
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the in-field test of the GPGPU scheduler memory / Di Carlo, Stefano; Condia, Josie E. Rodriguez; Sonza Reorda,
Matteo. - STAMPA. - (2019), pp. 1-6. (Intervento presentato al convegno IEEE 22nd International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS) tenutosi a Cluj-Napoca, (Romania) nel 24-26 April 2019)
[10.1109/DDECS.2019.8724672].

Original

On the in-field test of the GPGPU scheduler memory

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DDECS.2019.8724672

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2736932 since: 2019-07-16T15:07:17Z

IEEE

On the in-field test of the GPGPU scheduler memory

Stefano di Carlo*, Josie E. Rodriguez Condia†, Matteo Sonza Reorda‡,

Politecnico di Torino, Dept. of Control and Computer Engineering, Torino, Italy

{*stefano.dicarlo, †josie.rodriguez, ‡matteo.sonzareorda}@polito.it

Abstract1—GPGPUs have been increasingly successful in the past

years in many application domains, due to their high parallel

processing capabilities and energy performance. More recently,

they started to be used in areas (such as automotive) where safety

is also an important parameter. However, their architectural

complexity and advanced technology level create challenges when

matching the required reliability targets. This requires devising

solutions to perform in-field test, thus allowing the systematic

detection of possible permanent faults. These faults are caused by

aging or external factors that affect the application execution and

potentially generate critical misbehaviors. Moreover, effective in-

field test techniques oriented to verify the integrity of GPGPU

modules during in-field operation are still missed. In this work, we

propose a method to generate self-test procedures able to detect

all static faults affecting the scheduler memory existing in each

streaming multiprocessor (SM) of a GPGPU. NVIDIA CUDA-C is

selected as high-level programing language. The experimental

results are obtained employing the NVIDIA Nsight Debugger on a

NVIDIA-GEFORCE GTX GPU and a memory fault simulator.

Keywords—GPGPUs, SBST, memory testing.

I. INTRODUCTION

Some safety-critical applications in the automotive domain
(e.g., Advanced Driver Assistance Systems, or ADAS) require
performing real-time processing on massive amount of data
coming from sensors (e.g., cameras and radars). For these
applications, General Purpose Graphics Processing Units
(GPGPUs) are very suitable solutions, due to their
computational power and reduced power consumption.
Unfortunately, this kind of applications is also highly safety
critical, since the effects of any fault affecting the hardware may
have severe consequences. Hence, the standards and regulations
in the area (e.g., ISO 26262) require very strict constraints in
terms of reliability. In order to match these requirements, no
matter the complexity of the underlying devices and the
advanced semiconductor technology used to manufacture them,
it is mandatory to adopt some suitable form of in-field test, able
to timely detect any permanent faults arising in the GPGPU.
Among the possible solutions, the usage of self-test procedures
is increasingly common and already widely adopted by
companies in the automotive domain. The idea is to provide the
system company using a certain device with a library of
software procedures (known as self-test procedures) that are
provided by the device producer and then integrated in the
application code. Each of these procedures can be activated
when required (e.g., at the power-on, or periodically), properly
excite the module under test, look at the produced results and

1 This work has been partially supported by the European Commission through

the Horizon 2020 RESCUE-ETN project under grant 72232.

return a flag stating whether a fault has been detected or not.
Since these procedures are developed by the semiconductor
company delivering the device, the exact figure about the
achieved Fault Coverage (FC) with respect to structural faults
(e.g., stuck-at faults) can be computed. This approach is often
known as Software-based Self-test (SBST) [1] and is today
widely supported by many semiconductor and IP companies,
such as Infineon [2], STMicroelectronics [3], Cypress [4],
Renesas [5], Microchip [6] and ARM [7].

When considering ADAS devices, a similar approach can be
followed. In this case, GPGPUs (or similar modules in terms of
architecture and characteristics) are quite common. Since
GPGPUs integrate many processing units (PUs), which share
several microarchitectural modules with traditional CPUs (e.g.,
the register file and the ALU), the development of self-test
procedures for these modules can leverage the techniques
developed for CPUs. On the other side, special techniques are
required to test some modules which are specific of GPGPUs,
such as the thread scheduler. Such a module is in charge of
storing and processing the information about the status of each
thread, e.g., to trigger at each clock cycle the PUs associated to
the active threads. Looking at the microarchitecture of this
component, the most significant portion of this block is a
memory array where this information is stored and continuously
updated.

In some works, the authors introduced methods to increase
the robustness [8] and some mitigation strategies [9] for some
modules in GPGPU-based systems using a combination of high-
level instrument programs and inline-assembly code. In other
works [10], the authors proposed some first techniques to test
the scheduler and the related memory. In this paper, we remove
a major limitation of the work in [10], where single-cell faults in
the memory were targeted, only. In particular, we propose a set
of techniques which target a wide range of faults including both
single-cell faults and coupling-faults involving multiple cells.
The proposed techniques allow developing the high-level code
performing the operations required to implement a desired
March memory test algorithm. Although this paper focuses on
the NVIDIA GPGPU architecture, the proposed techniques can
be easily adapted to work on other architectures as well.

The paper is organized as follows: Section II introduces the
background about the behavior, structure and operation of the
scheduler‟s memory. Moreover, this section summarizes the test
primitives (TPs) and lists the operational restrictions in the
usage of the memory. Section III presents the proposed
approach, the patterns for each targeted field, the test case
algorithm and the general implementation of test primitives
resorting to a high-level programing interface (CUDA-C).
Section IV reports some experimental results, and Section V
finally draws some conclusions.

II. BACKGROUND

A. The SM scheduler warp controller

Following the NVIDIA terminology, the basic GPGPU
architecture employs groups of identical PUs, called Streaming
Multiprocessors (SMs), to compute instructions with high
throughput. These modules are organized in groups called
Warps [11] (32-48 consecutive threads) by the scheduler
controllers (SCs), which are able to manage and control the
GPGPU tasks. A warp SC is present inside each SM and
manages the thread group distribution and execution [12]. This
module includes one or more memories to store the information
about the warp execution status in the SM.

In a real GPGPU, the SC memory is organized into
addressable units called Line-Entries (LEs). Each LE stores the
status of a warp. The SC assigns the total number of line-entries
to be used according to the kernel configuration of the
application. This controller employs a static organization to
store the information of a warp in each LE.

The parameters stored in each LE include a warp ID field, a
warp actual Program-Counter field (WPC), and a thread Active-
Mask (TAM) field. The TAM field is composed of 32 or 48
bits, each bit represents the active (1) or inactive (0) state of the
associated thread. The WPC field is composed of 32 or 35 bits.
Recent implementations of the SC increase the number of stored
parameters in order to store the information status of each
thread [13]. During the initialization process, the scheduler
configures each LE with the information concerning the threads
active in each warp.

For the purpose of this work, we focus on detecting
permanent faults in the TAM and WPC fields of the scheduler
memory. This memory is written and read by the SC based on
the control-flow instructions executed by the warp. At each
instruction cycle, the memory is read in order to define the
active threads in the warp and the instruction to be executed.
The writing procedure is carried out once a new instruction is
ready to be executed or the number of active threads is modified
by divergence generation [14].

The SC memory has some operational restrictions, detailed
in section C, and the access to the LEs cannot be performed
employing the conventional methods for accessing data
memories in processor-based systems. This means that special
techniques are required to implement the required test
primitives.

B. Test Primitives for scheduler memory access

From the very rich literature on memory testing we can
easily derive the set of operations (denoted as Fault Primitives,
or FPs) required to test different sets of functional faults that can
affect both a single cell or couples of interfering cells in a
memory. FPs have been used to define the most common class
of memory test algorithms, i.e., March algorithms, able to test
the memory by applying proper sequences of read and write
operations with a complexity that grows linearly with the size
of the memory. Interested readers may refer to [15] for a
complete theoretical description of memory functional fault
models. In this paper, we focus on how FPs and March
algorithms can be translated into test programs for the scheduler
memory.

1) Single cell static faults

Based on the set of primitives described in [15], Table 1

reports the full set of single-cell static fault primitives. The term

“static” refers to the fact that they represent faults sensitized by

a single memory operation. On each row, the Addressable

Functional Fault Primitive for the scheduler, denoted as

AFFP(SCH), includes the sequence of operations required to

generate the input stimuli.

“A” denotes a test pattern writing in the target bit of the LE,

and “ ̅” represents the complementary pattern value. In the

stimulus, the initial conditions are in bold. The AFFP is

organized as follow:

AFFP = <Initial_Conditions, (Stimuli), Output_Fault_Value, Output_Fault-free_Value>

Analyzing the AFFPs in Table 1, one can note that RDF and

DRDF fault primitives share the same stimuli pattern and the

total number of patterns is reduced by collapsing the similar

stimuli patterns with the expected output value.

2) Coupling cell permanent faults

The coupling fault primitives are related to the interaction
between two different cells; an aggressor cell (a) and a victim
cell (v). The considered fault primitives are presented in Table
2, where, X, Y and Z are logic values.

TABLE 1. STATIC FAULT PRIMITIVES FOR A SINGLE CELL
Fault Fault model FP AFFP(SCH)

TF Transition fault
< ̅ ̅ >

< ̅ >

< ̅ (̅ ̅) ̅ >

< (̅ ̅) ̅>

WDF Write destructive fault
< ̅ ̅ >

< ̅ >

< ̅ (̅ ̅ ̅ ̅) ̅>

< () ̅ >

RDF Read destructive fault
< ̅ ̅ >

< ̅ ̅>

< ̅ (̅ ̅ ̅) ̅>

< () ̅ >

DRDF Deceptive RDF
< ̅ ̅ ̅>

< ̅ >

< ̅ (̅ ̅ ̅) ̅>

< () ̅ >

TABLE 2. STATIC FAULT PRIMITIVES FOR COUPLING CELLS
Fault Fault model FP AFFP(SCH)

CFds Disturb

Coupling

fault

<
 ̅ >

<
 ̅ >

< ̅ ̅ (̅
 ̅

 ̅
 ̅

 ̅
 ̅

 ̅
) ̅ >

< ̅ (̅
 ̅

 ̅
 ̅

) ̅ >

< ̅ (

 ̅
 ̅

 ̅
 ̅

 ̅
) ̅ >

< (

 ̅
 ̅

) ̅ >

< ̅ (

 ̅
 ̅

 ̅
) ̅ >

< (

) ̅ >

< ̅ ̅ (̅
 ̅

 ̅
 ̅

 ̅
 ̅

) ̅ >

< ̅ (̅
 ̅

 ̅

) ̅ >

< ̅ (

 ̅
 ̅

 ̅

) ̅ >

< (

) ̅ >

CFtr Transition

coupling

fault

<
 >

<
 >

< ̅ (̅
 ̅

 ̅

) >

< (

) >

< ̅ (̅
 ̅

 ̅

) ̅ >

< (

 ̅

) ̅ >

CFwd Write

destructive

coupling

fault

<
 ̅ > < ̅ ̅ (̅

 ̅
 ̅

 ̅
 ̅̅

 ̅
) ̅ >

< ̅ (

 ̅
 ̅

 ̅
 ̅

) ̅ >

< ̅ (̅
 ̅

) ̅ >

< (

) ̅ >

CFrd Read

destructive

coupling

fault

<
 ̅ ̅ > < ̅ ̅ (̅

 ̅
 ̅

 ̅
 ̅

 ̅
) ̅ >

< ̅ (

 ̅
 ̅

 ̅
 ̅

) ̅ >

< ̅ (̅
 ̅

) ̅ >

< (

) ̅ >

CFir Incorrect

read

coupling

fault

<
 ̅ > < ̅ ̅ (̅

 ̅
 ̅

 ̅
 ̅

) ̅ >

< ̅ (

 ̅
 ̅

 ̅
) ̅ >

< ̅ (̅
 ̅

) ̅ >

< (

) ̅ >

CFdrd Deceptive

read

destructive

CF

<
 ̅ > < ̅ ̅ (̅

 ̅
 ̅

 ̅
 ̅

 ̅
) ̅ >

< ̅ (

 ̅
 ̅

 ̅
 ̅

) ̅ >

< ̅ (̅
 ̅

) ̅ >

< (

) ̅ >

The State coupling faults (CFst) FP < ̅ ̅ , ̅ ̅
 , ̅ , ̅ > in Table 1, and the state faults (SF)

FP (< ̅ , ̅ >) and the incorrect read faults primitive

(IRF) FP (< ̅ ̅ ̅ , ̅>) in Table 2, are neglected
by the proposed approach, due to lack of GPGPU instructions,
available functions or software-based methods to verify the
behavior of the corresponding faults.

Although the AFFP(SCH)s for the coupling faults are
different, some associated Sensitizing Operation Sequences
(SOSs) are similar and it is possible to collapse identical
patterns. In this approach, the total number of patterns to cover
the FPs is reduced to 30. Some coupling faults (CFrd, CFir and
CFdrd) can be grouped with the same SOS, since the only
difference among them is one additional read operation.
Therefore, the SOS with the lowest number of reading
operations can be neglected and the CFdrd SOS is employed to
sensitize those coupling faults.

Each AFFP(SCH) pattern should be adapted to include the
scheduler memory operational restrictions.

C. Scheduler Memory operational restrictions

The SC memory cannot undergo any possible operation or

sequence of operations. In particular, the following operational

restrictions exist:

1. During the device configuration and program starting

phase, it is not possible to write whichever initial state in

the TAM field. By default, all threads start in the active

state (value 1 for all bits).

2. Once a warp ends the execution of one instruction, the LE

is actualized and one read operation is implicitly performed.

On the other hand, a write operation is performed when a

new instruction starts its execution or when the number of

active threads is modified.

3. Any pattern applied to the TAM field can generate thread

divergence. This divergence causes the execution of two

paths (Taken and Not-Taken). Moreover, these paths are

consecutively executed.

4. Once a warp is dispatched to the SM, the execution of the

warp path cannot be stopped. Moreover, if thread

synchronization mechanisms are employed (i.e.,

__syncthreads()), one or more threads must be maintained

in active state in the TAM field in order to keep the warp

active. In contrast, a TAM field with all inactive threads

represents a terminated warp.

5. The scheduler includes two warp dispatchers, which

manage the scheduling of the warps in the SM. These units

submit the warps to the SM based on performance

considerations, by means of a pseudo-random algorithm

and complex data-hazards control methods. However, the

warp submission is not executed in order. For the purpose

of this work, this behavior may compromise the execution

of fault primitives, which require operations on consecutive

LEs.

III. PROPOSED METHOD

We propose a method to detect permanent and coupling
faults in the line-entries of the SM scheduler memory based on
a functional approach and employing high-level programing
language functions (CUDA-C). The method employs a mapping
between a set of fault primitives and GPGPU functions to
generate a test program. This approach is able to provide the
rules to transform any March algorithm into a GPGPU test
program generating the same sequence of operations on the
target memory and thus detecting the same defects.

The proposed approach divides each March operation in one
or a set of kernels. This division allows executing the test
program during the idle intervals of in-field operations
including the set of restrictions presented by the scheduler
memory operation. The kernel test program is stored in the
system memory aside from the application kernels. However,
the host must activate the test sequences. In contrast, test results
are stored in selected free locations in the global memory.

The first and second restrictions cannot be avoided. This
means that all test patterns applied to the TAM field start with
an initial state of all threads active (all bits in 1) and an
initialization pattern is required.

According to the third restriction, the path divergence
generation by a control-flow instruction cannot be stopped once
it is executed. The selection of a low number of control-flow
functions and operations on each path can guarantee a low
execution time. A predefined set of external parameters (see

Table 3) is used to divide the operations of a test program into
small parts. These parameters increase the detection of coupling
faults among and inside line entries. Concerning the fourth
restriction, those parameters must guarantee that at least one bit
(thread) remains at the value 1 (active). This is the reason for
the missing pattern with all 0s.

TABLE 3. PATTERNS TO DETECT A COUPLING FAULT IN AN LINE-ENTRY
Pattern Description

11111111…00000000… / 00000000…11111111… First half , second half ̅

00001111...00001111… / 11110000...11110000… First four bits , second four ̅

00110011…00110011… / 11001100…11001100… First two bits , second four ̅

10101010…10101010… / 01010101…01010101… Alternated and ̅

111111111111111111… All in ones

During the evaluation of the divergence not-taken path, the
third restriction arises. Once the threads finish the taken path,
the SC changes the status of the inactive threads and these
become active. An inverse write operation is performed in this
field at the start of the not-taken path execution as an effect of
the previous change. This behavior can be skipped and does not
generate issues in the adaptation of March operations.

The scheduler modifies the full content of the TAM and the
WPC fields. Nevertheless, the writing process is different for
each field. This writing is based on conditional and
unconditional control-flow operations on each case. In most
GPGPUs, the divergence paths, taken and not-taken, must be
executed in different operation cycles. The proposed approach
employs only the taken path, neglecting the inverse writing
operation described below.

The fifth restriction relates to the dispatcher units execution.
Considering that details of the dispatchers operation and the
way to predict the warps emission during the execution are not
provided in detail by the manufacturer [11, 13], the proposed
method employs thread synchronization functions (barrier
instructions) and semaphore variables to detect coupling faults
between consecutive cells. Moreover, this technique is able to
skip the dispatchers operation controlling the injection order.
This method stops temporarily the path execution of a warp and
launches a desired and ready warp. It is worth noting that there
is a possibility of non-expected consecutive read procedures on
the same LE. Nevertheless, these additional reads do not
generate issues in the March algorithm adaptation and
execution.

The next sections describe the steps to generate write and
read operations in the TAM and WPC fields.

A. Patterns for the TAM field

The following sequence of operations is required to generate a

write operation in the TAM field in a LE. This approach is also

effective for some coupling faults between two consecutive

cells (CFrd, CFir and CFdrd).

1) Patterns generation in the TAM field for coupling fault

in a single cell

1. Execute an embarrassingly parallel function F (Initial condition).

2. Execute a divergence generation function (writing operation in

the target bit(s) in the TAM field).

3. Execute the taken path (read operation in the full TAM field).

4. Execute the not-taken path (generate a write operation and read

operations with the inverted value on selected bit(s) field).

5. Convergence point execution CP (parallel execution of

instructions with implicitly read operations).

The step 4 is skipped and is considered as an interval
condition to start other March operations. This is the basic
writing procedure to the LE. The CFrd, CFir and CFdrd
coupling faults can be satisfactorily evaluated using both
divergence paths, due to the total number of write and read

operations involved. However, additional elements must be
included in order to detect a large number of coupling faults.

2) Patterns generation in the TAM field for coupling faults

in multiple cells

The detection of coupling faults between consecutive cells
(LEs) requires additional steps including thread
synchronization, warp selection and nesting divergence in order
to assure correct evaluation of each potential fault cell.

The following steps describe the sequence of operations to
generate the coupling faults detection:

1. F (Initial condition).

2. Select a target warp or LE ((a) cell).

3. Execute a first divergence generation function (write operation in

the target bit(s) field of an (a) cell).

4. Execute the taken path of divergence (read the full TAM field for

(a) cell).

5. Execute a barrier function in the (a) cell path, which stops the

warp execution and launches a different warp.

6. Select a new target warp ((v) cell).

7. Execute a second divergence generation function (write in the

target bit(s) of a (v) cell).

8. Execute the taken path for the second divergence (It generates

reading operations of the full TAM field in the (v) cell).

9. Execute barrier function in the (v) cell path, launching a new

warp.

10. Execution of the not-taken path for the (a) cell (write the

opposite value in the target bit(s) in TAM field, followed by

reading operations).

11. Execute a barrier function in the (a) cell path.

12. Execution of the not-taken path for the (v) cell (write with the

opposed value in the target bit(s) in the TAM field, followed by

read operations).

13. Execute a barrier function in the (v) cell path.

14. CP

The steps 9-13 are employed to evaluate more coupling
faults in the TAM field (CFds, CFtr). However, these steps can
be skipped with a correct selection of the input stimuli patterns.

A nested divergence is included to successfully keep the
warp execution and the need of at least one active thread in the
TAM field. This behavior is required to detect coupling faults of
the group (CFrd, CFir). This additional divergence can be
placed between steps 4 and 5 or between the steps 10 and 11 for
the (a) cell. The same approach is used between steps 8 and 9
for the victim cell.

The CFwd faults are detected by the introduction of a third
nested divergence. This function is placed in the (a) cell path
after the second divergence in the not-taken path. This is used to
generate the evaluation of missing threads and guarantee the
writing procedure in the scheduler memory during the
execution.

This divergence is designed in a way that the first thread or
the last thread is selected on each path, to generate a required
stimulus. Additional barrier instructions are added in order to
keep the synchronization of the warp execution. Moreover, the
step 14 is removed and replaced by the steps 4, 5, 10 and 11 to
launch a new aggressor operation.

An external pattern is applied to the (a) cell in the first
divergence to select the number of threads active during the
victim evaluation. The divergence evaluation in the (v) cell
generates the equal division in two groups of threads. However,
in order to cover all the coupling faults, both division cases
should be evaluated.

In this approach, the reading procedures are implicitly
integrated in the writing procedure. The simplest case of a
reading procedure can be performed by the execution of non-
control flow instructions by the warp. The reading procedure is
applied for both fields on each instruction cycle and cannot be
avoided or stopped. The SC reads an active LE continuously at
the starting and ending points of each instruction cycle in order
to preserve system coherency in thread execution. The inactive
or halted line-entries are read when those become active.

The previously proposed steps can be applied for any
consecutive configuration of (a) and (v) cell. In order to
generate displacements on any direction (increment or
decrement) across the memory LE in a desired order, the
dispatcher unit is skipped employing the barrier instructions and
shared variables described below.

B. Patterns for the WPC field

The evaluation of WPC field instead requires a sequence of
steps to access the system memory in the GPGPU. The
proposed method considers GPGPU architectures with a shared
WPC field among the threads in a warp. For the purpose of this
work, the kernel design and execution must be executed as
parallel as possible. In order to generate the required stimulus
for the field, some subroutines (functions) are placed in strategic
locations in the memory. The main kernel accesses each
subroutine employing unconditional control-flow operations.
Inside the subroutine, a set of barrier functions are employed to
halt the warp execution and start a different warp. The
approach, employed to generate the warp selection in the TAM
field, is also used for this field.

Some locations, in the highest part of the system memory,
present difficulties for function placement. The solution is to
include additional GPGPU kernels in the main memory. Those
kernels and functions are placed in the GPGPU system memory
during the compilation process. The location placement uses the
same patterns presented in Table 3.

The test program can be divided in pieces employing
independent test kernels to apply specific patterns. Mainly, each
subroutine is composed of embarrassingly parallel functions and
thread barriers.

1) Patterns generation in the WPC field for coupling faults

in a single cell

The following list presents the basic steps to generate a
single writing procedure, and implicit reading procedures, on
the actual WPC field.

1. Execution of an embarrassingly parallel instruction P (reading

ops, initial condition).

2. Execution of an unconditional flow-control function (calling a

function stored in the GPGPU system memory at a predefined

location) (Writing on the target bit field and reading procedures).

3. Return from the subroutine, and then compare the signature. Start

a new call for another subroutine in other memory placement

(Writing the bit field and reading procedures).

4. (Repetition of the step 2 and 3 if required).

As discussed for the TAM field, the reading procedures are

integrated in the writing sequence. For each method, a thread

per signature (d_signature) is included as observation

mechanism to detect any misbehavior in the memory cells.

Thus, a mismatch in the final signature will indicate a fault

present in the memory cell. The signature is evaluated at the

end or in the middle of each pattern evaluation.

2) Patterns generation in the WPC field for coupling faults

in multiple cells

The detection of coupling faults between consecutive LEs
requires the use of additional steps. The aggressor and the
victim are carefully chosen by a warp selection process that
generates divergence. The following steps are used to generate
the coupling fault evaluation.

1. P (initial condition).

2. Selection of an (a) cell and execution of an unconditional flow-

control function (write procedure in the target LE, (a) cell).

3. Execution of the subroutine path and generation of a barrier

function in the (a) cell path, launching a new warp (reading

procedure in the target LE, (a) cell).

4. Selection of (v) cell and execution of the unconditional flow-

control function (write procedure in the target LE, (v) cell).

5. Execution of the subroutine path and generation of a barrier

function in the (v) cell path, launching a new warp.

6. Return to the main kernel path and execution of embarrassingly

parallel operations (writing operation in the returning stage,

reads in the embarrassing execution).

The implementation of the previous steps allows detection
of coupling faults of the group (CFds, CFtr). Other steps must
be included in order to detect CFir coupling faults. These faults
require an additional step after step 5. This step requires the
execution of more functions inside the subroutine in order to
generate the implicit readings in the memory LE. An additional
barrier function is added to generate the stimulus in the
aggressor and the victim. Testing CFwd coupling faults requires
a new aggressor subroutine or writing procedure, which is
included after step 6.

C. Test cases

We selected two March algorithms (MATS+ and MATS++)
as test cases to demonstrate the characteristics of the proposed
approach and generated a set of test programs for the two fields
for each LE in the scheduler memory.

1) MATS+ and MATS++ algorithm.

The MATS+ algorithm is composed of the operations
presented in Table 4 (the reader may refer to [9] for details on
the March test notation). To apply the March test in the
scheduler memory some implicit read and initialization steps are
added, see Table 4.

TABLE 4. TEST PROGRAM FOR MATS+ AND (*) MATS++
Original Ops. Adapted Ops. to scheduler memory

M1: ↕ (W(0)) Init. Steps (W(x), R(x)); M1: ↕ (W(0), R(0));

M2: ⇑ (R(0), W(1)) Init. Steps (W(x), R(x)); M2: ⇑ (R(0), W(1), R(1));

M3: ⇓ (R(1), W(0), R(0)*) Init. Steps (W(x), R(x)); M3: ⇓ (R(1), W(0), R(0));

In Table 4, in bold we reported the additional steps required
to generate the expected March operations. The initialization
steps, listed below, are required to select a specific warp (LE)
and skip the dispatchers operation. This process is applied to
each evaluated field in the LE.

For the implementation, a kernel is designed for each
operation (Basic Block Kernel or BBK). The BBKs require, as
input parameters, the signature location and the external stimuli.
The external stimuli is only required for TAM field evaluation.
Then, it is divided in independent test program chunks. This is
important during in-field test, since the test must often be
executed during the idle slots of the system. Table 5 presents the
adaptation of the original MATS+ algorithm to a set of kernels
for one pattern evaluation.

From Table 5 we can observe that the external parameter
applied on each kernel is not the same. In the first and third
kernels, the same pattern is applied. However, the second kernel

requires the inverted external pattern to stimulate the target bit
fields with the operation. The previous kernel sequence should
be applied to each pattern in the Table 1. At the end, the same
approach is applied eight times.

TABLE 5. MARCH OPERATION AS A SEQUENCE OF CUDA KERNEL EXECUTIONS

(ADAPTATION PRESENTED FOR ONE PARAMETER FOR THE TAM FIELD)
Original March

operations

(MATS+)

Adapted

March

Operations

Equivalent CUDA kernel

↕ (W(0)) ↕ (W(0),R(0)
Test_kernel_decrement<<<TOTAL_BLOCKS, TOTAL_THREADS>>>

(TOTAL_THREADS, vector_params[0], d_signature);

⇑ (R(0), W(1))
⇑ (W(0), R(0),

W(1), R(1))

Test_kernel_decrement_x<<<TOTAL_BLOCKS, TOTAL_THREADS>>>

(TOTAL_THREADS, vector_params[1], d_signature);

⇓ (R(1), W(0))
⇓ (R(1), W(0),

R(0))

Test_kernel_increment<<<TOTAL_BLOCKS, TOTAL_THREADS>>>

(TOTAL_THREADS), vector_params[0], d_signature);

2) Algorithm implementation for coupling faults in CUDA.

The pseudo-code reported in Fig 1 represents the general
CUDA implementation of the kernel to evaluate coupling faults
among consecutive cells. This kernel is launched concurrently
by the aggressor and victim warps (line-entries). A warp
selection function is used to divide the (a) and (v) cells and to
execute the kernel in a sequential fashion.

__global__ void Test_kernel_decrement_x (int* divergence_parameters, int* signature …)

{

 Parameter_initialization(); ►Initialization of Local and Shared variables.

 Thread_warp_size_verification_correction(); (‡) ►Warp number resize (Total Thread number

is not multiple of 32).

 For warp in kernel do: (‡) ►Search each Warp ID

 If Warp_Selected() then: (‡) ►Select a Warp ID in order

(Increment / decrement)

 Load_divergence_parameters(); (‡) ►External pattern to be used in (a).

 If warp is Aggressor then: (‡) ►Check if warp ID is (a).

 Aggressor_warp_enabled(); ** ►Check if (a) cell has associated (v) cell.

 If divergence_parameter is „0‟ then: (†) ►First divergence function (Not-Taken Path)

 Signature_evaluation(); ►Signature evaluation and R(x) operation.

 Barrier_operation(); ►Warp execution Halt.

 Else: (†) ►First divergence function (Taken Path)

 Signature_evaluation(); ► Signature evaluation and R(x) operation.

 For Warp_Id > 0 do: ►Check if (v) cell has been executed

 If divergence_parameter(0) is „1‟ then: (†) ►Nesting (Second) divergence function

 Signature_evaluation();Barrier_operation(); ► Signature evaluation and R(x) operation.

 Else if divergence_parameter(31) is „1‟ then: (†) ►Nesting (Second) divergence function

 Signature_evaluation();Barrier_operation(); ► Signature evaluation and R(x) operation.

 Else: (†) ►Nesting (Second) divergence function

 Signature_evaluation();Barrier_operation(); ► Signature evaluation and R(x) operation.

 Signature_evaluation(); ►Implicit Read in one instruction cycle.

 Warp_ID --; ►Decrement in Warp ID value.

 Else if warp is Victim then: (‡) ►Check if warp ID is (v).

 victim_warp_enabled(); ** ►Check if (v) has associated (a) cell.

 If threads in warp („<16‟ / ‘>15’) then: (†) ► Divide the threads in lower or higher part

 Signature_evaluation(); Barrier_operation(); ► Signature evaluation and R(x) operation.

 Else: (†) ►

 Signature_evaluation(); ► Signature evaluation and R(x) operation.

 For Warp_Id > 0 do: ► Check if (a) cell has been executed

 Barrier_operation(); ► Warp execution Halt.

 Barrier_operation(); ► Warp execution Halt.

 Else: (‡) ►Warp is not selected to be launched.

 Signature_evaluation(); Barrier_operation(); ►Implicit R(x), Warp execution stops.

 Warp_synchronization(); (‡) ►Final warp synchronization.

 Clear_Parameters(); (‡) ►Clearing of parameters in shared memory.

}

FIG 1. CUDA PSEUDO-CODE OF THE KERNEL TEST IMPLEMENTATION FOR

COUPLING FAULTS IN CONSECUTIVE CELLS. (‡) FUNCTIONS TO SKIP

DISPATCHERS. (**) OPTIONAL FUNCTIONS FOR EDGE LINE-ENTRIES

EVALUATION. (†) DIVERGENCE-GENERATION FUNCTIONS FOR THE (a) AND (v)

LES.

According to warp selection, each (a) or (v) cell executes
different paths and internally uses divergence functions to
stimulate the field. In the aggressor path, a second divergence
path is used to evaluate additional coupling faults that require a
W(0) starting condition. The barrier operations are used to stop
the warp (cell) execution and generate the launch of a new
warp. The previous kernel algorithm can be simplified, avoiding
the second divergence in order to test permanent, static and
some coupling faults. As explained below, a set of variables are
added to each path in order to skip the execution of the
dispatchers. Each variable was attached to a warp execution.

IV. EXPERIMENTAL RESULTS

The experimental results are obtained employing a
NVIDIA© GeForce GTX 960M GPGPU with 1.176 GHz of
clock rate and 32 threads per warp. In order to check the kernel
execution and establish the performance metrics, such as

execution time, and GPGPU resource overhead by the test
programs we used the NVIDIA© Nsight™ 5.6 tool. Moreover,
we employed the NVIDIA© Visual profiler to determine the
total number of instructions executed by the test kernel. Table 6
presents the performance characteristics of the proposed test
programs for different line entries sizes in the memory.
Additionally, the table reports the required idle times to apply
the test sequences. Each test program is designed to use one
block over one SM in the GPGPU.

TABLE 6. TEST PROGRAM CHARACTERISTICS FOR THE PROPOSED APPROACH TO

EVALUATE DIFFERENT LINE-ENTRY SIZES. (*)ACTIVE KERNEL FUNCTIONS ONLY.

FIELD

TAM WPC

Line entry size 32 16 8 32 16 8

BBK Execution performance (uS) 778.987 359.297 168.3 573.419 187.791 91.517

Total Execution performance (mS) 18.69 8.62 4.039 13.86 4.507 2.196

Instructions

executed

BBK Kernel

increment (KB)
276.248 78.28 8.428 186.48 50.36 14.46

BBK Kernel

decrement (KB)
276.616 78.184 8.404 436.128 73.488 15.576

Per Pattern (KB) 829.112 234.744 25.260 809.088 174.208 44.496

Total (MB) 6.633 1.878 0.202 6.473 1.397 0.356

GPGPU

overhead

System memory (KB) 1.84 1.84 1.84 2.424* 2.424* 2.424*

Shared memory (B) 260.0 132.0 68.0 4.0 4.0 4.0

As shown by the results, the total time, required by test
execution, remains in the range of some µs. Moreover, the
system memory requirements are low for the test of one pattern
for 32 line entries (1.84KB and 2.4KB for TAM and WPC
fields, respectively). However, the WPC test program requires
the additional placement of inactive kernels to place selected
subroutines in specific memory locations. This test program
requires using all the system memory. Hence, the execution of
WPC test kernels during in-field test should be limited to
Switch-On/Switch-Off intervals.

The number of shared elements required is low in
comparison with the system memory overhead to store the
kernels. The total number of registers required for each
configuration remains constant to 28 in the TAM field kernels.
For WPC field, this value is constant to 37.

The number of instructions to apply a test pattern (3 kernels)
in the memory is relatively high (829 and 809KB). This can be
explained by the use of high-level programing platforms
(CUDA-C) functions and the complexity for managing and
avoiding the dispatcher units. As it can be observed in Fig 1, six
functions are required to control the warp execution and to skip
the dispatchers. Additionally, the evaluation of coupling faults
between consecutive cells requires conditional evaluations in
the divergence function generation adding more instructions to
the final test program. Nevertheless, the BBK size is low
(<300KB) and employs less than 800µS during its execution.
On the one hand, the TAM kernels employ a number of shared
memory elements increasing linearly with the number of line-
entries to be evaluated. On the other hand, the WPC kernels use
the same number of shared variables for every memory size.
These kernels are simpler than TAM kernels and the total
number of memory elements required is employed in the
selection and launch of warps.

An analysis with the NVIDIA Visual Profiler of the TAM
test kernels with different LE size shows that these kernels
employ 0% of concurrency execution. This behavior is caused
by the need to apply ordered patterns in selected line-entries.
Moreover, the same tool shows that these kernels spend most of
the execution time (≈60%) in thread synchronization functions
or halt state. Nevertheless, these functions are required to avoid
the action of the dispatcher units. The WPC kernels present the
same behavior; nevertheless, this value is close to 50%.

We used the memory fault simulator introduced in [16] to
check the FC of the proposed test programs. Each kernel was

instrumented with functions to log the operations executed at
each stage of the kernel execution. This information was
employed to generate the input files to the fault simulator. Table
7 presents the obtained results.

TABLE 7. FC OF THE MATS++ TEST PROGRAM FOR 32 LINE ENTRIES. (*) FAULT

PRIMITIVES INITIALLY NOT CONSIDERED IN THE PROPOSED APPROACH.

Fault primitive
MATS+ Algorithm

TAM Field FC(%) WPC Field FC(%)

SF_X 100* 100*

TF_X, WDF_X, RDF_X, DRDF_X 100 100

CFst_X 100* 100*

CFir_X, CFds_X, CFtr_X 100 100

CFwd_X, CFrd_X, CFdrd_X 100 100

DRF 0* 0*

CFid_X 100* 100*

According to the results, the proposed method is effective to
test static single and coupling faults in the scheduler memory.
Although the original test programs development does not
consider state faults (SF), state coupling faults (CFst) and
inversion coupling faults (CFid), the fault simulation results
show that these faults are also covered in the kernel
implementation.

V. CONCLUSIONS

We proposed a functional approach for developing Self-test

procedures to be used for in-field test of static and coupling

faults in the scheduler memory of GPGPU devices. The method

was developed and implemented using high-level programing

platform (CUDA-C) and microarchitectural information, only.

Results on some representative test cases show that the

proposed method is effective and can test all the fault

primitives, thus guaranteeing a complete coverage of all static

faults in the scheduler memory.

REFERENCES

[1] M. Psarakis et al., "Microprocessor software-based self-testing," IEEE

Design & Test of Computers, vol. 27, pp. 4-19, 2010.

[2] Infineon. (2018). https://www.hitex.com/software-

components/selftest-libraries-safety-libs/pro-sil-safetcore-

safetlib/.
[3] STMicroelecronics, "AN3307 Application note Guidelines for obtaining

IEC 60335 Class B certification for any STM32 application," 2016.
[4] Cypress, "AN204377 FM3 and FM4 Family, IEC61508 SIL2 Self-Test

Library," 2017.

[5] Renesas. (2018). [https://www.renesas.com/en-

eu/products/synergy/software/add-ons.html#read.

[6] Microchip, "DS52076A 16-bit CPU Self-Test Library User‟s Guide,"

2012, p. 52.
[7] ARM. (2018). https://developer.arm.com/technologies/functional-safety.

[8] S. Di Carlo, et al., "Increasing the robustness of CUDA Fermi GPU-

based systems," IEEE 19th International On-Line Testing Symposium
(IOLTS), 2013, pp. 234-235.

[9] S. Di Carlo et al., "Fault mitigation strategies for CUDA GPUs," IEEE

International Test Conference (ITC), 2013, pp. 1-8.
[10] B. Du et al., "About the functional test of the GPGPU scheduler," 2018

IEEE 24th International On-Line Testing Symposium, 2018.

[11] F. NVidia, "Nvidia‟s next generation CUDA compute architecture,"
NVidia, USA, 2009.

[12] J. Nickolls and W. J. Dally, "The GPU computing era," IEEE Micro,

vol. 30, 2010.
[13] T. NVIDIA, "V100 GPU architecture. the world‟s most advanced data

center GPU. Version WP-08608-001_v1. 1," NVIDIA. Aug, p. 108,

2017.
[14] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, "Dynamic warp

formation and scheduling for efficient GPU control flow," 40th Annual

IEEE/ACM International Symposium on Microarchitecture, 2007, pp.
407-420.

[15] S. Di Carlo and P. Prinetto, "Models in Memory Testing" from Models

in Hardware Testing: Lecture Notes of the Forum in Honor of Christian
Landrault: Springer, 2009.

[16] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, "Specification and

design of a new memory fault simulator," 11th IEEE Asian Test

Symposium, 2002, pp. 92-97.

