1). Thus, when x is very close to the
boundary Γ, also these four kernels have quasi-singularities that need to be properly treated.

As we have remarked at the beginning of this section, the major issue for the application
of this alternative approach is the determination of the (coupling) boundary conditions of the
new problem formulation. For the case where the Dirichlet condition considered in this section
is replaced by the null traction, see [12].

3.1 The numerical resolution of the new TDBIE system

Following [7], for the numerical solution of system (42), we propose a numerical approach which
combines the time integral discretization by using a Lubich second-order time convolution
quadrature (see [11]) with a (continuous) piecewise linear space collocation method.

3.1.1 Time discretization

We start by introducing the time integral discretization by means of the chosen Lubich con-
volution quadrature. To this end, we first split the interval [0, T ] into N steps of equal length
∆t = T/N and collocate equations (42) at the times tn = n∆t, n = 0, . . . , N . After having
exchanged the order of integration, the time integrals appearing in the definition of the opera-
tors V? and K? in (43) are discretized by means of the Lubich convolution quadrature formula
(A1) associated with the BDF2 method:

(V?ψ)(x, tn) ≈
n∑
j=0

∫
Γ
ωn−j (∆t;G?(r))ψ

j(y) dΓy

(K?λ)(x, tn) ≈
n∑
j=0

∫
Γ
ωn−j (∆t;Gn,?(r))λ

j(y) dΓy

(48)

for n = 0, . . . , N , where we have set ψj(y) := ψ(y, tj) and λj(y) := λ(y, tj).
In (48) the coefficients ωn(∆t; J?(r)), J? = G?, Gn,? denote the quadrature weights associ-

ated to the convolution kernels J?, which are approximated by formula (A3).
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The Laplace transforms Ĵ?, involved in (A3), can be computed by using some well known
properties of the modified Bessel functions (see formulas 8.486(11,16,17) in [9]). In particular,
we have that

Ĝ? (r, s) =
1

2π
K0

(
rs

v?

)
, (49)

Ĝn,? (r, s) = − s

2π
K1

(
rs

v?

)
∂r

∂n
, (50)

where K0(z) and K1(z) are the second kind modified Bessel function of order 0 and 1, respec-
tively.

For the computation of the solution u of Problem (1), according to Remark 3.1, we also
need the Laplace transforms of the derivatives of G? and Gn,? with respect to the variables
xi, i = 1, 2. These are given by (see [9] and [8])

∂̂G?
∂xi

(r, s) = − s

2π
K1

(
rs

v?

)
∂r

∂xi
(51)

∂̂2G?
∂xi∂n

(r, s) =
s2

2πv2
?

[(
K0

(
rs

v?

)
+
v?
rs
K1

(
rs

v?

))
∂r

∂xi

∂r

∂n
− v?

s
K1

(
rs

v?

)
∂2r

∂xi∂n

]
. (52)

Remark 3.2 Taking into account the behaviours of K0(z) and K1(z), as z → 0 (see [1]),
straightforward calculation shows that the above two kernels have a singularity at r = 0 of the
type r−1 the first, and of the type r−2 the second.

To summarize, the temporal discretization of the TDBIE system is obtained by inserting
in (42) the Lubich convolution quadrature formulas (48):

1

2
ϕnP (x) +

n∑
j=0

∫
Γ
ωn−j (∆t;Gn,P (r))ϕjP (y)dΓy −

n∑
j=0

∫
Γ
ωn−j (∆t;GP (r)) ∂τϕ

j
S(y)dΓy

=

n∑
j=0

∫
Γ
ωn−j (∆t;GP (r)) gjn(y)dΓy + IϕP,0(x, tn) + Iϕ̄P,0(x, tn) + IfP (x, tn)

1

2
ϕnS(x) +

n∑
j=0

∫
Γ
ωn−j (∆t;Gn,S(r))ϕjS(y)dΓy +

n∑
j=0

∫
Γ
ωn−j (∆t;GS(r)) ∂τϕ

j
P (y)dΓy

=
n∑
j=0

∫
Γ
ωn−j (∆t;GS(r)) gjτ (y)dΓy + IϕS,0(x, tn) + Iϕ̄S,0(x, tn) + IfS (x, tn),

(53)
for all n = 0, . . . , N .

In what follows, after having introduced the parametric representation (12) of Γ, for the
computation of the derivatives ∂τϕ

j
?, it is convenient to consider the curvilinear abscissa γ on

Γ which, we recall, is defined by

γ = γ(ϑ) =

∫ ϑ

0
‖η′(s)‖ ds, ϑ ∈ [0, 1]. (54)

Since for any smooth enough scalar function φ it holds ∂τφ(y) = ∂γφ(η(ϑ)), we will compute

the derivatives ∂γϕ
j
?(η(ϑ)) in place of ∂τϕ

j
?(y).
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3.1.2 Space discretization

Let Γ be described by (12). We approximate the unknowns ϕj?(x) and ∂γϕ
j
?(x) for x ∈ Γ by

ϕj?(η(ϑ)) ≈
M+1∑
k=1

ϕj?,kNk(ϑ), ∂γϕ
j
?(η(ϑ)) ≈

M+1∑
k=1

ϕj?,k∂γNk(ϑ) (55)

where, we recall, Nk’s are the standard continuous piecewise linear basis functions associated
with the partition {ϑk}M+1

k=1 of the parametrization interval [0, 1].

Remark 3.3 If Γ is a circumference of radius R, as in our numerical tests, we have

x = η(ϑ) = R(cos 2πϑ, sin 2πϑ), ϑ ∈ [0, 1].

In this case γ = 2πRϑ and for the derivatives in (55) we have

∂γNk(ϑ) =
dNk(ϑ)

dϑ

dϑ

dγ
=


1/(2πR), if ϑ ∈ [ϑk−1, ϑk], k > 1

−1/(2πR), if ϑ ∈ [ϑk, ϑk+1], k < M

0, otherwise.

Remark 3.4 In the case where a global parametric representation of Γ is not given, a local
one can be considered. To this aim, introducing a set of points {xk}M+1

k=1 on Γ, we can define

a local parametric representation of the arc
_
Γk ⊂ Γ, joining the two mesh points xk, xk+1, by

x = ηk(ϑ) = (η1,k(ϑ), η2,k(ϑ)), ϑ ∈ [0, 1].

Then, we approximate the unknown functions by

ϕj?(x) ≈
M+1∑
k=1

ϕj?,kbk(x), (56)

where the bk’s are piecewise linear Lagrangian basis functions. In this case the curvilinear

abscissa γ in (54) on each arc
_
Γk has its own representation

γk(ϑ) =

∫ ϑ

0
‖η′k(s)‖ds, ϑ ∈ [0, 1]. (57)

The corresponding derivative ∂γbk is then given by

∂γbk(x) =


dbk(ηk−1(ϑ))

dϑ

dϑ

dγk−1
, if x ∈

_
Γk−1

dbk(ηk(ϑ))

dϑ

dϑ

dγk
, if x ∈

_
Γk

0, otherwise.

(58)

It is worthy to note that, for the approach that approximates simultaneously the boundary Γ
and the unknowns ϕj? by polygonal functions defined on the same uniform mesh, we can define

x = ηk(ϑ) = (1− ϑ)xk + ϑxk+1, ϑ ∈ [0, 1].
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Since γk = Lkϑ, where Lk = ‖xk+1 − xk‖ and the basis functions bk are defined by

bk(x) =


bk(ηk−1(ϑ)) = ϑ, if x ∈

_
Γk−1

bk(ηk(ϑ)) = 1− ϑ, if x ∈
_
Γk

0, otherwise,

the derivatives in (58) take the very simple form:

∂γbk(x) =


1/Lk−1, if x ∈

_
Γk−1

−1/Lk, if x ∈
_
Γk

0, otherwise.

In order to apply a nodal collocation method, we approximate gjn and gjτ by the interpolant
piecewise linear function in terms of the basis functions Nk, we insert (55) into (53) and we
collocate the latter at the collocation points ϑm, m = 1, . . . ,M + 1.

By using (A4) in (53), we introduce the matrix notation:

(Vn
? )m,k :=

1

2π

%−n

L

L−1∑
l=0

(∫ 1

0
K0

(
rmz

v?

)
Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L (59)

(Ṽ
n

? )m,k :=
1

2π

%−n

L

L−1∑
l=0

(∫ 1

0
K0

(
rmz

v?

)
∂τNk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ınl2π
L (60)

(Kn
? )m,k := − 1

2π

%−n

L

L−1∑
l=0

(∫ 1

0
sK1

(
rmz

v?

)
∂r

∂n
Nk(ϑ) ‖η′(ϑ)‖ dϑ

)
e−

ı̇nl2π
L (61)

where z := γ(%eıl2π/L)/∆t and rm = ‖η(ϑm)− η(ϑ)‖.
Finally, setting gjn :=

[
gjn(η(ϑ1)), . . . , gjn(η(ϑM+1))

]T
and gjτ :=

[
gjτ (η(ϑ1)), . . . , gjτ (η(ϑM+1))

]T
,

we get the following system

1

2
ϕnP +

n∑
j=0

Kn−j
P ϕjP −

n∑
j=0

Ṽ
n−j
P ϕjS =

n∑
j=0

Vn−j
P gjn + InϕP,0 + Inϕ̄P,0 + InfP =: dnP

1

2
ϕnS +

n∑
j=0

Kn−j
S ϕjS +

n∑
j=0

Ṽ
n−j
S ϕjP =

n∑
j=0

Vn−j
S gjτ + InϕS,0 + Inϕ̄S,0 + InfS =: dnS

(62)

in the unknowns ϕn? = (ϕn?,1, . . . , ϕ
n
?,M+1)T .

In matrix form the final linear system is1

2
I + K0

P −Ṽ
0

P

Ṽ
0

S

1

2
I + K0

S


ϕnP
ϕnS

 = −
n−1∑
j=0

Kn−j
P −Ṽ

n−j
P

Kn−j
S Ṽ

n−j
S


ϕjP
ϕjS

+

dnP

dnS

 . (63)

Note that when the boundary Γ is a circle and the chosen mesh points {xk} are equidistant,
all matrix blocks of the above system have the Toeplitz form. This means that only the first
row of each block needs to be determined.
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Finally, we remark that for the computation of the matrix entries (59)–(61), following
the numerical procedure described in [7] and [8], we have applied a ν-point Gauss-Legendre
quadrature formula, after introducing the polynomial smoothing transformation when the
kernel K0 displays the log behaviour. Details concerning the computation of these entries and
of the volume integrals defining the known terms dn? in (63) are postponed to the next section.

In the next section we present some numerical test aiming at comparing the classical TDBIE
formulation for Problem (1), described in Section 2, with the new approach we have described
in Section 3. These highlight some advantages of the novel strategy with respect to the
standard one: the expression of the Laplace transforms of the integral kernels are more regular
and easy to handle; the efficient computation of the integrals, defining the matrix entries of the
associated linear system, does not require any tailored quadrature (in the examples reported
in the next section a 8-point Gauss-Legendre rule has been used); the Toeplitz structure of the
matrices when the boundary Γ is a circle allows to speed up significantly the computation and
to save memory space. All these features are certainly of interest in the case of a BEM-FEM
approach where the chosen artificial boundary is a circle (see [6]).

4 Numerical results

Since by a simple change of variables we can always normalize the obstacle dimension and the
S-wave propagation velocity, in the examples reported below the obstacle is a circle of radius
1 and, in the first two examples, vS = 1, vP =

√
3. Furthermore, since the elastodynamic

equation (1) can be rewritten in the form

∂2u

∂t2
(x, t)− (v2

P − v2
S)∇(divu)(x, t)− v2

S∇2u(x, t) =
1

ρ
f(x, t)

in the first two examples we do not choose specific values of λ and µ. We also remark that
although the above mentioned change of variables modify the force f by introducing the factor
[R2v2

S ]−1, where R denotes the original obstacle radius, for simplicity we assume that this
factor is included in the expression defining f .

Example 1. In this preliminary test we compare the convergence behaviour of the two
analyzed approaches. To this end, we consider Problem (1) defined on the exterior of the unit
disc centered at the origin of the axes, with homogeneous initial data and null source f . The
Dirichlet datum is g = (g1, g2), where

g1(x, t) = t3e−2te−(x21+2x22), g2(x, t) = t3e−2t cos(x1), x ∈ Γ, t ∈ [0, T ],

with T = 1. In Table 1 we report the maximum in time of the L2 errors

EL2,f = max
t∈[0,T ]

‖f ex(·, t)− f(·, t)‖L2(Γ) ≈ max
n=0,...,N

√√√√∆ϑ

M∑
k=1

(
f ex(η(ϑk), tn)− f(η(ϑk), tn)

)2

(64)
being f = ϕ?, ? = P, S for the new approach, and f = t`, ` = 1, 2 for the standard one. In (64),
f ex denotes the reference solutions obtained with M ex = N ex = 2048 for the new approach,
and M ex = N ex = 512 for the standard one. The discretization parameter ∆ϑ = 2π/M
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denotes the step size of the uniform partitioning of the parametrization interval of the curve
Γ into M subintervals. We remark that, being the obstacle a disc, for the new approach
we could take advantage of the Toeplitz structure of the involved matrices at each time step
and, consequently, we could perform an efficient matrix-vector product, without storing the
whole matrices. This property allowed us to consider the quite fine discretization reference
parameters M ex = N ex = 2048. On the contrary, in the standard elastodynamics approach,
the matrices do not have the special Toeplitz structure and, therefore, we had to compute and
store all their entries. For this reason the finer value of the discretization reference parameters
we could consider is M ex = N ex = 512, since M ex = N ex = 1024 gave rise to an out of
memory. Therefore, in the tables below, we denote by the symbol “×” the errors that could
not be computed.

As Table 1 shows, the approaches have a comparable order of accuracy and the corre-
sponding EOC is quadratic, as expected. The numerical results corresponding to the standard
approach have been obtained by using the tailored quadrature described in Section 2.1.3 by
using a smoothing polynomial transformation of degree q = 3 (see [15] and [16]), εm = 1.0e−02
and N0 = 30. These choices can not be considered optimal, but revealed to be effective for
our purposes.

Table 1: Example 1. Maximum in time of the L2 absolute errors and corresponding EOC.

M = N EL2,ϕP
EOC EL2,ϕS

EOC EL2,t1
EOC EL2,t2

EOC

8 2.39e− 02 1.71e− 02 2.25e− 02 4.94e− 02
1.4 1.2 1.6 1.8

16 9.04e− 03 7.59e− 03 7.51e− 03 1.39e− 02
1.9 1.9 2.0 1.8

32 2.51e− 03 2.10e− 03 1.88e− 03 4.09e− 03
2.0 2.0 2.1 1.8

64 6.30e− 04 5.27e− 04 4.70e− 04 1.20e− 03
2.0 2.0 2.3 2.2

128 1.55e− 04 1.29e− 04 1.16e− 04 3.10e− 04
2.1 2.1 2.3 2.3

256 3.79e− 05 3.15e− 05 2.41e− 05 6.47e− 05
2.3 2.3 × ×

512 8.97e− 06 7.46e− 06 × ×
2.3 2.3 × ×

1024 1.79e− 06 1.49e− 06 × ×

In Table 2 we report the values of the approximations unew(P ) = (unew
1 (P ),unew

2 (P )) and
ustd(P ) = (ustd

1 (P ),ustd
2 (P )), given by the new and the standard approaches respectively, of

the solution u of the original problem at the external point P = (2, 0). We also report the
EOC of the corresponding errors.

In Figures 1 and 2 we show the space (with respect to the parametrization interval) and time
behaviour of the density functions ϕP , ϕS of the new approach and t1 and t2 of the standard
one. In Figure 3 we show the good agreement of the solutions unew

i (P, t) with ustd
i (P, t), i = 1, 2,

at the exterior point P = (2, 0) and by varying t ∈ [0, T ].

Finally, we remark that, from an intensive numerical testing, it results that both approaches
are numerically stable for any choice of the discretization parameters, even for long times T .
As an example, in Figures 4 and 5 we show the space-time behaviour of the density functions
ϕP , ϕS of the new approach and t1 and t2 of the standard one, for T = 10. In Figure 6 we
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Table 2: Example 1. Approximations unewand ustdat P=(2,0) and T = 1.

M = N unew
1 (P ,T) EOC unew

2 (P ,T) EOC ustd
1 (P ,T) EOC ustd

2 (P ,T) EOC
8 6.63586e− 03 −9.91880e− 04 7.60399e− 03 −6.04807e− 04

1.1 1.1 0.5 1.5
16 7.39561e− 03 −1.20263e− 03 7.75437e− 03 −1.10216e− 03

1.9 1.3 2.1 1.5
32 7.90670e− 03 −1.30820e− 03 8.01355e− 03 −1.28358e− 03

2.0 1.6 2.1 1.8
64 8.04662e− 03 −1.35790e− 03 8.07430e− 03 −1.35186e− 03

2.0 1.8 2.3 2.1
128 8.08192e− 03 −1.37534e− 03 8.08888e− 03 −1.37384e− 03

2.1 1.9 2.3 2.1
256 8.09070e− 03 −1.38073e− 03 8.09244e− 03 −1.38036e− 03

2.3 2.2 × ×
512 8.09288e− 03 −1.38227e− 03 × ×

2.3 2.2 × ×
1024 8.09343e− 03 −1.38270e− 03 × ×

Figure 1: Example 1. Behaviour of the density functions ϕP and ϕS for T = 1.

can see that the solutions unew
i (P, t) and ustd

i (P, t), i = 1, 2 given by the two approaches match
also for long times.
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Figure 2: Example 1. Behaviour of the density functions t1 and t2 for T = 1.

Figure 3: Example 1. Behaviour of the solutions unew(P, t) and ustd(P, t) at P = (2, 0) for t ∈ [0, 1].

Figure 4: Example 1. Behaviour of the density functions ϕP and ϕS for T = 10.
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Figure 5: Example 1. Behaviour of the density functions t1 and t2 for T = 10.

Figure 6: Example 1. Behaviour of the solutions unew(P, t) and ustd(P, t) at P = (2, 0) for t ∈ [0, 10].
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Example 2. We consider an elastic wave generated by a horizontally propagating incident
wave

g(x, t) = (g(x1 − x1,0 + vP t), 0)T , (65)

impinging on an obstacle represented by the unit disc centered in (0, 0). We consider g(t) =
e−20(t−t0)2 , with t0 = 0.475, x1,0 = 2 and the final time T = 4. The total field consists of
the superposition of an incident and a scattered field u(x, t) = uinc(x, t) + uscatt(x, t), being
uinc(x, t) = −g(x, t) for x ∈ Ωe and uscatt the solution of Problem (1) with null u0 and v0

and Dirichlet datum g on Γ.
In Figure 7 we show the snapshots of the solution, obtained by the new numerical approach

at the time instants t = 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3. The discretization parameters
used to compute the approximate solution are M = N = 128. In the first and third column
we represent the first component u1 of the total field u, in the second and fourth column the
second one u2. As expected, this latter appears once the solution u1, generated by the datum
g, bumps against the obstacle and is reflected back.

We remark that, for what concerns the standard approach, the reconstruction of the total
external field revealed to be too expensive. For this reason we have compared the solutions
unew(P, t) and ustd(P, t) at some exterior points, observing a good agreement of the two ap-
proaches. As an example, in Figure 8 we show their behaviour at P = (2, 0) by varying
t ∈ [0, 4].

In the last example we aim at simulating the seismic response of a linear elastic medium
including a buried unlined tunnel to a wave generated by a source term f . The contribution
of this source is given by the corresponding volume integral in (3) for the standard approach,
and by that in (44) for the novel one.

Example 3. The 2D tunnel section is the circle of radius 1m centered at (0, 0). We consider
Problem (1) with the following physical material parameters: µ = 1.4e + 09 kg/(ms2), vP =
1459.7m/s, vS = 941.32m/s and ρ = 1580 kg/m3, which correspond to the clay elastic moduli
(see Table at https://pangea. stanford.edu/courses/gp262/Notes/5.Elasticity.pdf).

By properly rescaling the velocities in such a way that vS = 1m/s (vP = 1.5507), we
observe the propagation in the temporal interval [0, T ], with T = 20 s. The expression of the
source is f = ∇fP + curl fS , with fP = 0 and

fS = 1010t3e−te−50[(x1−x1,0)2+(x2−x2,0)2], (66)

centered at x0 = (x1,0, x2,0) = (3, 0). We remark that, since fS decays exponentially fast away
from its center x0, it can be regarded as compactly supported from the computational point
of view. Therefore, in the standard approach, the expression of the source volume integrals
(3) takes the form:

Ifi(x, t) =

2∑
`=1

∫ t

0

∫
supp(f`)

U∗i`(x− y, t− s)f`(y, s)dyds

with
f = (f1, f2) = −1012t3e−te−50[(x1−x1,0)2+(x2−x2,0)2](x2 − x2,0,−(x1 − x1,0))T .

For the new approach, the corresponding volume integrals (see (44)) are IfP = 0 and

IfS (x, t) =
1

ρv2
S

∫ t

0

∫
supp(fS)

GS(x− y, t− s)fS(y, s)dyds.
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Figure 7: Example 2. Snapshots of the solution unew(P, t) at different instants.
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Figure 8: Example 2. Behaviour of the solutions unew(P, t) and ustd(P, t) at P = (2, 0) for t ∈ [0, 4].

For the numerical computation of such integrals we have considered supp(f`) = supp(fS) =
{x ∈ R2 : ‖x − x0‖ ≤ 1}, since at the boundary of such support fS assumes values of order
1.0e−22 and f` values of order 1.0e−20. Then we have applied the 8×8-point Gauss-Legendre
quadrature rule in space and a BDF2 Lubich convolution quadrature in time, based on the
decomposition of the time interval [0, T ] into N subintervals.

Figure 9: Example 3. Behaviour of the density functions ϕP and ϕS for the local source (66), t ∈ [0, 20].

In Figures 9 and 10 we show the density functions of the two approaches. We remark that,
for the standard method, the accurate computation of the integrals defining the matrix entries
by the smoothing transformation and the series expansion of the Bessel functions, revealed to
be crucial to obtain a reliable solution. Indeed, without the above tricks, spurious oscillations
appear in the tractions t1 and t2, as Figure 11 shows. We remark that these oscillations
do not disappear by increasing the number of the quadrature nodes, rather they get worse
because the aforesaid apparent singularities do not cancel out numerically. In Figure 12 we
show the good agreement of the solutions unew

i (P, t) with ustd
i (P, t), i = 1, 2, at the exterior

point P = 1.5(cos(π/4), sin(π/4)) and by varying t ∈ [0, 20].
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Figure 10: Example 3. Behaviour of the density functions t1 and t2 for the local source (66), t ∈ [0, 20].

Finally, as last test, in the same setting of the previous case, we consider a wave generated
by a point source, f = ∇fP + curl fS , with fS = 0 and

fP = h(t)δ(x− x0), h(t) = 1010t3e−2t sin(4t), x0 = (10, 0). (67)

For this choice, it is possible to apply only the new approach. In this case, the source
volume integrals given by (44) become IfS = 0 and

IfP (x, t) =
1

ρv2
P

∫ t

0
GP (x− x0, t− s)fP (x0, s)ds.

This latter has been efficiently computed by the Lubich quadrature rule, with the same
number N of time steps used in the numerical approach of the associated TDBIE.

In Figure 13 we show the 3D behaviour of the density functions ϕP and ϕS obtained
by the space and time discretization parameters M = 2048 and N = 2048, respectively.
Finally, in Figure 14 we show the solution unew

i (P, t) with unew(P, t), at the exterior point
P = 1.5(cos(π/4), sin(π/4)) and by varying t ∈ [0, 20].
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Figure 11: Example 3. Behaviour of the density functions t1 and t2 for the local source (66), t ∈ [0, 20]
with spurious oscillations given by a non accurate computation of the integrals.

Figure 12: Example 3. Behaviour of the solutions unew(P, t) and ustd(P, t) for the local source (66),
t ∈ [0, 20], P = 1.5(cos(π/4), sin(π/4)).
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Figure 13: Example 3. Behaviour of the density functions ϕP and ϕS for the pointwise source (67),
t ∈ [0, 20].

Figure 14: Example 3. Behaviour of the solution unew(P, t) for the pointwise source (67), t ∈ [0, 20],
P = 1.5(cos(π/4), sin(π/4)).
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Appendix

The BDF2-based Lubich quadrature formula

The convolution quadrature method proposed by Lubich [11] for the efficient computation
of the convolution integral ∫ t

0
k(t− s)ϕ(s)ds, t ∈ [0, T ]

is based on a uniform partitioning of the interval [0, T ] into N steps of equal length ∆t = T/N
and on the following formula∫ tn

0
k(tn − s)ϕ(s)ds ≈

n∑
j=0

ωn−j(∆t;K)ϕ(tj), tn = n∆t, n = 0, . . . , N (A1)

where, for each j = 0, . . . , N ,

ωj(∆t;K) =
1

2πı

∫
|z|=%

K

(
γ(z)

∆t

)
z−(j+1)dz, (A2)

K being the Laplace transform of the convolution kernel k. In (A2) the function γ(z) =
3/2 − 2z + 1/2z2 is the characteristic quotient of the BDF method of order 2 and % is such
that for |z| ≤ % the corresponding γ(z) lies in the domain of analyticity of K.

By introducing the polar coordinate z = %eıϑ we have the following integral representation
for the coefficients of formula (A2):

ωj(∆t;K) =
%−j

2π

∫ 2π

0
K

(
γ(%eıϑ)

∆t

)
e−ıjϕdϑ. (A3)

This integral can be efficiently computed by using the trapezoidal rule, that is,

ωj(∆t;K) ≈ %−j

L

L−1∑
l=0

K

(
γ(%eıl

2π
L )

∆t

)
e−ıjl

2π
L , j = 0, . . . , N (A4)

where the interval [0, 2π] has been partitioned into L subintervals of equal length. All the
ωj(∆t;K) can be computed simultaneously by the FFT with O(N logN) flops. Assuming
that K is computed with a relative accuracy bounded by ε, Lubich has shown that the choice
L = 2N and %N =

√
ε leads to an approximation of ωj with relative error of size

√
ε.
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