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Abstract1—GPGPUs have been increasingly successful in the past 

years in many application domains, due to their high parallel 

processing capabilities and energy performance. More recently, 

they started to be used in areas (such as automotive) where safety 

is also an important parameter. However, their architectural 

complexity and advanced technology level create challenges when 

matching the required reliability targets. This requires devising 

solutions to perform in-field test, thus allowing the systematic 

detection of possible permanent faults. These faults are caused by 

aging or external factors that affect the application execution and 

potentially generate critical misbehaviors. Moreover, effective in-

field test techniques oriented to verify the integrity of GPGPU 

modules during in-field operation are still missed. In this work, we 

propose a method to generate self-test procedures able to detect 

all static faults affecting the scheduler memory existing in each 

streaming multiprocessor (SM) of a GPGPU. NVIDIA CUDA-C is 

selected as high-level programing language. The experimental 

results are obtained employing the NVIDIA Nsight Debugger on a 

NVIDIA-GEFORCE GTX GPU and a memory fault simulator. 

Keywords—GPGPUs, SBST, memory testing. 

I. INTRODUCTION 

Some safety-critical applications in the automotive domain 
(e.g., Advanced Driver Assistance Systems, or ADAS) require 
performing real-time processing on massive amount of data 
coming from sensors (e.g., cameras and radars). For these 
applications, General Purpose Graphics Processing Units 
(GPGPUs) are very suitable solutions, due to their 
computational power and reduced power consumption. 
Unfortunately, this kind of applications is also highly safety 
critical, since the effects of any fault affecting the hardware may 
have severe consequences. Hence, the standards and regulations 
in the area (e.g., ISO 26262) require very strict constraints in 
terms of reliability. In order to match these requirements, no 
matter the complexity of the underlying devices and the 
advanced semiconductor technology used to manufacture them, 
it is mandatory to adopt some suitable form of in-field test, able 
to timely detect any permanent faults arising in the GPGPU. 
Among the possible solutions, the usage of self-test procedures 
is increasingly common and already widely adopted by 
companies in the automotive domain. The idea is to provide the 
system company using a certain device with a library of 
software procedures (known as self-test procedures) that are 
provided by the device producer and then integrated in the 
application code. Each of these procedures can be activated 
when required (e.g., at the power-on, or periodically), properly 
excite the module under test, look at the produced results and 
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return a flag stating whether a fault has been detected or not. 
Since these procedures are developed by the semiconductor 
company delivering the device, the exact figure about the 
achieved Fault Coverage (FC) with respect to structural faults 
(e.g., stuck-at faults) can be computed. This approach is often 
known as Software-based Self-test (SBST) [1] and is today 
widely supported by many semiconductor and IP companies, 
such as Infineon [2], STMicroelectronics [3], Cypress [4], 
Renesas [5], Microchip [6] and ARM [7]. 

When considering ADAS devices, a similar approach can be 
followed. In this case, GPGPUs (or similar modules in terms of 
architecture and characteristics) are quite common. Since 
GPGPUs integrate many processing units (PUs), which share 
several microarchitectural modules with traditional CPUs (e.g., 
the register file and the ALU), the development of self-test 
procedures for these modules can leverage the techniques 
developed for CPUs. On the other side, special techniques are 
required to test some modules which are specific of GPGPUs, 
such as the thread scheduler. Such a module is in charge of 
storing and processing the information about the status of each 
thread, e.g., to trigger at each clock cycle the PUs associated to 
the active threads. Looking at the microarchitecture of this 
component, the most significant portion of this block is a 
memory array where this information is stored and continuously 
updated.  

In some works, the authors introduced methods to increase 
the robustness [8] and some mitigation strategies [9] for some 
modules in GPGPU-based systems using a combination of high-
level instrument programs and inline-assembly code. In other 
works [10], the authors proposed some first techniques to test 
the scheduler and the related memory. In this paper, we remove 
a major limitation of the work in [10], where single-cell faults in 
the memory were targeted, only. In particular, we propose a set 
of techniques which target a wide range of faults including both 
single-cell faults and coupling-faults involving multiple cells. 
The proposed techniques allow developing the high-level code 
performing the operations required to implement a desired 
March memory test algorithm. Although this paper focuses on 
the NVIDIA GPGPU architecture, the proposed techniques can 
be easily adapted to work on other architectures as well. 

The paper is organized as follows: Section II introduces the 
background about the behavior, structure and operation of the 
scheduler‟s memory. Moreover, this section summarizes the test 
primitives (TPs) and lists the operational restrictions in the 
usage of the memory. Section III presents the proposed 
approach, the patterns for each targeted field, the test case 
algorithm and the general implementation of test primitives 
resorting to a high-level programing interface (CUDA-C). 
Section IV reports some experimental results, and Section V 
finally draws some conclusions. 



II. BACKGROUND 

A. The SM scheduler warp controller 

Following the NVIDIA terminology, the basic GPGPU 
architecture employs groups of identical PUs, called Streaming 
Multiprocessors (SMs), to compute instructions with high 
throughput. These modules are organized in groups called 
Warps [11] (32-48 consecutive threads) by the scheduler 
controllers (SCs), which are able to manage and control the 
GPGPU tasks. A warp SC is present inside each SM and 
manages the thread group distribution and execution [12]. This 
module includes one or more memories to store the information 
about the warp execution status in the SM. 

In a real GPGPU, the SC memory is organized into 
addressable units called Line-Entries (LEs). Each LE stores the 
status of a warp. The SC assigns the total number of line-entries 
to be used according to the kernel configuration of the 
application. This controller employs a static organization to 
store the information of a warp in each LE. 

The parameters stored in each LE include a warp ID field, a 
warp actual Program-Counter field (WPC), and a thread Active-
Mask (TAM) field. The TAM field is composed of 32 or 48 
bits, each bit represents the active (1) or inactive (0) state of the 
associated thread. The WPC field is composed of 32 or 35 bits. 
Recent implementations of the SC increase the number of stored 
parameters in order to store the information status of each 
thread [13]. During the initialization process, the scheduler 
configures each LE with the information concerning the threads 
active in each warp. 

For the purpose of this work, we focus on detecting 
permanent faults in the TAM and WPC fields of the scheduler 
memory. This memory is written and read by the SC based on 
the control-flow instructions executed by the warp. At each 
instruction cycle, the memory is read in order to define the 
active threads in the warp and the instruction to be executed. 
The writing procedure is carried out once a new instruction is 
ready to be executed or the number of active threads is modified 
by divergence generation [14].  

The SC memory has some operational restrictions, detailed 
in section C, and the access to the LEs cannot be performed 
employing the conventional methods for accessing data 
memories in processor-based systems. This means that special 
techniques are required to implement the required test 
primitives. 

B. Test Primitives for scheduler memory access 

From the very rich literature on memory testing we can 
easily derive the set of operations (denoted as Fault Primitives, 
or FPs) required to test different sets of functional faults that can 
affect both a single cell or couples of interfering cells in a 
memory. FPs have been used to define the most common class 
of memory test algorithms, i.e., March algorithms, able to test 
the memory by applying proper sequences of read and write 
operations with a complexity that grows linearly with the size 
of the memory. Interested readers may refer to [15] for a 
complete theoretical description of memory functional fault 
models. In this paper, we focus on how FPs and March 
algorithms can be translated into test programs for the scheduler 
memory. 

1) Single cell static faults 

Based on the set of primitives described in [15], Table 1 

reports the full set of single-cell static fault primitives. The term 

“static” refers to the fact that they represent faults sensitized by 

a single memory operation. On each row, the Addressable 

Functional Fault Primitive for the scheduler, denoted as 

AFFP(SCH), includes the sequence of operations required to 

generate the input stimuli. 

“A” denotes a test pattern writing in the target bit of the LE, 

and “ ̅” represents the complementary pattern value. In the 

stimulus, the initial conditions are in bold. The AFFP is 

organized as follow: 

AFFP = <Initial_Conditions, (Stimuli), Output_Fault_Value, Output_Fault-free_Value> 

Analyzing the AFFPs in Table 1, one can note that RDF and 

DRDF fault primitives share the same stimuli pattern and the 

total number of patterns is reduced by collapsing the similar 

stimuli patterns with the expected output value. 

2) Coupling cell permanent faults 

The coupling fault primitives are related to the interaction 
between two different cells; an aggressor cell (a) and a victim 
cell (v). The considered fault primitives are presented in Table 
2, where, X, Y and Z are logic values.  

TABLE 1. STATIC FAULT PRIMITIVES FOR A SINGLE CELL  
Fault Fault model FP AFFP(SCH) 

TF Transition fault 
<  ̅     ̅  > 

<    ̅    > 

<  ̅ (   ̅    ̅      )   ̅  > 

<  (        ̅   ̅)    ̅> 

WDF Write destructive fault 
<  ̅   ̅    > 

<     ̅  > 

<  ̅ (   ̅    ̅    ̅    ̅)     ̅> 

<  (           )  ̅  > 

RDF Read destructive fault 
<  ̅   ̅    > 

<     ̅  ̅> 

<  ̅ (   ̅    ̅    ̅)     ̅> 

<  (        )  ̅  > 

DRDF Deceptive RDF 
<  ̅   ̅    ̅> 

<     ̅  > 

<  ̅ (   ̅    ̅    ̅)     ̅> 

<  (        )  ̅  > 
 

TABLE 2. STATIC FAULT PRIMITIVES FOR COUPLING CELLS  
Fault Fault model FP AFFP(SCH) 
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The State coupling faults (CFst) FP <  ̅   ̅    ,   ̅     ̅ 
 ,       ̅  ,     ̅   >  in Table 1, and the state faults (SF) 

FP (<  ̅    ,     ̅  >) and the incorrect read faults primitive 

(IRF) FP (<  ̅   ̅   ̅  ,          ̅>) in Table 2, are neglected 
by the proposed approach, due to lack of GPGPU instructions, 
available functions or software-based methods to verify the 
behavior of the corresponding faults. 

Although the AFFP(SCH)s for the coupling faults are 
different, some associated Sensitizing Operation Sequences 
(SOSs) are similar and it is possible to collapse identical 
patterns. In this approach, the total number of patterns to cover 
the FPs is reduced to 30. Some coupling faults (CFrd, CFir and 
CFdrd) can be grouped with the same SOS, since the only 
difference among them is one additional read operation. 
Therefore, the SOS with the lowest number of reading 
operations can be neglected and the CFdrd SOS is employed to 
sensitize those coupling faults. 



Each AFFP(SCH) pattern should be adapted to include the 
scheduler memory operational restrictions. 

C. Scheduler Memory operational restrictions 

The SC memory cannot undergo any possible operation or 

sequence of operations. In particular, the following operational 

restrictions exist: 

1. During the device configuration and program starting 

phase, it is not possible to write whichever initial state in 

the TAM field. By default, all threads start in the active 

state (value 1 for all bits). 

2. Once a warp ends the execution of one instruction, the LE 

is actualized and one read operation is implicitly performed. 

On the other hand, a write operation is performed when a 

new instruction starts its execution or when the number of 

active threads is modified. 

3. Any pattern applied to the TAM field can generate thread 

divergence. This divergence causes the execution of two 

paths (Taken and Not-Taken). Moreover, these paths are 

consecutively executed. 

4. Once a warp is dispatched to the SM, the execution of the 

warp path cannot be stopped. Moreover, if thread 

synchronization mechanisms are employed (i.e., 

__syncthreads()), one or more threads must be maintained 

in active state in the TAM field in order to keep the warp 

active. In contrast, a TAM field with all inactive threads 

represents a terminated warp. 

5. The scheduler includes two warp dispatchers, which 

manage the scheduling of the warps in the SM. These units 

submit the warps to the SM based on performance 

considerations, by means of a pseudo-random algorithm 

and complex data-hazards control methods. However, the 

warp submission is not executed in order. For the purpose 

of this work, this behavior may compromise the execution 

of fault primitives, which require operations on consecutive 

LEs. 

III. PROPOSED METHOD 

We propose a method to detect permanent and coupling 
faults in the line-entries of the SM scheduler memory based on 
a functional approach and employing high-level programing 
language functions (CUDA-C). The method employs a mapping 
between a set of fault primitives and GPGPU functions to 
generate a test program. This approach is able to provide the 
rules to transform any March algorithm into a GPGPU test 
program generating the same sequence of operations on the 
target memory and thus detecting the same defects. 

The proposed approach divides each March operation in one 
or a set of kernels. This division allows executing the test 
program during the idle intervals of in-field operations 
including the set of restrictions presented by the scheduler 
memory operation. The kernel test program is stored in the 
system memory aside from the application kernels. However, 
the host must activate the test sequences. In contrast, test results 
are stored in selected free locations in the global memory. 

The first and second restrictions cannot be avoided. This 
means that all test patterns applied to the TAM field start with 
an initial state of all threads active (all bits in 1) and an 
initialization pattern is required. 

According to the third restriction, the path divergence 
generation by a control-flow instruction cannot be stopped once 
it is executed. The selection of a low number of control-flow 
functions and operations on each path can guarantee a low 
execution time. A predefined set of external parameters (see 

Table 3) is used to divide the operations of a test program into 
small parts. These parameters increase the detection of coupling 
faults among and inside line entries. Concerning the fourth 
restriction, those parameters must guarantee that at least one bit 
(thread) remains at the value 1 (active). This is the reason for 
the missing pattern with all 0s. 

TABLE 3. PATTERNS TO DETECT A COUPLING FAULT IN AN LINE-ENTRY 
Pattern Description 

11111111…00000000… / 00000000…11111111… First half  , second half  ̅ 

00001111...00001111… / 11110000...11110000… First four bits  , second four  ̅ 

00110011…00110011… / 11001100…11001100… First two bits  , second four  ̅ 

10101010…10101010… / 01010101…01010101… Alternated   and  ̅ 

111111111111111111… All in ones 

During the evaluation of the divergence not-taken path, the 
third restriction arises. Once the threads finish the taken path, 
the SC changes the status of the inactive threads and these 
become active. An inverse write operation is performed in this 
field at the start of the not-taken path execution as an effect of 
the previous change. This behavior can be skipped and does not 
generate issues in the adaptation of March operations. 

The scheduler modifies the full content of the TAM and the 
WPC fields. Nevertheless, the writing process is different for 
each field. This writing is based on conditional and 
unconditional control-flow operations on each case. In most 
GPGPUs, the divergence paths, taken and not-taken, must be 
executed in different operation cycles. The proposed approach 
employs only the taken path, neglecting the inverse writing 
operation described below. 

The fifth restriction relates to the dispatcher units execution. 
Considering that details of the dispatchers operation and the 
way to predict the warps emission during the execution are not 
provided in detail by the manufacturer [11, 13], the proposed 
method employs thread synchronization functions (barrier 
instructions) and semaphore variables to detect coupling faults 
between consecutive cells. Moreover, this technique is able to 
skip the dispatchers operation controlling the injection order. 
This method stops temporarily the path execution of a warp and 
launches a desired and ready warp. It is worth noting that there 
is a possibility of non-expected consecutive read procedures on 
the same LE. Nevertheless, these additional reads do not 
generate issues in the March algorithm adaptation and 
execution. 

The next sections describe the steps to generate write and 
read operations in the TAM and WPC fields. 

A. Patterns for the TAM field 

The following sequence of operations is required to generate a 

write operation in the TAM field in a LE. This approach is also 

effective for some coupling faults between two consecutive 

cells (CFrd, CFir and CFdrd). 

1) Patterns generation in the TAM field for coupling fault 

in a single cell 

1. Execute an embarrassingly parallel function F (Initial condition). 

2. Execute a divergence generation function (writing operation in 

the target bit(s) in the TAM field). 

3. Execute the taken path (read operation in the full TAM field). 

4. Execute the not-taken path (generate a write operation and read 

operations with the inverted value on selected bit(s) field). 

5. Convergence point execution CP (parallel execution of 

instructions with implicitly read operations). 

The step 4 is skipped and is considered as an interval 
condition to start other March operations. This is the basic 
writing procedure to the LE. The CFrd, CFir and CFdrd 
coupling faults can be satisfactorily evaluated using both 
divergence paths, due to the total number of write and read 



operations involved. However, additional elements must be 
included in order to detect a large number of coupling faults. 

2) Patterns generation in the TAM field for coupling faults 

in multiple cells 

The detection of coupling faults between consecutive cells 
(LEs) requires additional steps including thread 
synchronization, warp selection and nesting divergence in order 
to assure correct evaluation of each potential fault cell. 

The following steps describe the sequence of operations to 
generate the coupling faults detection: 

1. F (Initial condition). 

2. Select a target warp or LE ((a) cell). 

3. Execute a first divergence generation function (write operation in 

the target bit(s) field of an (a) cell). 

4. Execute the taken path of divergence (read the full TAM field for 

(a) cell). 

5. Execute a barrier function in the (a) cell path, which stops the 

warp execution and launches a different warp. 

6. Select a new target warp ((v) cell). 

7. Execute a second divergence generation function (write in the 

target bit(s) of a (v) cell). 

8. Execute the taken path for the second divergence (It generates 

reading operations of the full TAM field in the (v) cell). 

9. Execute barrier function in the (v) cell path, launching a new 

warp. 

10. Execution of the not-taken path for the (a) cell (write the 

opposite value in the target bit(s) in TAM field, followed by 

reading operations). 

11. Execute a barrier function in the (a) cell path. 

12. Execution of the not-taken path for the (v) cell (write with the 

opposed value in the target bit(s) in the TAM field, followed by 

read operations). 

13. Execute a barrier function in the (v) cell path. 

14. CP 

The steps 9-13 are employed to evaluate more coupling 
faults in the TAM field (CFds, CFtr). However, these steps can 
be skipped with a correct selection of the input stimuli patterns. 

A nested divergence is included to successfully keep the 
warp execution and the need of at least one active thread in the 
TAM field. This behavior is required to detect coupling faults of 
the group (CFrd, CFir). This additional divergence can be 
placed between steps 4 and 5 or between the steps 10 and 11 for 
the (a) cell. The same approach is used between steps 8 and 9 
for the victim cell. 

The CFwd faults are detected by the introduction of a third 
nested divergence. This function is placed in the (a) cell path 
after the second divergence in the not-taken path. This is used to 
generate the evaluation of missing threads and guarantee the 
writing procedure in the scheduler memory during the 
execution.  

This divergence is designed in a way that the first thread or 
the last thread is selected on each path, to generate a required 
stimulus. Additional barrier instructions are added in order to 
keep the synchronization of the warp execution. Moreover, the 
step 14 is removed and replaced by the steps 4, 5, 10 and 11 to 
launch a new aggressor operation. 

An external pattern is applied to the (a) cell in the first 
divergence to select the number of threads active during the 
victim evaluation. The divergence evaluation in the (v) cell 
generates the equal division in two groups of threads. However, 
in order to cover all the coupling faults, both division cases 
should be evaluated. 

In this approach, the reading procedures are implicitly 
integrated in the writing procedure. The simplest case of a 
reading procedure can be performed by the execution of non-
control flow instructions by the warp. The reading procedure is 
applied for both fields on each instruction cycle and cannot be 
avoided or stopped. The SC reads an active LE continuously at 
the starting and ending points of each instruction cycle in order 
to preserve system coherency in thread execution. The inactive 
or halted line-entries are read when those become active. 

The previously proposed steps can be applied for any 
consecutive configuration of (a) and (v) cell.  In order to 
generate displacements on any direction (increment or 
decrement) across the memory LE in a desired order, the 
dispatcher unit is skipped employing the barrier instructions and 
shared variables described below. 

B. Patterns for the WPC field 

The evaluation of WPC field instead requires a sequence of 
steps to access the system memory in the GPGPU. The 
proposed method considers GPGPU architectures with a shared 
WPC field among the threads in a warp. For the purpose of this 
work, the kernel design and execution must be executed as 
parallel as possible. In order to generate the required stimulus 
for the field, some subroutines (functions) are placed in strategic 
locations in the memory. The main kernel accesses each 
subroutine employing unconditional control-flow operations. 
Inside the subroutine, a set of barrier functions are employed to 
halt the warp execution and start a different warp. The 
approach, employed to generate the warp selection in the TAM 
field, is also used for this field. 

Some locations, in the highest part of the system memory, 
present difficulties for function placement. The solution is to 
include additional GPGPU kernels in the main memory. Those 
kernels and functions are placed in the GPGPU system memory 
during the compilation process. The location placement uses the 
same patterns presented in Table 3. 

The test program can be divided in pieces employing 
independent test kernels to apply specific patterns. Mainly, each 
subroutine is composed of embarrassingly parallel functions and 
thread barriers. 

1) Patterns generation in the WPC field for coupling faults 

in a single cell 

The following list presents the basic steps to generate a 
single writing procedure, and implicit reading procedures, on 
the actual WPC field. 

1. Execution of an embarrassingly parallel instruction P (reading 

ops, initial condition). 

2. Execution of an unconditional flow-control function (calling a 

function stored in the GPGPU system memory at a predefined 

location) (Writing on the target bit field and reading procedures). 

3. Return from the subroutine, and then compare the signature. Start 

a new call for another subroutine in other memory placement 

(Writing the bit field and reading procedures). 

4. (Repetition of the step 2 and 3 if required). 

As discussed for the TAM field, the reading procedures are 

integrated in the writing sequence. For each method, a thread 

per signature (d_signature) is included as observation 

mechanism to detect any misbehavior in the memory cells. 

Thus, a mismatch in the final signature will indicate a fault 

present in the memory cell. The signature is evaluated at the 

end or in the middle of each pattern evaluation.  

 



2) Patterns generation in the WPC field for coupling faults 

in multiple cells 

The detection of coupling faults between consecutive LEs 
requires the use of additional steps. The aggressor and the 
victim are carefully chosen by a warp selection process that 
generates divergence. The following steps are used to generate 
the coupling fault evaluation. 

1. P (initial condition). 

2. Selection of an (a) cell and execution of an unconditional flow-

control function (write procedure in the target LE, (a) cell). 

3. Execution of the subroutine path and generation of a barrier 

function in the (a) cell path, launching a new warp (reading 

procedure in the target LE, (a) cell). 

4. Selection of (v) cell and execution of the unconditional flow-

control function (write procedure in the target LE, (v) cell). 

5. Execution of the subroutine path and generation of a barrier 

function in the (v) cell path, launching a new warp. 

6. Return to the main kernel path and execution of embarrassingly 

parallel operations (writing operation in the returning stage, 

reads in the embarrassing execution). 

The implementation of the previous steps allows detection 
of coupling faults of the group (CFds, CFtr). Other steps must 
be included in order to detect CFir coupling faults. These faults 
require an additional step after step 5. This step requires the 
execution of more functions inside the subroutine in order to 
generate the implicit readings in the memory LE. An additional 
barrier function is added to generate the stimulus in the 
aggressor and the victim. Testing CFwd coupling faults requires 
a new aggressor subroutine or writing procedure, which is 
included after step 6. 

C. Test cases 

We selected two March algorithms (MATS+ and MATS++) 
as test cases to demonstrate the characteristics of the proposed 
approach and generated a set of test programs for the two fields 
for each LE in the scheduler memory. 

1) MATS+ and MATS++ algorithm. 

The MATS+ algorithm is composed of the operations 
presented in Table 4 (the reader may refer to [9] for details on 
the March test notation). To apply the March test in the 
scheduler memory some implicit read and initialization steps are 
added, see Table 4. 

TABLE 4. TEST PROGRAM FOR MATS+ AND (*) MATS++ 
Original Ops. Adapted Ops. to scheduler memory 

M1: ↕ (W(0)) Init. Steps (W(x), R(x)); M1: ↕ (W(0), R(0)); 

M2: ⇑ (R(0), W(1)) Init. Steps (W(x), R(x)); M2: ⇑ (R(0), W(1), R(1)); 

M3: ⇓ (R(1), W(0), R(0)*) Init. Steps (W(x), R(x)); M3: ⇓ (R(1), W(0), R(0)); 
 

In Table 4, in bold we reported the additional steps required 
to generate the expected March operations. The initialization 
steps, listed below, are required to select a specific warp (LE) 
and skip the dispatchers operation. This process is applied to 
each evaluated field in the LE. 

For the implementation, a kernel is designed for each 
operation (Basic Block Kernel or BBK). The BBKs require, as 
input parameters, the signature location and the external stimuli. 
The external stimuli is only required for TAM field evaluation. 
Then, it is divided in independent test program chunks. This is 
important during in-field test, since the test must often be 
executed during the idle slots of the system. Table 5 presents the 
adaptation of the original MATS+ algorithm to a set of kernels 
for one pattern evaluation. 

From Table 5 we can observe that the external parameter 
applied on each kernel is not the same. In the first and third 
kernels, the same pattern is applied. However, the second kernel 

requires the inverted external pattern to stimulate the target bit 
fields with the operation. The previous kernel sequence should 
be applied to each pattern in the Table 1. At the end, the same 
approach is applied eight times. 

TABLE 5. MARCH OPERATION AS A SEQUENCE OF CUDA KERNEL EXECUTIONS 

(ADAPTATION PRESENTED FOR ONE PARAMETER FOR THE TAM FIELD) 
Original March 

operations 

(MATS+) 

Adapted 

March 

Operations 

Equivalent CUDA kernel 

↕ (W(0)) ↕ (W(0),R(0) 
Test_kernel_decrement<<<TOTAL_BLOCKS, TOTAL_THREADS>>> 

(TOTAL_THREADS, vector_params[0], d_signature); 

⇑ (R(0), W(1)) 
⇑ (W(0), R(0), 

W(1), R(1) ) 

Test_kernel_decrement_x<<<TOTAL_BLOCKS, TOTAL_THREADS>>> 

(TOTAL_THREADS, vector_params[1], d_signature); 

⇓ (R(1), W(0)) 
⇓ (R(1), W(0), 

R(0)) 

Test_kernel_increment<<<TOTAL_BLOCKS, TOTAL_THREADS>>> 

(TOTAL_THREADS), vector_params[0], d_signature); 

2) Algorithm implementation for coupling faults in CUDA. 

The pseudo-code reported in Fig 1 represents the general 
CUDA implementation of the kernel to evaluate coupling faults 
among consecutive cells. This kernel is launched concurrently 
by the aggressor and victim warps (line-entries). A warp 
selection function is used to divide the (a) and (v) cells and to 
execute the kernel in a sequential fashion. 

__global__ void Test_kernel_decrement_x (int* divergence_parameters, int* signature …) 

{ 

  Parameter_initialization(); ►Initialization of Local and Shared variables. 

  Thread_warp_size_verification_correction();                  (‡) ►Warp number resize (Total Thread number 

is not multiple of 32). 

  For warp in kernel do:                                                         (‡) ►Search each Warp ID 

    If Warp_Selected() then:                                                (‡) ►Select a Warp ID in order  

( Increment / decrement ) 

       Load_divergence_parameters();                                    (‡) ►External pattern to be used in (a). 

       If warp is Aggressor then:                                           (‡) ►Check if warp ID is (a). 

         Aggressor_warp_enabled(); ** ►Check if (a) cell has associated (v) cell. 

         If divergence_parameter is „0‟ then:                         (†)     ►First divergence function (Not-Taken Path) 

             Signature_evaluation(); ►Signature evaluation and R(x) operation. 

             Barrier_operation(); ►Warp execution Halt. 

         Else:                                                                           (†) ►First divergence function (Taken Path) 

            Signature_evaluation(); ► Signature evaluation and R(x) operation. 

            For Warp_Id > 0 do: ►Check if (v) cell has been executed 

              If divergence_parameter(0) is „1‟ then:               (†) ►Nesting (Second) divergence function  

                 Signature_evaluation();Barrier_operation(); ► Signature evaluation and R(x) operation. 

              Else if divergence_parameter(31) is „1‟ then:     (†) ►Nesting (Second) divergence function 

                  Signature_evaluation();Barrier_operation(); ► Signature evaluation and R(x) operation. 

              Else:                                                                      (†)   ►Nesting (Second) divergence function 

                  Signature_evaluation();Barrier_operation(); ► Signature evaluation and R(x) operation. 

              Signature_evaluation(); ►Implicit Read in one instruction cycle. 

              Warp_ID --; ►Decrement in Warp ID value. 

       Else if warp is Victim then:                                         (‡) ►Check if warp ID is (v). 

         victim_warp_enabled(); ** ►Check if (v) has associated (a) cell. 

        If threads in warp („<16‟ / ‘>15’) then:                      (†) ► Divide the threads in lower or higher part 

           Signature_evaluation(); Barrier_operation(); ► Signature evaluation and R(x) operation. 

         Else:                                                                           (†) ► 

           Signature_evaluation(); ► Signature evaluation and R(x) operation. 

           For Warp_Id > 0 do: ► Check if (a) cell has been executed 

             Barrier_operation(); ► Warp execution Halt. 

       Barrier_operation(); ► Warp execution Halt. 

    Else:                                                                                (‡) ►Warp is not selected to be launched. 

      Signature_evaluation();  Barrier_operation(); ►Implicit R(x), Warp execution stops. 

  Warp_synchronization();                                                  (‡) ►Final warp synchronization. 

  Clear_Parameters();                                                          (‡) ►Clearing of parameters in shared memory. 

} 

FIG 1. CUDA PSEUDO-CODE OF THE KERNEL TEST IMPLEMENTATION FOR 

COUPLING FAULTS IN CONSECUTIVE CELLS. (‡) FUNCTIONS TO SKIP 

DISPATCHERS. (**) OPTIONAL FUNCTIONS FOR EDGE LINE-ENTRIES 

EVALUATION. (†) DIVERGENCE-GENERATION FUNCTIONS FOR THE (a) AND (v) 

LES. 

According to warp selection, each (a) or (v) cell executes 
different paths and internally uses divergence functions to 
stimulate the field. In the aggressor path, a second divergence 
path is used to evaluate additional coupling faults that require a 
W(0) starting condition. The barrier operations are used to stop 
the warp (cell) execution and generate the launch of a new 
warp. The previous kernel algorithm can be simplified, avoiding 
the second divergence in order to test permanent, static and 
some coupling faults. As explained below, a set of variables are 
added to each path in order to skip the execution of the 
dispatchers. Each variable was attached to a warp execution. 

IV. EXPERIMENTAL RESULTS 

The experimental results are obtained employing a 
NVIDIA© GeForce GTX 960M GPGPU with 1.176 GHz of 
clock rate and 32 threads per warp. In order to check the kernel 
execution and establish the performance metrics, such as 



execution time, and GPGPU resource overhead by the test 
programs we used the NVIDIA© Nsight™ 5.6 tool. Moreover, 
we employed the NVIDIA© Visual profiler to determine the 
total number of instructions executed by the test kernel. Table 6 
presents the performance characteristics of the proposed test 
programs for different line entries sizes in the memory. 
Additionally, the table reports the required idle times to apply 
the test sequences. Each test program is designed to use one 
block over one SM in the GPGPU. 

TABLE 6. TEST PROGRAM CHARACTERISTICS FOR THE PROPOSED APPROACH TO 

EVALUATE DIFFERENT LINE-ENTRY SIZES. (*)ACTIVE KERNEL FUNCTIONS ONLY. 

 
FIELD 

TAM WPC 

Line entry size 32 16 8 32 16 8 

BBK Execution performance (uS) 778.987 359.297 168.3 573.419 187.791 91.517 

Total Execution performance (mS) 18.69 8.62 4.039 13.86 4.507 2.196 

Instructions 

executed 

BBK Kernel 

increment (KB) 
276.248 78.28 8.428 186.48 50.36 14.46 

BBK Kernel 

decrement (KB) 
276.616 78.184 8.404 436.128 73.488 15.576 

Per Pattern (KB) 829.112 234.744 25.260 809.088 174.208 44.496 

Total (MB) 6.633 1.878 0.202 6.473 1.397 0.356 

GPGPU 

overhead 

System memory (KB) 1.84 1.84 1.84 2.424* 2.424* 2.424* 

Shared memory (B) 260.0 132.0 68.0 4.0 4.0 4.0 
 

As shown by the results, the total time, required by test 
execution, remains in the range of some µs. Moreover, the 
system memory requirements are low for the test of one pattern 
for 32 line entries (1.84KB and 2.4KB for TAM and WPC 
fields, respectively). However, the WPC test program requires 
the additional placement of inactive kernels to place selected 
subroutines in specific memory locations. This test program 
requires using all the system memory. Hence, the execution of 
WPC test kernels during in-field test should be limited to 
Switch-On/Switch-Off intervals. 

The number of shared elements required is low in 
comparison with the system memory overhead to store the 
kernels. The total number of registers required for each 
configuration remains constant to 28 in the TAM field kernels. 
For WPC field, this value is constant to 37. 

The number of instructions to apply a test pattern (3 kernels) 
in the memory is relatively high (829 and 809KB). This can be 
explained by the use of high-level programing platforms 
(CUDA-C) functions and the complexity for managing and 
avoiding the dispatcher units. As it can be observed in Fig 1, six 
functions are required to control the warp execution and to skip 
the dispatchers. Additionally, the evaluation of coupling faults 
between consecutive cells requires conditional evaluations in 
the divergence function generation adding more instructions to 
the final test program. Nevertheless, the BBK size is low 
(<300KB) and employs less than 800µS during its execution. 
On the one hand, the TAM kernels employ a number of shared 
memory elements increasing linearly with the number of line-
entries to be evaluated. On the other hand, the WPC kernels use 
the same number of shared variables for every memory size. 
These kernels are simpler than TAM kernels and the total 
number of memory elements required is employed in the 
selection and launch of warps. 

An analysis with the NVIDIA Visual Profiler of the TAM 
test kernels with different LE size shows that these kernels 
employ 0% of concurrency execution. This behavior is caused 
by the need to apply ordered patterns in selected line-entries. 
Moreover, the same tool shows that these kernels spend most of 
the execution time (≈60%) in thread synchronization functions 
or halt state. Nevertheless, these functions are required to avoid 
the action of the dispatcher units. The WPC kernels present the 
same behavior; nevertheless, this value is close to 50%. 

We used the memory fault simulator introduced in [16] to 
check the FC of the proposed test programs. Each kernel was 

instrumented with functions to log the operations executed at 
each stage of the kernel execution. This information was 
employed to generate the input files to the fault simulator. Table 
7 presents the obtained results. 

TABLE 7.  FC OF THE MATS++ TEST PROGRAM FOR 32 LINE ENTRIES. (*) FAULT 

PRIMITIVES INITIALLY NOT CONSIDERED IN THE PROPOSED APPROACH. 

Fault primitive 
MATS+ Algorithm 

TAM Field FC(%) WPC Field FC(%) 

SF_X 100* 100* 

TF_X, WDF_X, RDF_X, DRDF_X 100 100 

CFst_X 100* 100* 

CFir_X, CFds_X, CFtr_X 100 100 

CFwd_X, CFrd_X, CFdrd_X 100 100 

DRF 0* 0* 

CFid_X 100* 100* 

 

According to the results, the proposed method is effective to 
test static single and coupling faults in the scheduler memory. 
Although the original test programs development does not 
consider state faults (SF), state coupling faults (CFst) and 
inversion coupling faults (CFid), the fault simulation results 
show that these faults are also covered in the kernel 
implementation. 

V. CONCLUSIONS 

We proposed a functional approach for developing Self-test 

procedures to be used for in-field test of static and coupling 

faults in the scheduler memory of GPGPU devices. The method 

was developed and implemented using high-level programing 

platform (CUDA-C) and microarchitectural information, only. 

Results on some representative test cases show that the 

proposed method is effective and can test all the fault 

primitives, thus guaranteeing a complete coverage of all static 

faults in the scheduler memory. 
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