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Abstract

A general problem, which may concern practical contexts of different nature, is

to aggregate multi-experts rankings on a set of alternatives into a single fused

ranking. Aggregation should also take into account the experts’ importance,

which may not necessarily be the same for all of them. We synthetically define

this context as semi-democratic. The main aim of the paper is the analysis of

the possible semi-democratic paradigms that can be conceived when the experts’

importance is not the same: (i) the importance is described by means of a

weighting vector; (ii) the importance is expressed by a weak order on the set

of experts; (iii) the importance is described by a weak order on the set of

experts with additional information on the ordinal proximities among them. The

three paradigms can be applied in different decision-making situations, where

some experts perform multiple assignments. In this paper various situations are

discussed and analyzed in detail. A series of examples, in the field of interior

design of a new car, will complement the description.

Keywords: group decision-making; semi-democratic decisions; qualitative scales;

ordinal proximity measures; preferences; fusion techniques; aggregation.

1. Introduction

A general problem, which may concern practical contexts of different nature,

is to aggregate multi-experts rankings on a set of alternatives into a single fused
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ranking.

Consider Table 1, where m decision-making experts1 formulate preference

rankings among n alternatives of interest (x1, x2, x3, x4, etc.). Each ranking

allows statements like x1 � x2, x1 ∼ x2, where symbols � and ∼ mean “strictly

preferred to” and “indifferent to”, respectively. The objective is to aggregate

the m experts’ rankings into a single fused one, which should reflect them as

much as possible, even in the presence of divergent preferences. For this reason,

the fused ranking can also be defined as consensus or compromise ranking (see

Cook [10] and Herrera-Viedma et al. [25]). Aggregation should also take into

account the experts’ importance, which is not necessarily equal for all of them.

Inputs Output

Experts Opinions Experts’ importance Social fused ranking

e1 x2 � (x1 ∼ x3) � x4 weights x2 � (x1 ∼ x3) � x4
e2 x3 � x2 � (x1 ∼ x4) hierarchy

· · · · · · hierarchy with ordinal
proximity measures

em x4 � x1 � x2 � x3

Table 1: Aggregation of multi-expert preference rankings into a single fused ranking.

This decision-making problem is very diffused in a variety of real-life con-

texts, ranging from multi-criteria decision-aiding/making to social choice theory

(see Arrow and Raynaud [3] and Greco et al. [23]). Two of the reasons for this

diffusion are that (i) preference rankings are probably the most intuitive and

effective way to represent preference judgments of alternatives, and (ii) they do

not require a common reference scale – neither numeric, linguistic or ordinal –

to be shared by the interacting agents (see Yager [45] and Chen et al. [8]).

The scientific literature includes a large number of aggregation models, which

have been analyzed extensively from the perspective of different axioms and

properties (see Arrow [2], Fishburn [13], Saari [36], Cook [10] and Nurmi [34],

among others).

1By a decision-making expert we will refer to an abstract entity able to provide a decision:
human beings, individual criteria in a multi-criteria decision process, software based intelligent
agents on the Internet, etc.
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A long and lively debate has involved many scientists on the effects that the

Arrow’s theorem can induce on practical decisions (see Arrow [2], Arrow and

Raynaud [3], Franssen [19], See and Lewis [38], Keeney [28], Ladha et al. [29]

and McComb et al. [31], among others). Some researchers have demonstrated

the effectiveness of specific aggregation models, even though they do not satisfy

some of the basic properties related to the Arrow’s theorem. For instance, Dym

et al. [11] showed that, although the Borda aggregation model may not satisfy

the Independence of Irrelevant Alternatives condition, this event rarely affect

the most preferred alternatives. They concluded that Arrow’s theorem poses

a considerable theoretical problem, but the practical implications are not so

worrisome.

Additional research has been carried out by See and Lewis [38], proposing

a structured approach to avoid severe theoretical conflicts. Jacobs et al. [27]

recognized several additional issues related to the uncertainty, comparability

and measurability concerned with aggregation models, both in the aggregation

of preferences and performances.

Franceschini and Maisano [16, 17] addressed the problem of the coherence

between decision agent preferences and collective preference ranking. Other

researchers focused their studies on proposing new approaches to manage lin-

guistic distribution assessment in multi-attribute group decision making (see

Keeney [28], de Andrés et al. [1], Garćıa-Lapresta and Pérez-Román [22], Yu et

al. [46], Zhang et al. [49], Wu et al. [43] and Ureña et al. [40], among others).

The literature is also rich in many practical applications in various fields.

As an example, a small review is shown in Table 2 (see Greco et al. [23], Önüt

et al. [35], Yager [25], Griffin and Hauser [24], Franceschini et al. [14], Colomer

[9], Saari [36] and Fishburn [13]).

The main aim of the paper is the analysis of the possible paradigms that

can be conceived when the experts’ importance is not the same. We syntheti-

cally define this context as semi-democratic. The term semi-democracy is used

to refer to a context that shares both democratic and authoritarian features

(see Møller and Skaaning [33]). In this specific framework the term is used to

highlight that all experts participate (democracy) to the collective fused rank-

ing, although they may have a different weight in the decision (semi or partial

democracy). The modelling of these decision-making problems has only been

partially explored in the literature. The complexity of the problem is due to the

difficulty of modeling the different degree of importance of the decision experts.

In some cases the numerical weight associated with each single expert is
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known, while in other cases only the expert hierarchy (but not their relative

weights) is known. In some other situations it is possible to know, in addition

to the expert hierarchy, also the proximities between the hierarchy levels.

Most of the papers in the literature focus their attention on decision prob-

lems where the weights associated with the individual experts are known (see

Arrow and Raynaud [3] and Greco et al. [23]); other papers concentrate on

the technique for determining these weights (see Yue [47], Dubois et al. [12],

Zhang and Guo [48], Mishra and Rani [32] and Hu et al. [26], among others).

However, when we move on to less structured problems, where the hierarchy

level between decision makers is expressed by more nuanced information i.e.,

only the hierarchical level of experts is known) or by a hierarchical proximity

(i.e., only the hierarchical proximity of experts is known), the literature offers

only few approaches for tackling this problem (see Yager [45]).

By this paper we wish to provide a structured conceptual framework on the

state of the art and on the potential future research areas for decision-making

problems in semi-democratic contexts. In this manuscript various situations

will be discussed and analyzed in detail. A series of examples, inspired by a

real application in the field of interior design of a new car, will complement the

description.

The rest of the paper is organized as follows. Section 2 introduces Borda

scores and ordinal proximity measures. Section 3 includes the paradigms con-

sidered in the paper to categorize semi-democratic contexts. Section 4 contains

a case study. Section 5 includes some concluding remarks.

2. Preliminaries

Let E = {e1, . . . , em} be a set of experts. With W (E) we denote the set of

weak orders (or complete preorders) on E. Given S ∈ W (E), with � and ∼
we denote the asymmetric and the symmetric parts of S, respectively. Given a

set Y , with #Y we denote the cardinality of Y .

Definition 1. Given S ∈ W (E), let B : E −→ {0, 0.5, 1, . . . ,m − 1.5,m − 1}
be the mapping that assigns the Borda score of each expert ei ∈ E, defined as

B(ei) = # {ej ∈ E | ei � ej}+
1

2
# {ej ∈ (E \ {ei}) | ej ∼ ei} . (1)
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Field Agents Alternatives Problem description

Multicriteria decision
aiding/making

Qualitative/quantitative
criteria

Alternative locations Determination of the best location where to install a new
manufacturing plant on the basis of several criteria such as
road/railway infrastructure, electrical supply, labour cost,
etc. (see Greco et al. [23])

Multicriteria decision
aiding/making

Qualitative/quantitative
criteria

Technology selection Machine tool selection (see Önüt et al. [35])

Internet Different types of in-
formation concerning
the user

Data displayed on Inter-
net sites

Intelligent customization of data displayed on Internet sites,
based on several types of information such as user’s coun-
try, websites visited previously, apps downloaded, etc. (see
Yager [44])

Quality management Questionnaire/interview
respondents

Customer requirements Synthesis of customer requirements, which are evaluated by
a sample of questionnaire/interview respondents (see Grif-
fin and Hauser [24] and Franceschini et al. [14])

Voting theory Voters Candidates in an election Searching a reasonable mechanism for aggregating the opin-
ions expressed by several voters on the candidates, in order
to determine a winner or to rank all candidates in order of
preference (see Colomer [9], Fishburn [13] and Saari [36])

Table 2: Examples of practical applications of the problem of interest.
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Example 1. Consider S ∈W ({e1, . . . , e5}) given by

S
e1
e2 e3
e4 e5

i.e., e1 � (e2 ∼ e3) � (e4 ∼ e5).

Then, we have B(e1) = 4, B(e2) = B(e3) = 2.5 and B(e4) = B(e5) = 0.5.

We now recall the notion of ordinal proximity measure, introduced by Garćıa-

Lapresta and Pérez-Román [22]. An ordinal proximity measure is a mapping

that assigns an ordinal degree of proximity to each pair of linguistic terms of

an ordered qualitative scale (OQS) L = {l1, . . . , lg}, with l1 < · · · < lg and

g ≥ 3. The mentioned ordinal degrees of proximity belong to a linear order

∆ = {δ1, . . . , δh}, with δ1 � · · · � δh and h ≥ 3, being δ1 and δh the maximum

and minimum degrees of proximity, respectively. It is important noticing that

the elements of ∆ are not numbers. In fact, they are only abstract objects

representing different degrees of proximity.

Definition 2. ([22]) An ordinal proximity measure (OPM) on L with values
in ∆ is a mapping π : L2 −→ ∆, where π(lr, ls) = πrs represents the degree of
proximity between lr and ls, satisfying the following conditions:

1. Exhaustiveness: For every δ ∈ ∆, there exist lr, ls ∈ L such that δ = πrs.

2. Symmetry : πsr = πrs, for all r, s ∈ {1, . . . , g}.
3. Maximum proximity : πrs = δ1 ⇔ r = s, for all r, s ∈ {1, . . . , g}.
4. Monotonicity : πrs � πrt and πst � πrt, for all r, s, t ∈ {1, . . . , g} such

that r < s < t.

Every OPM π : L2 −→ ∆ can be represented by a g× g symmetric matrix

with coefficients in ∆, where the elements in the main diagonal are πrr = δ1,

r = 1, . . . , g: 
π11 · · · π1s · · · π1g

· · · · · · · · · · · · · · ·
πr1 · · · πrs · · · πrg

· · · · · · · · · · · · · · ·
πg1 · · · πgs · · · πgg

 .

This matrix is called the proximity matrix associated with π.

Some procedures for generating OPMs in an OQS are introduced by Garćıa-

Lapresta et al. [21].
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3. Paradigms to categorize semi-democratic contexts

Let E = {e1, . . . , em} be a set of experts that show their preferences

on a set of alternatives X = {x1, . . . , xn} through a profile of weak orders

(R1, . . . , Rm) ∈W (X)m.

The aim is to generate a social weak order R∗ ∈ W (X) representing indi-

vidual preferences taking into account that the importance of experts may be

different.

According to the content of Table 3, we can identify three potential paradigms

to categorize the concept of semi-democratic context for a set of experts:

1. A numerical weight wi ∈ [0, 1] is assigned to each expert ei ∈ E.

2. The set of experts is categorized by a hierarchy, i.e., a weak order on the

set of experts, S ∈W (E).

3. The set of experts is categorized by a graduated hierarchy within an OQS

equipped with an OPM, v1, . . . , vm ∈ L.

Inputs Output

Experts Opinions Experts’ importance Social fused ranking

e1 R1 ∈W (X) w1, . . . , wm ∈ [0, 1] R∗ ∈W (X)

e2 R2 ∈W (X) S ∈W (E)

· · · · · · v1, . . . , vm ∈ L
em Rm ∈W (X)

Table 3: Aggregation of multi-expert preference rankings into a single fused ranking.

3.1. Assigning a numerical weight to each expert

In some contexts experts may have recognized abilities and attributes and/or

privileged positions of power, represented by weights (see Dubois et al. [12],

Brans and Mareschal [6] and Greco et al. [23]).

The definition of the experts’ weights can be a very delicate issue. In some

settings, the weight of an expert may be well defined; for example, the Gross

National Product (GNP) or population size of a country represented by the

member on an international committee can immediately be used as weights.

In many other situations the definition of the weights is controversial, because

there are no indisputable criteria that can be used for this operation. Weights
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are often imposed by decision-makers, according to political strategies (see Wang

et al. [42]). For example, the scientific committee of a competitive examination

for promotion of Faculty members may decide that scientific publications will

account for 30% of the total performance, the international projects for 25%,

the teaching activity for 35%, etc.

The literature includes several techniques for the quantification of weights.

For example, the AHP procedure uses the eigenvector method to derive a weight

vector relating to experts (see Saaty [37]), while the method proposed by Martel

and Ben Khélifa [30] determines the so-called “relative importance coefficient” of

each expert, based on the combination of subjective and objective components.

More specifically, the importance of experts is directly reported by means of

a weighting vector w = (w1, . . . , wm) ∈ [0, 1]m such that w1 + · · · + wm = 1

and 100wi ∈ N, for every i ∈ {1, . . .m}.
The weighting scheme should follow the replication proposal given by Garćıa-

Lapresta and González del Pozo [20]: the weak orders associated with the ex-

perts are replicated according to the corresponding percentages, 100w1, . . . ,

100wm. In practice, it should be convenient to calculate the greatest common

divisor (gcd) of percentages associated with the weights, and divide each per-

centage by the gcd. Then, the minimum number of replications of each profile

is obtained:

ti =
100wi

gcd{100w1, . . . , 100wm}
, i ∈ {1, . . . ,m}.

If (t1, . . . , tm) /∈ Nm, then these numbers have to be properly rounded.

Thus, the experts’ weak orders of the original profile (R1, . . . , Rm) ∈W (X)m

are replicated accordingly: t1︷ ︸︸ ︷
R1, . . . , R1, . . . ,

tm︷ ︸︸ ︷
Rm, . . . , Rm

 ∈W (X)t1+···+tm .

In some settings, weights are not available or cannot be defined on cardinal

scales. In these cases, the importance hierarchy of agents may be expressed

by a weak order (see Yager [45]). When the expert importance prioritization

is doubtful, the formulation of rankings is certainly simpler and more intuitive

than the formulation of weights (see Chen et al. [8]).
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3.2. Hierarchy of experts

In this subsection we will focus on a specific aggregation problem in which the

experts’ importance is expressed through a weak order. This decision-making

context can be denominated as “ordinal semi-democratic”; the adjective “semi-

democratic” indicates that agents do not necessarily have the same importance,

while “ordinal” indicates that their rank is defined by a crude ranking. This

makes the set of the possible solutions relatively wide, since they may range be-

tween the two extreme situations of (i) full dictatorship – in which the resulting

fused ranking coincides with the preference ranking by the most important agent

(dictator) – and (ii) full democracy – where the agents’ preference rankings are

considered as equi-important.

In spite of its practicality and adaptability to a large number of real con-

texts, this specific decision-making problem is almost completely ignored in the

literature. Over ten years ago, Yager [45] proposed an algorithm (hereafter ab-

breviated as YA, which stands for Yager’s Algorithm) to address this problem

in a relatively simple and fast way. Unfortunately, this algorithm has two im-

portant limitations: (i) the resulting fused ranking may sometimes not reflect

the preference ranking for the majority of experts (see Wang [41]) and (ii) it

is only applicable to linear orders, without incomparabilities and omissions of

the alternatives of interest. The paper of Franceschini et al. [18] enhances the

YA in order to overcome its limitations and adapt to less stringent preference

rankings.

In a formal way, the importance of experts is represented by means of a weak

order S ∈W (E). In this situation we can operate in two ways:

1. Direct method: adopting the YA algorithm or similar variants (Yager [45],

Franceschini et al. [18]; see Section 4).

2. Indirect method: we can generate an “artificial” weighting vector based,

for example, on the Borda scores obtained by the experts (Definition 1),

wi =
B(ei)

B(e1) + · · ·+B(em)
, i ∈ {1, . . . ,m},

going back to the case analyzed in Subsection 3.1. It can be noticed that

Sen [39] has already considered the Borda scores as weights of the objects

in a ranking.

In the Example 1, the following weighting vector w = (0.4, 0.25, 0.25, 0.05, 0.05)

is obtained.
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Since gcd{100w1, . . . , 100w5} = gcd{40, 25, 25, 5, 5} = 5, then R1, R2, R3,

R4 and R5 should be replicated 40/5 = 8, 25/5 = 5, 25/5 = 5, 5/5 = 1 and

5/5 = 1 times, respectively: 8︷ ︸︸ ︷
R1, . . . , R1,

5︷ ︸︸ ︷
R2, . . . , R2,

5︷ ︸︸ ︷
R3, . . . , R3, R4, R5

 ∈W (X)20.

An equivalent approach consists of directly calculate the number of replica-

tions avoiding to obtain the weighting vector and the corresponding rounding

problems.

Since B : E −→ {0, 0.5, 1, . . . ,m − 1.5,m − 1}, i.e., B(ei) could be not

integer, consider

ti =
2B(ei)

gcd{2B(e1), . . . , 2B(em)}
, i ∈ {1, . . . ,m}. (2)

So, in Example 1 we directly obtain t1 = 8, t2 = t3 = 5 and t4 = t5 = 1.

Notice that the importance of expert e1 is 8/5 = 1.6 times the importance of

experts e2 and e3; the importance of expert e1 is 8/1 = 8 times the importance

of experts e4 and e5; and the importance of experts e2 and e3 is 5/1 = 5 times

the importance of experts e4 and e5.

3.3. Ordinal proximity measures

This subsection introduces the third paradigm. In this case the experts’

importance is expressed again through a ranking, with an additional measure of

the proximity (proximity graduation) of the ordinal semi-democratic hierarchy.

A decision-maker evaluates the experts in an OQS L = {l1, . . . , lg} equipped

with an OPM π : L2 −→ ∆ = {δ1, . . . , δh}, by assigning a linguistic term vi ∈ L
to each expert ei ∈ E. Let ρ : ∆ −→ N be the mapping defined as ρ(δr) = r.

A score is given to each expert ei ∈ E through the mapping S : E −→ R
defined as

S(ei) = h+ρ(π(vi, l1))−ρ(π(vi, lg))+
∑
vi>vj

ρ(π(vi, vj))+
1

2

∑
vi=vj
i6=j

ρ(π(vi, vj)). (3)

Since S(ei) could be not integer, following the same pattern that in (2),

consider

ti =
2S(ei)

gcd{2S(e1), . . . , 2S(em)}
, i ∈ {1, . . . ,m}.
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The meaning of S(ei) in (3) is explained as follows. In order to all the scores

S(e1), . . . , S(em) be positive, h points are initially assigned to each expert, just

the number of ordinal degrees of proximity; π(vi, l1) measures the proximity

between the assessment of ei and the lowest possible assessment, l1 (the lower,

the better); π(vi, lg) measures the proximity between the assessment of ei and

the highest possible assessment, lg (now the higher, the better). Consequently,

ρ(π(vi, l1)) − ρ(π(vi, lg)) is the number of steps for going from π(vi, l1) to

π(vi, lg), being this difference positive whenever the assessment of ei is closer to

lg than to l1, and negative in the opposite case.

Notice that h+ ρ(π(vi, l1))− ρ(π(vi, lg)) can be considered as the absolute

part of the score S(ei), in the sense that it does not depend on the assessments

obtained for other experts.

However, the second part of S(ei),∑
vi>vj

ρ(π(vi, vj)) +
1

2

∑
vi=vj
i 6=j

ρ(π(vi, vj)),

can be considered as the relative part of the score S(ei), since it depends of the

assessments obtained for other experts.

With
∑
vi>vj

ρ(π(vi, vj)) we take into account the ordinal degrees of proximity

between the assessment of ei and those obtained by the experts that have been

evaluated worse than ei. Finally,
∑
vi=vj
i 6=j

ρ(π(vi, vj)) is just the number of experts

that share with ei the same assessment.

Obviously, S(ei) > S(ej) ⇔ vi > vj .

Remark 1. The maximum score that an expert ei can reach is obtained when
ei has the highest assessment, lg, and the rest of experts have the lowest assess-
ment, l1; in this case, S(ei) = h+h− 1 + (m− 1)h = (m+ 1)h− 1. Conversely,
the minimum score that an expert ei can reach is obtained when ei has the
lowest assessment, l1, and the rest of experts have the highest assessment, lg;
now, S(ei) = h+ 1− h = 1. Thus, 1 ≤ S(ei) ≤ (m+ 1)h− 1.

Remark 2. The relative part of the score S(ei) depends on the modifications
on the set of experts:

1. Consider a new expert em+1. Let S′ : E ∪ {em+1} −→ R be the new
mapping. Then, vi ≥ vm+1 ⇒ S′(ei) > S(ei).

2. If an expert ek is removed, let S′ : E \ {ek} −→ R be the new mapping.
Then, vi ≥ vk ⇒ S′(ei) < S(ei).

11



Example 2. Let L = {l1, l2, l3, l4} be the OQS equipped with the OPM with
associated proximity matrix2

A342 =


δ1 δ3 δ6 δ7

δ1 δ4 δ5
δ1 δ2

δ1


that can be visualized in Fig. 1.

l1 l2 l3 l4

Figure 1: Ordinal proximity measure with associated matrix A342.

The meaning of the proximity matrix A342 is that the ordinal degrees of
proximity between the linguistic terms of the OQS L are π(l3, l4) = δ2 �
π(l1, l2) = δ3 � π(l2, l3) = δ4 � π(l2, l4) = δ5 � π(l1, l3) = δ6 � π(l1, l4) = δ7.

The absolute part of the score S(ei) is included in Table 4 for the four
possible assessments that experts can obtain.

vi π(vi, l1) π(vi, lg) h+ ρ(π(vi, l1))− ρ(π(vi, lg))

l1 δ1 δ7 7 + 1− 7 = 1

l2 δ3 δ5 7 + 3− 5 = 4

l3 δ6 δ2 7 + 6− 2 = 11

l4 δ7 δ1 7 + 7− 1 = 13

Table 4: Absolute part of the score S(ei).

Example 3. Let L = {l1, l2, l3, l4} be the OQS equipped with the OPM with
associated proximity matrix

A232 =


δ1 δ2 δ4 δ5

δ1 δ3 δ4
δ1 δ2

δ1


that can be visualized in Fig. 2.

We consider Example 1, where e1 � (e2 ∼ e3) � (e4 ∼ e5), and we take into
account the four possible experts’ evaluations in L = {l1, l2, l3, l4} compatible
with the mentioned experts’ importance ranking:

1. v1 = l4, v2 = v3 = l3 and v4 = v5 = l2.

2The subindices 342 of the matrix A342 correspond to the subindices of the δ’s appearing
in the coefficients just over the main diagonal. We follow the same pattern in subsequent
matrices.
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l1 l2 l3 l4

Figure 2: Ordinal proximity measure with associated matrix A232.

After applying (3), we have S(e1) = 21, S(e2) = S(e3) = 13.5 and
S(e4) = S(e5) = 3.5. Then, t1 = 42, t2 = t3 = 27 and t4 = t5 = 7.
Thus, R1, R2, R3, R4 and R5 should be replicated 42, 27, 27, 7 and 7
times, respectively: 42︷ ︸︸ ︷
R1, . . . , R1,

27︷ ︸︸ ︷
R2, . . . , R2,

27︷ ︸︸ ︷
R3, . . . , R3,

7︷ ︸︸ ︷
R4, . . . , R4,

7︷ ︸︸ ︷
R5, . . . , R5

 ∈W (X)110.

Then, the importance of expert e1 is 42/27 = 1.55 times the importance
of experts e2 and e3; the importance of expert e1 is 42/7 = 6 times the
importance of experts e4 and e5; and the importance of experts e2 and e3
is 27/7 = 3.86 times the importance of experts e4 and e5.

2. v1 = l4, v2 = v3 = l3 and v4 = v5 = l1.

After applying (3), we have S(e1) = 23, S(e2) = S(e3) = 15.5 and
S(e4) = S(e5) = 1.5. Then, t1 = 46, t2 = t3 = 31 and t4 = t5 = 3.
Thus, R1, R2, R3, R4 and R5 should be replicated 46, 31, 31, 3 and 3
times, respectively: 46︷ ︸︸ ︷
R1, . . . , R1,

31︷ ︸︸ ︷
R2, . . . , R2,

31︷ ︸︸ ︷
R3, . . . , R3,

3︷ ︸︸ ︷
R4, . . . , R4,

3︷ ︸︸ ︷
R5, . . . , R5

 ∈W (X)114.

Then, the importance of expert e1 is 46/31 = 1.48 times the importance
of experts e2 and e3; the importance of expert e1 is 46/3 = 15.33 times
the importance of experts e4 and e5; and the importance of experts e2 and
e3 is 31/3 = 10.33 times the importance of experts e4 and e5.

3. v1 = l4, v2 = v3 = l2 and v4 = v5 = l1.

After applying (3), we have S(e1) = 27, S(e2) = S(e3) = 7.5 and S(e4) =
S(e5) = 1.5. Now, t1 = 18, t2 = t3 = 5 and t4 = t5 = 1. Thus, R1, R2,
R3, R4 and R5 should be replicated 18, 5, 5, 1 and 1 times, respectively: 18︷ ︸︸ ︷

R1, . . . , R1,

5︷ ︸︸ ︷
R2, . . . , R2,

5︷ ︸︸ ︷
R3, . . . , R3, R4, R5

 ∈W (X)30.

Then, the importance of expert e1 is 18/5 = 3.6 times the importance of
experts e2 and e3; the importance of expert e1 is 18/1 = 18 times the
importance of experts e4 and e5; and the importance of experts e2 and e3
is 5/1 = 5 times the importance of experts e4 and e5.
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4. v1 = l3, v2 = v3 = l2 and v4 = v5 = l1.

After applying (3), we have S(e1) = 21, S(e2) = S(e3) = 7.5 and S(e4) =
S(e5) = 1.5. Now, t1 = 14, t2 = t3 = 5 and t4 = t5 = 1. Thus, R1, R2,
R3, R4 and R5 should be replicated 14, 5, 5, 1 and 1 times, respectively: 14︷ ︸︸ ︷

R1, . . . , R1,

5︷ ︸︸ ︷
R2, . . . , R2,

5︷ ︸︸ ︷
R3, . . . , R3, R4, R5

 ∈W (X)26.

Then, the importance of expert e1 is 14/5 = 2.8 times the importance of
experts e2 and e3; the importance of expert e1 is 14/1 = 14 times the
importance of experts e4 and e5; and the importance of experts e2 and e3
is 5/1 = 5 times the importance of experts e4 and e5.

Remark 3. Notice that in the procedure of Subsection 3.2, the number of
replications is univocally determined by Eq. (2). However, in the procedure
of Subsection 3.3 the number of replications can vary depending on the OPM
considered on the OQS and the evaluations obtained by the experts. For in-
stance, in Example 3, the OQS has 4 linguistic terms and it can be equipped
with 51 different OPMs. Additionally, experts can be evaluated in 4 different
ways compatible with the weak order e1 � (e2 ∼ e3) � (e4 ∼ e5). Thus, 204
kinds of replications are possible.

3.4. Aggregation

In the paradigms presented in Section 3, a profile of weak orders on the set

of alternatives X = {x1, . . . , xn} is obtained. To generate a collective weak

order on X, it is necessary to consider an aggregation rule. A prominent class

of aggregation rules is the family of scoring rules (see Chebotarev and Shamis

[7]) and, particularly, the Borda rule [5].

Initially, the Borda rule was devised for linear orders (indifferences are not

allowed). There are several ways to adjust the Borda rule to weak orders (see

Black [4]). We follow the pattern of Eq. (1).

The Borda score of each alternative xi ∈ X is defined for every individual

weak order Rk ∈W (X) of the profile (R1, . . . , Rm) ∈W (X)m.

Let Bk : X −→ {0, 0.5, 1, . . . , n − 1.5, n − 1} be the mapping that assigns

the Borda score of each alternative xi ∈ X for Rk ∈ W (X), which is defined

as

Bk(xi) = # {xj ∈ X | xi �k xj}+
1

2
# {xj ∈ (X \ {xi}) | xj ∼k xi} .
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Then, a total score is obtained for each alternative,

B∗(xi) =

m∑
k=1

Bk(xi),

and the collective weak order on X generated by the Borda rule, R∗, is defined

as

xiR
∗ xj ⇔ B∗(xi) ≥ B∗(xj),

for all xi, xj ∈ X.

4. Case study

We propose an application of the above concepts in the field of interior design

of a new car.

A set of interior settings of a new car are provided to a customer panel

selected on the base of the fidelity to the brand and on the level of education. A

sample of ten customers/experts E = {e1, . . . , e10} were encouraged to analyze

five interior designs for a new car, X = {x1, x2, x3, x4, x5}.
Customers were divided into four classes of importance within the OQS

L = {l1, l2, l3, l4}, namely l1 = D, l2 = C, l3 = B and l4 = A, based on the

two analysis dimensions: (i) the “fidelity to the brand” (number of years) and

(ii) the “level of education” (e.g., bachelor, master, doctorate).

These two dimensions may significantly influence the accuracy of the re-

sponse while being relatively easy to evaluate. The two dimensions can be

described through the two-dimensional map in Fig. 3.

The most important customers (in class A) are those with relatively high

values in both dimensions. According to a lexicographic ranking, which favors

the former dimension with respect to the latter, the second and third most

important classes are respectively B and C. The least important customers (in

class D) are those with relatively low values in both dimensions.

Of course, the importance ranking could be based on additional and/or

substitute analysis dimensions (e.g., “age of the respondents”, etc.) or different

evaluation criteria.

Based on the above considerations, the resulting importance ranking of cus-
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Figure 3: Qualitative map to discriminate the importance classes of customers.

tomers is:
e1 e7 7→ A

e2 e4 7→ B

e3 e5 e10 7→ C

e6 e8 e9 7→ D

Next, the 10 customers (i.e., the experts of the problem) classify the 5 interior

designs (i.e., the alternatives of the problem).

Table 5 shows the importance class of each respondent and the relevant

preference rankings. In general, the respondents could not be divided uniformly

in the importance classes. In our case study we have 2 experts in the class A, 2

experts in the class B, and 3 experts respectively in the classes C and D.

We now consider the three paradigms introduced in Section 3.

4.1. Assigning a numerical weight to each expert

Under the approach of Subsection 3.1, consider the following percentages of

importance to A, B, C and D: 40%, 35%, 15% and 10%, respectively. Then,

(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10) = (8, 7, 3, 7, 3, 2, 8, 2, 2, 3).
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Expert Importance class Preference ranking

e1 A R1 : x1 � x3 � (x2 ∼ x5) � x4
e2 B R2 : x2 � x5 � (x1 ∼ x3 ∼ x4)

e3 C R3 : x1 � (x2 ∼ x5) � x4 � x3
e4 B R4 : x5 � x2 � x3 � (x1 ∼ x4)

e5 C R5 : x5 � x2 � (x1 ∼ x3) � x4
e6 D R6 : (x1 ∼ x2) � x5 � (x3 ∼ x4)

e7 A R7 : x1 � (x2 ∼ x3 ∼ x5) � x4
e8 D R8 : x3 � (x1 ∼ x2) � x5 � x4
e9 D R9 : x5 � (x1 ∼ x2) � (x3 ∼ x4)

e10 C R10 : x2 � x5 � x3 � x1 � x4

Table 5: Preference rankings related to the ten experts surveyed.

Thus, we have the following profile: 8︷ ︸︸ ︷
R1, . . . , R1,

7︷ ︸︸ ︷
R2, . . . , R2,

3︷ ︸︸ ︷
R3, . . . , R3,

7︷ ︸︸ ︷
R4, . . . , R4,

3︷ ︸︸ ︷
R5, . . . , R5,

2︷ ︸︸ ︷
R6, . . . , R6,

8︷ ︸︸ ︷
R7, . . . , R7,

2︷ ︸︸ ︷
R8, . . . , R8,

2︷ ︸︸ ︷
R9, . . . , R9,

3︷ ︸︸ ︷
R10, . . . , R10

 ∈W (X)45.

If we apply the Borda rule to this profile, we obtain the scores included

in Table 6. Since B∗(xi) =

10∑
k=1

tk ·Bk(xi) and B∗(x2) = 122.5 > B∗(x5) =

119.5 > B∗(x1) = 111 > B∗(x3) = 81.5 > B∗(x4) = 15.5, the final ranking of

the alternatives is x2 � x5 � x1 � x3 � x4.

4.2. Hierarchy of experts

As anticipated in Subsection 3.2, we can tackle the problem in two ways:

1. Direct method: adopting the YA algorithm or similar variants. In this

specific case study we adopt the approach proposed by Franceschini et al.

[15, 18] as a variant of the YA algorithm. The method is organized in

three steps:

(a) Construction and reorganization of the expert preference vectors.

(b) Definition of the reading sequence.

(c) Generation of the fused ranking.
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Alternatives x1 x2 x3 x4 x5

t1 ·B1(xi) 8 · 4 = 32 8 · 1.5 = 12 8 · 3 = 24 8 · 0 = 0 8 · 1.5 = 12

t2 ·B2(xi) 7 · 1 = 7 7 · 4 = 28 7 · 1 = 7 7 · 1 = 7 7 · 3 = 21

t3 ·B3(xi) 3 · 4 = 12 3 · 2.5 = 7.5 3 · 0 = 0 3 · 1 = 3 3 · 2.5 = 7.5

t4 ·B4(xi) 7 · 0.5 = 3.5 7 · 3 = 21 7 · 2 = 14 7 · 0.5 = 3.5 7 · 4 = 28

t5 ·B5(xi) 3 · 1.5 = 4.5 3 · 3 = 9 3 · 1.5 = 4.5 3 · 0 = 0 3 · 4 = 12

t6 ·B6(xi) 2 · 3.5 = 7 2 · 3.5 = 7 2 · 0.5 = 1 2 · 0.5 = 1 2 · 2 = 4

t7 ·B7(xi) 8 · 4 = 32 8 · 2 = 16 8 · 2 = 16 8 · 0 = 0 8 · 2 = 16

t8 ·B8(xi) 2 · 2.5 = 5 2 · 2.5 = 5 2 · 4 = 8 2 · 0 = 0 2 · 1 = 2

t9 ·B9(xi) 2 · 2.5 = 5 2 · 2.5 = 5 2 · 0.5 = 1 2 · 0.5 = 1 2 · 4 = 8

t10 ·B10(xi) 3 · 1 = 3 3 · 4 = 12 3 · 2 = 6 3 · 0 = 0 3 · 3 = 9

10∑
k=1

tk ·Bk(xi) 111 122.5 81.5 15.5 119.5

Table 6: Scores.

Step (a). Based on the different classes we have the following hierarchy

among experts:

(e1 ∼ e7) � (e2 ∼ e4) � (e3 ∼ e5 ∼ e10) � (e6 ∼ e8 ∼ e9).

According to the four classes of importance, the preference rankings of

Table 5 are reorganized in Table 7. Classes are strictly decreasing in

terms of importance. Each cell element originates from the level-by-level

union of the preferences related to each single expert.

Importance class A B C D

Experts {e1, e7} {e2, e4} {e3, e5, e10} {e6, e8, e9}
Reorganized x1 x1 x2 x5 x1 x2 x5 x1 x2 x3 x5

preferences x2 x2 x3 x5 x2 x5 x2 x2 x5 x5 x1 x1 x2 x2 x5

x2 x4 x5 x1 x3 x3 x4 x1 x3 x3 x4 x3 x3 x4 x4 x5

x4 x1 x4 x1 x3 x4 x4

x4

Table 7: Reorganized preferences according to the four classes of experts.

Step (b). The second step of the method concerns the construction of

the reading sequence. The reading sequence represents the ordered path
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followed by the algorithm to allocate the alternative positions (see Table

8). The logic of the sequence is to read the most preferred alternative first

(Franceschini et al. [15]).

Importance class A B C D

Experts {e1, e7} {e2, e4} {e3, e5, e10} {e6, e8, e9}
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Table 8: Reading sequence number (S) related to the reorganized vectors in Table 7.

Step (c). This last step generates the final fused ranking. A step-by-step

application of the Ordinal Prioritization Method is illustrated in Table

9. A detailed description of the method is reported in Franceschini et al.

[15]. Data is related to the example of Tables 7 and 8.

The first three columns are related to the reading sequence: S is the se-

quence number, j denotes the importance class selected, while the column

Element (I) is the set of alternatives taken, step by step, from the table

of the reorganized preferences (Table 7). The subsequent columns refer to

the construction of the total ranking. E is the set of alternatives included

in the gradual ranking and R is the set of alternatives not yet included in

the gradual ranking (residual elements).

We remark that an alternative is added to the total ranking only when

the number of occurrences is greater than or equal to Tk (occurrence

threshold). Tk is defined by the algorithm designer. It is worth noting

that greater values of Tk assign less significance to the ranking of experts.

In this case study we fix Tk = 3 for all the alternatives. By this approach

the final ranking of the alternatives is: x1 � (x2 ∼ x5) � x3 � x4.

2. We can generate an “artificial” weighting vector based, for example, on

the Borda scores obtained by the experts, coming back again to Subsection

3.1

Taking into account Eq. (1), we have

B(e1) = B(e7) = 8.5 , B(e2) = B(e4) = 6.5 ,

B(e3) = B(e5) = B(e10) = 4 , B(e6) = B(e8) = B(e9) = 1.
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Ocurrencies (Ok)
S j Element (I) E x1 x2 x3 x4 x5 Residual elements (R) Gradual ranking

0 {x1, x2, x3, x4, x5}
1 A {x1, x1} 2 0 0 0 0 {x1, x2, x3, x4, x5}
2 B {x2, x5} 2 1 0 0 1 {x1, x2, x3, x4, x5}
3 C {x1, x2, x5} {x1} 3 2 0 0 2 {x2, x3, x4, x5} x1

4 D {x1, x2, x3, x5} {x2, x5} 4 3 1 0 3 {x3, x4} x1 � (x2 ∼ x5)

5 A {x2, x2, x3, x5} 4 5 2 0 4 {x3, x4} x1 � (x2 ∼ x5)

6 B {x2, x5} 4 6 2 0 5 {x3, x4} x1 � (x2 ∼ x5)

7 C {x2, x2, x5, x5} 4 8 2 0 7 {x3, x4} x1 � (x2 ∼ x5)

8 D {x1, x1, x2, x2, x5} 6 10 2 0 8 {x3, x4} x1 � (x2 ∼ x5)

9 A {x2, x4, x5} 6 11 2 1 9 {x3, x4} x1 � (x2 ∼ x5)

10 B {x1, x3, x3, x4} {x3} 7 11 4 2 9 {x4} x1 � (x2 ∼ x5) � x3
11 C {x1, x3, x3, x4} {x4} 8 11 6 3 9 x1 � (x2 ∼ x5) � x3 � x4

End

Table 9: Step-by-step application of the Ordinal Prioritization Method (Franceschini et al. [15]).
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Hence, t1 = t7 = 17 , t2 = t4 = 13 , t3 = t5 = t10 = 8 , t6 = t8 = t9 = 2.

Consequently, R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 should be

replicated 17, 13, 8, 13, 8, 2, 17, 2, 2 and 8 times, respectively.

Then, we have the following profile: 17︷ ︸︸ ︷
R1, . . . , R1,

13︷ ︸︸ ︷
R2, . . . , R2,

8︷ ︸︸ ︷
R3, . . . , R3,

13︷ ︸︸ ︷
R4, . . . , R4,

8︷ ︸︸ ︷
R5, . . . , R5,

2︷ ︸︸ ︷
R6, . . . , R6,

17︷ ︸︸ ︷
R7, . . . , R7,

2︷ ︸︸ ︷
R8, . . . , R8,

2︷ ︸︸ ︷
R9, . . . , R9,

8︷ ︸︸ ︷
R10, . . . , R10

 ∈W (X)90.

If we apply the Borda rule to this profile, we obtain the following total

scores for x1, x2, x3, x4 and x5, respectively: 224.5, 243.5, 162, 29.5

and 240.5. Then, the final ranking of the alternatives is x2 � x5 � x1 �
x3 � x4.

4.3. Ordinal proximity measures

Under the approach of Subsection 3.3, we will consider three different

OPMs. Once the number of replications of each weak order are obtained,

following the procedure illustrated in Example 3, we apply the Borda rule

to the corresponding profiles.

(a) With the OPM with associated proximity matrix

A323 =


δ1 δ3 δ4 δ5

δ1 δ2 δ4

δ1 δ3

δ1

 ,

that can be visualized in Fig. 4, the final ranking of the alternatives

is: x1 � x2 � x5 � x3 � x4.

l1 l2 l3 l4

Figure 4: Ordinal proximity measure with associated matrix A323.
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(b) With the OPM with associated proximity matrix

A232 =


δ1 δ2 δ4 δ5

δ1 δ3 δ4

δ1 δ2

δ1

 ,

that can be visualized in Fig. 2, the final ranking of the alternatives

is: x2 � x5 � x1 � x3 � x4.

(c) With the OPM with associated proximity matrix

A423 =


δ1 δ4 δ6 δ7

δ1 δ2 δ5

δ1 δ3

δ1

 ,

that can be visualized in Fig. 5, the final ranking of the alternatives

is: x1 � x2 � x5 � x3 � x4.

l1 l2 l3 l4

Figure 5: Ordinal proximity measure with associated matrix A423.

Taking into account the opinions of the ten customers on the five interior

designs of a new car included in Table 5, the outcomes obtained under the

approaches introduced in Subsections 3.1, 3.2 and 3.3, developed for the case

study in Subsections 4.1, 4.2 and 4.3, respectively, are summarized in Table 10.

Approach Case study Subcase Preference ranking
Subsection Subsection

3.1 4.1 x2 � x5 � x1 � x3 � x4
3.2 4.2 1 x1 � (x2 ∼ x5) � x3 � x4
3.2 4.2 2 x2 � x5 � x1 � x3 � x4
3.3 4.3 A323 x1 � x2 � x5 � x3 � x4
3.3 4.3 A232 x2 � x5 � x1 � x3 � x4
3.3 4.3 A423 x1 � x2 � x5 � x3 � x4

Table 10: Summary.
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The winner is x1 or x2, depending on the case, but when x2 is the winner,

x1 is always in the third position. The fourth and the fifth positions are always

for x3 and x4, respectively.

Taking into account the six cases considered, x1, x2, x3, x4 and x5 have

average positions 2, 1.58, 3, 4 and 2.42, respectively. Thus, on average, the final

ranking is x2 � x1 � x5 � x3 � x4, that it does not coincide with any of the

outcomes obtained in the six cases. Notice that this ranking is the same than

the one obtained when applying the Borda rule to the six preference rankings

of Table 10. This is due to the fact that the Borda rule ranks the alternatives

according to their average positions.

5. Conclusions

The proposed method allow to aggregate multi-experts rankings of different

alternatives into a single fused ranking according to different semi-democratic

paradigms: (i) the importance of experts is directly reported by means of a

weighing vector; (ii) the importance of experts is expressed by a weak order on

the set of expert; (iii) the importance of experts is described by a weak order

with ordinal proximity measures on the set of expert. The three paradigms can

be applied in different decision-making situations, where some experts perform

multiple assignments.

The results obtained in the case study highlight the following aspects:

• Different methods lead to different rankings of the alternatives, even if

sometimes they appear to coincide.

• There is a general agreement between the methods for top and bottom

positions in the rankings.

• The use of one method or another depends on the quality of information

available from the different semi-democratic decision making contexts.

It is important to mention some advantages of the methods proposed in this

paper with respect to other proposals:

• Their simplicity and the greater adherence of data properties to real sit-

uations.

• Weights are treated in a purely ordinal way by replicating experts’ opinions

according to the proportions between weights.
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• The use of minimal structures for representing hierarchies on the set of

experts (weak orders and ordinal proximity measures). For instance, tak-

ing a particular membership function is a much stronger hypothesis than

considering a weak order between experts.

The main contribution of this paper is to provide a general overview of the

state-of-art of the methods able to tackle decision-making problems in semi-

democratic contexts. In our analysis it was assumed that the preference rank-

ings of experts are complete; i.e., all experts are able to rank all the alternatives

of interest, without omitting any of them. The analysis does not consider the

(possible) uncertainty in expert rankings, and/or preference rankings with in-

comparability between some alternatives.

Regarding the future, we plan to extend the analysis to situations where ex-

perts are not able to provide complete weak rankings, but only partial preference

rankings, uncertainty rankings or even rankings with some forms of incompara-

bility between alternatives to be evaluated.
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[30] Martel, J.B., Ben Khélifa, S.: Deux propositions d’aide multicritère à la
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