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Abstract We consider a wave propagation problem in 2D, reformulated in terms of a Boundary
Integral Equation (BIE) in the space-time domain. For its solution, we propose a numerical scheme
based on a convolution quadrature formula by Lubich for the discretization in time, and on a
Galerkin method in space. It is known that the main advantage of Lubich’s formulas is the use of
the FFT algorithm to retrieve discrete time integral operators with a computational complexity of
order R logR, R being twice the total number of time steps performed. Since the discretization in
space leads in general to a quadratic complexity, the global computational complexity is of order
M2R logR and the working storage required is M2R/2, where M is the number of grid points on
the domain boundary.

To reduce the complexity in space, we consider here approximant functions of wavelet type. By
virtue of the properties of wavelet bases, the discrete integral operators have a rapid decay to
zero with respect to time, and the overwhelming majority of the associated matrix entries assume
negligible values. Based on an a priori estimate of the decaying behaviour in time of the matrix
entries, we devise a time downsampling strategy that allows to compute only those elements which
are significant with respect to a prescribed tolerance. Such an approach allows to retrieve the
temporal history of each entry e (corresponding to a fixed couple of wavelet basis functions), via
a Fast Fourier Transform, with computational complexity of order Re logRe. The parameter Re

depends on the two basis functions, and it satisfies Re � R for a relevant percentage of matrix
entries, percentage which increases significantly as time and/or space discretization are refined.
Globally, the numerical tests show that the computational complexity and memory storage of the
overall procedure are linear in space and time for small velocities of the wave propagation, and
even sub-linear for high velocities.

Key words: wave equation; space-time boundary integral equations; multiresolution analysis; down-
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of MIUR grant Dipartimenti di Eccellenza 20182022, CUP E11G18000350001.

1



sampling; numerical methods

1. Introduction

Let Ωe = R2 \ Ωi be the complement of a bounded rigid obstacle Ωi ⊂ R2, having a
closed smooth boundary Γ. We consider the following exterior Dirichlet problem for the
wave equation: 

1

c2
utt(x, t)−∆u(x, t) = 0 in Ωe × (0, T )

u(x, t) = g(x, t) on Γ× (0, T )

u(x, 0) = 0 in Ωe

ut(x, 0) = 0 in Ωe,

(1)

where c represents the wave velocity.

It is well known that the following single-layer potential representation

u(x, t) =

∫
Γ

∫ t

0

G(|x− y|, t− τ)ϕ(y, τ) dτ dΓy x ∈ Ωe, t ∈ [0, T ] (2)

holds, where G(x, t) denotes the fundamental solution

G(r, t) =
1

2π

H
(
t− r

c

)√
t2 − r2

c2

, r = |x− y|, (3)

H(·) being the Heaviside function. The function ϕ in (2) is solution of the following Time
Dependent Boundary Integral Equation (TDBIE)∫

Γ

∫ t

0

G(r, t− τ)ϕ(y, τ) dτdΓy = g(x, t), x ∈ Γ, t ∈ [0, T ] (4)

and represents the jump of the normal derivative of u along Γ.

Several numerical approaches have been proposed for solving wave equation problems by
means of BIEs. In particular, we mention the pioneering work by Bamberger and Ha Duong
for scattering problems in the frequency domain [1], Lubich’s convolution quadrature method
[2] and the energetic approach [3] for solving time dependent boundary integral equations.
In [1, 2], theoretical results on stability and convergence are proved when a Galerkin scheme
in space is considered.

Lubich’s convolution method for time integral discretization is based on quadrature for-
mulas associated with A-stable methods for ordinary differential equations. Rather than us-
ing the explicit expression of the integral equation kernel, Lubich’s formulas use its Laplace
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transform, which, in the case of wave equations, turns out to have better regularity prop-
erties. The major advantage of this approach is that it allows to reduce the computational
complexity of the time discretization to an order R logR (R = 2N , where N is the total
number of time steps performed), thanks to the Fast Fourier Transform (FFT). The time
scheme is generally coupled with a collocation or a Galerkin method in space, leading to a
quadratic complexity M2, where M denotes the number of grid points chosen on the domain
boundary. Therefore, the overall (space-time) complexity is of order M2R logR. Such an
approach has been successfully applied to wave propagation problems in 2D and in 3D, with
Dirichlet, Neumann and mixed boundary conditions (see [4], [5], [6]). Lubich’s convolution
quadrature method has also been used for the time approximation of non reflecting bound-
ary conditions of exact type prescribed on artificial boundaries, in a FEM-BEM coupling
approach for the solution of exterior problems (see [7] and [8] and the very recent work [9]
for problems of waves scattered by moving obstacles).

The main drawback of this approach is the high memory requirement, which is M2N . In
fact it requires to store all the matrices involved in the final linear system, which, when stan-
dard Lagrangian basis functions are considered for the space approximation, are generally
fully populated.

In three dimensions and for the Lubich-collocation approach, the computational cost
and the required memory storage can be significantly reduced when the wave propagation
velocity is much higher than one. Indeed, in [10] the authors showed that, for high velocities,
only a very small number of matrices, let us say the first N0, with N0 � N , are significant
with respect to a prescribed tolerance, and the remaining ones can be neglected without
affecting the solution accuracy. Another fast technique for the 3D case, which relies on the
sparsity of the Runge-Kutta convolution weights, has been proposed in [11]. This technique
focuses on the single layer formulation of the boundary integral equation, and combines the
fast decay of the convolution weights for the computation of the near field with sparse data
techniques for the computation of the far field.

It is known that, contrarily to the 3D case, in 2D the convolution weights do not decay,
since the Huygens’ principle does not hold. For this reason, the above mentioned fast tech-
niques can not be applied. However, over the last decades, several effective techniques have
been developed in such a framework, aimed at reducing computational cost and memory
storage. Among these we mention fast multiple methods ([12]), panel clustering ([13], [14])
and hierarchical matrices ([15]). However, for these methods, the FFT algorithm cannot be
applied. Recent techniques in [16] and [17] exploit the property of the convolution weight
kernels to approximate the tail of the fundamental solution in the time domain, which turns
out to be very smooth. In both papers the authors propose the fast and oblivious convolution
quadrature to reduce both computational cost and memory requirement for computing the
aforesaid tail for long time computation.

In this paper we propose a new and alternative approach which is based on a wavelet type
approximation in space, and is applied to the global space-time discretization. It is known
that wavelet approximations have the property of yielding sparse matrices when applied
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to a wide class of pseudo-differential operators ([18]). Wavelet BEMs have already been
considered, for example, in [19], [20], [21], [22] for stationary problems. In [23] the authors
apply a wavelet BEM for a time dependent wave equation combined with finite differences
in time. To our knowledge, there are no further papers dealing with wavelet approximations
in time dependent wave equation problems.

The new approach we propose here combines the good properties of the wavelet Galerkin
approximation in space and those of Lubich’s convolution quadrature method in time. This
has the twofold effect of heavily sparsifying the matrices generated by space discretization
and of considerably reducing the computational cost of time discretization. This combina-
tion turns out to have an effect that goes well beyond the sum of the independent effects of
the two techniques. Indeed, the rapid time decreasing behaviour of the matrix entries allows
to devise a time compression strategy consisting in downsampling the FFT involved in Lu-
bich’s convolution quadrature method, with a resulting significant reduction of the overall
computational complexity. More precisely, denoting by {ψλ, λ ∈ ΛL} the wavelet basis for
the space discretization, where ΛL is a suitable finite index set, the computation of the ma-
trix entry corresponding to two basis functions ψλ and ψλ′ , which by Lubich’s technique is
carried out simultaneously for all times, can be performed with a computational cost of order
Rλ,λ′ logRλ,λ′ . The parameter Rλ,λ′ satisfies Rλ,λ′ � R for a large percentage of couples
λ, λ′, resulting, on one hand, in a consistent memory storage reduction and, on the other
hand, in a significant increase the time quadrature efficiency. More precisely, extensive nu-
merical tests show that the computational complexity

∑
λ,λ′Rλ,λ′ logRλ,λ′ and the memory

storage
∑

λ,λ′Rλ,λ′ of the overall procedure are linear in space and time (the former up to a
logarithmic factor) for small velocities and even sub-linear for high velocities.

The paper is organized as follows. In Sections 2.1 and 2.2 we introduce the proposed
method, by describing the main steps that lead to the time convolution quadrature formula
associated to the single-layer potential BIE (4) and the spatial wavelet discretization, in a
rather abstract setting. Convergence estimates are derived for the full discretized scheme.
In Sections 2.3.1 and 2.3.2 we present the fundamental properties of wavelet bases that will
be used to estimate the decaying behaviour in time of the matrix entries. In Sections 2.3.3
and 2.3.4 we describe the time downsampling strategy that we apply in the new proposed
method to retrieve final sparse matrices while maintaining the optimal time computational
complexity of the FFT algorithm. Finally, in Sections 3, we apply the proposed numerical
approach to several problems, to show its efficiency in terms of accuracy, computational
complexity and memory saving.

2. Lubich-wavelet Galerkin BEM

In this section we present the Lubich-wavelet Galerkin BEM that we apply to equation
(4). It is based on a BDF2 Lubich convolution quadrature formula in time and a Galerkin
method in space, which uses biorthogonal wavelet approximating basis functions. In the
sequel whatever refers to this approach will be labelled by the superscript W .

4



In what follows, the notation Q1 . Q2 (resp. Q1 & Q2 ) means that the quantity Q1
is bounded from above (resp. from below) by C · Q2, where C is a constant that, unless
explicitely stated, does not depend on any relevant parameter involved in the definition of
Q1 and Q2. The notation ' means that both Q1 . Q2 and Q1 & Q2 hold. The notation
Q1 ≈ Q2, on the other hand, will simply mean that we approximate Q1 with Q2.

2.1. Time discretization

For the time discretization, we split [0, T ] into N steps of equal length ∆t = T/N and
collocate equation (4) at the time instants tn = n∆t, n = 0, . . . , N :∫

Γ

∫ tn

0

G(r, tn − τ)ϕ(y, τ) dτ dΓy = g(x, tn), x ∈ Γ, n = 0, . . . , N. (5)

The time integrals are then discretized by means of Lubich’s convolution quadrature rule
associated with the BDF method of order 2 (see [24]):∫ tn

0

G(r, tn − τ)ϕ(y, τ) dτ ≈
n∑
j=0

ωn−j(∆t; r)ϕ
j(y), n = 0, . . . , N (6)

where we have set ϕj(y) := ϕ(y, tj). The coefficients ωn are defined by the contour integrals

ωn(∆t; r) =
1

2πı

∫
|z|=ρ

Ĝ

(
r,
γ(z)

∆t

)
z−(n+1) dz, (7)

where

Ĝ(r, s) =
1

2π
K0

(
s
r

c

)
denotes the Laplace transform of the fundamental solution G, K0 being the modified Bessel
function of second kind and of order 0. In (7) γ is the characteristic quotient of the Backward
Differentiation Formula of order 2 (BDF2), i.e γ(z) = 3/2 − 2z + 1/2z2 and ρ is such that

for |z| ≤ ρ the corresponding γ(z) lies in the domain of analyticity of Ĝ (for details see [2]).

By introducing the polar coordinate z = ρeıϑ, the integrals in (7) can be efficiently
computed by a trapezoidal rule with R equal steps of length 2π/R:

ωn(∆t; r) ≈
ρ−n

R

R−1∑
m=0

Ĝ

(
r,
γ(ρeı2π

m
R )

∆t

)
e−ı2πn

m
R . (8)

For the computation of the convolution coefficients in (8), a proper choice of the involved
parameters, suggested by Lubich in [25], is R = 2N and ρ such that ρN =

√
ς. Indeed, these

choices lead to an approximation of ωn with a relative error of order
√
ς, if Ĝ is computed

with a relative accuracy bounded by ς. We point out that in the numerical tests we have
chosen ς = 1.0e− 12.
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2.2. Space discretization

For the space discretization, we consider a standard Galerkin boundary element method.
For simplicity, we assume that Γ is given by a global parametric representation. In this
case the integration over Γ is reduced to an integration over the parametrization interval.
Precisely, let

y = η(θ) = (η1(θ), η2(θ)), θ ∈ [0, 2π)

denote the parametrization of Γ. By discretizing the parametrization interval into M = 2L

subintervals, we introduce a finite dimensional space VL ⊆ C0(0, 2π) satisfying periodic
boundary conditions. In view of the matrix compression technique that we are going to
employ further on, which will make use of wavelet functions, it is convenient to denote the
basis of VL by {ψλ, λ ∈ ΛL}, where ΛL denotes a suitable finite index set of cardinality M ,
whose form may be more general than the usual {1, 2, · · · ,M}, as we will see in the next
section.

By replacing (6) in (5) and approximating the unknown ϕj by

ϕj(η(θ)) ≈
∑
λ∈ΛL

djλψλ(θ) =: ϕjL(θ), (9)

we obtain the integral equations

n∑
j=0

∑
λ∈ΛL

djλ

∫ 2π

0

ωn−j(∆t; r(θ, σ))ψλ(θ)|η′(θ)| dθ = g(η(σ), tn), x = η(σ) ∈ Γ, (10)

for n = 0, · · · , N , where now we set r(θ, σ) = |η(θ) − η(σ)|. By using, in a Galerkin
approach, test functions from the same basis we end up with the following problem: find djλ,
j = 0, · · · , N , λ ∈ ΛL, such that for all n = 0, · · · , N and for all λ′ ∈ ΛL

n∑
j=0

∑
λ∈ΛL

djλ

∫ 2π

0

∫ 2π

0

ωn−j(∆t; r(θ, σ))ψλ(θ)ψλ′(σ) |η′(θ)| |η′(σ)| dθ dσ

=

∫ 2π

0

g(η(σ), tn)ψλ′(σ) |η′(σ)| dσ. (11)

For all n = 0, · · · , N , we will denote by V W,n and gW,n the M ×M matrix and M × 1
vector whose generic elements are, respectively,

V W,n
λ,λ′ :=

∫ 2π

0

∫ 2π

0

ωn(∆t; r(θ, σ))ψλ(θ)ψλ′(σ) |η′(θ)| |η′(σ)| dθ dσ, (12)

and

gW,n
λ′ :=

∫ 2π

0

g(η(σ), tn)ψλ′(σ) |η′(σ)| dσ. (13)
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Here, by abuse of notation, we index also matrices and vectors with the elements of ΛL.
More precisely for an M ×M matrix X and an M × 1 vector x we write Xλ,λ′ and xλ for
X i,i′ and xi with i = ι(λ), i′ = ι(λ′), where ι : ΛL → {1, · · · ,M} is any fixed bijection from
the general form index set ΛL to the standard index set {1, · · · ,M}. Following the natural
sequential indexing of the wavelet basis functions, in the sequel we will consider the bijection

i = ι(λ) = ι((`, k)) = 1 +
`−1∑
m=0

2m + k = 2` + k. (14)

The Lubich-Galerkin method leads to a block Toeplitz lower triangular linear system of
the form

n∑
j=0

V W,n−jdj = gW,n (15)

in the unknown vectors dn = (dnλ)λ∈ΛL , for n = 0, · · · , N .

By combining (12) with (8), we obtain

V W,n
λ,λ′ ≈

ρ−n

R

R−1∑
m=0

c̃Wλ,λ′(m)e−ı2πnm/R, (16)

where

c̃Wλ,λ′(m) =

∫ 2π

0

∫ 2π

0

Ĝ

(
r(θ, σ),

γ(ρeı2πm/R)

∆t

)
ψλ(θ)ψλ′(σ) |η′(θ)| |η′(σ)| dθ dσ. (17)

For fixed λ, λ′ ∈ ΛL, we denote by cWλ,λ′ = (cWλ,λ′(n)) the Discrete Fourier Transform (DFT)

of c̃Wλ,λ′ :

cWλ,λ′(n) =
R−1∑
m=0

c̃Wλ,λ′(m)e−ı2πn
m
R .

The entries of index λ, λ′ of the matrices V W,n are then approximated by

V W,n
λ,λ′ ≈

ρ−n

R
cWλ,λ′(n), (18)

and can be efficiently computed, simultaneously for all n = 0, · · · ,R− 1, by an FFT algo-
rithm, with a complexity of order R logR.

The stability and convergence of the proposed method follow from Theorem 5.4 in [2],
proved by Lubich for the 3D case but, as asserted in [4], valid in the 2D case as well. For
the convenience of the reader, we report here the statement of the theorem.

Theorem 2.1. Let X∆x ⊂ L2(Γ) be a family of finite dimensional approximation spaces of
order m+ 1, that is

inf
ψ∆x∈X∆x

‖ψ − ψ∆x‖H−1/2(Γ) ≤ C∆m+3/2
x ‖ψ‖Hm+1(Γ), for all ψ ∈ Hm+1(Γ).
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Let the time discretization method be A-stable and of order p such that γ(z) has no poles on
the unit circle. Then, for smooth compatible data g, the fully discrete method (Galerkin in
space and convolution quadrature in time) admits a unique solution ϕn∆x

and is uncondition-
ally stable and convergent with optimal order:

‖ϕ(·, tn)− ϕn∆x
‖H−1/2(Γ) = O(∆p

t ) +O(∆m+3/2
x ), (19)

uniformly over bounded intervals.

As asserted in [4], for the BDF2 method, estimate (19) is valid when assuming in (4)
g ∈ H6((0, T ), H1/2(Γ)) having all its derivatives up to order 4 vanishing at t = 0.

We observe that Theorem 2.1 can be applied in the wavelet discretization context, which
we will briefly introduce in the following section and whose properties we will exploit in the
design of our method.

2.3. Wavelets, matrix compression and time downsampling strategy

2.3.1. Wavelets

Let us now put ourselves in the wavelet framework. We consider the family of spaces
{VL}L≥0 and we assume that it forms a so called Multiresolution Analysis of L2(0, 2π) (see
[26]), endowed with a compactly supported wavelet basis. More precisely, we assume:

1. nestedness: VL ⊂ VL+1;

2. scale invariance: f(θ) ∈ VL ⇔ f(2θ) ∈ VL+1;

3. translation invariant basis: there exists a compactly supported function φ ∈ L2(R)
such that, setting

φL,k(θ) =
2L/2√

2π

∑
m∈Z

φ

(
2L

θ

2π
+ 2Lm− k

)
, k = 0, . . . , 2L − 1, (20)

the set {φL,k, k = 0, . . . , 2L − 1} forms a basis for VL;

4. wavelet basis: there exists a compactly supported functions ψ ∈ L2(R) such that,
setting

ψ`,k(θ) =
2`/2√

2π

∑
m∈Z

ψ

(
2`
θ

2π
+ 2`m− k

)
, ` ≥ 0, k = 0, . . . , 2` − 1, (21)

the set
{ψλ, λ = (`, k) ∈ ΛL} (22)

with

ΛL = {(−1, 0)} ∪ {(`, k), ` = 0, . . . , L− 1, k = 0, . . . , 2` − 1}, ψ−1,0 := φ0,0,

forms also a basis for the space VL.
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According to this structure, the space VL has then two bases, the basis {φL,k, k =
0, . . . , 2L − 1} and the basis (22). We can think of the former as a nodal (or nodal type)
basis, for which the degrees of freedom essentially correspond to the nodes of an underlying
uniform mesh with mesh size 2π/2L. The latter is referred to as the wavelet basis and has a
multilevel structure, where each basis function corresponds to a level ` and, within the same
level, to a position k/2`. It turns out that such a basis has numerous interesting properties,
which are not shared by the nodal basis and which allow to design new efficient numerical
schemes. A fast change of basis algorithms, with a fast inverse, is available and is referred
to as Fast Wavelet Transform (FWT).

Without loss of generality we can assume that suppφ ⊆ [−R,R] and suppψ ⊆ [−R̃, R̃]
for some positive R and R̃, and that φ and ψ are normalized in L2, so that ‖φ‖L2(R) =
‖ψ‖L2(R) = 1. Observe that, by construction, the functions φL,k and ψ`,k are 2π-periodic.
Moreover, they satisfy the following translation invariance property

φL,k(x) = φL,0(x− 2πk2−L), ψ`,k(x) = ψ`,0(x− 2πk2−`).

Observe also that, when restricted to a (suitably offset) interval of length 2π, the support of
ψ`,k is centered around 2π k2−` and its measure is (less than or equal to) 2πmin{1, 2R̃ 2−`}.

The spaces VL will satisfy an approximation property, which, in this framework, is usually
expressed by assuming that the function φ satisfies a polynomial reconstruction property: for
all p polynomial of degree less than or equal to m, there exists a sequence bn such that for
all θ ∈ R

p(θ) =
∑
n∈Z

bnφ(θ − n). (23)

Observe that, while the above sum is taken over the whole Z, it reduces, for any given value of
θ, to a finite sum, due to the compactness of the support of φ. Property (23) implies that VL
satisfies the assumption of Theorem 2.1 with ∆x = 2π2−L. Then, by using the convolution
quadrature formula associated to the BDF method of order p = 2, for our method we derive
the following estimate:

‖ϕ(·, tn)− ϕnL‖H−1/2(Γ) = O(∆2
t ) +O(∆m+3/2

x ). (24)

Furthermore, given any target polynomial degree m̃, and denoting by Pm̃ the space of poly-
nomials of degree less than or equal to m̃, the function ψ can be chosen in such a way
that ∫

R
ψ(θ)p(θ) dθ = 0 ∀ p ∈ Pm̃−1. (25)

A consequence of this property, that will play a key role in the forthcoming analysis, is the
following Proposition.

Proposition 2.2. Let f ∈ L2
loc(R) be a function satisfying the periodicity condition f(σ +

2π) = f(σ) for all σ ∈ R. Then, for λ = (`, k) we have∣∣∣∣∫ 2π

0

f(σ)ψλ(σ) dσ

∣∣∣∣ . inf
p∈Pm̃−1

‖f − p‖L2(Ωλ)
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with Ω̂λ = [2π2−`(k − R̃), 2π2−`(k − R̃)].

Proof. We can write, for p polynomial of degree lower than m̃∫ 2π

0

f(σ)ψλ(σ) dσ =
2`/2√

2π

∫ 2π

0

f(σ)
∑
m∈Z

ψ
(

2`
σ

2π
+ 2`m− k

)
dσ

=
2`/2√

2π

∑
m∈Z

∫ 2π(m+1)

2πm

f(θ − 2πm)ψ

(
2`
θ

2π
− k
)
dθ

=
2`/2√

2π

∫
R

(f(θ)− p(θ))ψ
(

2`
θ

2π
− k
)
dθ ≤ ‖f − p‖L2(Ω̂λ),

where we used (25), and where the last inequality derives by restricting the integral to

Ω̂λ, which we can do thanks to the definition of the support of ψ, and using the Schwartz
inequality (recall that ‖ψ‖L2(R) = 1). The arbitrariness of p implies the thesis.

Remark 2.3. A very large number of discretization spaces fall in the framework that we just
described. While many of them have been newly constructed in order to build bases of the
form (22), we also find examples from the classical approximation theory, such as piece-wise
linear functions, or more generally, B-splines. In addition to the standard nodal basis, the
wavelet framework provides such approximation spaces with a wavelet basis, whose properties
can be exploited in the design of numerical schemes. As an example, we will consider here
the space VL of piecewise linear functions on an uniform grid with step size 2π2−L, for which
we give the explicit expression of φ and ψ:

φ(t) =

{
1− |t|, |t| ≤ 1

0, else

and

ψ(t) =

√
2

4
φ(2t+ 1) +

√
2

2
φ(2t)− 3

√
2

2
φ(2t− 1) +

√
2

2
φ(2t− 2) +

√
2

4
φ(2t− 3),

associated to what, in wavelet terminology, are usually referred to as biorthogonal bior2.2
compactly supported wavelet functions (see [27] and Figure 1). In Figure 2 we show some
periodic basis functions for some levels `. We remark that this wavelet basis has been chosen
in the numerical tests. For such an example we have m = 1 and m̃ = 2.

2.3.2. Matrix compression

It is well known that wavelet bases are an efficient tool for the treatment of integral
operators ([28]). In particular, the use of wavelets allows to apply compression strategies
which entail a high sparsification of the associated matrices. Indeed these, thanks to the
localization and vanishing moments properties of the basis functions, turn out to have a
relevant number of negligible entries at each time step. Neglecting the entries that are below

10



a prescribed tolerance allows to replace the dense system of the conventional BEM into a
sparse one.

The key result at the basis of wavelet methods for the solution of boundary integral
equations is the following theorem (see [28]), where we recall that r(θ, σ) = |η(θ)− η(σ)|.

Theorem 2.4. Assume that the operator K defined by

Ku(σ) =

∫ 2π

0

K(r(θ, σ))u(θ) |η′(θ)| dθ,

verifies

1. K is a bounded operator, with bounded inverse, from H−1/2(Γ) to H1/2(Γ), that is, there
exist two positive constants C∗ and C∗, such that for all u ∈ H−1/2(Γ)

C∗‖u‖H−1/2(Γ) ≤ ‖Ku‖H1/2(Γ) ≤ C∗‖u‖H−1/2(Γ);

2. letting K̃(η, σ) = K(r(η, σ)), K̃ is smooth except on the diagonal, and for all α, β ≥ 0
with α + β > 0 there exists a positive constant C̃(α, β), such that

|∂αx∂βy K̃(x, y)| ≤ C̃(α, β)|x− y||α|+|β|.

Then, setting

cλ,λ′ =

∫ 2π

0

∫ 2π

0

K(r(θ, σ))ψλ′(θ)ψλ(σ) |η′(σ)| |η′(θ)| dθ dσ,

and denoting by Ωλ the support of ψλ and by ΩS
λ its singular support (that is the set of those

point where ψλ is not smooth, [28]), for λ = (`, k) and λ′ = (`′, k′) we have the following two
bounds.

1. Whenever δ(Ωλ,Ωλ′) = infσ∈Ωλ,θ∈Ωλ′
|η(θ)− η(σ)| ≥ κ2−min{`,`′} it holds

|cλ,λ′ | .
2−(`+`′)(1/2+m̃)

δ(Ωλ,Ωλ′)2m̃
,

(the constant in the inequality depending on κ).

2. Otherwise, assuming, without loss of generality, that `′ < `, it holds

|cλ,λ′| .
2−`(1+m̃)2`

′

δ(Ωλ,ΩS
λ′)

m̃−1
,

with δ(Ωλ,Ω
S
λ′) defined analogously to δ(Ωλ,Ωλ′). The implicit constant in the in-

equalities are independent of λ and λ′, while they generally depend on K, and on the
parametrization η of Γ.

11



The aim of this paper is to combine these compression techniques with Lubich’s convo-
lution quadrature method. Theorem 2.4, for the choice of K = Kn with

Kn(r) =
R−1∑
m=0

Ĝ

(
r,
γ(ρeı2πm/R)

∆t

)
e−ı2πnm/R,

tells us that the matrices V W,n can be approximated bely sparse matrices for each fixed n.
Actually, it turns out that such matrices become sparser and sparser as n increases. Indeed,
as we will see, when using wavelet bases, the sequence {V W,n

λ,λ′ }
R−1
n=0 (with λ, λ′ fixed) of the

matrix entries displays, as n increases, a rapid decay to zero and, from a certain point on,
its elements assume negligible values. By taking advantage of this property, we will apply
a numerical strategy that allows to retrieve the significant elements, up to a prescribed
tolerance, by using a downsampled FFT. Such a strategy (to which we will refer as time
downsampling strategy and that we will describe in Section 2.3.3) will considerably reduce
the numerical effort needed for the computation of the matrix elements (18).

As we will see, in order to take full advantage of the downsampling strategy, we need,
however, to estimate a priori, for each couple λ, λ′, the value of n̄ = n̄(λ, λ′), such that
|V W,n

λ,λ′ | ≤ ε for n ≥ n̄, ε being a prescribed tolerance. To this aim, we need to provide an a

priori bound on how |V W,n
λ,λ′ | decreases as n increases. While Theorem 2.4 indicates that we

can indeed hope in a compression of the matrix, it does not yield an explicit information on
the dependence on n of such a compression, which we need in order to choose the parameter
n̄. Due to the quite cumbersome definition of the kernel Kn, which involves a Laplace
transform, combined with the BDF2 scheme and a Discrete Fourier Transform, making such
a dependence explicit is not immediately feasible.

In order to propose a criterion for the choice of n̄, we instead recall that the following
Lemma holds (see [16]).

Lemma 2.5. There exists t̄ depending on ∆t such that for all n > (t̄+ δ)∆t

|ωn(∆t; s)−∆tG(s, n∆t)| ≤ C(δ, s)∆3
t

with δ > 0 arbitrary and C(δ, s) a positive constant depending on s and δ.

Using such a lemma, we easily see that, for all n > (t̄+ δ)/∆t we have that

V W,n
λ,λ′ = ∆t

∫ 2π

0

∫ 2π

0

G(r(θ, σ), n∆t)ψλ(θ)ψλ′(σ) |η′(θ)| |η′(σ)| dθ dσ +En
λ,λ′ .

with

|En
λ,λ′ | ≤ ∆3

t

∫ 2π

0

∫ 2π

0

C(δ, r(θ, δ))|ψλ(θ)||ψλ′(σ)| |η′(θ)| |η′(σ)| dθ dσ

≤ 2−(`+`′)/2C(δ)∆3
t .
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This suggests to look for n̄ by exploiting an a priori estimate on

Ṽ
W,n

λ,λ′ = ∆t

∫ 2π

0

∫ 2π

0

G(r(θ, σ), n∆t)ψλ(θ)ψλ′(σ) |η′(θ)| |η′(σ)| dθ dσ.

We then start to prove the following Proposition.

Proposition 2.6. It holds that

|Ṽ
W,n

λ,λ′ | . ∆t2
−m̃min{`,`′}2−(`+`′)/2 max

(θ,σ)∈Ωλ×Ωλ′
max
|α|=m̃

|DαGn(θ, σ)| (26)

where Ωλ is the support of ψλ.

Proof. In order to bound |Ṽ
W,n

λ,λ′ | we can use (a two dimensional version of) Proposition 2.2.
We then have∣∣∣∣∫ 2π

0

∫ 2π

0

G(r(θ, σ), n∆t)ψλ(θ)ψλ′(σ) |η′(θ)| |η′(σ)| dθ dσ
∣∣∣∣ . inf

p∈Pm̃−1

‖Gn − p‖L2(Ω̂λ×Ω̂λ′ )
.

(27)
where the 2π bi-periodic function Gn ∈ L2

loc(R2) is defined by

Gn(θ, σ) := G(r(θ, σ), n∆t) |η′(θ)| |η′(σ)| ,

(by abuse on notation we also denote by η the 2π periodic function coinciding with η in
[0, 2π)). We bound the right hand side of (27) by a standard argument (see [29]) as

inf
p∈Pm̃−1

‖Gn − p‖L2(Ω̂λ×Ω̂λ′ )
. 2−m̃min{`,`′}|Gn|m̃,Ω̂λ×Ω̂λ′

. 2−m̃min{`,`′}2−(`+`′)/2 max
(θ,σ)∈Ω̂λ×Ω̂λ′

max
|α|=m̃

|DαGn(θ, σ)|. (28)

We finally obtain (26) by observing that, as Gn is a 2π bi-periodic function and as Ωλ =

Ω̂λ∩ [0, 2π] we can replace the maximum over Ω̂λ× Ω̂λ′ with the maximum over Ωλ×Ωλ′ .

If we assume that the parametrization of Γ is chosen in such a way that |η′(θ)| = 1 for
all θ ∈ [0, 2π], for r = r(θ, σ) < cn∆t, it holds:

∂2Gn

∂θ2
(θ, σ) =

1

2π

[(
c−2

((n∆t)2 − c−2r2)3/2
+

3c−4r2

((n∆t)2 − c−2r2)5/2

)
r2
θ +

c−2r

((n∆t)2 − c−2r2)3/2
rθθ

]
.

The computation of the derivatives
∂2Gn

∂σ2
and

∂2Gn

∂θ∂σ
yields an analogous expression. There-

fore, setting
Mλ,λ′ := max

(θ,σ)∈Ωλ×Ωλ′
r(θ, σ),

and
D1,Γ := max

|α|=1
max

(θ,σ)∈Γ×Γ
|Dαr(θ, σ)|, D2,Γ := max

|α|=2
max

(θ,σ)∈Γ×Γ
|Dαr(θ, σ)|,

we get the following corollary.
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Corollary 2.7. If the parametrization η satisfies |η′(θ)| = 1 for all θ ∈ [0, 2π] we have

|Ṽ
W,n

λ,λ′ | .
1

2π
∆t2

−m̃min{`,`′}2−(`+`′)/2

[(
c−2

((n∆t)2 − c−2M2
λ,λ′)

3/2

+
3c−4M2

λ,λ′

((n∆t)2 − c−2M2
λ,λ′)

5/2

)
D2

1,Γ +
c−2Mλ,λ′

((n∆t)2 − c−2M2
λ,λ′)

3/2
D2,Γ

]
. (29)

Given now λ, λ′ and a threshold ε, the idea is to look for n̄ such that for n > n̄ we have
that the value of the right hand side of (29) is less or equal than ε. The solution will of
course depend on the shape of Γ via the derivatives of r with respect to θ and σ.

The problem of finding the values n such that the right hand side of (29) is smaller
than ε given can not be solved analytically. However, for a fixed time discretization, once
the quantities involved therein are evaluated, an upper bound for n̄ can be numerically
computed after further bounding the right hand side of (29) with a simpler expression. Just
to make an example, let us consider the case of Γ being a circle of radius R. In this case, it
is not difficult to obtain that the terms D1,Γ and D2,Γ can be bounded by R. Therefore, an
estimate for n̄ follows by exploiting the following estimate

|Ṽ
W,n

λ,λ′ | .
1

2π
∆t2

−m̃min{`,`′}2−(`+`′)/2

[(
c−2(R2 +Mλ,λ′R)

((n∆t)2 − c−2M2
λ,λ′)

3/2
(30)

+
3c−4M2

λ,λ′R
2

((n∆t)2 − c−2M2
λ,λ′)

5/2

)]
.

We finally remark that estimate (30) will be used in the numerical tests of Section 3.

Remark 2.8. Observe that, while Lemma 2.5 yields that V W,n
λ,λ′ ∼ Ṽ

W,n

λ,λ′ only for n >
(t̄+δ)/∆t, in using the right hand side of (29) to estimate n̄, we disregard such a restriction.
The numerical tests confirm that this does not lead to an under estimation of n̄, which would
negatively affect the accuracy of the compression scheme, but rather to an over estimation of
such a parameter (which implies a higher cost of the resulting scheme). Of course, it would
be desirable to have a strategy leading to a sharper estimate of n̄, which would result in a
cheaper but still accurate numerical scheme.

2.3.3. Time downsampling strategy

From estimate (29) we deduce that, for fixed λ = (`, k), λ′ = (`′, k′), the matrix elements
have a rapid decay to zero for increasing values of the time instants tn = n∆t. Moreover,
this behaviour is influenced both by the levels ` and `′ of the two indexes, and by the wave
propagation speed c. Indeed, as we will notice in the forthcoming numerical tests, for a
fixed tolerance ε, the higher the values of `, `′ and c are, the smaller the value of n̄ is. If,
for given λ, λ′, we avoid the computation of this negligible values, which we can set to 0,
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and settle for only building the matrix entries V W,n
λ,λ′ for n ≤ n̄, we can exploit the discrete

Fourier transform properties to write down a time downsampled procedure, leading to both
computational and memory saving.

In order to describe the time downsampling procedure, we start by recalling the relation
between the FFT and its Inverse Discrete Fourier Transform (IDFT). In particular, the
coefficients in (17) can be retrieved by:

c̃Wλ,λ′(n) =
1

R

R−1∑
m=0

cWλ,λ′(m)eı2πmn/R, n = 0, · · · ,R− 1. (31)

Let us denote by Rλ,λ′ , with R = QRλ,λ′ , the smallest integer, submultiple of R, such that

|V W,n
λ,λ′ | ≤ ε for n ≥ Rλ,λ′ . According to (18), we have cWλ,λ′(n) ≈ ρnRV W,n

λ,λ′ , and hence (since

ρ < 1) we will have that |cWλ,λ′(n)| ≤ Rε =: ε̃, for n ≥ Rλ,λ′ .

We rewrite (31) as

c̃Wλ,λ′(n) =
1

R

Rλ,λ′−1∑
m=0

cWλ,λ′(m)eı2πmn/R +
1

R

R−1∑
m=Rλ,λ′

cWλ,λ′(m)eı2πmn/R

=: c̃W,1
λ,λ′ (n) + c̃W,2

λ,λ′ (n),

with |c̃W,2
λ,λ′ (n)| ≤ (R−Rλ,λ′)/R ε̃ ≤ ε̃, for n = 0, · · · ,R− 1.

By neglecting this second small term and evaluating c̃W,1
λ,λ′ (n) at n = pQ, with p =

0, · · · ,Rλ,λ′ − 1, we get

c̃W,1
λ,λ′ (pQ) =

1

QRλ,λ′

Rλ,λ′−1∑
m=0

cWλ,λ′(m)eı2πmp/Rλ,λ′

from which, applying the DFT, we deduce

cWλ,λ′(n) = Q

Rλ,λ′−1∑
p=0

c̃W,1
λ,λ′ (pQ)e−ı2πnp/Rλ,λ′ , n = 0, · · · ,Rλ,λ′ − 1. (32)

Therefore, recalling that c̃Wλ,λ′ ≈ c̃W,1
λ,λ′ (up to a term smaller than ε̃), according to equation

(32), to get the significant coefficients cWλ,λ′(n) for n = 0, · · · ,Rλ,λ′ , it is sufficient to compute

the coefficients c̃Wλ,λ′(pQ) only at the Rλ,λ′ downsampled values pQ, 0 ≤ p ≤ Rλ,λ′ − 1.

Combining (32) and (16), the computation of the significant matrix entries is therefore
given by the following formula:
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V W,n
λ,λ′ ≈

ρ−n

R
Q

Rλ,λ′−1∑
p=0

c̃Wλ,λ′(pQ)e−ı2πnp/Rλ,λ′ , n = 0, · · · ,Rλ,λ′ − 1. (33)

It is worthwhile noting that the complexity of the downsampled FFT algorithm (33) is
of order Rλ,λ′ logRλ,λ′ . As we will see in the numerical tests, for many couples (λ, λ′) it
turns out that Rλ,λ′ � R, and this allows a consistent computational cost reduction and,
consequently, a high memory saving.

We remark that, when in (17) piece-wise linear nodal approximating basis functions
are considered instead of the wavelet basis functions ψλ and ψλ′ , a downsampling strategy
could in principle be applied as well. However, in this case, it turns out that the associated
coefficients obtained by the FFT are not negligible, and the cutoff procedure is not effective,
as the next section shows.

2.3.4. On the efficiency of the downsampling strategy

To show the downsampling strategy efficiency, we consider here, as a benchmark example,
Problem (1) where Γ is the circumference of radius R = 1 and the final time T = 10. The
discretization parameters are L = 8, N = 256 and the threshold ε = 1.0e− 10.

In what follows, we refer to the approach where the piece-wise linear nodal basis {φL,i, i =
0, · · · ,M − 1} is used as the standard approach, and we will label it by the superscript S.
The associated coefficients, corresponding to formula (17) where ψλ and ψλ′ are replaced by
φL,i and φL,j respectively, will be denoted by c̃Si,j and the matrix entries obtained by applying

the FFT will be denoted by V S,ni,j .

In Figures 3 and 4 we compare the cutoff effects for two choices of the velocity: c = 1 and
c = 343 (speed in m/s of propagation of acoustic waves in air). In each figure, the left plots
correspond to the behaviour in time of the coefficients c̃Si,j (standard approach, top row) and
c̃Wλ,λ′ (wavelet approach, middle and bottom rows). The right plots represent the behaviour in

time of the matrix entries V S,ni,j (standard approach, top row) and V W,n
λ,λ′ (wavelet approach,

middle and bottom rows) computed by the FFT algorithm. The graphs in solid lines refer
to the FFT algorithm applied to the whole set of time instants, while the bullets refer to
the FFT algorithm applied to the downsampled time instants. To compare entries of the
matrices belonging to the same row and column, we use (14) to obtain (i, j) from (λ, λ′).
In particular, for λ = (3, 1) and λ′ = (7, 13) we have (i, j) = (9, 141); for λ = (7, 0) and
λ′ = (7, 123) we have (i, j) = (128, 251).

As we can see, in the wavelet approach, the downsampling strategy reveals to be crucial
since it significantly reduces the computation of c̃Wλ,λ′ at only Rλ,λ′ � R = 512 values. For

example, for λ = (3, 1) and λ′ = (7, 13), it results Rλ,λ′ = 64 for c = 1 and Rλ,λ′ = 4 for the
higher velocity c = 343. For the wavelets associated to higher levels, Rλ,λ′ is even smaller,
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as expected. For example, for λ = (7, 0) and λ′ = (7, 123) it results Rλ,λ′ = 4 for c = 1, and
Rλ,λ′ = 1 for c = 343.

On the contrary, in the standard approach, for (i, j) = (9, 141), the downsampling strat-
egy is not effective because the entries of V S,n are all greater than the chosen threshold ε
when n increases. Since the graph corresponding to (i, j) = (128, 251) is very similar, we
omit it.

Remark 2.9. It is worth noting that, in order to apply the downsampled FFT algorithm,
Rλ,λ′ must be a submultiple of R and, for this reason, some values V W,n

λ,λ′ are computed even
if they are below the threshold ε (see for example Figure 3, middle and bottom plots on
the right). To reduce further the storage, these coefficients will be dropped successively by
applying an a posteriori cutoff strategy, based on the same ε.

We also highlight that the time downsampling strategy produces matrices V W,n of the
final linear system (15) that, for each fixed value of n, turn out to be sparse. Therefore, the
resolution of (15),

V W,0dn = gW,n −
n−1∑
j=0

V W,n−jdj, n = 0, · · · , N,

takes advantage of the fast sparse matrix-vector product, in particular for what concerns the
computation of the right hand side term

∑n−1
j=0 V

n−j,Wdj for each n = 0, · · · , N .

In the next section we present some numerical examples to test the Lubich-wavelet
Galerkin approach presented in Sections 2.1 and 2.2, combined with the time downsam-
pling strategy described in Section 2.3.

3. Numerical results

In the forthcoming numerical tests, we will compare the approach W with approach S.
By virtue of the considerations made in Section 2.3, for the approach S we will not apply
the downsampling strategy, but only the a posteriori cut off of the matrix entries below the
threshold ε. Finally, we will also consider the Lubich-wavelet Galerkin approach without
time downsampling, where the matrices of the Toeplitz block linear system expressed in the
wavelet basis are obtained from the matrices relative to the standard approach, by using the
fast wavelet fransform FWT; this latter approach will be detailed later and will be labeled
by the capital letter T . In this case too, we will apply only the a posteriori cut off procedure.

For each approach we will compute the approximations of ϕ, solution of BIE (4), and of
the associated single layer potential u(x, t), solution of Problem (1) and defined by (2), in a
chosen point x ∈ Ωe. For the convenience of the reader, we summarize the two main steps
of the three algorithms S, T and W .
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Algorithm S

S1 : the matrix elements V S,ni,j are computed by using a Gauss-Legendre product quadra-
ture rule in space applied to each interval of regularity of the piece-wise linear basis
functions, and by performing the complete FFT algorithm in time.

S2 : subsequently, the a posteriori cut off is applied to set equal to zero the matrix entries
such that |V S,ni,j | ≤ ε for n = 0, · · · , N .

Algorithm T

T 1 : the matrices V T ,n are retrieved by applying the FWT to V S,n. To this aim we use the
Matlab function wavedec, which returns the wavelet decomposition of the piece-wise
linear basis functions at the level L associated to the bior2.2 wavelets. Storing these
latter as columns of a square matrix W , we compute V T ,n as

V T ,n = W−TV S,nW−1, n = 0, · · · , N. (34)

T 2 : then, we apply the a posteriori cutting to the matrix entries such that |V T ,nλ,λ′ | ≤ ε,
for n = 0, · · · , N .

Algorithm W

W1 : for a fixed threshold ε and forRλ,λ′ obtained according to the estimate (29), such that

R = QRλ,λ′ and |V W,n
λ,λ′ | ≤ ε for all n ≥ Rλ,λ′ , the matrix elements V W,n

λ,λ′ are computed
by a Gauss-Legendre product quadrature rule in space applied to each interval of
regularity of the wavelet basis functions. In time, we apply the downsampled FFT to
the set of coefficients c̃Wλ,λ′(pQ), with p = 0, · · · ,Rλ,λ′ .

W2 : subsequently, the elements computed by the downsampled FFT that are below the
threshold ε, are further set to zero by an a posteriori cutting based on the same ε (see
Remark 2.9). The remaining entries are those actually stored.

We will denote by ϕ∗M,N and u∗M,N , with ∗ ∈ {S, T ,W}, the corresponding approximate
solutions, obtained by using M = 2L subintervals for the discretization of [0, 2π] and N
subintervals for [0, T ].

We point out that, the a posteriori cutting applied in the approach S allows a low memory
saving, in agreement with the remarks done in Section 2.2 about the time behaviour of the
entries of V S,n. On the contrary, as expected, the a posteriori cutting applied in the approach
T allows to retrieve the same sparse matrices obtained by combiningW1 andW2. However,
the cutoff procedure in T can be performed only after that the matrices V S,n have been
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computed and stored for all n = 0, · · · , N . This drawback will be highlighted in Example
4, in which the approaches S and T can not be applied because of an out of memory, while
the approach W can be performed. Therefore, T is here considered for a comparison with
W and to evaluate the sharpness of the a priori estimate (29).

In the following examples, we take as reference solutions ϕS1
Me,Ne

and uS1
Me,Ne

those ob-
tained by the standard approach S1 that uses piece-wise basis functions for the spatial
approximation, and without applying any cutting. The discrete parameters Me and Ne are
properly chosen according to the numerical example to which they refer.

To test the accuracy and efficiency of the above described approaches ∗ ∈ {S,W , T }, we
will consider:

1) in the plots, for a graphic comparison, the absolute errors

E∗ϕ(x, t) =
∣∣ϕS1

Me,Ne
(x, t)−ϕ∗M,N(x, t)

∣∣
and

E∗u(x, t) =
∣∣uS1

Me,Ne
(x, t)− u∗M,N(x, t)

∣∣
associated to ϕ∗M,N and u∗M,N , respectively;

2) in the tables, the maximum in time of the absolute errors

E∗L2,ϕ = max
t∈[0,T ]

‖ϕS1
Me,Ne

(·, t)−ϕ∗M,N(·, t)‖L2(Γ) (35)

and
E∗∞,u(x) = max

t∈[0,T ]

∣∣uS1
Me,Ne

(x, t)− u∗M,N(x, t)
∣∣; (36)

3) the memory saving percentage

mem∗(%) =

(
1− nz∗

M2N

)
· 100, (37)

M2N being the total number of matrix elements of the standard approach S1, and nz∗

the number of elements that are stored after the cutting.

The goal of the forthcoming numerical experiments is twofold: a) to investigate the
sharpness of estimate (29); b) to apply the new proposed method to problems of type (1)
and to test the downsampling procedure efficiency, not only in terms of memory saving, but
also in terms of accuracy of the approximate solutions ϕ∗M,N and u∗M,N .

For simplicity, the domain Ωi that we consider in all the examples is a disc of radius
R = 1. By choosing two reference velocities of the acoustic wave, c = 1 (low velocity) and
c = 343 (high velocity), we observe the dependency on c of the discrete integral operators
sparsity: it results that the higher the velocity is, the sparser the wavelet matrices are.
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Out of a set of extensive numerical test, the results we report here have been selected to
present significant benchmark examples. For each of them, we summarize its main goal.

B In Example 1 we compute the errors (35) and (36) for all the approaches S, W and T
and report the global convergence rate with respect to the space and time refinement.
Moreover, we show the sparsity pattern of the associated matrices at fixed time steps.
Finally, we give the computational complexity

∑
λ,λ′Rλ,λ′ logRλ,λ′ and memory saving,

for both low and high velocities and by varying the threshold ε.

B In Example 2 we present a problem for which a coarse space discretization and a large
threshold are sufficient to obtain an accurate solution with a high memory saving by
the wavelet approaches T and W , contrarily to the standard one S.

B In Example 3 we consider a problem for which a fine space discretization and a small
threshold are necessary to obtain an accurate solution for all the approaches. Despite
the small value of ε the wavelet approaches T andW allow a very high memory saving,
contrarily to the standard one S.

B Finally, the last numerical test in Example 4 shows that the new approach W allows
to deal with large scale problems, for which S and T can not be applied.

We remark that the implementation at the current stage of development does not employ
optimized libraries or parallelization, and it is based on a standard (i.e., sequential) Matlab
code.

Example 1. We consider Problem (1) with

g(x, t) = t4e−2t cos(x2
1 + 2x2

2)

and T = 10. In Tables 1 and 2 we report the errors (35) and (36) for the approaches S and T ,
and the corresponding estimated order of convergence (EOC), for ε = 1.0e−10 and velocities
c = 1 and c = 343, respectively. In (35) and (36) the reference solutions ϕS1

Me,Ne
and uS1

Me,Ne

have been obtained by choosing the discretization parameters Me = 29 and Ne = 2048. In
the last two columns we compare the memory saving of the two approaches.

Combining (24) with a known inverse-type inequality for negative Sobolev norms (see,
for example, [30]), and recalling that m = 1 for the chosen wavelet basis, we obtain the
following error estimate

‖ϕ(·, tn)− ϕnL‖L2(Γ) = O(∆2
t ) +O(∆2

x).

The results reported in the tables confirm the expected order of convergence, for fine dis-
cretizations when c = 1 and even for coarse discretizations when c = 343. As it can be seen,
in spite of the high compression, the accuracy of the solutions obtained by T is the same of
that given by S, for which the compression is very low and, in some cases, even null.
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We remark that the approachW has produced the same values (at least up to the second
significant digit) for all the quantities reported in the two tables, excepted for the values
M = 256 and N = 1024 of the last row, for which the error is slightly larger. This mismatch
is due to the spatial numerical quadrature employed for the computation of the matrix
entries. Indeed, for the approach W , an “ad hoc” quadrature strategy is needed, and this
will be the object of our study in a forthcoming research.

For this benchmark example, we also show the sparsity pattern of the associated matrices
V ∗,n for ∗ ∈ {S,W , T } and we report the corresponding global memory saving.

Choosing, for example, the parameters L = 8, N = 256 and ε = 1.0e − 08, in Figures 5
and 6 we present the structure of the compressed matrices V S,n (first column), V T ,n (second
column) and V W,n (third, fourth and fifth column), at the time instants t0 (top row), tN/2
(middle row) and tN (bottom row), for c = 1 and c = 343, respectively. For what concerns
the matrices V W,n, to validate the effectiveness of estimate (29), we show the sparsity pattern
at two different stages: the effectively computed entries of the matrices obtained by applying
only the a priori compression strategy W1 (fourth column); the effectively stored entries of
the matrices obtained by applying further the compression strategy W2 (fifth column). For
the sake of comparison, we also show the sparsity pattern of the matrices V W,n obtained by
using a compression strategy based on an optimal truncation value evaluated “a posteriori”,
after computing all the entries (third column).

As we can see in Figure 5, for c = 1, at the first time instant the compressed matrix
generated by S is sparse, while for the other instants they are fully populated; indeed, for tN/2
and tN the number nz of non-zero entries coincides with M2 = (2L)2 = 65536. Consequently,
memS ≈ 9% and, hence, the total memory saving in this case is low. Contrarily, the
compressed wavelet matrices are all highly sparse; they have a typical finger structure at the
first time instant and are even sparser at the subsequent instants. In particular, at tN = 10,
only 62 entries out of 65536 are stored. In this case memW = memT ≈ 91%.

In Figure 6, for c = 343, the matrix compression for the approaches W and T with
respect to the approach S is even more evident, as expected, because of the higher value of
the velocity. Indeed, in the latter case, all the entries of V S,n, for all the time instants, are
computed and stored, with a consequent null memory saving (memS = 0%). On the contrary,
the sparsity in the wavelet approach is stronger, especially when t increases. Incidentally,
we point out that for tN/2 = 5 and tN = 10, only a single entry of the matrices V W,n and
V T ,n, out of 65536, is computed and stored. In this case memW = memT ≈ 99.8%. In both
cases, the comparison between columns 3 and 4 (a posteriori and a priori estimate) shows
the good performance of the a priori cutting strategy.

In Figures 7 and 8 we report the colour scale for Rλ,λ′ of the computed entries of V W,n

for all instants tn, n = 0 · · · , N, and for c = 1 and c = 343, respectively. These figures can
be read as an overlap of the sparsity patterns at each time instant and give an idea of the
value of Rλ,λ′ associated to each entry. The number nc =

∑
λ,λ′Rλ,λ′ reported in the x label

represents the total number of the computed entries. It results that, before the a posteriori
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cutting, the memory saving is about 69% for c = 1 and 99.6% for c = 343. The global
complexity

∑
λ,λ′Rλ,λ′ logRλ,λ′ of the algorithm is about 3.5e + 07 for c = 1 and 9.6e + 04

for c = 343, instead of 3.0e+ 08 for the approach S1.

Finally, to give an idea of the global storage requirement behaviour with respect to space
and time refinements, in Figure 9 we report the memory saving memS(%) and memW(%)
with respect to increasing values of degrees of freedom d.o.f = MN . In particular, we
consider M = N = 2`, for ` = 6, . . . , 10 and we vary the threshold parameter ε = 1.0e −
09, 1.0e − 10, 1.0e − 12, 1.0e − 14. As we can see, the behaviour of memS(%) confirms that
S does not benefit from the cutting strategy, independently of ε and c. On the other hand,
the behaviour of memW(%) clearly illustrates that the cutting strategy is effective for the
approach W and that the memory storage depends on ε for small numbers of d.o.f, but it is
asymptotically independent of ε and c.

In Figure 10, we consider a fixed threshold ε = 1.0e − 12 and M = N = 2`, for ` =
2, . . . , 10. The figure shows that the global memory storage for S behaves like that of S1,
i.e. M2N for both choices of the velocities c = 1 (left plot) and c = 343 (right plot). On the
contrary, we observe a linear growth O(MN) of the storage requirement for the approachW
for c = 1 (right plot) starting from M = N = 27, and less than linear for the higher velocity
c = 343 (right plot) starting from M = N = 25.

Example 2.

We consider Problem (1) with c = 1,

g(x, t) = t4e−2t

and T = 10. Since the resulting solution does not depend on the variable x, being g
independent of x, it is sufficient to consider the coarse spatial discretization of level L = 3.
We discretize the time interval [0, T ] in N = 256 subintervals and we choose the large
threshold parameter ε = 1.0e− 04.

In the left plots of Figures 11 and 12 we show the behaviour in time of the approximate
solutions ϕWM,N and uWM,N (green dashed line), ϕSM,N and uSM,N (red dotted line), ϕTM,N and
uTM,N (blue dotted-dashed line). In the right plots, we report the corresponding absolute

errors. The reference solutions ϕS1
Me,Ne

and uS1
Me,Ne

are obtained by choosing the discretization

parameters Me = M = 23 and Ne = N . We remark that the memory savings are memT =
memW ≈ 77% and memS ≈ 6%.

As we can see, the worst solution is that associated to the approach S, regardless the
cutoff strategy has maintained almost all the entries with a resulting low memory saving. It
is worth noting that, for this approach, the threshold ε reveals to be too coarse. Contrarily,
the wavelet approach allows to obtain an accurate solution with a high memory saving. We
point out that the discrepancy in accuracy between the approaches W and T is essentially
due to the numerical computation of the spatial integrals which appear the matrix entries
definition, as already remarked in the previous example.
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Example 3.

We consider here Problem (1) with c = 343,

g(x, t) = t4e−t cos(x2
1 + 4x2

2)

and T = 10. The discretization parameters are L = 8 and N = 256, and the threshold
is ε = 1.0e − 12. The reference solutions ϕS1

Me,Ne
and uS1

Me,Ne
are obtained by choosing

the discretization parameters Me = M = 28 and Ne = N . With these choices, it results
that almost the whole storage of the matrices V S,n associated to the standard approach
is necessary, so that the memory saving is memS ≈ 0.01%; this justifies that the errors
associated to the density and potential functions have the machine precision order. On the
other hand, the total memory saving forW and T is memW = memT ≈ 98%. The maximum
value of the corresponding errors is approximately 1.0e − 03 for ϕWM,N , 1.0e − 06 for ϕTM,N ,
1.0e− 07 for uWM,N and 1.0e− 10 for uTM,N .

Example 4.

As last example, we present a case for which the approximate solution requires a very
fine space and time discretization, that turn out to be prohibitive for the approaches S and
T in terms of memory space. Indeed our PC prevented the execution of S and T because
of an out of memory. Therefore, the compression strategy of the new approach revealed to
be crucial for this simulation.

For this example, we consider a wave that propagates with velocity c = 343, generated
by the highly oscillating in time Dirichlet datum

g(x, t) = t2e−t sin(512t) cos(x2
1 + 32x2

2).

We solve BIE (4) in the time interval [0, 1] by using L = 9 and N = 4096. These fine
discretization parameters are necessary to reproduce accurately the oscillating behaviour of
the density function and of the potential. The threshold is ε = 1.0e − 10. In Figure 15
we show the solutions ϕWM,N and uWM,N , computed with a memory saving memW ≈ 99.6%.
In particular, in the top-left plot we show ϕWM,N(x, t) at x = (−1, 0) for t ∈ [0, T ], in the
top-right plot ϕWM,N(x, T ) for x ∈ Γ and in the bottom plot uWM,N(x, t) at the external point
x = (2, 0) for t ∈ [0, T ].

4. Conclusions

We have considered a boundary integral formulation of an exterior 2D wave propagation
problem. For the resolution of the corresponding BIE, we have used a wavelet Galerkin
method in space coupled with a Lubich convolution quadrature method in time. The coupling
of the two schemes is new and, although wavelet approximations have been successfully
applied to BEMs, there is not much work on their use for the resolution of time-dependent
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BIEs. We have devised an approach, denoted by W , that combines the good properties of
the wavelet approximation in space and those of Lubich’s convolution quadrature method in
time. Based on an a priori estimate of the decaying behaviour of the matrix entries and on
a downsampled FFT, this approach offers two main advantages: a high matrix compression
and a considerable computational cost reduction for the time discretization.

We have compared this approach with: the approach S that uses piece-wise linear spa-
tial approximating functions and Lubich’s quadrature method in time, with an a posteriori
cutting; the approach T that uses wavelet spatial approximating functions, by means of a
wavelet transform, and Lubich’s quadrature in time, with an a posteriori cutting.

As shown in Section 3, the approach S does not permit a matrix compression strategy
(independently of the wave propagation velocity) and, consequently, it does not allow neither
a computational cost reduction nor a memory saving.

On the contrary, thanks to wavelet properties, the approach T permits a significant
matrix compression (depending on the wave propagation velocity), but this allows only an
a posteriori cutting and a computational cost reduction in the resolution of the final linear
system. Indeed, this approach can not be taken into account for memory saving since the
compression is possible only after that the matrices associated to the approach S have been
entirely computed and stored.

Therefore, the new approach W , which allows simultaneously computational cost reduc-
tion and memory saving, turns out to be crucial when applied to large scale problems, for
which the computation and the storage of all the matrices become prohibitive.
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Figure 1: The functions φ and ψ associated to the biorthogonal bior2.2 wavelets.
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Figure 2: scaling function ψ−1,0 and wavelet basis functions ψ0,0, ψ1,0, ψ1,1, ψ2,0 and ψ3,3 for the
choice L = 5.
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Figure 3: coefficients c̃Si,j(n) and corresponding matrix entries V S,ni,j with (i, j) = (9, 141) (top).

Coefficients c̃Wλ,λ′(n) and corresponding matrix entries V W,n
λ,λ′ with λ = (3, 1), λ′ = (7, 13) (middle)

and with λ = (7, 0), λ′ = (7, 123) (bottom). c = 1.
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Figure 4: coefficients c̃Si,j(n) and corresponding matrix entries V S,ni,j with (i, j) = (9, 141) (top).

Coefficients c̃Wλ,λ′(n) and corresponding matrix entries V W,n
λ,λ′ with λ = (3, 1), λ′ = (7, 13) (middle)

and with λ = (7, 0), λ′ = (7, 123) (bottom). c = 343.
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Table 1: Example 1. Errors, EOC, mem∗(%), ∗ = S, T . T = 10, c = 1, ε = 1.0e− 10, x = (2, 0).

M N ES
L2,ϕ

EOC ET
L2,ϕ

EOC ES∞,u(x) EOC ET∞,u(x) EOC memS memT

4 16 6.31e− 01 6.31e− 01 1.76e− 02 1.76e− 02 0% 63%
1.2 1.2 0.9 0.9

8 32 2.69e− 01 2.69e− 01 9.16e− 03 9.16e− 03 0% 28%
1.5 1.5 1.4 1.4

16 64 9.38e− 02 9.38e− 02 3.55e− 03 3.55e− 03 0% 13%
0.4 0.4 1.8 1.8

32 128 6.92e− 02 6.92e− 02 1.00e− 03 1.00e− 03 3% 7%
0.9 0.9 2.0 2.0

64 256 3.50e− 02 3.50e− 02 2.55e− 04 2.55e− 04 6% 34%
1.5 1.5 1.9 1.9

128 512 1.20e− 02 1.20e− 02 6.89e− 05 6.89e− 05 9% 70%
2.0 2.0 2.3 2.3

256 1024 2.99e− 03 3.08e− 03 1.38e− 05 1.38e− 05 10% 87%

Table 2: Example 1. Errors, EOC, mem∗(%), ∗ = S, T . T = 10, c = 343, ε = 1.0e− 10, x = (2, 0).

M N ES
L2,ϕ

EOC ET
L2,ϕ

EOC ES∞,u(x) EOC ET∞,u(x) EOC memS memT

4 16 3.65e− 01 3.65e− 01 6.83e− 05 6.83e− 05 0% 63%
0.5 0.5 −0.6 −0.6

8 32 2.57e− 01 2.57e− 01 1.07e− 04 1.07e− 04 0% 39%
2.0 2.0 4.2 4.2

16 64 5.57e− 02 5.57e− 02 5.97e− 06 5.97e− 06 0% 70%
2.0 2.0 1.9 1.9

32 128 1.36e− 02 1.36e− 02 1.60e− 06 1.60e− 06 0% 90%
2.0 2.0 2.0 2.0

64 256 3.32e− 03 3.32e− 03 4.03e− 07 4.03e− 07 0% 97%
2.1 2.1 2.0 2.0

128 512 7.91e− 04 7.91e− 04 9.69e− 08 9.69e− 08 0% 99%
2.3 2.3 2.3 2.3

256 1024 1.58e− 04 1.61e− 04 2.00e− 08 2.00e− 08 0% 99.7%
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Figure 5: Example 1. Sparsity pattern of V S,n (column 1), V T ,n (column 2) and V W,n (columns
3,4,5) at tn, for n = 0, 128, 256. T = 10, c = 1, ε = 1.0e− 08, M = N = 28.
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Figure 6: Example 1. Sparsity pattern of V S,n (column 1), V T ,n (column 2) and V W,n (columns
3,4,5) at tn, for n = 0, 128, 256. T = 10, c = 343, ε = 1.0e− 08, M = N = 28.

Figure 7: Example 1. Colour scale for Rλ,λ′ of the all computed entries V W,n
λ,λ′ for tn, n = 0 · · · , N .

T = 10, c = 1, ε = 1.0e− 08, M = N = 28.
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Figure 8: Example 1. Colour scale for Rλ,λ′ of the all computed entries V W,n
λ,λ′ for tn, n = 0 · · · , N .

T = 10, c = 343, ε = 1.0e − 08, M = N = 28 (left plot), with a zoom on the first 16 × 16 block
(right plot).
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Figure 9: Example 1. Memory saving mem∗ for ∗ = S,W, with respect to increasing values of d.o.f
and different thresholds ε. T = 10, c = 1 (left plot) and c = 343 (right plot).
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Figure 10: Example 1. Memory storage for S and W, with respect to increasing values of d.o.f.
T = 10, c = 1 (left plot) and c = 343 (right plot), ε = 1.0e− 12.
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Figure 11: Example 2. Approximate functions ϕ∗M,N (x, t), ∗ = S, T ,W, x = (−1, 0) (left plot) and

corresponding absolute errors (right plot). T = 10, c = 1, ε = 1.0e− 04, M = 23, N = 256.
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Figure 12: Example 2. Approximate functions u∗M,N (x, t), ∗ = S, T ,W, x = (2, 0) (left plot) and

corresponding absolute errors (right plot). T = 10, c = 1, ε = 1.0e− 04, M = 23, N = 256.
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Figure 13: Example 3. Approximate functions ϕ∗M,N (x, t), ∗ = S, T ,W, x = (−1, 0) (left plot) and

corresponding absolute errors (right plot). T = 10, c = 343, ε = 1.0e− 12, M = N = 28.
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Figure 14: Example 3. Approximate functions u∗M,N (x, t), ∗ = S, T ,W, x = (2, 0) (left plot) and

corresponding absolute errors (right plot). T = 10, c = 343, ε = 1.0e− 12, M = N = 28.
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Figure 15: Example 4. Approximate function ϕWM,N (x, t), in time for x = (−1, 0) (top-left) and in

space for t = T (top-right), and the potential solution uWM,N (x, t), for x = (2, 0) (bottom). T = 1,

c = 343, ε = 1.0e− 10, M = 29, N = 4096.
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