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Summary

Nowadays, in the era of smart technologies and accessibility of mobile and wearable
devices, huge amounts of data are being produced every day. The possibilities for anal-
ysis of heterogeneous data coming from the Internet ofThings (IoT) applied in different
complex application domains are very vast. IoT systems generate and capture massive
data collections describing human mobility, citizen’s perception of provided services,
and the overall urban environment as in terms of air quality and weather conditions.
At the same time, in the business field, enterprises are continuously acquiring data with
the aim of improving their processes and to guide their business decisions towards the
right direction. To this end, these huge data collections have to be properly leveraged.

Data mining techniques are powerful instruments that can be effectively used to an-
alyze data collections and extract hidden and useful knowledge otherwise unavailable.
They allow extracting previously unknown interesting patterns such as dependencies
among data objects (association rule mining), or a model describing data classes (classi-
fication).

However, the continuously increasing dimension and heterogeneousness charac-
terizing this kind of data limits the feasibility of analysis by means of the data mining
techniques currently available. Therefore, an important question is how these collec-
tions can be more efficiently transformed into exploitable knowledge.

This PhD thesis addresses the study and development of novel data analysis frame-
works and patterns to extract useful insights from the targeted data collections. To this
end, the exploration of data taxonomies built on top of the considered data is proposed.
A data taxonomy is a set of is-a hierarchies each one referring to a specific data attribute.
Each hierarchy aggregates all the values assumed by the corresponding attributes into
higher level concepts in a tree-based structure.

The data taxonomy strategy has been applied on real datasets coming both from
the urban and business contexts as reference case studies. The works in the urban con-
text focused on the generation of highly interpretable descriptive analytics at multiple
levels of abstraction in order to support municipalities to obtain services that are more
convenient and a better environment for their citizens. Meanwhile, the reference case
studies in the business context leveraged taxonomies to improve profits coming from
sales, or with the objective of aligning knowledge ontologies with different levels of
granularity provided by commercial partners who want to interoperate.
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The results of the experimental studies have proven the effectiveness of the de-
veloped methodologies, thus, leading to the deployment in production of one of the
proposed business-domain solutions.
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Chapter 1

Introduction

In the last few years, the use of Information and Communication Technologies has
made available a huge amount of heterogeneous data in various complex application
domains. For example, in the urban scenario, Internet of Things (IoT) systems generate
and capture massive data collections describing human mobility, citizen’s perception
of provided services, and the overall urban environment as in terms of air quality and
weather conditions. These collections can be a valuable instrument to provide more
convenient services and better environments.

Data mining techniques are powerful instruments that can be effectively used to
analyze data collections and extract hidden and useful knowledge otherwise unavail-
able. They allow extracting previously unknown interesting patterns such as groups of
similar data objects (cluster analysis), dependencies among data objects (association rule
mining), or a model describing data classes (classification).

However, these kind of data collections are often characterized by a continuously
increasing dimension and heterogeneousness, which limit the feasibility of analysis by
means of data mining techniques currently available. Therefore, an important ques-
tion that has been recently raised is how these collections can be transformed into
exploitable knowledge.

1.1 Research topics description
This PhD thesis addresses the study and development of novel data analysis frame-

works as well as novel patterns to extract useful insights from the targeted data col-
lections. The proposed approaches rely on the design and development of proper tech-
niques for the integration and analysis of huge volumes of heterogeneous data, covering
such critical issues as the large dataset cardinality, dimensionality, and the variable data
distribution.

To this end, the exploration of data taxonomies built on top of the considered data
is proposed in this PhD thesis. A data taxonomy is a set of is-a hierarchies each one
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1 – Introduction

referring to a specific data attribute. Each hierarchy aggregates all the values assumed
by the corresponding attributes into higher level concepts in a tree-based structure.

In the proposed frameworks, the original data are enriched with a data taxonomy
with the aim of analysing data at different abstraction levels. Based on the character-
istics of the explored data as well as the objective of the analysis in the targeted ap-
plication domain, the most suitable data abstraction level can be selected for the data
analysis task. Data analysis at the highest abstraction levels allows mining patterns that
represent more succinct information, while data analysis on lower abstraction levels al-
lows discovering patterns representing more detailed information. In this PhD thesis,
cross-level patterns have also been investigated, in which data represented at different
abstraction levels coexist.

1.2 Thesis plan and research contribution
The PhD activity has been conducted by considering two different application do-

mains as reference case studies: (i) the urban domain and (ii) the business domain. Proper
data analysis frameworks and patterns have been designed and developed to address
some challenging research topics and peculiar data issues in the two domains.

1.2.1 Data mining applications in urban context
In the urban areas different geo-referenced IoT sensor networks are deployed to ac-

quire a huge amount of heterogeneous data, for example, on the urban environment
and the usage of services offered to citizens. The analysis of these data collections can
provide useful insight to the municipality to improve the well-being of citizens. To ad-
dress the critical issue of assisting municipality actors in the process of improving the
air quality in smart cities, two novel data analysis frameworks (named GECKO [14]
and ARQUATA [12]) have been designed and developed. Moreover, an additional data
analysis framework has been developed, and it is aimed at improving the quality of a
widespread green mobility system, i.e., bike sharing [13].

Analyzing air-pollution related data. The GECKO (GEneralized Correlation ana-
lyzer of pOllution data) framework [14], focusing on the analysis of air quality in the ur-
ban environment, takes into account not only heterogeneous air-pollution related data
including the concentration of the air pollutants, but also traffic flowmeasurements and
meteorological data. The knowledge extraction process is driven by taxonomies used to
generalize low-level measurement values into corresponding high-level categories. The
concept of taxonomies is exploited in the process of association rules mining to discover
interesting andmultiple-level correlations among the different types of collected data at
different abstraction levels. To ease the manual inspection of the results, the extracted
correlations are classified into a few classes based on the semantics of underlying data.

2



1.2 – Thesis plan and research contribution

The data mining engine named ARQUATA (AiR QUAlity patTern Analyzer) [12] fo-
cuses on the analysis of pollutant concentration data aimed at discovering combinations
of pollutant concentrations that are, on average, in a critical condition. An established
type of pattern, namely the weighted frequent itemset pattern, is used to identify these
air quality patterns. To offer different viewpoints of analysis to domain experts and
municipality actors, these patterns are extracted from several aggregations of the raw
data following specific temporal and spatial granularities. For instance, the data coming
from the city center area can be monitored along different seasons, or with the heating
systems off and on, to be examined by domain experts.

To demonstrate the effectiveness of the proposed analytics engines, both the AR-
QUATA and GECKO frameworks have been validated using real open data acquired
from a major Italian Smart City (i.e., Milan).

Analyzing bike-sharing systems data. Bike-sharing systems are green mobility
systems that help to enhance the quality of life in cities by reducing pollutant emissions
and traffic congestion. The PhD activity addressed the design and development of the
BELL (Bike Station OvErLoad AnaLyzer) system [13] with the aim of improving the
user perception and ease of maintenance of bike-sharing systems. The proposed BELL
methodology relies on a new pattern type called OMP (Occupancy Monitoring Pattern),
which detects situations of dock overload in multiple stations.

The analysis of station occupancy levels at different time granularities allows system
managers to investigate how overload conditions evolve over time, and to identify over-
load conditions that frequently occur in specific time periods. To leverage the concept of
taxonomy, the occupancy level data have been enrichedwith temporal informationwith
a coarser granularity. The granularity of the time period can be defined based on the
target analysis. For instance, daily granularity allows spotting larger-scale phenomena,
such as the most unbalanced days in terms of dock occupancy, while an hourly granu-
larity can help determine at what hour to schedule the re-balancing of the bikes among
the stations. The effectiveness of generating useful insights has been demonstrated by
the results of the experimentation on real open data acquired in different Smart Cities
(i.e., Barcelona, and New York).

1.2.2 Data mining applications in business context
Another direction of studies of the generalization concept covers business context.

In this field, data coming from online retail [16], e.g., Amazon, and web directory, i.e.,
Pagine Gialle have been exploited as example case-studies. Specifically, one of the stud-
ies has leveraged generalization to improve planning advertising campaigns of retail
products, while the other study is aimed at developing a classification model to support
the integration of business activities among different web directories.

3



1 – Introduction

Discovering the most profitable sets of products. High-Utility Itemset Mining
(HUIM) is an established data mining technique used to discover recurrent combina-
tions of products (items) characterized by high profit from transactional datasets. Based
on the observation that items can be clustered into domain-specific categories, the PhD
activity proposed a new type of pattern, named GHUI (Generalized High-utility Item-
set) [16] that entails generating correlations among data items at multiple abstraction
levels. Specifically, GHUIs represent combinations of items at different granularity lev-
els characterized by high profit (utility). While profitable combinations of item cate-
gories provide interesting high-level information, GHUIs at lower abstraction levels
represent more specific correlations among profitable items. A single-phase algorithm
is proposed to efficiently discover GHUIs. The experiments, which were performed on
both real and synthetic data, demonstrate the effectiveness and usefulness of the pro-
posed approach.

Taxonomy-based integration of business activities betweendifferentweb direc-
tories. A pervasive problem on the web is represented by the integration of informa-
tion coming from various sources and categorized according to significantly different
taxonomies. In particular, it is still an open research issue, how to correctly categorize
each instance of a certain concept of the source taxonomy when the corresponding in-
stance of the target taxonomy has a finer granularity level. For example, the concept of
the source taxonomy furniture should be mapped to the concepts of the target taxon-
omy such as chair, table, bookcase.

In this study, the issue has been formulated as a classification problem. Each target
category is treated as a class, and all the relevant textual data of the specific instance
are taken into account to build a classification model. Additionally, the target taxonomy
is leveraged to generalize to a higher-level category when a coherent match is missing.
The proposed approach, namely TACOMA (Text-bAsed CategOry MApping), has been
validated using different classification algorithms (i.e., Artificial Neural Networks, Sup-
port Vector Machines, Random Forest) on real business activities data coming from a
prominent web directory (i.e., Pagine Gialle) to be integrated with a widely used nav-
igation system (i.e., Apple Maps). Due to the good level of accuracy, the results of this
study have been integrated into the company production system and the paper about
this research activity is in progress.

This thesis is organised as follows. Chapters 2 and 3 present the research activ-
ity conducted on the urban application domains. More specifically, Chapter 2 presents
the GECKO and ARQUATA frameworks for the analysis of air pollution related data,
while Chapter 3 presents the BELL engine for the analysis of bike-sharing systems
data. Chapters 4 and 5 focus on the research activity performed on the business do-
main. Chapter 4 describes the GHUI pattern that entails generating correlations among
data items at multiple abstraction levels. Chapter 5 presents the TACOMA approach for

4



1.2 – Thesis plan and research contribution

the taxonomy-based integration of business activities among different web directories.
Finally, Chapter 6 summarizes the results presented in this PhD thesis and discusses
future developments for the proposed approaches.
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Chapter 2

Monitoring and Analyzing Air
Quality in Urban Areas

Nowadays Smart Cities are increasingly pervaded by sensors deployed in public
areas, on vehicles, and on wearable devices. These sensor networks allow us to collect
a variety of data useful for monitoring the factors influencing the quality of citizen’s
life from different viewpoints. Counteracting the presence of high levels of pollutants
is crucial to ensure the livability of urban environments.

The quality of the air can vary over time and across different areas of the same city.
Furthermore, it is influenced by different factors such as weather conditions (e.g., hu-
midity, temperature and atmospheric pressure) and human activities (e.g., traffic flows,
people’s mobility). To monitor pollutant concentrations and their relationship with me-
teorological and traffic conditions, sensor networks are deployed by the public adminis-
tration over the city area (see Figure 2.1). Air quality data acquired from sensor networks
can be further enriched with information coming from wearable sensors, while climate
data can be measured through personal weather stations. Analyzing the air quality lev-
els acquired by sensors is particularly useful for characterizing pollutant concentra-
tions. Sensor data are usually sampled at fairly high frequencies, for relatively long
time periods, and across potentially large city areas.

In this chapter, two frameworks are presented to analyze air-pollution related data
and calculate how the above mentioned factors impact on the air quality of the cities.

In Section 2.3, a novel data mining system, named GECKO (GEneralized Correla-
tion analyzer of pOllution data), is presented. The GECKO system leverages the power
and expressiveness of the generalized association rules to extract, by applying domain-
expert provided taxonomies on top of the data, interpretable correlations at different
abstraction levels among a large variety of data related to air quality (e.g., meteorolog-
ical conditions, acquisition times, vehicular traffic measurements).

Differently, theARQUATA (AiR QUAlity patTern Analyzer ) engine, presented in Sec-
tion 2.4, focuses on the air-pollution data to better characterize their concentrations

7



2 – Monitoring and Analyzing Air Quality in Urban Areas

Figure 2.1: The analyzed air pollutants collected through sensor networks.

through a newly defined class of data mining patterns, hereafter denoted as air qual-
ity patterns, which extract combinations of pollutants averagely in a critical condition.
Here, the concept of temporal and spatial aggregation is applied to offer different view-
points of analysis to domain experts and municipality actors.

GECKO and ARQUATA engines were validated on real open data collected in a ma-
jor Italian city (i.e., Milan). The discovered patterns demonstrate their effectiveness in
extracting interesting knowledge that can be easily exploited by public administrators
to monitor the air quality in urban environments through the reports automatically
generated by both the illustrated systems.

2.1 Related work
Other authors have already studied the correlation between different pollutants

through statistics-based methods such as one-way ANOVA analysis [5]. Furthermore,
Principal Component and Canonical Correlation analyses [75] have been leveraged to
analyze the correlation between pollutants and meteorological data [24]. A parallel ef-
fort has been devoted to make use of data mining techniques to analyze the air quality
levels in urban environments [87, 88]. Classification algorithms have been used to pre-
dict the air quality level in areas not equipped with monitoring stations [87]. To train
the classification model, historic and real-time measurements on air quality, weather
conditions, traffic flows, and people’s mobility have jointly been analyzed. Similarly,
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in [88] air quality and meteorological data acquired in the past were analyzed to pre-
dict the level of the air quality in the near future. Association rule mining approaches
have found application in various application domains (e.g., network traffic analysis [9],
social data analysis [17]) to discover interesting correlations among data items. The ex-
ploitation of these approaches on air pollution-related data can support the discovery
of interesting yet hidden knowledge.The extracted patterns are commonly managed by
domain experts through manual inspection to support decision-making.

However, none of the above-mentioned approaches has leveraged the generalized
association rules technique to analyze the correlations among air-pollution related
data. The GECKO system allows to extract interpretable correlations, at different ab-
straction levels, among a large variety of data related to air quality. Pollutant mea-
surements are first integrated with traffic and meteorological data and enriched with
an analyst-provided taxonomy, which aggregates measurement values into the cor-
responding higher-level categories. Then, an established generalized association rule
mining algorithm [9] is applied to the prepared dataset. The extracted rules, namely
the generalized association rules, represent frequent co-occurrences between pollutant
levels and environmental conditions at different abstraction levels. Finally, to ease the
expert-driven rule inspection process, the rules are classified into few classes according
to the semantics of the represented information.

The ARQUATA engine, unlike other approaches (e.g., [24], [87], [88]), proposes the
use of a class of data mining patterns, hereafter denoted as air quality patterns, to dis-
cover combinations of pollutants whose concentration levels are averagely critical in a
given spatio-temporal context (e.g., the sensor measurements acquired in a given city
area during the last year). Among the patterns available in data mining literature, in
this study, the weighted frequent itemsets were considered, because, unlike traditional
pattern mining approaches, weighted itemset mining algorithms inherently handle nu-
merical pollutant levels. This simplifies the preprocessing phase of the analyzed data
and reduces the bias due to discretization. ARQUATA also supports the generation of
automatic reports, which indicate the presence of critical conditions in specific con-
texts and their temporal evolution, by performing a comparison between the results
of different mining sessions scheduled in consecutive time periods or in different city
areas.

2.2 Theoretical background
This section contains the necessary theory regarding the techniques used in the

research studies of this chapter: frequent itemset and association rules for GECKO and
weighted frequent itemset for ARQUATA.

9
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2.2.1 Frequent itemset mining
Itemset mining is an exploratory data mining technique which consists of discov-

ering interesting and useful patterns in transactional databases [2]. More specifically,
it entails discovering the groups of attribute values that frequently co-occur in the an-
alyzed database. Itemset mining has been applied in various application domains such
as market basket analysis, bio-informatics, text mining, product recommendation, and
Web clickstream analysis.

In the context of relational data, an itemset is a set of items (attribute, value) all be-
longing to distinct attributes. For example, itemset {(PM2.5, red),(wind-direction, south-
east)} indicates that items (PM2.5, red) and (wind-direction, south-east) co-occur in the
analyzed data. A more formal definition follows:

Definition 2.2.1 (Itemset and Support Count). Let 𝑆 = {𝑖1,… , 𝑖𝑛} be the set of all
items in a transactional dataset and 𝑇 = {𝑡1,… , 𝑡𝑁} be the set of all the transactions
whose number is 𝑁. Each transaction 𝑡𝑖 contains a subset of items chosen from 𝑇. In
association analysis, a collection of zero or more items is termed as itemset. If an itemset
contains 𝑘 items, it is called 𝑘-itemset. A transaction 𝑡𝑖 is said to contain an itemset 𝑋,
if 𝑋 is a subset of 𝑡𝑖, i.e., 𝑋 ⊆ 𝑡𝑖.

An important property of an itemset is its support count, which refers to the number
of transactions that contain a particular itemset. The support count for an itemset 𝑋,
written as 𝜎(𝑋), can be stated as follows:

𝜎(𝑋) = |{𝑡𝑖 ∶ 𝑋 ⊆ 𝑡𝑖, 𝑡𝑖 ∈ 𝑇 }|

In the dataset shown in Table 2.1 the support count for the itemset {𝐴,𝐵,𝐶} is equal
to 2, because there are two transactions that contain all the three items (i.e., transaction
with TID equal to 4 and 5).

TID Transaction

1 { A, B, D, E }
2 { B, C, E }
3 { A, B, D, E }
4 { A, B, C, E }
5 { A, B, C, D, E }
6 { B, C, D }

Table 2.1: An example transactional dataset 𝑇 with 6 transactions. Each transaction
𝑡𝑖 ∈ 𝑇 is a collection of items (i.e., 𝑡𝑖 ⊆ 𝐼) and is identified by a transaction identifier
(TID𝑖).
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Figure 2.2: Lattice representing the search space based on the items appearing in the
example dataset 𝐷

Support of an itemset Another way of characterizing an itemset 𝑋 is through its
support value, which is denoted by 𝑠𝑢𝑝(𝑋) and defined as the ratio between the number
of transactions in 𝑇 containing 𝑋 (i.e., 𝜎(𝑋)) and the total number of transactions in 𝑇.
In the example dataset in Table 2.1, for example, the support of the itemset {𝐴,𝐵,𝐷}
is 50% (3/6). This value represents the frequency of occurrence of the itemset in the
dataset.

Frequent Itemset Mining (FIM) An itemset 𝑋 is considered frequent if its support
is greater than a user-provided minimum support threshold minsup. Given a transac-
tional dataset 𝑇 and a minimum support thresholdminsup, the Frequent Itemset Mining
problem consists in extracting the complete set of frequent itemsets from 𝑇.

The dimension of the search space can be represented as a lattice, whose top is an
empty set. Its size increases exponentially with the number of items.

Due to the exponential growth of the lattice, data mining techniques, make often
use of an approximate representation or a subset of the complete lattice, which is also
difficult to store. In Figure 2.2, the lattice related to the example in Table 2.1 is shown.
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2.2.2 Association Rules
Definition 2.2.2 (Association Rule). An association rule is an implication expression
in the form 𝑋 ⟹ 𝑌, where 𝑋 and 𝑌 are disjoint itemsets (i.e., sets of data items,
see 2.2.1) known respectively as Antecedent and Consequent of the rule.

Definition 2.2.3 (Support and Confidence of an association rule). The strength of an
association rule 𝑋 ⟹ 𝑌 is measured by its support and confidence. Rule support
determines how often a rule is applicable to a given data set, while confidence how
frequently items in 𝑌 appear in transactions that contain also𝑋. More formal definitions
of support and confidence follow:

𝑠𝑢𝑝𝑝(𝑋 ⟹ 𝑌 ) = 𝜎(𝑋 ∪ 𝑌 )
𝑁

𝑐𝑜𝑛𝑓(𝑋 ⟹ 𝑌 ) = 𝜎(𝑋 ∪ 𝑌 )
𝜎(𝑋)

where the definition of the support count function 𝜎(𝑋) is given in Section 2.2.1 and 𝑁
is the total number of transactions in the dataset.

Definition 2.2.4 (Lift). In some cases, measuring the strength of a rule in terms of
support and confidence may be misleading. When the rule consequent is characterized
by relatively high support value, the corresponding rule may be characterized by high
confidence even if its actual strength is relatively low. To overcome this issue, the lift (or
correlation) index may be used, to measure the (symmetric) correlation between sets 𝑋
and 𝑌. The lift index is defined as the ratio:

𝑙𝑖𝑓 𝑡(𝑋 ⟹ 𝑌 ) =
𝑐𝑜𝑛𝑓(𝑋 ⟹ 𝑌 )

𝑠𝑢𝑝(𝑌 )
Lift values below 1 show a negative correlation between sets 𝑋 and 𝑌, while values

above 1 indicate a positive correlation. The interest of rules having a lift value close to
1 may be marginal.

2.2.3 Weighted frequent itemset mining
Frequent Itemset Mining (FIM) is an important data mining task having plenty

of real-world applications. However, an important limitation of FIM is that it gives
the same importance to all the items in the dataset ignoring their weight, interest,
risk, or profit. To address this issue, the problem of Weighted Frequent Itemset Min-
ing (WFIM) was proposed by considering the importance of each item. Cai et al. first
defined a weighted-support model by multiplying the support of each item by its aver-
age weight [19].
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Preliminaries Let 𝑆 = {𝑖1, 𝑖2, ..., 𝑖𝑚} be a finite set of 𝑚 distinct items appearing in
a transactional database 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, where each transaction 𝑇𝑞 ∈ 𝑇 is a subset
of 𝑆, and has a unique identifier called TID. A weight 𝑤(𝑖𝑗) is assigned to each item
𝑖𝑗 ∈ 𝑆, which represents its importance (e.g., profit, interest, risk). Weights for all items
are stored in a weight table 𝑤𝑡𝑎𝑏𝑙𝑒 = {𝑤(𝑖1),𝑤(𝑖2), ...,𝑤(𝑖𝑚)}.

An itemset 𝐼 ∈ 𝑆 with 𝑘 distinct items {𝑖1, 𝑖2, ..., 𝑖𝑘} is of length 𝑘 and is referred
to as a 𝑘-itemset. An itemset 𝐼 is said to be contained in a transaction 𝑡𝑞 if 𝐼 ⊆ 𝑡𝑞. Fur-
thermore, for an itemset 𝐼, let the notation TIDs(I) denotes the TIDs of all transactions
in 𝑇 containing 𝐼.

As a running example, table 2.2 shows a transactional database containing 4 tran-
sations.

Definition 2.2.5 (Item weight). The weight of an item 𝑖𝑗 ∈ 𝑇 is denoted as 𝑤(𝑖𝑗), and
represents the importance of this item to the user (𝑤(𝑖𝑗) ∈ (0, 1]).

TID Items
1 a,b,c,d
2 b,d
3 a,b,c
4 c,d

Table 2.2: Example dataset

Item weight
a 0.4
b 0.7
c 1.0
d 0.5

Table 2.3: Item weights

Definition 2.2.6 (Item weight in a transaction). Theweight of an item 𝑖𝑗 in 𝑡𝑞 is defined
as the weight of 𝑖𝑗 in 𝑇. Thus: 𝑤(𝑖𝑗, 𝑡𝑞) = 𝑤(𝑖𝑗), 1 ≤ 𝑞 ≤ |𝑇 |.

For example, the weight of (𝑏) in 𝑡1 is 𝑤(𝑏, 𝑡1) = 𝑤(𝑏) = 0.7.

Definition 2.2.7 (Itemset weight). The weight of an itemset 𝐼 in 𝑇 indicated as 𝑤(𝐼) is
defined as the sum of the weights of all the items in 𝐼 divided by the number of items

in 𝐼, that is: 𝑤(𝐼) =
∑𝑖𝑗∈𝐼 𝑤(𝑖𝑗)

|𝐼| , where |𝐼| is the cardinality of 𝐼.

For example, the weight of (𝑏𝑐𝑒) is calculated as 𝑤(𝑎𝑏𝑐) = (𝑤(𝑎) + 𝑤(𝑏) + 𝑤(𝑐))/3 =
(0.4 + 0.7 + 1.0)/3 = 0.7.

Definition 2.2.8 (Itemset weight in a transaction). The weight of an itemset 𝐼 in 𝑡𝑞 is
defined as as the weight of the itemset 𝐼 in 𝑇, that is: 𝑤(𝐼, 𝑡𝑞) = 𝑤(𝐼).

For example, the weight of (𝑎𝑏𝑐) in 𝑡1 is calculated as 𝑤(𝑎𝑏𝑐, 𝑡1) = 𝑤(𝑎𝑏𝑐) = 0.7.
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Definition 2.2.9 (Weighted support for an itemset in 𝑇.). The weighted support of an
itemset 𝐼 in 𝑇 is denoted as 𝑤𝑠𝑢𝑝(𝐼), and is defined as:

𝑤𝑠𝑢𝑝(𝐼) = ∑
𝐼⊆𝑡𝑞∧𝑡𝑞∈𝑇

𝑤(𝐼, 𝑡𝑞) = 𝑤(𝐼) × 𝑠𝑢𝑝(𝐼)

For example, the (𝑎𝑏𝑐) appears in transactions 𝑡1, 𝑡3. The weighted support of (𝑎𝑏𝑐)
is calculated as 𝑤𝑠𝑢𝑝(𝑎𝑏𝑐) = {𝑤(𝑎𝑏𝑐, 𝑡1) + 𝑤(𝑎𝑏𝑐, 𝑡3)} = 𝑤(𝑎𝑏𝑐) × 2 = 0.7 × 2 = 1.4.

Definition 2.2.10 (Weighted Frequent Itemset, WFI ). Let 𝛼 be a user-defined percent-
age value named the minimum weighted-support threshold. An itemset 𝐼 in 𝑇 is said
to be a weighted frequent itemset (WFI) if its weighted support is no less than the min-
imum weighted-support threshold multiplied by the number of transactions in 𝑇, that
is: WFI ← {𝐼 ∣ 𝑤𝑠𝑢𝑝(𝐼) ≥ 𝛼 × |𝑇 |}.
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2.3 GECKO:modeling correlations among air pollution-
related data

The GEneralized Correlation analyzer of pOllution data (GECKO) system is a data
mining engine that analyze the correlations between pollutants and different environ-
mental factors, such as meteorological and traffic conditions, in a Smart City context.
The main architectural blocks are:

(i) Data integration, in which pollutant and environmental data are acquired and
integrated,

(ii) Data representation, in which data are tailored to a relational data format,

(iii) Taxonomy generation, in which a domain-expert taxonomy is applied on top of
data to enrich them aggregating concepts into higher-level ones,

(iv) Data analyses, in which generalized association rules are extracted from the pre-
pared data to support domain experts in performing advanced analyses.

A more detailed description of the architecture, which is illustrated in Figure 2.3, is
given as follows.

Figure 2.3: The GECKO framework architecture.
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2.3.1 Data integration
Since the concentrations of pollutants can be relevantly affected by both weather

conditions (e.g., temperature, humidity) and type of traffic crossing the city area (e.g.,
how many gasoline engine vehicles crossed the area), different sensor networks should
be exploited to periodically monitor values for different data types. Specifically, mea-
surements for three main types of data should be acquired: pollutant data, meteoro-
logical data, and traffic data. In urban environments, a different geo-referenced sensor
network is usually deployed for monitoring each of the above data types. An ad hoc in-
tegration strategy is applied since the considered sensor networks may adopt a different
timeline in sampling values and be deployed in different city areas. In this section, first,
the considered data types are described, and then the data integration strategy currently
adopted in GEneralized Correlation analyzer of pOllution data.
Pollutant data. Concentration measurements for each pollutant were periodically col-
lected through dedicated sensors deployed in pollution monitoring stations (PolMS).
Each station is characterized by the geo-coordinates (i.e., latitude and longitude) of its
location, and stations are located in different areas of the city. The most damaging pol-
lutants are monitored, including particulate matters PM10 and PM2.5, carbon monoxide
(𝐶𝑂), and ozone (𝑂3). Each station monitors the concentrations of various pollutants
at a fixed time granularity. Depending on the type of pollutant, the frequencies of data
acquisition can be hourly or daily.
Meteorological data. To analyze the climate conditions of the urban area, the GEner-
alized Correlation analyzer of pOllution data collects the most common meteorological
indicators (e.g., air temperature, relative humidity, precipitation level, wind speed, at-
mospheric pressure). Climate conditions are acquired through geo-referenced meteo-
rological stations distributed throughout the urban territory.
Traffic data. The concentration of traffic is measured as the number of vehicles entering
a city area at a given time granularity (e.g., hourly). Since vehicles equipped with differ-
ent engines may affect the air quality differently, traffic data was considered separately
for each category of vehicles. Specifically, vehicles are categorized based on their fuel
type (e.g., gasoline, diesel, electric).

To allow the analysis of the correlations between pollutant levels and environmental
factors (i.e., weather and traffic conditions), the three different types of data described
above are integrated into a unique repository. Meteorological and traffic data are pre-
processed before data integration to align the spatial and temporal granularity of the
acquired data. Since the analysis is focused on pollutant data, the spatial-temporal gran-
ularity of the sensor network monitoring pollutant concentrations is considered as a
reference for time and space alignment.

To effectively deal with alignment issues, for each Pollution Monitoring Station
(PolMS) meteorological and traffic data are aligned to the closest timestamp available
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in pollutant data through an approximate join. Specifically, meteorological data asso-
ciated with a given pollution station are computed as a distance-based weighted mean
of the values provided by the three nearest meteorological stations monitoring climate
data. The weight assigned to each value is inversely proportional to the distance from
these three stations to the PolMS. Hence, three equally distant meteorological stations
would have the same importance for determining the weather values of a given city
area. For traffic data the number of vehicles entering each area is associated to all the
sensors deployed in the area. Traffic data are timely integrated through an approximate
join similar to that adopted for climate data integration.

2.3.2 Data representation
To perform association rule-based analyses, heterogeneous data acquired from sen-

sors are tailored to a relational data format, prepared to the next mining step by means
of established preprocessing techniques.

Relational data model A relational dataset is a set of records. Each record 𝑟𝑖 cor-
responds to a given time period 𝑇𝑖 and it collects pollutant, meteorological, and traffic
data acquired in 𝑇𝑖. A record is a set of items, where an item is a pair (attribute, value).
While attribute is the description of a data feature of interest in the context under anal-
ysis, value is the value assumed by the corresponding attribute. Each record contains at
most one item per data attribute (i.e., multiple attribute values in the same record are
not allowed).

Let’s consider the following attributes in the context of analysis of this study. (i)
Pollutants: particulate matters PM10 and PM2.5, Ozone (O3), Nitrogen dioxide (NO2),
Carbon Monoxide (CO), and Benzene C6H6. (ii) Meteorological factors: wind direction,
wind speed, temperature, humidity, pressure, UV radiations, precipitations. (iii) Traffic
conditions: numbers of gasoline engine, diesel engine, natural gas, electric, and hybrid
vehicles.

Data discretization Continuous attributes are unsuitable for use in association rule-
based analyses, because their values are very unlikely to frequently occur in the ana-
lyzed dataset. For this reason, a data discretization step is applied prior to running the
association rule mining process.

Pollutant concentration levels are discretized into different categories named with
colors from green to red according to the severity of the level range from the point of
view of the citizen’s health. Currently, categories have been defined based on the clas-
sification given the Italian ARPA Piemonte agency responsible for environment pro-
tection in the Piemonte region [7] (e.g., blue and green imply non-critical levels, while
orange and red indicate highly critical levels).

The traffic indicator values are uniformly discretized by using the equal-width dis-
cretization algorithm available in the RapidMiner suite [64]. For example, the humidity
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values (expressed in 𝑘𝑔
𝑚3 ) are discretized as very low between zero and 20, low between

20 and 40, medium between 40 and 60, high between 60 and 80, very high between 80
and 100, while for the UV radiations (expressed in 𝑊

𝑚2 ) the discretization levels are the
following ones: very low between zero and 0.9, low between 0.9 and 2.9, medium be-
tween 2.9 and 5.9, high between 5.9 and 7.9, very high between 7.9 and 10.9, extremely
high above 10.9.

Concerning the meteorological attributes, the wind speed is discretized, according
to the Beaufort scale, in 13 different levels, from Calm (level 0) to Hurricane force (level
12), while the other attributes are discretized into standard value ranges. For example,
the wind direction degrees are discretized based on the classical cardinal points (i.e., as
north-east, east, south-east, south, south-west, west, north-west, and north).

2.3.3 Taxonomy generation
To analyze pollutant data at different abstraction levels a taxonomy is built on top of

relational data. A taxonomy is a set of is-a hierarchies, each one referring to a specific
data attribute. Each hierarchy aggregates all the values assumed by the correspond-
ing attributes into higher-level concepts in a tree-based structure. For example, let us
consider the wind direction attribute. Low-level (discrete) values north-east, east, and
south-east are generalized as east-side, while values south-west,west, north-west are gen-
eralized as west-side. An item consisting of a pair (attribute, generalized value), where
generalized value is an higher-level aggregation occurring in the input taxonomy, will
be hereafter denoted as generalized item. For example, based on the hierarchy on the
wind direction attribute, item (wind direction, north-west) can be generalized as the cor-
responding generalized (higher-level) item (wind direction, west-side).

Taxonomies are analyst-provided. They can be either given by the domain expert
based on their common knowledge or generated semi-automatically by applying multi-
ple discretization runs on the same attribute domain. To generate the taxonomy, further
discretization runs on top of discretized record values are applied. Pollutant concentra-
tion level categories (e.g., blue and green) are further discretized as non-critical, fairly-
critical, and highly critical according to the level of severity of the pollutant from the
point of view of the citizen’s health. Traffic levels are discretized as low, medium, and
high. Meteorological values are further discretized into upper-level categories (e.g., east-
side, west-side). Hourly timeslots are categorized as 4-hour, and 8-hour timeslots (e.g.,
early morning, evening), while dates are aggregated into the corresponding week of
the month (e.g., 1st week of December) , month of the year (e.g., December), and season
(e.g., winter).

Since the process of taxonomy generation is semi-automatic, the taxonomy may
consist of hierarchies of different height. To avoid bias in the next association rule
mining process, the hierarchies in the taxonomy are balanced by equalizing the corre-
sponding heights. As discussed in [15], the aforementioned procedure is established in
generalized pattern mining. To this aim, artificial root nodes are added to lower-height
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hierarchies until all their heights match those of the highest one.

2.3.4 Data analyses
This block aims at discovering interesting associations between pollutant levels and

environmental factors (meteorological and traffic conditions), in the form of generalized
association rules. Association rules are illustrated in the Section 2.2.2.

To analyze pollutant data at different granularity levels, the itemset definition, re-
ported in the Section 2.2.1, can be straightforwardly extended to the case in which data
are enriched with a taxonomy. A generalized itemset [74] is defined as a set of items
and/or generalized items. Note that traditional (non-generalized) itemsets are special
case of generalized itemset in which all items assume non-aggregated values according
to the input taxonomy. For example, generalized itemset {(PM2.5, highly critical),(wind
direction, east-side)} generalizes the former itemset by aggregating item values accord-
ing to the hierarchies built on the PM2.5 andwind-direction attributes (see Section 2.3.2).

A generalized item matches a given record if its value corresponds or is an aggre-
gation of the value of any item of the record (at any abstraction level). For example,
generalized item (date, Winter ) matches a record containing item (date, December 1st,
2013). The support of a generalized itemset in a relational dataset is an established qual-
ity index which is computed as the percentage of dataset records matched by all of its
items.

A generalized association rule [74] is an implication 𝐴 → 𝐵, where 𝐴 and 𝐵 are
disjoint generalized itemsets, i.e., generalized itemsets having no attributes in com-
mon. Hereafter, 𝐴 and 𝐵 will be denoted as the antecedent and consequent of rule
𝐴 → 𝐵, respectively. Generalized rules are characterized by three main quality indeces,
i.e., support, confidence, and lift, as illustrated for the regular association rules in the
Section 2.2.2.

Generalized rule mining The GECKO system extracts from the prepared relational
dataset all the generalized rules that satisfy a minimum support threshold minsup and
a minimum confidence threshold minconf. Since both positively and negatively corre-
lated rules are considered for in-depth analysis, no minimum/maximum lift threshold
is enforced. While positively correlated rules represent strong correlations among data
items, negatively correlated ones represent implications that hold less than expected.

The algorithms The generalized association rule mining task is accomplished as a
two-step process: (i) Frequent generalized itemset mining, which extracts all the gener-
alized itemsets whose support is aboveminsup. (ii) Generalized association rule mining,
which extracts all the generalized rules whose support is aboveminsup and whose con-
fidence is above minconf, starting from the previously mined set of frequent itemsets.

To accomplish Step (i), GenIO, an algorithm specialized in the generalized frequent
itemsets extraction, is integrated in the GECKO system, while to perform Step (ii) the
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RuleGen procedure integrated in the Apriori algorithm is adopted. To prevent generat-
ing all the possible item combinations, GenIO generates a subset of potentially interest-
ing generalized itemsets covering, at a higher abstraction level, most of the information
represented by infrequent itemsets. More details on the GenIO and Apriori algorithms
are given in [9] and [3], respectively.

Regarding the complexity analysis of the various steps, the following statements
apply: the steps of Data Integration, Data Representation, and Taxonomy Generation are
all linear to the number of records times the average dimensionality of the dataset.
The Data analyses phase instead, characterized by the generation of the generalized
association rules through the above-mentioned GenIO and RuleGen algorithms, has a
larger complexity.

The generalized frequent itemset mining step has a complexity that is combinato-
rial with the number of items |𝑆| plus the number of all their corresponding general-
ized versions |𝐺|, i.e., 𝒪((|𝑆| + |𝐺|)(2|𝑆|+|𝐺|−1)) in the worst case. Nevertheless, the
complexity is greatly reduced when a support threshold greater than one is chosen.
Additionally, the optimizations already integrated into the GenIO algorithm further re-
duce the complexity applying an opportunistic strategy: a generalized item is added just
when at least one of the lower level items is infrequent, and father-child combinations
are avoided in the same itemset. The RuleGen algorithm complexity follows 𝒪(2𝑓 − 2)
in the worst case, where 𝑓 represents the frequent itemsets generated by the previous
step.

Rule categorization Exploring the results of the rule extraction process can be a
challenging task, because the number of mined rules can be very high. To ease the
manual exploration of the result, rules are categorized into a subset of classes according
to the represented knowledge. Thus, experts can focus their attention on the subset of
classes of interest.

Rule class Pollutant-Pollutant (PP). This class comprises all the rules that contain only
items belonging to attributes related to pollutant concentration levels. Rules (PM10, red)
→ (PM2.5, red) and (PM10, yellow) → (𝑂3, non-critical) are examples of rules of class PP.
These rules can be useful for identifying correlations between the concentration levels
of multiple pollutant and, thus, to plan targeted actions (e.g., planning air monitoring
protocols, saving measurement costs).

Rule class Pollutant-Traffic (PT).This class comprises all the rules that contain items re-
lated to pollutant concentration levels and traffic conditions (e.g., number of gasoline
engine vehicles). Rule (PM10, red) → (number of gasoline engine vehicles, high) is an
example of rules of class PT. These rules can be useful for correlating pollutant con-
centrations with the transit of different types of vehicles in the city. Based on these
correlations, municipality managers may redesign traffic policies with the aim at re-
ducing pollutant concentrations.
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Figure 2.4: An example of the generalized cross association rules extracted.

Rule class Pollutant-Meteo (PM). This class comprises all the rules that contain items
related to pollutant concentration levels and meteorological conditions (e.g., tempera-
ture, humidity). Rule (PM10, red) → (temperature, very cold) is an example of rules of
class PM. These rules can be useful for correlating pollutants with climate conditions.
Hence, they can identify meteorological conditions in which specific pollutants should
be carefully monitored to prevent unsafe air conditions.

Rule class Pollutant-Date (PTE). This class comprises all the rules that contain items
related to pollutant concentration levels and temporal attributes (e.g., date, time). Rule
(PM10, red) → (date, morning) is an example of rules of class PTE. These rules can be
useful for correlating the levels of pollutants with specific time periods or time slots.
Based on these rules, in-site monitoring actions can be scheduled at the timeslots at
which high pollutant concentrations are most likely.

More complex rules, e.g., class Pollutant-Meteo-Traffic (PMT), can be extracted as
well. They represent implications between pollutant levels and a combination of en-
vironmental conditions (e.g., rule (PM10, red) → {(temperature, very cold), (number of
gasoline engine vehicles, high)}).

Classes are manually explored by domain expert to infer potentially interesting
knowledge from the contained rules. To consider first the top correlated combinations
of pollutant data, rules are sorted by decreasing lift. See Figure 2.4 for a graphical ex-
ample of the association rules extracted.

2.3.5 Experimental validation
The proposed approach was validated on real data acquired in Milan, that is one of

the largest and most important Italian Smart Cities. To perform the analyses, two open
datasets collecting the sensor measurements were considered acquired over a 12-month
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time period (i.e., over year 2013). The generalized rules were extracted by using the
Python implementation of the GenIO algorithm [9] provided by the respective authors.

Frequent and high-confidence rules were extracted, which represent recurrent and
potentially reliable correlations among multiple data items. Whenever not otherwise
specified, the following standard parameter setting will be considered: minsup=1% and
minconf=20%. The experiments were performed on a quad-core 3.30 GHz Intel Xeon
workstation with 16 GB of RAM, running Ubuntu Linux 12.04 LTS.

Datasets The analyzed datasets collect pollutant concentrations, climate conditions
and traffic levels of different categories of vehicles acquired in the central area of Mi-
lan (zone C). The main dataset attributes and the taxonomy used to aggregate the data
values at multiple abstraction levels are described in Section 2.3.2. The first dataset,
hereafter denoted as Daily, collects the daily pollutant levels measured on a daily basis
as well as the environmental information about meteorological and traffic conditions.
The second dataset (Hourly) collects the hourly pollutants levels together with the cor-
responding environmental conditions.

Pollutant data were gathered by the ARPA Lombardia [7] through monitoring sta-
tions equipped with a set of sensors, each one measuring a different pollutant. Mete-
orological measurements were collected through the Weather Underground web ser-
vice [86], which gathers data from a geo-referenced network of Personal Weather Sta-
tions (PWSs) registered by users.Three PWSs located in the city center were considered.
Traffic data were provided by the Municipality of Milan1. They consist of the counts of
the number of vehicles entering in the central area of Milan, separately for each cate-
gory of vehicles.

Knowledge discovery The extracted rules were categorized, according to the type
of item correlations they represent, into the classes described in Section 2.3.4. For each
class, a subset of the most interesting rules extracted from both datasets is reported in
Table 2.4. Some of the selected rules recall established correlations between pollutants
and environmental factors, discussed by previous works on the topic (e.g. [5, 24, 75]).
However, as discussed below, the mined generalized association rules provide more
insightful information than the ground knowledge, because they indicate the levels at
which pollutants, climate factors, and traffic conditions are actually influenced with
each other.

Correlations between pollutant levels (Class PP). When particulate matters PM10 and
PM2.5 have the same criticality level (e.g., yellow, green), a strongly positive pairwise
item correlation appears (see Rules 𝑅1-𝑅3). The positive rule lift values confirm that

1http://dati.comune.milano.it/
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Table 2.4: Rule examples.

ID Dataset Rules Sup (%) Conf (%) Lift
Class PP

𝑅1 Daily (PM10,yellow) → (PM2.5,yellow) 9.7 72.9 5.4
𝑅2 Daily (PM10,green) → (PM2.5,green) 27.0 66.7 2.2
𝑅3 Daily (PM10,blue) → (PM2.5,blue) 37.78 95.78 2.0
𝑅4 Daily (PM10,green) → (PM2.5,blue) 10.3 25.2 0.52
𝑅5 Daily (PM10,yellow) → {(𝑂3,non-critical), (𝐶𝑂,highly critical)} 7.0 52.1 5.1
𝑅6 Daily (PM10,yellow) → {(𝑂3,non-critical), (𝐶𝑂,highly critical)} 5.6 41.7 5.0
𝑅7 Hourly (O3,highly critical) → (NO2,non-critical) 5.9 51.6 1.5
𝑅8 Hourly (O3,non-critical) → (NO2,highly critical) 11.3 24.1 1.7

Class PM
𝑅9 Daily {(precip.,drizzling), (PM10,orange), (PM2.5,red)} → {(temp.,very cold), (CO,fairly high)} 1.1 40.0 20.1
𝑅10 Daily {(temp.,very cold), (CO,fairly high) → {(𝑂3,blue), (PM2.5,red)} 1.4 55.6 2.2
𝑅11 Daily {(precip.,no rain), (temp.,hot), (𝐶6𝐻6,non-critical) } → (PM2.5,green), (𝑂3,non-critical)} 1.1 66.7 20.7

Class PTE
𝑅12 Daily (PM10,green) → (date,weekday) 30.3 74.2 1.1
𝑅13 Daily (PM10,green) → (date,weekend) 10.6 25.9 0.9
𝑅14 Daily (date,spring) → (PM10,green) 5.6 55.6 1.4
𝑅15 Daily (date,winter ) → (NO2,blue) 52.8 54.3 1.2
𝑅16 Hourly (hourly time period,late afternoon) → (NO2,fairly critical) 6.5 39.1 1.4
𝑅17 Hourly (hourly time period,night) → (NO2,fairly critical) 9.7 29.1 0.9
𝑅18 Hourly (hourly time period,late morning) → (NO2,fairly critical) 6.5 39.9 1.4
𝑅19 Hourly {(date,winter ), (O3,non-critical)} → (NO2,highly critical) 5.9 26.9 1.9

Class PTR
𝑅20 Daily (num. diesel engine vehicles,medium) → (PM10,fairly high) 9.7 70.0 1.8
𝑅21 Daily (num. diesel engine vehicles,high) → (PM10,green) 14.7 34.4 0.9
𝑅22 Daily (num. gasoline engine vehicles,high) → (CO,low) 9.2 73.3 1.4

the pollutant levels co-occur more than expected. On the other hand, opposite pollu-
tant levels (e.g., in Rule 𝑅4 green for PM10 and blue for PM2.5) show a negative cor-
relation, meaning that the occurrence of a pollutant level implies the absence of the
other one. Beyond pointing out the established correlation between the concentrations
of particulate matters PM10 and PM2.5, rules 𝑅1-𝑅3 provide additional and potentially
useful information, because they indicate the levels at which the two pollutants aremost
likely to be correlated with each other. The confidence of the aforesaid rules indicates
the probability of occurrence of a pollutant level given the level of another pollutant.
For example, according to the confidence value of Rule 𝑅1, the probability of having
level yellow for PM2.5 given level yellow of PM10 is approximately 73%. These proba-
bilities can be useful for planning air quality monitoring activities. For example, if two
pollutants have a high probability of sharing levels orange and red, a critical concen-
tration of one pollutant should trigger prompt monitoring actions targeted to the other
pollutant as well.

Rules 𝑅5 and 𝑅6 show the correlation between PM10 and the pair Ozone (O3) and
carbon monoxide (CO). For example, a fairly critical level of PM10 (yellow) is often re-
lated to a non-critical level of Ozone. Rules 𝑅5 and 𝑅6 contain two generalized items
each, i.e., (O3, non-critical) and (CO, highly critical), which aggregate the information
provided by their corresponding lower-level items (O3, blue) and (𝐶𝑂, orange) at a
higher abstraction level.
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Rules 𝑅7 and 𝑅8 show the inverse relationship between the levels of Nitrogen diox-
ide (NO2) and Ozone (O3). The oxidation in atmosphere of Nitrogen oxide, Ozone, and
other pollutants produces Nitrogen dioxide. Hence, a high concentration of Nitrogen
dioxide is often associated with a low concentration of Ozone (and vice versa).

Correlations between pollutant levels and meteorological factors (Class PM). Rules 𝑅9-𝑅11
show a positive correlation between the external temperature values and the concen-
tration of particulate matters PM10 and PM2.5, Carbon Monoxide, and Ozone (𝑂3). For
example, according to Rule 𝑅11, when the temperature is cold and the precipitations
are too weak to disperse the pollutants in the air, the concentrations of the aforesaid
pollutants are likely to be fairly critical (i.e., levels fairly high for CO and red for PM2.5,
respectively). Conversely, for pollutant NO2 an opposite trend comes out. In fact, based
on generalized rule 𝑅15 (reported in the following for rule class PTE) the concentrations
of NO2 is low (level blue) in winter. On the other hand, when the temperature is hot or
very_hot, the pollutant levels are likely to non-critical (i.e., green or blue).

Correlations between pollutant levels and time (Class PTE). Based on the lift value of Rules
𝑅12 and 𝑅13 (approximately one), pollutant levels and day of the week categories (i.e.,
weekday, weekend) seem to be statistically independent with each other. On the other
hand, a correlation between pollutant levels and seasons holds. This effect seems to be
an indirect consequence of the strong correlation holding between pollutant levels and
temperature values.

Correlations between pollutant levels and traffic conditions (Class PTR).Theeffect of traffic
flows on the air quality can be investigated by analyzing the rules involving pollutant
levels and traffic conditions. For example, rules 𝑅20-𝑅22 show the correlation between
the presence of many diesel engine vehicles in the city area and the concentration of
PM10. According to these rules, the presence of a medium/high number of vehicles is
negatively correlated with a low concentration of PM10 and positively correlated with a
fairly high concentration of the same pollutant. Conversely, a high number of gasoline
engine vehicles is positively correlated with a low concentration of Carbon Monoxide.
The latter rule indicates that the presence of diesel engine vehicles is critical for PM10
emissions, whereas gasoline engine vehicles does emit a significant amount of Carbon
Monoxide.
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2.4 ARQUATA: discovering air quality patterns in ur-
ban environments

Figure 2.5 summarizes the main blocks of the proposed ARQUATA engine, which
relies on three main components: (i) Data integration and preparation. (ii) Air quality
pattern mining. (iii) Reporting.

2.4.1 Data integration and preparation
Different geo-referenced sensor networks are exploited to periodically monitor the

concentration levels of the main air pollutants in the urban environment. Since each
network may adopt a different timeline in sampling pollutant concentrations in dif-
ferent city areas, the acquired measures are then integrated by considering a common
time granularity. For the sake of simplicity, hereafter daily time granularities will be
considered. Each pollutant level is characterized by (i) a sampling timestamp and (ii)
a set of geo-coordinates of acquisition (i.e., latitude and longitude). Pollutant concen-
trations are first cleaned to remove missing values and incorrect readings, normalized
to make the pollutant concentrations distributions uniform with each other, and then
integrated into different contextual datasets, one for each context under analysis. A
contextual dataset collects sensor measurements acquired from a subset of sensors cor-
responding to a specific spatial or functional domain (e.g., the sensors belonging to the
same district, industrial area, or residential zone). Each contextual dataset consists of a
set of records, one for each sampling timestamp. Each record comprises all the pollutant
concentrations acquired at the corresponding timestamp.

2.4.2 Air quality pattern mining
This step focuses on extracting patterns characterizing the air quality. Air quality

pattern extraction relies on itemset mining, an established data mining technique to dis-
cover significant yet hidden correlations among large datasets [2]. Using itemset min-
ing, several types of air quality patterns can be extracted (e.g., closed itemsets, general-
ized itemsets, emerging patterns). In this study, the focus is on a specific type of itemset,
namely the weighted frequent itemsets (see Section 2.2.3), to discover combinations of
pollutants whose concentration levels are all averagely critical in the considered time
period. For each pollutant a reference critical level is given by the domain expert (e.g.,
the critical level specified by law). Weighted itemsets are sets of items, each one repre-
senting a distinct pollutant (e.g., {PM2.5, PM10}), and extracted from contextual datasets.
To this aim, for each record a weight is associated with each pollutant occurring in the
itemset. Weights are computed as the percentage variation of the corresponding pollu-
tant concentration with respect to the critical level. For example, if the critical level of
PM2.5 is 10 and the PM2.5 level at the considered timestamp is 15 then the item weight
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Figure 2.5: The ARQUATA engine.

is 50%, because the level exceeds the critical level by 50%. Weighted itemsets are char-
acterized by a notable quality measure, denoted critical gap. It indicates the average
percentage variation of the least pollutant weight (i.e., the minimal percentage varia-
tion of the corresponding pollutants). Using the algorithm proposed in [18], from each
contextual dataset all the weighted frequent itemsets are extracted, which are combi-
nations of pollutants whose critical gap is above a given (user-specified) threshold. For
example, if the critical gap threshold is set to 10%, itemset {PM2.5, PM10} is extracted if
both PM2.5 and PM10 have an average percentage variation above 10%.

2.4.3 Reporting
Since the correlations among pollutant levels can vary over time and space, users are

commonly interested in monitoring their temporal and spatial evolution. To effectively
characterize the underlying trends in air pollution-related data, the results of different
mining sessions on data acquired from the same context are compared with each other
and reported to citizens and municipality actors. Technical reports directed to domain
experts include (i) Periodic summaries on the latest mining results (e.g. the top-10 com-
binations of pollutants in order of decreasing critical gap). (ii) A comparison between
the mining results achieved in different time periods or in different city areas (e.g., the
combinations of pollutants in common for all years/areas, the combinations appearing
in just one year/area). Based on the above results, experts may process the extracted
patterns and schedule the periodic forwarding of higher-level reports, directed to either
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citizens or municipality actors, discussing (i) the currently critical levels of pollutants
for each city area/district (e.g., in the last winter the PM2.5, PM10 concentrations were
averagely critical at the same time with a critical gap higher than 30%), (ii) the most
significant temporal trends in pollutant level variations (e.g., the criticality of the levels
of PM2.5, PM10 is constantly decreasing from year 2014 on), (iii) the most significant
spatial trends (e.g., the criticality of the levels of PM2.5, PM10 is more significant in the
city center). Reports are tailored to end user roles (e.g., city major, assessor, citizen) and
the corresponding authorities.

2.4.4 Experimental results and discussion
The proposed approach was validated on real pollutant data acquired on a daily

basis by the ARPA Lombardia in the central area of Milan (Italy). The seasonal trends
in pollutant data acquired in the year 2013 were analyzed.

The data of this particular year has been chosen as a reference case study for a num-
ber of reasons. First, years 2013-2015 were selected due to the higher number of sensors
in comparison with the previous years. Then, each yearly dataset was evaluated and
the one of 2013 was selected as a sample with the lowest percentage of missing values,
which typically occur, for example, due to malfunction of the sensors or interrupted
communication with the monitoring station.

For each pollutant critical level, the highest safe concentration (i.e., the upper border
of the green zone available on the ARPA website) was considered as a reference.

To characterize seasonal trends in pollutant data, all the weighted patterns whose
critical gap is higher than 30% (see Table 2.5) were extracted.

Autumn and winter are seasons characterized by similar trends. In both seasons the
levels of PM2.5 and PM10 are significantly higher than the corresponding critical levels
(e.g., the level of PM2.5 in autumn and winter are on average 90.62% and 120.72% higher
than the critical level, respectively).

The combination of pollutants that simultaneously exceed the critical level in most
cases are particularly interesting. For instance, based on the critical gap of pattern
{PM10,PM2.5}, in the winter season pollutants PM10 and PM2.5 simultaneously exceed
their critical level by 93.49%. Since the two critical conditions appeared to be strongly
correlated with each other, targeted actions may be performed to counteract them. A
fair correlation between the triple of pollutants NO2, PM10, and PM2.5 appeared as well.
However, the critical gap of patterns {NO2,PM10} (53.56%) and {NO2,PM2.5} (50.51%) are
significantly lower than those of {PM10,PM2.5} (93.49%).

The above results are consistent with the expectation, because the association be-
tween PM10 and PM2.5 is established. Note that pattern {PM10,PM2.5} is extracted only
in autumn and winter, because the pollutant concentrations are probably related to the
use of heating systems. The municipality may foster the use of new generation heating
systems, characterized by lower pollutant emissions through targeted actions and then
use the framework to analyze the effect of the performed actions on the air quality.
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Figure 2.6: Comparison between winters 2013, 2014, and 2015.

For example, a yearly comparison between the critical gaps of patterns {PM10,PM2.5},
{NO2,PM2.5}, and {NO2,PM10} among years 2013, 2014 and 2015 is reported in Figure 2.6.
The comparison showed a slight decrease from 2013 to 2014, but a slight increase from
2014 to 2015.

Autumn

itemset Critical
gap (%)

{PM2.5} 90.62
{PM10} 88.09
{PM10,PM2.5} 77.64
{NO2} 54.64
{NO2,PM10} 38.37
{NO2,PM2.5} 35.51
{NO2,PM2.5,PM10} 34.12

Winter

itemset Critical
gap (%)

{PM2.5} 120.72
{PM10} 99.49
{PM10,PM2.5} 93.49
{NO2} 76.87
{NO2,PM2.5} 53.36
{NO2,PM10} 50.51
{NO2,PM2.5,PM10} 45.92

Spring

itemset Critical
gap (%)

{NO2} 30.07

Summer

itemset Critical
gap (%)

no patterns satisfying the threshold

Table 2.5: 2013 seasonal analysis: weighted frequent itemsets. Critical gap thresh. 30%.

Computational Complexity To analyze the computational complexity of the AR-
QUATA framework, it is useful to consider two different steps: pre-processing phase,
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which has a linear complexity, i.e. 𝒪(𝑛𝑡), where 𝑛 is the number of transactions and 𝑡 is
the average length of the transactions in the dataset, and the pattern extraction phase.
The latter, as stated in [2], is based on FP-growth [39], the state-of-the-art algorithm
used for frequent itemset mining. The complexity of this FP-growth-like algorithm is
linear when considering the number of mined itemsets, which in its turn could grow in
the worst case exponentially according to the formula 𝒪(2|𝑆|), where |𝑆| is the number
of distinct items.

2.5 Summary
In this chapter two novel data mining systems, ARQUATA and GECKO, designed

to analyze air pollution-related data, have been described. Their aim is to report inter-
pretable descriptive analytics in terms of critical conditions to citizens and municipality
actors.

The ARQUATA system, is focused on mining air quality patterns from air pollution
data. In particular, a specific type of patterns, namely the weighted frequent itemsets,
has been used to identify combinations of pollutants that are, on average, in a critical
condition.

In its turn, GECKO leverages the expressiveness of generalization combined with
association rules analysis to discover interesting and multiple-level correlations among
a large variety of open air pollution-related data. Specifically, correlations among pol-
lutant levels, traffic, and climate conditions are discovered and analyzed at different
abstraction levels. The knowledge extraction process is driven by a taxonomy to gen-
eralize low-level measurement values as the corresponding categories.

Both systems, ARQUATA and GECKO, have been validated using real datasets ac-
quired in a major Italian Smart City (i.e., Milan). The results of the experimentation
demonstrate the potential of the proposed methodologies in modeling interesting cor-
relations at different abstraction levels.

However, there is still room for improvements. For example, GECKO may be en-
riched with (i) other kinds of interesting data affecting air quality such as people’s mo-
bility and private/public transport data, the actual distance travelled by cars in the city,
and fuel consumption depending on the car model and on different segments of the
route (i.e., urban, extra-urban, or combined), and (ii) data mining algorithms to discover
correlations among weighted air pollution-related data.

In perspective, a useful extension would be to integrate a predictive analytics mod-
ule into GECKO that would leverage classification techniques to forecast air-quality
levels in city areas in which the coverage of the pollution monitoring stations is poor
or totally absent. In particular, an associative classifier – a supervised technique known
for producing accurate predictive models – could be a good choice for the possibility to
partially reuse the work already done.
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Chapter 3

Green Urban Mobility: Analyses of
Bike Sharing Data

In recent years municipalities have fostered alternative ways of public transporta-
tion in order to reduce pollution and traffic congestion [70, 53, 76, 58, 37] . Bicycle
sharing systems [85, 69] are a notable example of eco-friendly transportation systems,
where citizens can rent bicycles on a short-term basis. Bikes are retrieved from stations
spread throughout the city and each station has a maximum capacity as it is equipped
with a fixed number of docks. Citizens can rent a bicycle parked at any station and
return it to any other station with free docks. However, to achieve a satisfactory user
experience, system managers should carefully monitor the level of occupancy of the
stations. For example, if a station is frequently overloaded at peak hours then a re-
balancing action should be scheduled in order to move some of the parked bicycles to
any station located in the neighborhood. In case the problem is more severe, managers
may decide to expand the station to fit the increasing demand.

Stations are geo-referenced and equipped with sensors to constantly monitor their
level of occupancy. Each station tracks the occupancy levels of its docks, thus providing
geo-referenced time series data. These data acquired from stations can be collected and
stored in a unique repository and analyzed by means of machine learning techniques.

This chapter presents a novel exploratory data-driven methodology, named Bike
Station OvErLoad AnaLyzer (BELL), which analyzes the occupancy levels of the sta-
tions of a bicycle sharing system. The aim is to identify situations of dock overload in
multiple stations which could lead to either service disruption or low customer satisfac-
tion. For example, when all the docks in a station are occupied, users have to move to a
nearby station to park their bike. By gathering insightful information regarding occu-
pancy levels of multiple stations, domain experts can effectively apply targeted actions
in order to avoid and/or limit the unpleasant situations described above. For instance,
the mobile application of the system may recommend alternative nearby stations with
free docks. Furthermore, the maintenance service may rebalance the number of bikes
in each station thus avoiding overloaded conditions.
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In the BELL methodology occupancy level data acquired from the geo-referenced
stations are analyzed to discover a new type of pattern, called Occupancy Monitoring
Pattern (OMP). OMPs describe in a concise way situations of imbalance in the occu-
pancy levels of spatially correlated stations. Specifically, OMPs model two complemen-
tary dock overload situations: (i) Situations in which a set of stations are overloaded in
an alternate fashion (hereafter denoted as intermittent situations), and (ii) Situations in
which the docks of a set of stations are frequently overloaded at the same time (here-
after denoted as critical situations). To consider the spatial correlation between the occu-
pancy level of different stations, spatial constraints can be enforced to represent groups
of nearby stations in OMPs (i.e., stations within a limited geographical distance).

Intermittent and critical situations cause disservices with varying degrees of sever-
ity for end users. Intermittent situations indicate an imbalance in station usage which
could be addressed by proposing alternative nearby stations to end users or by peri-
odically re-positioning the bicycles in the neighborhood. Conversely, critical situations
indicate that a given area is temporarily inaccessible for parking bikes because all the
stations in the area are in a dock overload situation. The latter (more severe) situation
can be addressed, for example, by increasing the number of available docks in the sta-
tions, or by moving bikes to the not fully occupied stations located in other city areas.

The generated OMPs are explored to discover significant intermittent and critical
situations. The exploration is driven by two ad hoc quality indices introduced in this
study, namely the intermittence and the criticality indices, which allow domain experts
to focus on the most severe warnings.

OMPs permit a spatio-temporal exploration of critical and intermittent situations.
Since stations are geo-referenced, OMPs display the city areas where disservices are
likely to occur. Moreover, since OMPs can be related to specific time periods, they al-
low experts to identify when these disservices are likely to occur. Building spatial and
temporal hierarchies on top of the data allow exploring the OMPs at different abstrac-
tion levels. For instance, a daily time granularity allows spotting larger-scale phenom-
ena, such as the most unbalanced days in terms of dock occupancy, while an hourly
granularity can help determine at which hour to schedule the re-balancing of the bikes
among the stations.

BELL has been thoroughly evaluated using a real dataset acquired from the bicycle
sharing systems of two important cities, i.e., Barcelona (Spain) and New York (USA).
The experimental results demonstrated the effectiveness of BELL in identifying useful
knowledge regarding the spatio-temporal distribution of possible service disruptions
for end users of bicycle sharing systems. Possible scenarios of usage of the extracted
patterns aimed at supporting maintenance activities and improving user experience
were considered.

This chapter is organized as follows. Section 3.1 overviews the literature. Section 3.2
presents and thoroughly describes the proposed approach. Section 3.3 experimentally
evaluates the performance of the implemented BELL methodology on data acquired in
real urban environments. Section 3.4 discusses the policy implications of the presented
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results, and 3.4 summarizes this work and presents future developments.

3.1 Related work
The analysis of urban data related to bicycle sharing systems has already been ad-

dressed in previous studies. Specifically, in this field the main branches of research can
be categorized as follows. (i) Grouping stations based on their usage profile [22, 66, 21,
57]. (ii) Predicting future station occupancy levels [42, 34, 36, 40, 41]. (iii) Repositioning
bicycles between the stations [84, 65, 82, 68, 73, 61].

Branch (i) focuses on identifying groups of stations with different usage profiles by
applying unsupervisedmachine learning techniques (e.g., clustering [22]). To character-
ize station usage, temporal features [22], spatial features [66], or a mix of the above [21]
are considered. Instead of partitioning the set of stations into disjointed groups accord-
ing to their common usage pattern, the methodology proposed in this study focuses on
locating sets of nearby stations showing a critical or alternate usage profile (e.g., a sta-
tion is overloaded whereas the nearby station is almost empty). It is worth to mention
that the information provided by OMPs, which is the core of the BELL methodology,
cannot be obtained by any of the existing approaches.

Branch (ii) aims at forecasting the occupancy level of a station in the near future
(i.e., with a time horizon between 30 minutes and 2 hours ahead) by applying super-
vised machine learning techniques (e.g., regression [42, 34, 36, 52], classification [40,
41]). Based on these predictions, a recommender system can be integrated into the mo-
bile application of the provider to suggest the stations close to the user-specified point of
interest with a sufficient number of free docks/available bicycles. Predictions are based
not only on past occupancy levels but also on contextual information (e.g., meteoro-
logical data [52]). The main differences between the aforesaid works and the proposed
approach are enumerated below. (a) Unlike the aforesaid approaches, this work does
not address the problem of forecasting the station occupancy levels using supervised
machine learning techniques. Conversely, it presents a methodology based on an un-
supervised technique. (b) In the prediction task the aim is to forecast short-term varia-
tions in occupancy level (typically, between 30 minutes and 2 hours ahead). This study
aims at identifying recurrent situations of imbalance in dock occupancy, which policy-
makers may consider for scheduling medium- and long-term maintenance actions (e.g.,
rebalance the number of bicycles in the stations, resize the existing stations, place new
stations).

Branch (iii) focuses on planning the rebalance of the bicycles in stations according to
actual user demands (e.g., more bicycles close to parking areas and business centers or
more free docks close to restaurants at lunchtime). The aim of these study is to support
providers in improving user experience by means of rebalancing bicycles among the
stations.

According to Li et al. [46] there are three ways of repositioning bicycles in a bike
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sharing system: static, dynamic, and user-based. The static and dynamic repositioning
differs one from another with respect to the state of the bike sharing system during the
operations. In the static method the rebalancing is performed when the system does not
operate (e.g. night hours), while the dynamic method is applied when the system is in
active use.

An example of strategy for the static rebalancing has been presented by Liu et
al. [49]. The study uses an optimization model to rebalance the bikes while minimiz-
ing the distance covered and, thus, transportation costs.

In its turn, Nair et al. [57] analyzed a case of dynamic rebalancing. The authors per-
formed a stochastic characterization of demand to design fleet-management strategies
dealing with flow asymmetries. Other studies that fall into the same category employed
a prediction model based on time series analysis taking into account meteorological
data [10, 83].

The other way to rebalance the quantity of bicycles in stations is by encouraging a
user to collaborate, i.e. to leave a bicycle at a certain station in exchange for a reward.
This reward could largely vary but, for example, time slots of free usage have been
evaluated by Fricker et al. [33].

The study presented in this chapter, which allows spotting overloaded or imbalanced
docks occupancy situations at the desired time granularity, could be leveraged both
for static and dynamic rebalancing by the bike sharing service providers. In particular,
the problem addressed in this study is complementary to the optimization of the flow
asymmetries [57], because detecting dock overload situations could trigger rebalance
actions driven by optimization-based strategies [84, 73, 61].

3.2 Methodology
BELL is a new data mining methodology aimed at monitoring the occupancy levels

of the stations in a bicycle sharing system. The main architecture blocks, depicted in
Figure 3.1, are (i) Data collection, modeling and enrichment, (ii)Mining Occupancy Moni-
toring Patterns (OMP), which entails discovering OMP patterns from the prepared data,
and (iii) Knowledge exploration, which consists of exploring the extracted OMPs to dis-
cover actionable knowledge. A more thorough description of each step is given in the
following sections. Table 3.1 summarizes the notation used throughout the sections.

3.2.1 Data collection, modeling and enrichment
To monitor the usage of the bicycle sharing system, the occupancy levels of all the

stations are acquired at different points of time and stored into an Occupancy level
dataset. Collected data are then enriched with additional spatial and temporal informa-
tion needed to support the subsequent data analysis phase.

Data collection and modeling. Given a time window 𝑇 𝑊 and a set 𝑇 𝑆={𝑡1, …, 𝑡𝑛} of
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Figure 3.1: The Bike Station OvErLoad AnaLyzer (BELL) architecture.

Symbol Description
𝑇 𝑊 Reference time window
𝑇 𝑆 Set of points of time in 𝑇 𝑊
𝑠𝑖 Station of the bicycle sharing system
𝑜𝑗

𝑖 occupancy level of station 𝑠𝑗 at any timestamp 𝑡𝑖
𝑆 Set of stations
𝒟 Occupancy level dataset in relational format
𝑅𝑖 Dataset record corresponding to timestamp 𝑡𝑖
𝒯 Occupancy level dataset in transactional format

𝑅𝐼𝐷 Record identifier
𝑇 𝐼𝐷 Transaction identifier

𝑃 Occupancy Monitoring Pattern
maxdist Spatial constraint

Table 3.1: Notation.

points of time in 𝑇 𝑊, for each station 𝑠𝑖 in the system the number of free parkings at
each time 𝑡𝑖 ∈ 𝑇 𝑊 is acquired and collected in a unique repository named Occupancy
level dataset (𝒟). 𝒟 is modeled as a relational dataset [77]. A more formal definition
follows.

Definition 3.2.1 (Occupancy level dataset). Let 𝑇 𝑊 be an arbitrary time window and
let 𝑇 𝑆 be a set of sampling time points in 𝑇 𝑊. Let 𝑆 be a set of attributes, where each
attribute 𝑠𝑗 ∈ 𝑆 represents a different station in the bicycle sharing system. Let (𝑠𝑖,
𝑜𝑗

𝑖 ) be an arbitrary pair denoting the occupancy level 𝑜𝑗
𝑖 of station 𝑠𝑗 ∈ 𝑆 at a given
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Stations Time
Record IDentifier (RID) 𝑠1 𝑠2 𝑠3 Timestamp Time period

𝑅𝐼𝐷1 Overloaded Overloaded Overloaded 𝑡1 𝑇 𝑃1
𝑅𝐼𝐷2 Overloaded Normal Overloaded 𝑡2 𝑇 𝑃1
𝑅𝐼𝐷3 Overloaded Overloaded Normal 𝑡3 𝑇 𝑃1
𝑅𝐼𝐷4 Overloaded Normal Normal 𝑡4 𝑇 𝑃1
𝑅𝐼𝐷5 Normal Overloaded Normal 𝑡5 𝑇 𝑃2
𝑅𝐼𝐷6 Normal Overloaded Normal 𝑡6 𝑇 𝑃2
𝑅𝐼𝐷7 Normal Normal Normal 𝑡7 𝑇 𝑃3

Table 3.2: Example of Occupancy Level Dataset.

timestamp 𝑡𝑖 ∈ 𝑇 𝑆. The record 𝑅𝑖 indicates the occupancy levels of all the stations in 𝑆
at time 𝑡𝑖, i.e., it is a set of pairs {(𝑠𝑗, 𝑜𝑗

𝑖 )}, ∀ 𝑗 | 𝑠𝑗 ∈ 𝑆. Each record is logically identified
by a Record IDentifier (RID). An occupancy level dataset 𝒟 associated with time period
𝑇 𝑊 is defined as ⋃𝑖 | 𝑡𝑖∈𝑇 𝑆 𝑅𝑖.

Station occupancy values are categorized into two different classes to indicate the
occupancy level of the station. Specifically, the measurements indicating the number of
free parkings at a station are labeled as follows: (i) Overloaded, if the number of freely
available parkings is below a given occupancy threshold full-th, or (ii) Normal, if the
number of freely available parkings is equal to or above full-th. The occupancy level
threshold full-th is an absolute value specified by the domain expert. Label Overloaded
is used to denote stations with a critical occupancy level, such that end users may not
find free docks for parking. Instead, label Normal is used to denote station conditions
that should not cause a disservice to end users.

Table 3.2 shows an example of an occupancy level dataset. The dataset stores the
occupancy levels of three arbitrary stations (𝑠1, 𝑠2, 𝑠3) at seven points of time (𝑡1-𝑡7).
The dataset contains seven records logically identified with a RID (RID1-RID7). Each
record includes the occupancy levels of the three stations at a given point of time.

Notice that this study will not address the complementary problem of detecting sets
of underutilized stations. However, since the proposed methodology is general, it can
be straightforwardly adapted to deal with this complementary problem.

Data enrichment with temporal information. The analysis of station occupancy
levels at different time granularities allows system managers to investigate how over-
load conditions evolve over time, and to identify overload conditions that frequently
happen in specific time periods. To support this analysis, a hierarchy is built on the
time dimension enriching the occupancy level data with a temporal information with a
coarser granularity.

In dataset 𝒟 each record includes the occupancy levels of all the stations acquired
at a different point of time 𝑡𝑖 ∈ 𝑇 𝑆. Each record is enriched with an additional attribute
specifying the corresponding time period 𝑇 𝑃 for the point of time 𝑡𝑖. In the example
dataset in Table 3.2, records are associated with three different time periods denoted
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as 𝑇 𝑃1, 𝑇 𝑃2, and 𝑇 𝑃3. The granularity of the time period can be defined based on the
target analysis. For example, hourly or daily time slots can be selected as reference time
periods to monitor dock overload situations during the day.

Data enrichment with spatial information. To detect dock overload situations re-
stricted to a given area, the occupancy level data is enriched with spatial information.
Since all the stations in the system are geo-referenced, the geographical coordinates
of all the stations in the system is collected. This information is used in the proposed
approach to compute the pairwise distances between stations.

3.2.2 Mining Occupancy Monitoring Patterns
To automatically detect recurrent dock overload conditions in multiple stations, a

new type of pattern is proposed, called the Occupancy Monitoring Pattern (OMP). OMPs
represent sets of stations showing a dock overload condition which may cause a dis-
service to the end users of the bicycle sharing system. An algorithm is proposed in this
study to efficiently extract all the OMPs of nearby stations and to compute their quality
measures from a given occupancy level dataset.

The subsequent sections are organized as follows. The main properties of OMPs are
presented in Section 3.2.2.1. In Section 3.2.2.2 the OMP mining problem has been ad-
dressed as an itemsetmining problem,while the proposed algorithm for OMP extraction
is described in Section 3.2.2.3.

3.2.2.1 OMP characterization

OMPs allow to detect dock overload conditions in multiple stations. More specifi-
cally, OMPs represent the following situations.

• Critical situation.The occupancy levels of a group of stations are frequently over-
loaded at the same time. In this case, simultaneously, all the stations in the group
are fully occupied.

• Intermittent situation. The occupancy levels of a group of stations are frequently
overloaded in an alternate fashion. At a given point of time, some stations are fully
occupied whereas the other ones are almost empty. At another point of time, the
occupancy level of the same stations could be opposite.

To consider only sets of nearby stations, i.e., stations with a limited geographical
distance in the city area, a spatial constraint can be enforced. Enforcing such a constraint
implies that the OMPs consist of stations with maximal geographical distance below a
given (analyst-provided) threshold.

Critical situations are potentially harmful because when all the stations in the group
are overloaded users cannot return the rented bicycles. In particular, the discovery of a
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group of overloaded stations implies that a specific city area is temporarily inaccessible.
To quantitatively evaluate the severity of this issue, the measure denoted as criticality is
introduced. This measure counts the number of recorded timestamps (i.e., the number
of dataset records) at which all the stations of the considered OMP have a critical level
of occupancy.

Intermittent situations are potentially harmful as well, because the stations in the
group are overloaded in an alternate fashion. While considering nearby stations, some
free docks are available in the corresponding area, but a potential service disruption
may occur when a user arrives at an overloaded station. Still, the user could reach any
of the close stations, since some of them are underutilized. To quantitatively estimate
the severity of an intermittent situation, the intermittencemeasure is introduced. Inter-
mittence counts the number of points of time at which at least one station (but not all
of them) of the considered OMP has an occupancy level above a given threshold. The
higher the intermittence, the more severe the imbalance situation.

More formal definitions of the OMP and its quality measures follow.

Definition 3.2.2 (OccupancyMonitoring Pattern). Let 𝒟 be an occupancy level dataset
and let 𝑆 be its attribute set. An Occupancy Monitoring Pattern (OMP) 𝑃 in 𝒟 is a set
of 𝑘 distinct stations in 𝑆, i.e., 𝑃={𝑠1, …, 𝑠𝑘}, 𝑠𝑖 ∈ 𝑆.

Definition 3.2.3 (Criticality measure). The criticality of an OMP 𝑃 in dataset 𝒟 indi-
cates the number of records𝑅𝑖 in𝒟 for which all the stations in𝑃 take valueOverloaded.
It is defined as the number of 𝑅𝑖 in 𝒟 such that ∀ (𝑠𝑗, 𝑜𝑗

𝑖) ∈ 𝑅𝑖 the following conditions
hold: (i) 𝑠𝑗 ∈ 𝑃; (ii) 𝑜𝑗

𝑖 = 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑.

The criticality values of similar OMPs are correlated with each other. Specifically,
if an OMP 𝑃 is a subset of another OMP 𝑃 ′ (i.e., 𝑃 ⊂ 𝑃 ′) then the criticality of 𝑃 is
above or equal to those of 𝑃 ′. Such a notable property, called anti-monotonicity, will be
exploited to efficiently mine OMPs (see Section 3.2.2.2).

Definition 3.2.4 (Intermittence measure). The intermittence of an OMP 𝑃 in dataset
𝒟 indicates the number of records 𝑅𝑖 in 𝒟 for which at least one station, but not all
of them at the same time, takes value Overloaded. It is defined as the number of 𝑅𝑖
in 𝒟 for which the following conditions hold: (i) ∃(𝑠𝑗, 𝑜𝑗

𝑖) ∈ 𝑅𝑖 such that 𝑠𝑗 ∈ 𝑃 and
𝑜𝑗

𝑖 = 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑; (ii) ∃(𝑠𝑞, 𝑜𝑞
𝑖 ) ∈ 𝑅𝑖 such that 𝑠𝑞 ∈ 𝑃 and 𝑜𝑞

𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑙.

Criticality and intermittence values can be normalized by the number of records
in 𝒟. Their normalized values are usually denoted as relative criticality/intermittence
values.

Example. 𝑃={𝑠2, 𝑠3} is an OMP consisting of two stations (i.e., 𝑠2 and 𝑠3). In Ta-
ble 3.2, to compute the criticality and intermittence values of 𝑃 in dataset 𝒟, the oc-
cupancy levels of stations 𝑠2 and 𝑠3 were evaluated at different timestamps. Since they
are overloaded at the same time only in one timestamp (see record with identified RID1
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associated with timestamp 𝑡1), the relative criticality value of 𝑃 is 1
7 (14.28%). In four

timestamps (i.e., 𝑡2, 𝑡3, 𝑡5, 𝑡6 corresponding to records with RIDs equal to RID2, RID3,
RID5, RID6) one station is overloaded whereas the other is normal. Therefore, the rela-
tive intermittence value of 𝑃 is 4

7 (57.14%).

To analyze how the occupancy level of stations evolves over time as well as detect
dock overload situations happening within limited time ranges, the criticality and in-
termittence measures of an OMP can be reformulated by considering only the records
related to a specific time period.This allows us to discover interesting patterns at a finer
granularity level. Based on the target application, the time period with a suitable time
granularity can be selected for monitoring the usage of stations. Given an OMP 𝑃, its
criticality and intermittence value in a time period 𝑇 𝑃𝑘 are computed considering only
the subset of records with time period equal to 𝑇 𝑃𝐾.

Definition 3.2.5 (Criticality and Intermittence measures in time period 𝑇 𝑃𝑘). Let 𝑇 𝑃𝑘
be an arbitrary time period in dataset 𝒟. Let ℛ(𝑇 𝑃𝑘) be the subset of records 𝑅𝑖 in
𝒟 that are associated with timestamps in 𝑇 𝑃𝑘. The criticality of an OMP 𝑃 in 𝑇 𝑃𝑘 is
defined as the number of𝑅𝑖 inℛ(𝑇 𝑃𝑘) such that ∀ (𝑠𝑗, 𝑜𝑗

𝑖) ∈ 𝑅𝑖 the following conditions
hold: (i) 𝑠𝑗 ∈ 𝑃; (ii) 𝑜𝑗

𝑖 = 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑.The intermittence of anOMP𝑃 in 𝑇 𝑃𝑘 is defined as
the number of 𝑅𝑖 in ℛ(𝑇 𝑃𝑘) for which the following conditions hold: (i) ∃(𝑠𝑗, 𝑜𝑗

𝑖) ∈ 𝑅𝑖
such that 𝑠𝑗 ∈ 𝑃 and 𝑜𝑗

𝑖 = 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑; (ii) ∃(𝑠𝑞, 𝑜𝑞
𝑖 ) ∈ 𝑅𝑖 such that 𝑠𝑞 ∈ 𝑃 and

𝑜𝑞
𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑙.

OMPs can be filtered based on the spatial distance between the corresponding sta-
tions. For this purpose, a spatial constraintmaxdistwas introduced on OMPs. This con-
straint specifies the maximum geographical distance (denoted maxdist) between sta-
tions in each OMP. OMPs satisfying the spatial constraint represent sets of nearby
stations showing an overload situation. The higher is maxdist, the larger is the area
including stations with critical/intermittent levels of dock occupancy.

Definition 3.2.6 (Spatial constraint). Let 𝑚𝑎𝑥𝑑𝑖𝑠𝑡 be a positive number. An OMP 𝑃
satisfies the spatial constraint if for every pair of stations 𝑠𝑗, 𝑠𝑘 ∈ 𝑃, 𝑗 ≠ 𝑘, their geo-
graphical distance d(𝑠𝑗, 𝑠𝑘) is below maxdist.

Given an OMP 𝑃={𝑠1,…, 𝑠𝑘} that satisfies the spatial constraint, every subset 𝑃 ′ ⊂ 𝑃
satisfies it as well. In fact, if for all pairs of stations 𝑠𝑗, 𝑠𝑘 ∈ 𝑃 the condition d(𝑠𝑗, 𝑠𝑘) <
maxdist is verified, it easily follows that the condition is also verified for all pairs of sta-
tions in 𝑃 ′ ⊂ 𝑃. Such a property, called anti-monotonicity property, will be particularly
useful for efficiently generating all the OMPs of interest (see Section 3.2.2.2).

In the implementation of the proposed methodology, geographical distances be-
tween stations were approximated with the Euclidean measure [77] thus disregard-
ing the road network, the presence of obstacles, bridges, or underpasses. As discussed
in [62], it can be deemed as a justifiable simplification since (i) Cities generally act
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to maximize the permeability of movement for pedestrians and cyclists, (ii) Network
distances for cycling journeys are not significantly longer than Euclidean distances, es-
pecially in the city center. Similar approximations were made in other studies focused
on bike and car sharing system data analyzes as well (e.g., [28, 68]).

3.2.2.2 Designed approach for OMP mining

The problem of generating OMPs has been addressed as an itemset mining problem
(see Section 2.2.1).

To enable the itemset mining process in the target context, the records contained in
𝒟 are tailored to a transactional data format. The transactional data format is required
as input for the datamining algorithm exploited in this study. Intuitively, data generated
with the same timestamp t𝑖 are collected under the same RID𝑖 (e.g., for 𝑖 = 1 see the
first row of Table 3.2), which is later converted to the corresponding TID𝑖 (e.g., for 𝑖 = 1
see the first row of Table 3.3).

More precisely, for each timestamp 𝑡𝑖 ∈ 𝒟 and its corresponding 𝑅𝑖 identified by
RID𝑖, a TID𝑖 is generated as follows. First, the concept of occupancy item (o-item, in
short) was introduced; next, each record 𝑅𝑖 ∈ 𝒟 is represented in a transactional data
format as a set of o-items, that is an o-itemset.

Example.The record 𝑅3 in Table 3.2, identified by the RID3 and associated with the
timestamp 𝑡3 is represented in Table 3.3 with a transactional format as the o-itemset
{⟨𝑠1,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠2,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠3,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩} identified by TID3.

An o-item represents a dock occupancy measurement acquired within a given time
period and associated with a given station. More formally, an o-item is modeled as a
triple ⟨𝑠𝑗, 𝑜𝑗

𝑖 , 𝑇 𝑃𝑖⟩, where 𝑠𝑗 is an arbitrary station, 𝑜𝑗
𝑖 is the occupancy level of station

𝑠𝑗 at any timestamp 𝑡𝑖 ∈ 𝑇 𝑃𝑖, and 𝑇 𝑃𝑖 is a time period. Note that the exact timestamp at
which the measurement was acquired is not explicitly reported in the o-item, because
the goal is to identify the stations that have acquired critical dock occupancy levels
within each time period.

In the transactional dataset 𝒯 each transaction is logically identified by a Transac-
tion IDentifier (TID). Each record contained in 𝒟 is represented as a transaction in 𝒯
characterized by the same identification value (i.e., a record with RID equal to RID𝑥 is
mapped to a transaction with TID equal to TID𝑥).

Example.Table 3.3 reports the transactional representation of dataset𝒟 on Table 3.2.
Records RID1-RID7 are mapped to transactions TID1-TID7.

An occupancy itemset (o-itemset, in short) is a set of o-items (of arbitrary size) such
that all the contained o-items correspond to the same time period. The frequency of an
o-itemset is the number of transactions including it.

Example. {⟨𝑠1,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠3,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩} is an o-itemset with fre-
quency equal to 2 in the transactional dataset in Table 3.3, because it occurs in transac-
tions with TID equal to TID1 and TID2. This o-itemset indicates that stations 𝑠1 and 𝑠3
were temporarily overloaded in two different measurements acquired in period 𝑇 𝑃1.
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Transaction IDentifier (TID) Transaction
TID1 ⟨𝑠1,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠2,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠3,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩
TID2 ⟨𝑠1,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠2,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩, ⟨𝑠3,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩
TID3 ⟨𝑠1,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠2,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠3,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩
TID4 ⟨𝑠1,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠2,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩, ⟨𝑠3,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩
TID5 ⟨𝑠1,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃2⟩, ⟨𝑠2,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃2⟩, ⟨𝑠3,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃2⟩
TID6 ⟨𝑠1,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃2⟩, ⟨𝑠2,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃2⟩, ⟨𝑠3,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃2⟩
TID7 ⟨𝑠1,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃3⟩, ⟨𝑠2,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃3⟩, ⟨𝑠3,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃3⟩

Table 3.3: Example of Occupancy Level Dataset in transactional format.

OMPs and their criticality and intermittence values can be derived from the mined
o-itemsets. Therefore, the proposed methodology for OMP mining is based on the fol-
lowing two steps. First, o-itemsets are mined. Then, OMPs are generated on top of the
mined o-itemsets and their criticality and intermittence values are computed. In the
following the two steps are separately described.

Step 1: O-itemset mining. A set of o-itemsets is extracted from the transactional rep-
resentation of the occupancy level dataset. Each of the mined o-itemsets satisfies the
following conditions. (i) All the contained o-items have the same occupancy level (i.e.,
all normal or all overloaded). (ii) All the stations contained in the o-itemset satisfy the
spatial constraint maxdist. Thus, for every pair of stations appearing in the o-itemset,
their geographical distance is below maxdist.

Condition (i) allows us to extract two different types of o-itemsets: the critical o-
itemsets, which include only the o-items with occupancy level overloaded, and the nor-
mal o-itemsets, which include only the o-items with occupancy level normal. These o-
itemsets combine the stations having all the same occupancy level in a given time pe-
riod. As discussed below, these two o-itemset types will be useful at the next step to
compute the OMP intermittence value. Condition (ii) allows us to filter out the combi-
nations of o-items related to faraway stations. This will allow us to generate only OMPs
including nearby stations in Step 2.

Step 2. OMPs generation.The output of Step 1 is processed at Step 2 to generate the set of
OMPs. An OMP 𝑃 is generated from a pair of critical and normal o-itemsets that include
(i) the same stations and (ii) the same time period. The frequency values of these two
o-itemsets are used to compute the criticality and intermittence values of 𝑃.

The OMP generation process is here detailed using an example case. Let us con-
sider a pair of critical (denoted 𝐼𝐶) and normal (denoted 𝐼𝑁) o-itemsets, having both
the same stations and the same time period. Consider for instance the critical o-
itemset 𝐼𝐶= {⟨𝑠𝑖,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃𝑘⟩, ⟨𝑠𝑗,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃𝑘⟩} and the normal o-itemset
𝐼𝑁={⟨𝑠𝑖,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃𝑘⟩, ⟨𝑠𝑗,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃𝑘⟩}. Let us denote as freq_value(critical) and
freq_value(normal) their respective frequency in time period 𝑇 𝑃𝑘 in the analyzed
dataset. Let 𝑃 be the OMP generated from these two o-itemsets. The following state-
ments hold.
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(i) Pattern 𝑃 contains all the stations appearing in the critical o-itemset 𝐼𝐶 (or equiv-
alently in the normal o-itemset 𝐼𝑁), i.e., 𝑃={𝑠𝑖, 𝑠𝑗}.

(ii) According to Definition 3.2.5, the criticality of pattern 𝑃 in time period 𝑇 𝑃𝑘 is the
number of times all the stations in 𝑃 are overloaded in 𝑇 𝑃𝐾. It follows that criticality of
𝑃 in period 𝑇 𝑃𝑘 is equal to the number of transactions in 𝑇 𝑃𝑘 including the o-itemset
𝐼𝐶. Thus,

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 = 𝑓𝑟𝑒𝑞_𝑣𝑎𝑙𝑢𝑒(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) (3.1)

(iii) According to Definition 3.2.5, the intermittence of pattern𝑃 in a time period 𝑇 𝑃𝑘
is the number of times at least one station in 𝑃 (but not all stations at the same time) is
overloaded in 𝑇 𝑃𝑘. It follows that the intermittence of 𝑃 in period 𝑇 𝑃𝑘 is equal to the
total frequency of all o-itemsetswith the same stations as𝑃, such that at least one station
(but not all them at the same time) is overloaded in 𝑇 𝑃𝑘. For the sake of efficiency, the
proposed approach avoids generating all these o-itemsets, but instead it proceeds as
follows. Let us denote as 𝑐𝑎𝑟𝑑_𝑣𝑎𝑙𝑢𝑒 the total number of transactions in period 𝑇 𝑃𝑘
in the analyzed dataset. It easily follows that 𝑐𝑎𝑟𝑑_𝑣𝑎𝑙𝑢𝑒 is equal to the sum of the
following three terms: the frequency of the critical o-itemset 𝐼𝐶 (𝑓𝑟𝑒𝑞_𝑣𝑎𝑙𝑢𝑒(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)),
the frequency of the normal o-itemset 𝐼𝑁 (𝑓𝑟𝑒𝑞_𝑣𝑎𝑙𝑢𝑒(𝑛𝑜𝑟𝑚𝑎𝑙)) and the total frequency
of all o-itemsets with the same stations as 𝑃, such as at least one station (but not all them
at the same time) is overloaded at time 𝑇 𝑃𝑘. Therefore, the intermittence of 𝑃 in period
𝑇 𝑃𝑘 is computed as

𝑖𝑛𝑡𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑛𝑐𝑒 = 𝑐𝑎𝑟𝑑_𝑣𝑎𝑙𝑢𝑒 − (𝑓𝑟𝑒𝑞_𝑣𝑎𝑙𝑢𝑒(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) + 𝑓𝑟𝑒𝑞_𝑣𝑎𝑙𝑢𝑒(𝑛𝑜𝑟𝑚𝑎𝑙)) (3.2)

Example. 𝑃={𝑠2, 𝑠3} is an OMP with criticality equal to 1 and intermittence equal
to 2 in time period 𝑇 𝑃1. These measures are computed based on the frequencies of the
critical o-itemset {⟨𝑠2,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩, ⟨𝑠3,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩} and of the normal o-
itemset {⟨𝑠2,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩, ⟨𝑠3,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩}. The critical o-itemset has frequency
equal to 1 being contained in the transaction with TID equal to TID1. Thus, the criti-
cality of 𝑃 is equal to freq_value(critical) =1. The normal o-itemset has frequency equal
to 1 since it is included in the transaction with TID equal to TID4 (i.e., freq_value(nor-
mal) =1). card_value is equal to 4 because four transactions refer to time period 𝑇 𝑃1.
Based on Equation 3.2, it follows that the intermittence of 𝑃 is computed as intermit-
tence = 4 - (1+1) = 2. This intermittence value corresponds to the total frequency of
the o-itemsets {⟨𝑠2,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩, ⟨𝑠3,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩} and {⟨𝑠2,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩,
⟨𝑠3,𝑁𝑜𝑟𝑚𝑎𝑙, 𝑇 𝑃1⟩}, respectively contained in the transactions with TIDs equal to TID2
and TID3.

Section 3.2.2.3 describes the algorithm used in the BELL framework to mine the
OMPs including nearby stations according to the spatial constraintmaxdist as well their
criticality and intermittence values.
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3.2.2.3 The OMP-Miner algorithm

Algorithms 1 and 2 report the pseudo-code of the algorithm designed to extract
OMPs. It consists of the following three main phases:

• Phase 1: Creation of a compact in-memory representation of the occupancy level
transactional dataset (Algorithm 1, line 1).

• Phase 2: Mining of all the critical and normal o-itemsets including nearby stations
according to the spatial constraint maxdist (Algorithm 1, line 2).

• Phase 3: Generation of the OMPs on top of the mined o-itemsets and computation
of their criticality and intermittence levels (Algorithm 1, lines 3-7).

As stated in 3.2.2.2, the issue of identifying clusters of docking stations in an over-
loaded or intermittent condition can be naturally revolved to the problem of discover
frequent itemsets, i.e., recurrent combinations of items possessing certain characteris-
tics that are valuable for the user. Thus, in this study one of the most prominent algo-
rithm proposed in the literature, FP-growth [39], has been implemented as an estab-
lished and efficient foundation for our methodology to extract the o-itemsets. The main
advantage of the FP-growth based approach is the selective generation of the candi-
date o-itemsets, which prevents the time- and memory-consuming candidate genera-
tion phase adopted by the Apriori strategy [3]. Moreover, lately FP-growth has largely
increased its scalability due to the fact that an equivalent distributed version of the algo-
rithm has become available on big data frameworks such as Spark [6] making it possible
and relatively easy to adapt BELL to perform on even larger datasets efficiently.

Phase 1 entails storing the measurements reported in the transactional representa-
tion 𝒯 of the original dataset into a compact tree-based structure. To accomplish this
task, the prefix-tree data structure adopted by FP-Growth, namely the FP-Tree, is ex-
ploited to store the transactional dataset 𝒯.

In the context of this study, each node of the tree contains an o-item together with
the frequency of the o-item in the path. A transaction in 𝒯 is stored in the FP-tree as
a path connecting o-items corresponding to the same time period. Figure 3.2 reports
the FP-tree that represents the transactional dataset 𝒯 in Table 3.3. For the sake of
compactness and readability Overloaded and Normal conditions in o-items are denoted
as O and N, respectively.The key advantage of scanning the FP-tree index instead of the
original dataset in the o-itemset mining process is that in the FP-tree multiple dataset
transactions containing the same o-items are stored in the same path. For example, the
FP-tree path [⟨𝑠1,𝑂, 𝑇 𝑃1⟩, ⟨𝑠2,𝑂, 𝑇 𝑃1⟩, ⟨𝑠3,𝑂, 𝑇 𝑃1⟩] represent transaction with TID
equal to TID1, but subpath [⟨𝑠1,𝑂, 𝑇 𝑃1⟩, ⟨𝑠2,𝑂, 𝑇 𝑃1⟩] represents a common part in
transactions with TIDs equal to TID1 and TID2.

The FP-tree is built as follows (Algorithm 1, line 1). For each o-item in𝒯 its frequency
is computed and stored in a data structure called Header Table. O-items are ordered in
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the Header Table by decreasing value of their frequency, and they are linked to the FP-
Tree nodes including them. For the sake of compactness in Figure 3.2 only a portion of
the whole Header Table is shown. Transactions in 𝒯 are then considered one at time.
First the o-items in the transaction are ordered according to the o-item order in the
Header Table; then the ordered transaction is inserted in the FP-tree using the same
approach described in [39].

Phase 2 entails generating all the critical and normal o-itemsets including only
nearby stations by recursively visiting the FP-Tree (Algorithm 1, line 2). The O-
ITEMSETMining algorithm relies on the recursive FP-tree visit adopted by FP-Growth.
However, in the proposed approach the anti-monotonicity property of the spatial con-
straint (see Section 3.2.2.1) is exploited to reduce the number of generated combinations.
The O-ITEMSETMining algorithm considers one at a time the o-items in the Header Ta-
ble and generates the o-itemsets including the targeted o-item and a combination of the
other o-items in the dataset. For instance, consider the FP-Tree in Figure 3.2. First the
o-item 𝑖∗ = ⟨𝑠3,𝑂, 𝑇 𝑃1⟩ is selected to generate the o-itemsets including it (Algorithm 2,
line 3). At this first step the o-itemset 𝐼={⟨𝑠3,𝑂, 𝑇 𝑃1⟩} with frequency equal to 2 is
extracted.

To generate further extensions of the current o-itemset 𝐼, the dataset transactions
including all o-items in 𝐼 should be analyzed (Algorithm 2, line 4). These transactions
are represented in the FP-tree paths containing all o-items in 𝐼. For instance, when 𝐼=
{⟨𝑠3,𝑂, 𝑇 𝑃1⟩}, two FP-tree paths, highlighted in Figure 3.3(a), are selected. These paths
represent transactions with TIDs TID1 and TID2. To avoid the generation of useless new
o-itemsets, nodes from each selected path are filtered as follows (Algorithm 2, line 5). (i)
To guarantee the compliance with the spatial constraint, nodes containing o-items that
do not satisfy the maximal distance constraint with o-items in 𝐼 are discarded. (ii) To
guarantee that the o-itemsets are homogeneous in the occupancy level (i.e, all o-items
have level Normal or Overloaded) nodes with an occupancy level different from the
o-items in 𝐼 are pruned.

In the example in Figure 3.3(b) two nodes are pruned from the selected paths. (i) Let’s
suppose that stations 𝑠3 and 𝑠1 do not verify the spatial constraint, i.e., 𝑑(𝑠3, 𝑠1)>𝑚𝑎𝑥𝑑𝑖𝑠𝑡
while 𝑑(𝑠3, 𝑠2)<𝑚𝑎𝑥𝑑𝑖𝑠𝑡. Since the mined o-itemsets cannot contains both stations 𝑠3
and 𝑠1, the node with o-item ⟨𝑠1,𝑂, 𝑇 𝑃1⟩ is pruned from the selected paths. (ii) Node
with o-item ⟨𝑠2,𝑁, 𝑇 𝑃1⟩ is pruned because its occupancy level is different from the
occupancy level in 𝐼= {⟨𝑠3,𝑂, 𝑇 𝑃1⟩}.

When the pruning phase is concluded, a conditional FP-tree, including only the
selected paths is created (using the same approach used in Algorithm 1, line 1) and
the O-ITEMSETMining algorithm is recursively invoked on it (Algorithm 2, line 8).
This new invocation iterates over the conditional FP-Tree with the aim of extending
the o-itemset 𝐼 with the o-items in the conditional FP-tree. A stop condition for the
recursive invocation is reached when the conditional FP-tree is empty. In this case the
algorithm backtracks to the previous invocation of the O-ITEMSETMining function;
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Algorithm 1 OMP-Miner(𝒯, maxdist, 𝑇 𝑃)
Require: 𝒯: occupancy level dataset in transactional format
Require: maxdist : maximum distance between two stations in the same OMP
Require: 𝑇 𝑃: set of time periods 𝑇 𝑃1, …, 𝑇 𝑃𝑞
Ensure: 𝒫: the set of OMPs for each time period in 𝑇 𝑃
1: 𝐹 𝑃 𝑇 𝑟𝑒𝑒 ← FP-tree(𝒯) { Create the initial FP-tree from 𝒯 }
2: ℱ ← O-ITEMSETMining(𝐹 𝑃 𝑇 𝑟𝑒𝑒,maxdist, ∅) { Recursive projection-based o-itemset mining func-

tion} { Generate OMPs on top of the mined o-itemsets in ℱ}
3: ℱ𝑛𝑜𝑟𝑚𝑎𝑙: normal o-itemsets 𝐼𝑁 in ℱ
4: ℱ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙: critical o-itemsets 𝐼𝐶 in ℱ
5: 𝐻: Hashmapwith keys ⟨𝐼𝑁, 𝑇 𝑃𝑘⟩ storing the criticality values of each normal o-itemset 𝐼𝑁 ∈ ℱ𝑛𝑜𝑟𝑚𝑎𝑙

for each period 𝑇 𝑃𝑘
6: card_value[]: vector storing in the 𝑘-th element the number of transactions in 𝒯 associated with

period 𝑇 𝑃𝑘
7: 𝒫 = ComputeOMPintermittence(ℱ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝐻,card_value)
8: return 𝒫

then it restarts the mining process from there by considering a different o-item in the
local FP-tree.

In the running example, the conditional FP-Tree associated with the second al-
gorithm invocation contains only o-item ⟨𝑠2,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩. Thus, the o-itemset
{⟨𝑠3,𝑂, 𝑇 𝑃1⟩, ⟨𝑠2,𝑂, 𝑇 𝑃1⟩} with frequency equal to 1 is generated. At this point, a stop
condition for the recursive invocation has been reached since the conditional FP-tree
with respect to the o-itemset {⟨𝑠3,𝑂, 𝑇 𝑃1⟩, ⟨𝑠2,𝑂, 𝑇 𝑃1⟩} is empty. The algorithm back-
tracks to FP-tree represented in Figure 3.2 to target the extraction of the o-itemsets
including the o-item which precedes item ⟨𝑠3,𝑂, 𝑇 𝑃1⟩ in the Header Table.

Phase 3 aims at generating OMPs by properly combining the critical and normal
o-itemsets mined at Phase 2 and stored in sets ℱ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and ℱ𝑛𝑜𝑟𝑚𝑎𝑙, respectively (Algo-
rithm 1, lines 3 and 4).

For each critical o-itemset 𝐼𝐶 ∈ ℱ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, an OMP 𝑃 is generated with criticality and
intermittence value computed according to Equation 3.1 and Equation 3.2, respectively.
For instance, the critical o-itemset {⟨𝑠3,𝑂, 𝑇 𝑃1⟩, ⟨𝑠2,𝑂, 𝑇 𝑃1⟩} with frequency equal to
1 and the normal o-itemset {⟨𝑠3,𝑁, 𝑇 𝑃1⟩, ⟨𝑠2,𝑁, 𝑇 𝑃1⟩} with frequency equal to 1 are
mined during Phase 2 from the running example dataset in Table 3.3. Those two o-
itemsets are related to time period 𝑇 𝑃1, which is associated with 4 transactions in the
running example dataset. Given those two o-itemsets and the number of transactions
associated with 𝑇 𝑃1, the OMP-Miner algorithm extracts the OMP {𝑠3, 𝑠2} associated
with 𝑇 𝑃1 with criticality equal to 1 and intermittence equal to 2.

To efficiently compute the pattern intermittence value, the normal o-itemsets and
their corresponding frequency values are stored in a hash map data structure. Given a
critical o-itemset 𝐼𝐶, the frequency of the corresponding normal o-itemset 𝐼𝑁 including
the same stations is returned by the hash map given the key ⟨𝐼𝑁, 𝑇 𝑃𝑘⟩ (Algorithm 1,
line 7).
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Figure 3.2: The FP-Tree representing the example transactional Occupancy Level
Dataset (Table 3.3).

Algorithm 2 O-ITEMSETMining(𝐹 𝑃 𝑇 𝑟𝑒𝑒, maxdist, 𝐼∗)
Require: 𝐹 𝑃 𝑇 𝑟𝑒𝑒, an FP-tree
Require: maxdist : maximum distance between two stations in the same o-itemset
Require: 𝐼∗, the set of o-items with respect to which FPTree has been generated
Ensure: ℱ, the set of o-itemsets extending 𝐼∗

1: ℱ ← ∅
2: for all o-item 𝑖∗=⟨𝑠𝑗, 𝑜𝑗

𝑖 , 𝑇 𝑃𝑖⟩ in the header table of 𝐹 𝑃 𝑇 𝑟𝑒𝑒 do
3: 𝐼 ← 𝐼∗ ∪ {𝑖∗} {Generate a new o-itemset 𝐼 by joining o-itemset 𝐼∗ and o-item 𝑖∗ }
4: ℱ ← ℱ ∪ {𝐼}

STATE 𝐶𝑜𝑛𝑑𝑃 𝑎𝑡ℎ𝑠𝐼 ← selectConditionalPaths(𝐹 𝑃 𝑇 𝑟𝑒𝑒, 𝐼) { Select 𝐼’s conditional paths}
5: 𝑃 𝑟𝑢𝑛𝑒𝑑𝐶𝑜𝑛𝑑𝑃 𝑎𝑡ℎ𝑠𝐼 ← applyConstraints(𝐶𝑜𝑛𝑑𝑃 𝑎𝑡ℎ𝑠𝐼, 𝐼) {Prune o-items 𝑘∗=⟨𝑠𝑘, 𝑜𝑘

𝑖 , 𝑇 𝑃𝑖⟩ such
that ∃⟨𝑠𝑥, 𝑜𝑥

𝑖 , 𝑇 𝑃𝑖⟩ ∈ 𝐼| distance(𝑠𝑘, 𝑠𝑥)>maxdist or 𝑜𝑘
𝑖 ≠ 𝑜𝑥

𝑖 }
6: 𝐹 𝑃 𝑇 𝑟𝑒𝑒𝐼 ← createFP-tree(𝐹 𝑃 𝑇 𝑟𝑒𝑒, 𝐼) {Build 𝐼’s conditional FP-tree}
7: if 𝐹 𝑃 𝑇 𝑟𝑒𝑒𝐼 ≠ ∅ then
8: ℱ ← ℱ ∪ O-ITEMSETMining(𝐹 𝑃 𝑇 𝑟𝑒𝑒𝐼, maxdist, 𝐼) { Recursive mining}
9: end if
10: end for
11: return ℱ

Complexity analysis Phases 1 and 2 of OMP-Miner are based on an FP-growth-
like mining algorithm. Similar to FP-growth [39], its complexity is linear with respect
to the number of mined o-itemsets, which is combinatorial with the number of items,
i.e., 2#𝑖𝑡𝑒𝑚𝑠 in the worst case. However, enforcing the spatial constraint allows us to
significantly reduce the number of generated itemsets (see Algorithm 2). Finally, the
extracted o-itemsets are combined to mine OMPs and compute their quality measures.
Also, this final phase is linear with respect to the number of mined o-itemsets.
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(a) Paths containing o-item ⟨𝑠3,𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 𝑇 𝑃1⟩ in the initial FP-Tree

(b) Node pruning based on maximal distance constraint and oc-
cupancy level with respect to {⟨𝑠3,𝑂, 𝑇 𝑃1⟩}

(c) 𝐼’s condi-
tional FP-tree
with with
respect to
{⟨𝑠3,𝑂, 𝑇 𝑃1⟩}

Figure 3.3: O-itemset mining example.

3.2.3 Knowledge exploration
The OMPs extracted with the OMP-Miner algorithm can be explored by system

managers to gain insight into system usage. This exploratory analysis allows domain
experts to focus their attention on a limited number of stations on given areas and in
specific time periods. Based on the mined knowledge, domain experts may recommend
targeted maintenance actions with the aims of reducing disruption to end users. To
effectively explore the mining result a list of recommendations is given below.
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Exploration of intermittent situations. To detect significant intermittent situations,
OMPs should be ranked by decreasing intermittence value. To ease the exploration pro-
cess, the OMPswith very low intermittence value can be discarded. OMPswithmaximal
intermittence value indicate groups of stations that are frequently fully occupied in an
alternate fashion. These OMPs represent station occupancy level conditions that could
result in a limited disservice to the end user. If the stations in the OMP are located in the
same area, then an alternative arrival station can be recommended to users who reach
an occupied station.The severity of the possible disservices for end users can vary based
on the criticality value of the OMP. When the pattern criticality level increases, the sta-
tions indicated by the OMP are more frequently fully occupied at the same time; thus,
end users are unlikely to find a free dock at nearby stations.

To avoid disservices, system managers can suggest an alternative nearby station
with free docks for parking; in case of OMPs with high intermittence but low criticality
values, bicycles may be re-positioned in nearby stations because they are rarely fully
occupied at the same time.

Exploration of critical situations. In order to detect significant critical situationswhich
could lead to serious disservice for end users, OMPs should be ranked by decreasing crit-
icality value. To ease the exploration process, the OMPs with very low criticality value
can be discarded. OMPs with maximal criticality value indicate groups of nearby sta-
tions that are frequently fully occupied at the same time. Thus, end users are unlikely
to find free docks for their bikes in this area.

Since nearby stations are all fully occupied, maintenance actions such as bicycle re-
positioning should be carried out considering stations that are further away or located
in other areas of the city. Therefore to address these issues, maintenance actions could
be much more expensive or even inapplicable. Alternative actions could be considered
such as planning station resizing or system enlargement.

Exploration of the spatio-temporal distribution of intermittent and critical situations.
To support management of the bicycle sharing system, the mined OMPs can be visu-
alized on a map of the city area. Since each station in the OMP is characterized by a
geographical position, OMPs can be represented as restricted city areas including the
corresponding stations. This representation is intuitive and effective for highlighting
the areas which could lead to disservices for end users. OMP representations can be
differentiated based on the type of imbalance in station occupancy (i.e., critical, inter-
mittent) and the degree of severity of the discovered pattern. Domain experts can also
analyze intermittent and critical situations for different values of time periods to iden-
tify the time frames associated with more serious disruptions. For example, they can
consider 1-hour time slot as time period to analyze the number and significance of in-
termittent and critical situations for each hour in a day. Alternatively, they can adopt
a courser time granularity, as a larger time slot size (e.g., morning, afternoon, evening,
night), to gather a more high-level view of the dock overload conditions in the bicycle
sharing system.
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Domain experts are recommended to adhere to the following guideline in order to
properly set up the OMP-Miner algorithm.The spatial constraintsmaxdist should be set
according to the geographical distribution of the stations in the city area. For example,
stations located at walking distance can be considered as near while stations located in
different districts can be classified as distant. To ensure that the extracted OMPs include
only close stations, the user should set maxdist as the largest distance between a pair
of nearby stations.

Some examples OMPs representing significant intermittent and critical situations in
real data collections, and the analysis of their spatio-temporal distribution, are reported
in Section 3.3.

3.3 Experimental results
The efficiency and usability of the BELL system on real data acquired from bicycle

sharing systems were validated in two important cities: Barcelona, the capital city of
the autonomous community of Catalonia and Spain’s second most populated city and
New York, the most populated city in the United States of America.

The experimental evaluation addresses the following aspects. Some examples of in-
teresting OMPs representing significant intermittent and critical situations, extracted
from the analyzed data collections, are presented in Section 3.3.2. Section 3.3.3 evaluates
the impact of the system configuration parameters on the number of mined OMPs and
on their corresponding intermittence and criticality values, while Section 3.3.4 reports
performance evaluation in terms of execution time for the OMP-Miner algorithm. The
main characteristics of the analyzed datasets are summarized in Section 3.3.1.

The OMP-Miner algorithm was implemented by using the C language. The exper-
iments were performed on a 2.67 GHz six-core Intel(R) Xeon(R) X5650 machine with
32 Gbyte ofmainmemory running Ubuntu 18.04 server with the 3.5.0-23-generic kernel.

3.3.1 Reference use case datasets
This section briefly presents the main characteristics of the two bike sharing sys-

tems considered as reference use case in this study and describes data that has been
considered on the system usage.

The Bicing system in Barcelona. Bicing is the bicycle sharing system in Barcelona
which consists of 377 stations distributed all over the city area. Stations have a fixed
number of parkings, which vary from 15 to 39. A description of the service is given
in [42]. Data from the Bicing website1 can be crawled through the Google Maps APIs.
To perform the analyses, the collection of measurements described in [42] have been

1www.bicing.com/localizaciones/localizaciones.php
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taken into account.The acquired data (from a single operator) include 30million records
from the Bicing stations over a period of approximately a semester of service (i.e., be-
tween May 15th and November 30th, 2008). Occupancy values were acquired every 5
minutes.

The Citi Bike system in New York. Citi Bike is the bicycle sharing system in New
York which features thousands of bikes at 528 stations across New York and Jersey
City. Bicycles are available 24/7, 365 days a year. More information about the system is
available at https://member.citibikenyc.com/. The Citi Bike system provides open data
in the JSON format through the Citi Bike station feed service2. To perform the analyses,
an ad hoc Web crawler was developed which downloaded and parsed the JSON data
from the Citi Bike system feed to retrieve the historical occupancy data. Occupancy
values were acquired every 5 minutes over a time period of approximately 13 months
(i.e., between October 23th 2014 and November 17th, 2015).

Characteristics of the collected data on the system usage. In both bicycle sharing
systems, each station is characterized by the information on its name and geographic co-
ordinates (latitude and longitude). Historical data on station occupancy can be collected
by submitting periodical requests to the stations in the system and storing the corre-
sponding responses. Specifically, for each station the information on the number of free
and occupied slots in different time instants was acquired within a given time window.

3.3.2 OMP characterization
Following, some OMPs are discussed as representative examples of the insights

mined through the framework. Specifically, some top ranked OMPswith maximal inter-
mittence and criticality values are discussed as reference cases. These OMPs represent
dock overload conditions that could yield to disservices for end users in the usage of
the bicycle sharing system.

OMPs were extracted from the Bicing and Citi Bike datasets using a standard sys-
tem configuration with maxdist = 0.5 km, full-th=3, and time period equal to time slot
size of 1 hour. This configuration pinpoints a time-space granularity suitable to provide
useful information to end users and system managers. For example, let’s set maxdist =
0.5 km because bikers are (usually) more willing to move to physically closer stations
if the expected destination is fully occupied. Let’s set the time period equal to time slot
size=1h to determine more precisely sets of nearby stations that could lead to service
disruption. Parameter full-th has been set to 3 to represent situations when the station
is (almost) full. The impact of the system parameters on the characteristics of the ex-
tracted OMPs is discussed in Section 3.3.3.

2http://www.citibikenyc.com/system-data
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Example OMPs withmaximal intermittence.TheOMP-Miner algorithm generates
as output a set of OMPs with various intermittence values. The intermittence measure
of an OMP is computed to measure the presence of a dock overload condition from
the occupancy levels of the corresponding stations (see Algorithm 1, line 7). The higher
the intermittence value, the more severe the imbalance condition. Hence, OMPs with
highest intermittence values should be considered first in the result exploration.

Tables 3.4 and 3.5 report some examples of top ranked OMPs with maximal inter-
mittence value extracted from the Bicing and Citi Bike datasets, respectively. In both
tables OMPs are sorted by decreasing intermittence value. The example OMPs from the
Bicing dataset (Tables 3.4) are characterized as follows.

OMPs with identifiers (IDs) 5-7 represent dock overload conditions that could yield
a limited disservice for end users. Each of these OMPs represents a group of stations that
the end user is likely to find fully occupied in alternate fashion (in about 62-63% of the
recorded timestamps according to the intermittence value). However, the low criticality
values of these OMPs point out that the stations in each OMP are rarely fully occupied
at the same time (in about 0.13%-1.56% of the cases). It follows that, in case the user
is unable to park in one station she/he can move to another nearby station where free
parking docks will be available with a high probability. For example, OMP with ID 5
indicates that the usage levels of stations Carrer de Bonavista and Pl. del Poble Romaní
are critical in an alternate fashion from 7am to 8am in 63% of the cases, but they are
fully occupied at the same time only in 1.56% of the cases.

On the other hand, OMPs with IDs 1-2 represent dock overload conditions that
could result in a more serious disservice for end users. Each of these OMPs models a
group of stations having both intermittence and criticality values higher than OMPs
with IDs 5-7. For each OMP, at least one station has a high probability of being occupied
(intermittence value higher than 71%), and all stations have a not negligible probability
of being fully occupied at the same time (criticality about 8%). Therefore, in case the
user cannot park in one station, she/he might not find a free dock at a nearby station
approximately 8% of the time. As an example, OMP with ID 1 shows that, from 4am
to 5am , stations Vilamara davant, Mallorca and Calabria have a critical usage level in
an alternate fashion in 73.84% of the recorded timestamps, and they are simultaneously
fully occupied in 8.29% of the cases.

OMPs with IDs 3-4 represent an intermediate condition between the two above.
These OMPs have intermittence and criticality values higher than OMPs with IDs 5-7
(intermittence 70%-71% instead of 63% and criticality 1.86-4% instead of 0.13%-1.56%),
but lower than OMPs with IDs 1-2 (intermittence 70%-71% instead of 73% and criticality
1.86%-4% instead of 8%).

Based on the mined knowledge, domain experts may recommend an alternative
nearby station for parking and/or targeted maintenance actions. For instance they may
decide to relocate bicycles at the beginning of the time slot, moving them from stations
with critical levels to non-critical stations.
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Compared to the OMPs extracted from the Bicing dataset, the top ranked OMPs
mined from the Citi Bike dataset have very high intermittence values (between 90% and
100%) and criticality equal to 0% (Table 3.5). For example, OMPwith ID 2 consists of four
nearby stations ({W 33 St & 8 Ave, W 29 St & 9 Ave, W 31 St & 8 Ave, Penn Station Valet})
with 100% intermittence and 0% criticality from 8pm to 9pm. These stations are close
to Madison Square Garden Stadium and Pennsylvania Station, which are big subway
and train hubs. These OMPs indicate conditions which could lead to a limited disservice
for the end users. On the one hand, since the OMP intermittence value is very high,
at least one of the stations in the OMP is likely to be fully occupied. While on the
other hand, since the criticality value is 0%, at least one station has a free dock in all
the recorded timestamps. Consequently, the user will probably find a free dock among
nearby stations.

Example OMPs with maximal criticality. The OMP-Miner algorithm computes the
criticality of each of the mined OMPs (see Algorithm 1, line 4). The criticality measure
indicates the unavailability of most of the docks in a set of stations. The higher the
criticality, the more critical the situation of imbalance that need to be faced.

Tables 3.6 and 3.7 report the top ranked OMPs with maximal criticality value mined
from the Bicing and the Citi Bike dataset, respectively. OMPs in Tables 3.6 and 3.7 repre-
sent potentially severe disservices for the end users of the system, because they identify
groups of nearby stations whose levels of usage are frequently all critical at the same
time.

For example, for the Bicing in Table 3.6, OMP with ID 1 indicates that from 10am
to 11am stations Marquas de l’Argentera and Avinguda del Marques Argentera (approxi-
mated distance 300m) both have critical usage levels in approximately 38% of the recorded
timestamps. Thus, one third of the time the parking is unavailable in this time slot in
the mentioned areas. If the problem persists, users working or living in the neighbor-
hood are strongly discouraged from using the service. Since nearby stations are all fully
occupied, maintenance actions such as bicycle repositioning should be carried out con-
sidering stations that are further away or located in other areas of the city. Therefore,
in order to address these issues, maintenance actions could be much more expensive or
even not feasible.

Results in Table 3.7 report even more critical situations for some groups of stations
in the Citi Bike dataset. For instance, OMP with ID 1 representing the nearby stations
E 85 St & 3 Ave and E 84 St & 1 Ave has a criticality equal to 51%. Hence, in half of the
cases both stations are fully occupied.

Hourly distribution of intermittent/critical OMPs. The OMP-Miner algorithm al-
lows us to extract OMPs and store their criticality/intermittence values in different time
slots (see Algorithm 1, Line 5). Analyzing the quality measures in different time slots
allows domain experts to detect time-constrained imbalance situations (e.g., situations
arising in specific hourly time slots).

Figures 3.4 and 3.5 show the hourly distribution of the number of OMPs and their
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ID OMP Time slot Crit. Interm.
% %

1 {Vilamara davant, Mallorca, Calabria} [4am,5am] 8.29 73.84
2 {Vilamara davant, Mallorca, Calabria} [2am,3am] 8.58 73.53
3 {Sant Pere Mas Alt, Pl. Carles Sunyer, [10am,11am] 1.86 71.28

Pl. Catalunya, Pl. Urquinaona}
4 {Pl. Catalunya A, Pl. Catalunya B, [11am,12am] 4.31 70.72

Pl. Catalunya C, Pl. Urquinaona}
5 {Carrer de Bonavista, Pl. del Poble Romaní} [7am,8am] 1.56 63.05
6 {Carrer del Cana, Pl. del Poble Romaní} [5am,6am] 0.13 62.69
7 {Pl. del Poble Romaní, Montmany} [6am,7am] 0.13 62.41

Table 3.4: Bicing (Barcelona). Groups of stations withmaximal intermittence in different
hourly time slots.

ID OMP Time slot Crit. Interm.
% %

1 {W 42 St & 8 Ave, PABT Valet} [7pm,8pm] 0 100
PABT Valet}

2 {W 33 St & 8 Ave, W 29 St & 9 Ave, [8pm,9pm] 0 100
W 31 St & 8 Ave, Penn Station Valet}

3 {W 41 St & 8 Ave, W 45 St & 9 Ave, [7pm,8pm] 0 100
W 42 St & 8 Ave, PABT Valet}

4 {W 42 St & 8 Ave, PABT Valet} [6pm,7pm] 0 93.7
5 {E 22 St & Broadway, E 24 St & Park Ave} [11am,12am] 0 90

Table 3.5: Citi Bike (New York). Groups of stations with maximal intermittence in dif-
ferent hourly time slots.

corresponding levels of intermittence and criticality. The two figures report, for each
hourly time slot, the total number of mined OMPs characterized by different ranges
of intermittence and criticality values. In order to identify OMPs that could lead to a
disservice for end users, OMPs with an intermittence/criticality value greater than or
equal to 20% have been taken into consideration.

In the Bicing dataset (Figure 3.4) a significant number of OMPs with intermittence/-
criticality values greater than or equal to 20% occurs in all hourly time slots. However,
OMPs with higher values of intermittence/criticality mainly occur between 1am-2am,
7am-1pm and 4pm-11pm.

OMPs mined from the City Bike dataset (Figure 3.5) show a similar hourly distri-
bution to OMPs from the Bicing dataset. However, a lower number of OMPs with high
intermittence/criticality values comes from the City Bike dataset, probably because the
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ID OMP Time slot Crit. Interm.
% %

1 {Marquas de l’Argentera, [10am,11am] 37.96 19.23
Avinguda del Marques Argentera}

2 {Gran Via, Rocafort} [11am,12am] 35.94 19.91
3 {Gran Via, Rocafort} [10am,11am] 34.48 19.84
4 {Marquas de l’Argentera [11am,12am] 33.52 21.15

Avinguda del Marques Argentera}
5 {Paralà lel, Pl. Jean Genet} [1am,2am] 32.64 25.42
6 {Paralà lel, Sant Oleguer, Pl. Jean Genet} [1am,2am] 23.41 41.91
7 {Marquas de l’Argentera, [10pm,11pm] 22.99 37.16

Avinguda del Marques Argentera,
Pl. Comercial}

8 {Marquas de l’Argentera [12pm,1am] 22.48 32.55
Avinguda del Marques Argentera,

Pl. Comercial}

Table 3.6: Bicing (Barcelona). Groups of stations with maximal criticality in different
hourly time slots.

ID OMP Time slot Crit. Interm.
% %

1 {E 85 St & 3 Ave, E 84 St & 1 Ave} [8pm,9pm] 51.15 29.01
2 {E 53 St & Madison Ave, E 48 St & 5 Ave} [9am,10am] 49.76 20.53
3 {E 84 St & 1 Ave, E 82 st & 2 Ave} [9pm,10pm] 49.26 27.53
4 {E 85 St & 3 Ave, E 84 St & 1 Ave} [7pm,8pm] 45.01 31.13
5 {W 51 St & 6 Ave, E 48 St & 5 Ave} [9am,10am] 44.93 16.91

Table 3.7: Citi Bike (New York). Groups of stations with maximal criticality in different
hourly time slots.

stations in New York are more widespread than those in Barcelona.
Domain experts can thus gather useful insights on the usage of the bicycle sharing

system. On the one hand, they can identify daily time periods in which service disrup-
tions may occur, and on the other hand they can also identify the set of nearby stations
which are involved in these disservices.

Geographical distribution of significant intermittent and critical OMPs. Each
OMP represents a group of geo-referenced stations. To support the management of
the bicycle sharing system, maps can be used to highlight the city areas associated
with OMPs (i.e., groups of stations) with high intermittence and criticality values. No-
tice that OMPs can be easily visualized on a map because they represent groups of
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Figure 3.4: Bicing (Barcelona). Hourly distribution of the number of OMPs and their
corresponding levels of intermittence/criticality.maxdist=0.5 km. time slot size=1h. full-
th=3.
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Figure 3.5: Citi Bike (New York). Hourly distribution of the number of OMPs and their
corresponding levels of intermittence and criticality.maxdist=0.5 km. time slot size=1h.
full-th=3.

nearby stations. The extraction and visualization of OMPs including distant stations is
prevented by enforcing the spatial constraint in the OMP-Miner algorithm (see Algo-
rithm 2, line 5).

For example, Figures 3.6(a) and 3.6(b) show two heat maps3 of the areas of Barcelona
identified by the OMPs in hourly time slot [11am-12am). OMPs in this time slot repre-
sent significant intermittent and critical situations according to the results in Figure 3.4.

3The heat maps have been generated by using the service provided by Babicki et al. [8].
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(a) Intermittence (b) Criticality

Figure 3.6: Heat maps representing intermittence and criticality values in Barcelona at
the hourly time slot [11am-12am). maxdist=0.5 km, and time slot size=1h. full-th=3.

(a) Intermittence (b) Criticality

Figure 3.7: Heat maps representing intermittence and criticality values in New York at
the hourly time slot [11am-12am). maxdist=0.5 km, and time slot size=1h. full-th=3.

In Figures 3.6(a) and 3.6(b) the color intensity of areas increases with the density of oc-
currence of OMPs and their intermittence and criticality values, respectively.The higher
the color intensity, the most severe the disservice to end users.

Figure 3.6(a) shows that intermittent situations are mainly localized in the city
center in four distinct areas. The area with the highest intensity is centered in Placa
Catalunya, while the other two large areas are centered in History Museum of Catalonia
and La Vila Olimpica del Poblenou and a small area is in Pla de Miquel Tarradell.

Instead, based on Figure 3.6(b), critical situations are more spread over the geo-
graphical areas. The larger area in Figure 3.6(b) covers all the three main areas in Fig-
ure 3.6(a). Moreover, three additional areas show up, two of them located on the top
of the map (in the Torre Glories and El Maresme Forum areas) and one on the bottom
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(Drassanes area).
Heat maps were exploited to analyze the geographical distribution of OMPs mined

in hourly time slot [11am-12am) in New York (see Figures 3.7(a)-3.7(b)). Compared to
Barcelona, more areas in New York are characterized by OMPs with high intermittence
and criticality values. The areas with the highest intensity for intermittence situations
are mainly located in the World Trade Center (on the bottom of the map). While the
highest intensity for critical situations is located both in the areas of the World Trade
Center and of the Museum Of Modern Art (on the top of the map).

3.3.3 Parameter analysis
The main parameters of the OMP-Miner algorithm are as follows. (i) The thresh-

old used to discriminate station occupancy levels into Normal and Overloaded, i.e., the
occupancy threshold full-th. (ii) The threshold used to decide whether two stations are
located nearby or not, i.e., the maximum distance thresholdmaxdist. (iii) The time gran-
ularity used to analyze the evolution of imbalance situations over time, i.e., time slot size.

The analysis was performed to detect the impact of parameters full-th,maxdist, and
time slot size on (i)The cardinality of themined OMPs (i.e., the number of OMPs per time
slot), (ii) The distribution of the intermittence values of the mined OMPs, and (iii) The
distribution of the criticality values of the mined OMPs. Moreover, the impact of the
day category on the hourly distribution of the intermittence and criticality values for
the mined OMPs was analyzed.

In the experimental evaluation one parameter was varied at a time, and the standard
configuration was set for the remaining parameters. The standard configuration was
introduced in Section 3.3.2 as maxdist = 0.5 km, full-th=3, time slot size=1h.

The results achieved on the Bicing dataset (Barcelona) reported hereafter are consid-
ered as reference example study. Similar results have been obtained from the Citi Bike
dataset.

Occupancy threshold (full-th). Figures 3.8(a)-3.8(b) show the impact of the full-th pa-
rameter on the mined OMPs. The two figures report the total number of mined OMPs
for each range of intermittence and criticality value when increasing full-th.

A station is in overloaded condition when less than full-th free docks are available.
Therefore, the higher occupancy threshold value is set, the more OMPs with high inter-
mittence/criticality value could be extracted.The results reported in Figures 3.8(a)-3.8(b)
show this trend. The number of OMPs for each intermittence and criticality range in-
creases almost linearly when increasing the full-th value. This increase is higher for the
intermittence index.

Maximum distance threshold (maxdist). Figures 3.9(a)-3.9(b) show the impact of the
maxdist parameter on the number of mined OMPs.The two figures report the total num-
ber ofminedOMPs for each range of intermittence and criticality valuewhen increasing
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Figure 3.8: Barcelona. Impact of the occupancy threshold on the characteristics of the
mined OMPs. maxdist=0.5 km. time slot size=1h.

maxdist.
When the maxdist value is increased, the number of nearby stations also increases.

Consequently, the number of mined OMPs increases because larger patterns including
more stations are also generated. Results show that when increasing maxdist the num-
ber of OMPs increases almost exponentially for each intermittence range and almost
linearly for each criticality range.

However, the number of OMPs that are worth considering for manual inspection
(i.e., those with high intermittence/criticality values) remains roughly stable even while
enforcing maxdist values higher than 0.5 km. Setting maxdist values higher or equal to
0.6 km is less interesting in the context of analysis of this study, because the end users
are willing to move to physically closer stations if the expected destination is fully oc-
cupied.

Time slot size. The distribution of the number of extracted OMPs for each intermit-
tence and criticality range when varying the time slot size were also analyzed. Exper-
iments were performed for time slots ranging from 2 to 8 hours; as a representative
example, Figure 3.10 reports the results achieved on the Bicing dataset with the 4-hours
time slot.

Considering a courser time granularity to analyze collected data as, for example, a
larger time slot size, can provide a high-level view of the station overload conditions
in the bicycle sharing system. This view can be useful for end users but expecially for
system managers to identify the time frames when usage conditions are critical. For
instance, results in Figure 3.10(a) point out that the number of OMPs with high inter-
mittence value (between 50%-59%) is significantly higher between 8.00am-12:00pm.

Domain-experts can then focus on each selected time frame to locally analyze col-
lected data with a finer time granularity (i.e.,a time slot with lower size). This latter
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Figure 3.9: Barcelona. Impact of the maximum distance threshold on the characteristics
of the mined OMPs. full-th=3. time slot size=1h.

 0

 100

 200

 300

 400

 500

 600

1
2
:0

0
a
.m

.-3
:5

9
a
.m

.

4
:0

0
a
.m

.-7
:5

9
a
.m

.

8
:0

0
a
.m

.-1
1
:5

9
a
.m

.

1
2
:0

0
p
.m

.-1
5
:5

9
p
.m

.

1
6
:0

0
p
.m

.-1
9
:5

9
p
.m

.

2
0
:0

0
p
.m

.-2
3
:5

9
p
.m

.

N
u
m

b
e
r 

o
f 
O

M
P

s

4-hours time slot

intermittence(%)

20-29
30-39
40-49
50-59
60-69
70-79
80-89
90-99
100

(a) Intermittence

 0

 20

 40

 60

 80

 100

 120

1
2
:0

0
a
.m

.-3
:5

9
a
.m

.

4
:0

0
a
.m

.-7
:5

9
a
.m

.

8
:0

0
a
.m

.-1
1
:5

9
a
.m

.

1
2
:0

0
p
.m

.-1
5
:5

9
p
.m

.

1
6
:0

0
p
.m

.-1
9
:5

9
p
.m

.

2
0
:0

0
p
.m

.-2
3
:5

9
p
.m

.

N
u
m

b
e
r 

o
f 
O

M
P

s

4-hours time slot

criticality(%)

20-29
30-39
40-49
50-59
60-69
70-79
80-89
90-99
100

(b) Criticality

Figure 3.10: Bicing (Barcelona). Distribution of the number of OMPs and their cor-
responding levels of intermittence/criticality with a time slot granularity of 4 hours.
maxdist=0.5 km. full-th=3. time slot size=4h.

analysis can provide more detailed information on dock overload conditions on each
selected time frame.

In some cases, using time slots with a larger size could smooth local intermittence
and criticality peaks of potential interest. For instance, few OMPs with intermittence in
the range 70%-79% are mined with a 4-hour time slot (see Figure 3.10(a)). Instead, when
considering 1-hour time slots, around 50 patterns with intermittence between 70%-79%
are generated in the 10am, 11am, 12pm time slots (see Figure 3.4(a)).

Day category. Experiments have been performed to analyze the impact of the day
category on the hourly distribution of intermittence and criticality.The OMPs extracted
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(a) Weekdays: Intermittence
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(b) Weekdays: Criticality
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(c) Weekends: Intermittence
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(d) Weekends: Criticality

Figure 3.11: Barcelona. Characteristics of the mined OMPs related to weekdays and
weekends. full-th=3. time slot size=1h.

by considering the station occupancy log data related to workdays were compared to
those mined by considering the weekends. Results are shown in Figures 3.11(a)-3.11(d).

Extracted OMPs show a significantly different trend in weekdays and weekends.
More OMPs with higher criticality and intermittence values are mined in weekdays.
These OMPs are mainly located in the time period from 7am to 2pm. In weekends,
OMPs with high intermittence and criticality values (about 70%-79%) are mainly related
to the period from 12am and 1 am and from 7pm to 11pm. Moreover, OMPs with high
intermittence values are also mined for 2pm time slot.

These results highlight different usage of the bike sharing system of Barcelona dur-
ing the days of the week. They support the need for different actions (such as bike
re-balancing actions) depending on the type of day of the week that is considered. For
example, bike re-balancing actions may be more relevant in weekdays than in week-
ends, and they must be scheduled in different time periods based on the day category.
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3.3.4 Algorithm performance
The analysis of the performance of the OMP-Miner algorithm in terms of execution

time was done. OMP-Miner requires time both for (critical and normal) o-itemset ex-
traction and for the consequent generation of OMPs on top of the mined o-itemsets.
The o-itemsets extraction is the most computationally expensive step. With the default
parameter setting, the extraction time of o-itemsets is approximately 454s for Bicing
(Barcelona) and 825s for Citi Bike (New York), while the time for OMP generation is a
few milliseconds in both cases.

Also, the analysis of how the system parameters impact on the execution time was
performed. Specifically, the analysis was focused on the maximum distance threshold
maxdistwhich can impact significantly on the number of mined OMPs, and thus on the
execution time. Experiments were run by varying themaxdist value while the standard
configuration was adopted for the other parameters. The execution time, similarly to
the number of mined OMPs, increases more than linearly with respect to the maximum
distance threshold value. The time ranges from 3 minutes when maxdist=0.1 km up to
42 minutes whenmaxdist=0.6 km. The execution time increases to more than one hour
when values of maxdist greater than 0.6 km are used, i.e., when maxdist is set to values
that are considered not interesting in the considered application domain. Most of the
execution time is spent on o-itemset generation, while even in the worst case the OMP
generation requires a few seconds.

3.4 Summary
The BELL methodology analyzes historical occupancy data acquired from bicycle

sharing systems with the aim of identifying situations of imbalance in dock occupancy
levels of bike stations. The proposed methodology relies on an itemset-based approach,
which extracts recurrent patterns fromhistorical data and provides domain experts with
a set of interpretable patterns to explore. The extracted OMPs describe the context (i.e.,
city area and time slot) in which a set of stations is in a critical/intermittent dock over-
load condition. The discovered patterns represent (i) groups of nearby stations whose
slots are almost all occupied at most points of time, and (ii) groups of nearby stations
among which at least one of them (but not all of them) has a high level of occupancy at
most points of time (possibly in an alternate fashion).

The position of this study differs to a large extent from previous works in the liter-
ature. Specifically, (i) Previous works on clustering of the stations based on their usage
profiles have been unable to identify intermittent dock overload situations. (ii) Studies
on forecasting future occupancy levels of the stations have applied supervised tech-
niques, while the methodology presented relies on an unsupervised technique (i.e.,
itemset mining). (iii) Previous approaches aimed at planning re-balancing actions are
complementary to the proposedwork because they can be applied to a subset of stations
with intermittent dock occupancy levels.
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As a general recommendation, it is advised to apply the BELL methodology to tem-
poral intervals which are as homogeneous as possible with respect to any change that
can affect the bicycle flow balance inside the system (e.g., rebalancing policy changes,
additional docks in stations, or even additional stations). In any case, it is interesting
to notice how the BELL methodology behaves when it is not possible to filter out these
spurious data. Two kinds of anomalies can possibly emerge: false positive and false
negative. The former is caused by imbalanced situations already solved by the policy
modification but yet frequent enough in the data that precede the change itself (e.g.,
an overloaded condition in the city center solved by a scheduled bicycle rebalancing).
The latter is a specular circumstance, critical/intermittent situations have started to oc-
cur after a change in the system but they are not enough represented in the dataset
to be caught (e.g., possibly recent failures in some of the stations). Anyway, since the
analysis is applied on a medium-term horizon at least, the above-mentioned anomalies
are expected to be very limited and to be not significant when the BELLmethodology is
applied periodically.

The results achieved by the BELL methodology on real bicycle sharing system data
have shown potentially harmful dock overload situations in the stations of bike sharing
systems. Specifically, the applicability of the BELL methodology in two real case stud-
ies, the Barcelona and New York bicycle sharing systems, was explored. Notably, the
achieved results show behaviors peculiar to each use case. For example, in New York the
mined OMPs highlight situations of imbalance mainly due to intermittent occupancy
levels (i.e., intermittence value=100%, criticality value=0%). This implies that although
some areas were characterized by a strongly imbalanced bike distribution among sta-
tions in certain time slots, at least one station per area had a non-critical dock occu-
pancy in the analyzed period. Hence, planning re-balancing actions could be sufficient
to counteract situations of imbalance. Conversely, in Barcelona situations of imbalance
were usually characterized by a mix of critical and intermittent conditions. Hence, re-
balancing actions may be not sufficient and long-termmaintenance actions (e.g., station
resizing) need to be put in place to counteract the issue.

The takeaways from this study can be summarized as follows:
• The use of data mining tools to analyze bicycle sharing system data has become
more and more attractive.

• Unsupervised approaches, like the BELL methodology presented in this study,
characterize system usage in the medium- and long-term. They identify contexts
in which user experience could worsen due to recurrent system inefficiencies.

• System users may take advantage of the data-driven approaches to system mon-
itoring, because potentially critical situations can be automatically detected and
managed without the need for explicit notification.

• Urban policymakers can exploit the BELL methodology to periodically monitor
the dock overload situations detected in specific city areas at different time slots.
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• Based on the knowledge extracted by the BELLmethodology, policymakers could
put in place medium-term actions, such as re-balancing actions triggered by the
extraction of OMPs with high intermittence value, and long-term actions, such as
station resizing or new station placement triggered by the extraction of OMPs
with high criticality value.

• The results in the real case studies demonstrated the quality of the proposed
methodology in supporting system managers under various aspects.

As future work, other data sources could be integrated to enrich the quality of the
generated model. Variables such as the presence of environmental pollution, road net-
work features, vehicular traffic, meteorological conditions, and the presence of cycling
lanes as indicators of favorable/unfavorable conditions for bike sharing system usage
could also be taken into consideration. The other interesting problem is to investigate
the portability of the proposed methodology for different mobility services offered in
urban contexts. For example, applying the proposed approach to charging stations of
electric cars and to indoor car parks.

Additionally, the recent new bike-sharing mode appeared in many cities around
the world, i.e. free-floating station-less bike sharing, could be the subject for a future
extension. Splitting the city area homogeneously and applying the BELL methodology
in a complementaryway tomeasure the absence of bikes, it would be possible to analyze
critical situations of clusters of adjacent city sectors, which completely or intermittently
lack free-floating bikes. Also, in this case, the methodology can be applied to rebalance
the bikes and/or increase the fleet to improve the users’ perception of the overall service
quality.
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Chapter 4

Exploring data hierarchies to mine
high-utility itemsets

Frequent itemset mining is an exploratory data mining technique which focuses
on discovering recurrent combinations of items (of arbitrary size) that occur in poten-
tially large transactional data [2]. Frequent itemsets have been used in many research
contexts, among which market basket analysis [2], service profiling [11], to discover
correlations between multiple data items. For example, in the context of market bas-
ket analysis, each row of the dataset (transaction) represents a different market basket.
Transactions contain the subsets of purchased items. Frequent itemsets represent sets of
items that customers frequently purchased together. For instance, itemset {Coke, bread}
indicates that customers who purchased coke frequently purchased bread as well. Since
generating all the possible combinations of items in a transactional dataset is compu-
tationally intractable [2], frequent itemset mining entails discovering only the combi-
nations of items whose frequency of occurrence (support) is above a given threshold.
However, the traditional itemset mining problem relies on three (potentially unreliable)
assumptions:
(A) Items appear at most once in each transaction (e.g., disregarding the amounts of
purchased items within each basket).
(B) Items have all the same importance in the analyzed data (e.g., the unit profit is as-
sumed to be the same for all the items in the market).
(C) The semantic relationships between items are ignored (e.g., the co-occurrences of
items belonging to the same product group within the same basket are considered as
uncorrelated with each other).
To overcome limitations (A) and (B), the concept of High-Utility Itemset (HUI) has been
proposed [51]. HUIs represent sets of frequently co-occurring items that are charac-
terized by averagely high utility within the analyzed data. To mine HUIs, items in the
transactional dataset are enriched with both per-transaction weights (hereafter denoted
as internal utilities) and global weights (denoted as external utility). For example, in the
context of market basket analysis internal utilities represent per-item amounts (e.g. the
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customer purchased 3 bottles of coke), while external utilities indicate unit profits (bot-
tles of coke cost 5 USD each). Utility itemsets represent sets of items whose total yield is
above a given (user-specified) threshold. This knowledge may be exploited to perform
cross-selling, to plan promotions, or to effectively arrange items on the shelves.

To overcome limitation (C), correlations between items at higher abstraction levels
can be analyzed [74]. Based on a taxonomy built on top of the analyzed data, items
are aggregated into semantically related groups (e.g. items Coke and Water into group
Beverage). Then, generalized itemsets, which represent correlations among data items
at different abstraction levels (e.g., not only {Coke, bread} but also {Beverage, Food}), can
be extracted.

Many efforts have been devoted to efficiently address High-Utility Itemset Mining
(e.g., [30, 31, 35, 47, 89]). To extract HUIs, several strategies have been proposed in the
literature. The first attempts (e.g., [71, 20]) used a horizontal approach based on Apriori
algorithm [3]. Among them is the well-known work of Liu et al.[51] based on a two-
phase strategy, which consists of generating an overestimated solution according to the
Transaction-Weighted-Downward closure model as a first step, and then refining it to
discard non-profitable itemsets.

Another branch of studies (e.g., [81, 25]) followed a vertical approach inspired by
the tree-based depth-first model of the FP-growth algorithm [39]. An example of this
group is the algorithm UP-Growth of Tseng et al.[81] which proposed a compact data
structure to store the pattern called utility-pattern tree (UP-tree) to mine HUIs more
efficiently.

The most recent and advanced algorithm addressed either HUI mining in a single
phase (e.g., [48, 45, 50]) or the generation of a compact HUI subset, e.g., the closed
HUIs [32] and the top-k HUIs [80].

Although the existing solutions in the literature review are efficient in terms of
temporal and spatial scalability, they are unable to cope with multiple-level data (limi-
tation (C)). On the other hand, parallel works addressed the generalized itemset mining
problem by performing bottom-up [11, 74] or top-down [38] taxonomy visits during
candidate itemset generation. However, since all the mentioned studies do not consider
item utilities, they still suffer from limitations (A) and (B).

This study aims at bridging the gap between HUI mining and generalized itemset
mining. To this purpose, it proposes a new type of pattern, namely the Generalized
High-utility Itemsets (GHUIs).

The proposed approach allows both multiple appearances of the same item within
each transaction and different per-item profits. Unlike traditional HUIs, GHUIs are ex-
tracted from a transactional dataset enriched with a taxonomy, which describes the se-
mantic is-a relationships between data items. These relationships are exploited to drive
the process of knowledge generalization thus generating profitable combinations of
items at multiple abstraction levels. To extract GHUIs the ML-HUI Miner is proposed,
which extends a state-of-the-art HUI mining algorithm to cope with data enriched with
taxonomies. The newly proposed algorithm integrates taxonomy information into the
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Table 4.1: Transactional dataset

Transaction id Items and internal utility
TID1 (Coke, 2), (Bread, 2), (Steak, 1)
TID2 (Water, 3), (Pasta, 2), (Steak, 1)
TID3 (Water, 2), (Bread, 2)
TID4 (Coke, 1), (Bread, 2)

Table 4.2: External utilities of items in dataset

Item External utility
Water 1
Coke 5
Bread 1
Pasta 2
Steak 10

utility itemset mining process to mine GHUIs in a single-phase mining session.
Preliminary experiments performed on both real retail data and benchmark datasets

show the efficiency and effectiveness of the proposed approach.
The chapter is organized as follows. Sections 4.1 and 4.2 introduce preliminary con-

cepts and formalizes the newly proposed pattern, respectively. Section 4.3 presents the
mining algorithm used to discover the newly proposed pattern. In Section 4.4 the ex-
periments performed on real datasets have been summarized, while Section 4.5 draws
conclusions and discusses future works.

4.1 Theoretical background
A transactional dataset is a set of transactions [2], where each transactions is a set

of data items (i.e., objects identified by literals). Hereafter, let us denote as 𝐼 the set of
all possible items and as 𝑡𝑗 ∈ 𝐼 the 𝑗-th transaction of a transactional dataset 𝐷. Items
are characterized by (i) Internal Utility, denoted as iu(𝑖,𝑡𝑗) which indicates the relative
importance of item 𝑖 ∈ 𝐼 in transaction 𝑡𝑗, and (ii) External Utility, denoted as eu(𝑖),
which indicates the relative importance of item 𝑖 in 𝐷 with respect to all the other
items in the dataset.

Table 4.1 reports an example of market basket dataset consisting of 4 transactions
(identified by TID𝑖 where 𝑖 ∈ [1,4])).

The utility of item 𝑖 in transaction 𝑡𝑗, hereafter denoted as u(𝑖,𝑡𝑗), is computed as
eu(𝑖)⋅ iu(𝑖,𝑡𝑗). In the running example, it indicates the total income related to an item
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Coke Water

Beverage

Bread Pasta

Food

Steak

Figure 4.1: Taxonomy on items in the dataset

Table 4.3: High-Utility Itemsets. minutil (itemsets) = 17

Itemset Utility
{ Steak } 20

{ Steak, Coke } 20
{ Coke, Bread } 19

{ Steak, Coke, Bread } 22

Table 4.4: Generalized High-Utility Itemsets. minutil (generalized itemsets) = 30

Generalized Itemset Utility
{ Food } 30

{ Food, Beverage } 50

appearing in the market basket (e.g., the price of all the bottles of coke in a given market
basket).

Itemsets are sets of items of arbitrary size. They will be denoted as 𝑘-itemset a set of
𝑘 items. The utility of itemset 𝐼 in transaction 𝑡𝑗 is the sum of the utilities of all the cor-
responding items, i.e., u(𝐼,𝑡𝑗)=∑𝑖∈𝐼 𝑢(𝑖, 𝑡𝑗). The utility of itemset 𝐼 in the transactional
dataset 𝐷 is obtained by summing the utilities of the itemset in all the dataset transac-
tions, i.e., u(𝐼,𝐷)=∑𝑡𝑗∈𝐷 𝑢(𝐼, 𝑡𝑗), where the condition u(𝐼,𝑡𝑗)=0 if 𝐼 ∉ 𝑡𝑗 is assumed.

A notable type of itemset is the High-Utility Itemset. Given user-specified minimum
utility threshold minutil, an itemset mined from dataset 𝐷 is an High-Utility Itemset
(HUI) if and only if u(𝐼,𝐷)>minutil. Given a transactional dataset 𝐷 and a minimum
utility threshold minutil, the High-Utility Itemset Mining (HUIM) problem entails dis-
covering all the HUIs in 𝐷.

The HUIs extracted from the dataset in Table 4.1 by enforcing a minimum utility
thresholdminutil=20 are enumerated in Table 4.3, where the corresponding utility value
is given too.

Example. {Coke, Bread} is HUI because the utility values of the 2-itemset for each
transaction are: 12 (5x2+1x2) in TID1, 0 in TID2 and TID3 (no matches), and 7 (5x1+1x2)
in TID4.

To efficiently extract HUIs, the Transaction-Weighted Utilization (TWU) has been
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introduced [79]. It is an over-estimate of the utility of the itemset, which can be ex-
ploited to prune the search space because it satisfies the following downward closure
property: given two itemsets 𝐼1 and 𝐼2 such that 𝐼1 ⊂ 𝐼2, if the TWU of 𝐼1 is below the
utility threshold minutil even the TWU of 𝐼2 does. The TWU of an itemset 𝐼, denoted
as twu(𝐼), is defined as the sum of the transaction utilities of all the transactions con-
taining 𝐼, where the transaction utility of a transaction is the sum of the utility values
of all its items. A formal definition of the TWU measure of itemset 𝐼 follows: twu(𝐼)=
∑𝑡𝑗∈D|I⊆tj

∑𝑖∈𝑡𝑗
𝑢(𝑖, 𝑡𝑗).

4.2 Generalized High-Utility Itemsets
The goal of this study is to discover HUIs that incorporate knowledge at multiple

granularity levels. To this aim, items are generalized at different abstraction levels.
Let 𝑇 be a taxonomy (i.e., a is-a hierarchy), which aggregates items in 𝐼 into higher-

level concepts, hereafter denoted as generalized items. Generalized items represent higher-
level categories which group individual items based on their semantic meaning. Let 𝐺
be the set of generalized items in 𝑇. For the sake of simplicity, hereafter it is assumed
that in the given taxonomy 𝑇 each item 𝑖 ∈ 𝐼 is aggregated into exactly one general-
ized item 𝑔 ∈ 𝐺 (i.e., each item belongs to a specific higher-level category). Generalized
items can be further generalized as other generalized items at higher granularity levels.

For each generalized item 𝑔 ∈ 𝐺, Desc(𝑔,𝑇) ∈ 𝐼 denote the subset of descendant
items of 𝑔 according to the given taxonomy. In this study, the concept of level of a
generalized item 𝑔 ∈ 𝐺 in the taxonomy, hereafter denoted as l(𝑔,𝑇), is formalized as
the length of the shortest path between 𝑔 and any leaf node in the taxonomy. Note that,
by construction, the level of non-generalized itemsets is zero, while the maximum level
of an item corresponds to the taxonomy height (i.e., the length of the longest path from
any node in 𝑇 to a leaf node).
Example. Figure 4.1 depicts an example of taxonomy built on items occurring in the
running example dataset (see Table 4.1). For instance, items Coke and Water are aggre-
gated into the generalized item Beverage. The level of Beverage and is one, whereas the
level of Coke, andWater is zero.

A generalized itemset is a set of generalized items in 𝐺. Similar to [11, 38, 74] the
analysis is focused on the combinations of generalized items having the same level,
because they compactly represent information at a given abstraction level. Hereafter
the level of a generalized itemset is denoted as the level of its items.

In this study, the concept of utility has been extended to generalized items and item-
sets. Specifically, the utility of a generalized item 𝑔 in a transaction 𝑡𝑗, hereafter denoted
as u(𝑔,𝑡𝑗), is the sum of the utility values of all the descendant items, while the utility of
𝑔 in a transactional dataset is the sum of all the per-transaction utilities. More formal
definitions follow.
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Definition 4.2.1 (Utility of a generalized item). Let 𝑔 be a generalized item, 𝐷 a trans-
actional dataset, and 𝑇 be a taxonomy. The utility of 𝑔 in a transaction 𝑡𝑗 ∈ 𝐷 is defined
as u(𝑔,𝑡𝑗)=∑𝑖∈𝐷𝑒𝑠𝑐(𝑔,𝑇 )eu(𝑖)⋅ iu(𝑖,𝑡𝑗). The utility of generalized item 𝑔 in 𝐷 is calculated
as u(𝑔,𝐷)=∑𝑖∈𝐷𝑒𝑠𝑐(𝑔,𝑇 ) 𝑢(𝑖,𝐷).

Similar definitions hold on itemsets (i.e., sets of items). The utility of a generalized
itemset in a transactional dataset indicates the overall profit of a combination of item
categories.

Definition 4.2.2 (Utility of a generalized itemset). Let 𝐺𝐼 be a generalized itemset and
let 𝐷 a transactional dataset, and 𝑇 be a taxonomy. The utility of a generalized item-
set 𝐺𝐼 in transaction 𝑡𝑗 is defined as u(𝐺𝐼,𝑡𝑗)=∑𝑔∈𝐺𝐼 𝑢(𝑔, 𝑡𝑗). The utility of a general-
ized itemset 𝐺𝐼 is in the transactional dataset 𝐷 is defined as u(𝐺𝐼,𝐷)=∑𝑡𝑗∈𝐷 𝑢(𝐺𝐼, 𝑡𝑗),
where u(𝐺𝐼,𝑡𝑗)=0 if 𝐺𝐼 ∉ 𝑡𝑗.

Example. Let us consider again the market basket dataset reported in Table 4.1 and
the taxonomy in Figure 4.1. The per-transaction utility of generalized item Beverage is
10 in transaction with TID1, 3 in transaction with TID2, 2 in transaction with TID3, and
5 in transaction with TID4. Hence, the utility of Beverage in the dataset is 20 (10+3+2+5).

This work is dedicated to the extraction of a selection of generalized itemsets, called
Generalized High-Utility Itemsets (GHUIs).

Definition 4.2.3 (Generalized High-Utility Itemset). Let minutil be a (user-specified)
minimum utility threshold, let 𝐷 be a transactional dataset, let 𝑇 be a taxonomy, and
let 𝐺𝐼 be a generalized itemset. A generalized itemset 𝐺𝐼 is a Generalized High-Utility
Itemset (GHUI) in 𝐷 if and only if u(𝐺𝐼,𝐷)>minutil.

Example. The GHUIs mined from the dataset in Table 4.1 by enforcing a minimum
utility threshold for generalized itemsets equal to 30 for GHUIs are enumerated in Ta-
ble 4.4.

Given a transactional dataset 𝐷, a taxonomy 𝑇, and a minimum utility threshold
minutil, the Generalized High-Utility Itemset Mining (GHUIM) problem addressed by
this work entails discovering all the HUIs and GHUIs.
Per-level utility thresholds. The utility of a generalized itemset incorporates those
of all of its descendant itemsets. Hence, itemsets at higher abstraction levels are more
likely to satisfy a fixed minimum utility threshold than lower-level ones. To overcome
this issue, the utility threshold is adapted to the level of generalization of the considered
itemsets. The key idea is to set higher utility thresholds for itemsets including items at
higher abstraction levels. The same utility threshold is set for all itemsets having the
same level. Specifically, given a user-specified least minimum utility threshold minutil
associated with non-generalized itemsets (level=0), the minimum utility threshold thr(𝑙)
associated with level-𝑙 generalized itemsets is 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 if 𝑙 = 0, 𝑡ℎ𝑟(𝑙) = 𝛼(𝑙) ⋅ 𝑚𝑖𝑛𝑢𝑡𝑖𝑙
otherwise, where 𝛼(𝑙): ℕ → [1,+∞) is a monotonically increasing (user-specified) func-
tion.
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Algorithm 3 The ML-HUI Miner algorithm
Require: transactional dataset 𝐷, taxonomy 𝑇, minimum utility threshold minutil, function 𝛼(𝑙)
Ensure: 𝑂, the set of High-Utility Itemsets and GeneralizedHigh-Utility Itemsets satisfying the per-level

utility thresholds
{Initializations}

1: 𝐼← set of items in 𝐷
2: 𝐺𝐼← set of generalized items in 𝑇

{Preparation}
3: scan 𝐷 and 𝑇 to compute Transaction-Weighted-Utility (TWU) of items in 𝐼
4: Compute Transaction-Weighted-Utility of items in 𝐺𝐼
5: 𝐼∗← set of items in 𝐷 such that TWU is above minutil(level=0)
6: 𝐺𝐼∗← set of generalized items 𝑔 in 𝑇 such that TWU is above 𝛼⋅minutil(l(𝑔,𝑇))
7: Build utility list and Estimated Utility Co-occurrence Structure of (generalized) items in 𝐼∗ ∪ 𝐺𝐼∗

{Recursive depth-first search}
8: 𝑂 ←Recursive generation of the combinations of (generalized) items in 𝐼∗ and 𝐺𝐼∗ whose items

share the same level and selection of all combinations satisfying the utility threshold 𝛼(𝑙)⋅minutil

4.3 The ML-HUI Miner algorithm
To extract Generalized High-Utility Itemsets, a new algorithm is proposed, namely

Multiple-Level High-Utility ItemsetMiner (ML-HUIMiner).Themain features of GHUI-
Miner are summarized below.

(a) Taxonomy-driven HUI mining. ML-HUI Miner supports transactional data en-
riched with taxonomy information. This allows us to extract patterns at different
abstraction levels.

(b) Single-step extraction of generalized and non-generalized HUIs.The proposed algo-
rithms explores the dataset and the taxonomy to generate multiple-level patterns
in a single phase (i.e., without the need for multiple runs).

(c) Prevent the generation of uninteresting combinations of items. Similar to [38, 74],
in this study the focus is on extracting itemsets including only items with the
same level. Thus, GHUI-Miner prevents the generation of itemsets consisting of
items with different levels in the taxonomy.

A high-level pseudo-code of the ML-HUI Miner algorithm is given in Algorithm 3.
First, ML-HUI Miner scans the dataset and the taxonomy to identify the single non-
generalized and generalized items whose Transaction-Weighted-Utility (TWU) is above
the per-level utility threshold (Lines 3-6 in Algorithm 3). To this aim, the taxonomy is
explored in a bottom-up fashion. The dataset and the accessory structures are properly
adapted to prevent the generation of combinations of mixed-level items (according to
Point (c). To compute the per-level utility thresholds, the user-specified thresholdminu-
til is adjusted using function 𝛼 according to the level of each generalized item. Then,
the utility list associated with all non-generalized and generalized items is computed,
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Table 4.5: Dataset characteristics

Dataset Ext./Int. utility Transactions Items Avg. transactions length

Retail real data 19,514 2,741 20.1

Mushroom synthetic data 8,124 119 23

Chess synthetic data 3,196 75 37

Connect synthetic data 67,557 129 43

whose TWU satisfies the per-level utility threshold (Line 7 in Algorithm 3). The utility
list is a compact data structure that contains for each (generalized) item 𝑖 (i) the list of
transactions 𝑡𝑗 such that 𝑖 ∈ 𝑡𝑗, (ii) the utility values of the (generalized) item in each
transaction u(𝑖,𝑡𝑗), and (iii) the sum of the utilities of the remaining items with the same
taxonomy level within each transaction, i.e., ∑𝑞∈𝑡𝑗∧ 𝑞≠𝑖∧𝑙(𝑞,𝑇 )=l(i,T) 𝑈(𝑞, 𝑡𝑗). In this study,
the utility list proposed in [48] to integrate information about the generalized items
at the same taxonomy level appearing in the taxonomy is extended. The utility list is
provided as input to the depth-first recursive procedure (Line 8 in Algorithm 3), which
does not need to access neither the dataset nor the taxonomy. Specifically, starting from
single items (generalized and not) the recursive procedure computes their exact utility
value and then explores all their extensions using a depth-first strategy based on the
utility list. To avoid generating itemsets consisting of items with different level, exten-
sions are selectively generated. The recursive procedure is similar to the one adopted
by FHM [48].

4.4 Experiments
To evaluate the performance of the ML-HUI Miner algorithm, experiments were

conducted on four benchmark UCI datasets coming from different domains (𝐶𝑜𝑛𝑛𝑒𝑐𝑡,
𝑀𝑢𝑠ℎ𝑟𝑜𝑜𝑚, 𝐶ℎ𝑒𝑠𝑠, 𝑅𝑒𝑡𝑎𝑖𝑙 [29]), which have already been used to evaluate the perfor-
mance of recently proposed High-Utility Itemset mining algorithms (e.g., FHM [48]).

Table 4.5 summarizes the main characteristics of the analyzed datasets, where the
number of transactions per dataset varies from 3,196 (𝐶ℎ𝑒𝑠𝑠) to 67,557 (𝑅𝑒𝑡𝑎𝑖𝑙). The
number of distinct items lies in the interval from 75 (𝐶ℎ𝑒𝑠𝑠) to 2,741 (𝑅𝑒𝑡𝑎𝑖𝑙).

It is important to note that the 𝑅𝑒𝑡𝑎𝑖𝑙 dataset [29] stores real sales of an online store,
where each transaction corresponds to a different sale, while items represent products.
Also, it is the only dataset containing real values of external and internal utilities. The
external utility represents the number of products bought, while the internal utility
indicates the prices of the items purchased.

Instead, the values of external and internal utilities of the remaining datasets (i.e.,
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Figure 4.2: Chess: number of mined patterns

𝐶𝑜𝑛𝑛𝑒𝑐𝑡, 𝑀𝑢𝑠ℎ𝑟𝑜𝑜𝑚, 𝐶ℎ𝑒𝑠𝑠) were synthetically generated by using a log-normal dis-
tribution. The external utilities range from 1 to 1,000, whereas the internal ones are
uniformly distributed between 1 and 5.

To set the per-level utility threshold values (𝑡ℎ𝑟(𝑙)), 𝛼(𝑙)=𝛾 ⋅ 𝑓 (𝑙) was defined, where
𝑓(𝑙) is the average number of level-0 descendants per level-𝑙 item.

To generalize items at higher abstraction levels, taxonomies on top of data items
were generated. Specifically, the 𝑅𝑒𝑡𝑎𝑖𝑙 dataset, was enriched with a real 2-level tax-
onomy coming from a prominent online store, which allowed to aggregate products
into the corresponding product group. The 2,741 available products are clustered into
38 product groups (e.g., Kitchen, Toy, Home, Office product, andMusical Instrument). For
instance, Kitchen clusters 1,513 products, while Toy 236. On the other datasets, a syn-
thetic taxonomy was generated, where each generalized item aggregates, on average,
10 randomly selected products. The experiments were performed on a 2.67 GHz Intel
Xeon workstation with 32 GB of RAM, running Ubuntu 12.04.

4.4.1 Performance analysis
Figure 4.2 shows the number of mined (non-generalized) HUIs and GHUIs by vary-

ing the values of 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 and 𝛾 on a representative dataset (i.e., 𝐶ℎ𝑒𝑠𝑠). For both types of
patterns, the number of mined itemsets is inversely proportional to the 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 value.
By decreasing the values of 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 and 𝛾 the total number of mined patterns super-
linearly increases. The number of GHUIs is two orders of magnitude lower than those
of HUIs due to the significantly lower number of possible item combinations at higher
taxonomy levels. The increase in the number of candidate itemsets due to taxonomy
integration implies also a time complexity increase. Figure 4.3 shows the time spent by
the ML-HUI Miner algorithm on the analyzed datasets with decreasing 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 values.
Since the value of 𝛾 affects only the extraction of HGUIs, whose number is orders of
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Figure 4.3: Execution time (𝛾=0.2)

magnitude lower than the number of HUIs, varying 𝛾 value slightly affects the execu-
tion time. For this reason, the execution time is reported only for the representative
value 𝛾=0.2 on all datasets. Despite a larger number of combinations were explored, the
extraction times remain acceptable (few ms) on all the analyzed datasets. The execution
times of the newly proposed ML-HUI Miner were compared with those of the FHM
algorithm [48], which extracts only non-generalized HUIs. ML-HUI Miner execution
time approximately doubles that FHM time, even when more than two aggregation lev-
els are integrated in the taxonomy (i.e., adding further top levels does not significantly
increase the extraction time).

4.4.2 Knowledge discovery
Let’s consider an example GHUIs mined from the 𝑅𝑒𝑡𝑎𝑖𝑙 dataset(𝑚𝑖𝑛𝑢𝑡𝑖𝑙=10000,

𝛾=0.2). The GHUIs with length 1 reveal the most profitable product groups. For ex-
ample, Kitchen is the category with maximal utility. Toy ranked second (utility gap
from Kitchen to Toy 87%), Home is the third (92%), Office product ranked 4th (96%) and
Law & Patio 5th (96%). For all the remaining categories the utility gap with respect to
Kitchenwas above 97%.TheGHUIs with length greater than 1 point out combinations of
groups that yielded high profits when the respective products were sold together. Let us
consider, for instance, GHUI {Musical-Instruments, Home}. It indicates that the jointly
sale of products in these categories provided a high income. Among GHUIs including
groupMusical-Instruments, GHUI𝑖={Musical-Instruments, Kitchen} is the one with high-
est utility. The other GHUIs in order of decreasing utility are: {Musical-Instruments,
Toy} (utility -75% w.r.t. GHUI𝑖), {Musical Instruments, Home} (utility -91% w.r.t. GHUI𝑖),
and {Musical-Instruments, Office-Product} (utility -94%w.r.t. GHUI𝑖).These patterns can
can be exploited to figure out which categories of products should be promoted in the
same advertising campaign, e.g., while planning a campaign on products belonging to
Musical Instrument, products of Kitchen, Toy, Home or Office-Product category should
be advertised as well. The utility value provided us a ranking of the most appealing
groups of products to advertise together with products of Musical Instrument. GHUIs
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provide high-level knowledge related to single products that do not satisfy the utility
threshold. Let us consider again group Musical Instrument. Only two non-generalized
HUIs were extracted, i.e., {Red-Harmonica} (utility 26,205) and {Blue-Harmonica} (util-
ity 10,271). However, the utility of the GHUI {Musical-Instruments} is 40,741. Hence, the
utility value of {Musical-Instruments} is not only due to the {Red-Harmonica} and {Blue-
Harmonica} products, but even to other products of the same group that do not satisfy
the utility threshold. Considering GHUI {Musical-Instruments} allows us to consider
also the contribution of the other products, even if their single profits are averagely
low. Moreover, GHUIs represent correlations among products that can not be easily in-
ferred while considering only HUIs. For instance, even if correlations between products
of group {Musical-Instruments} and products of other groups have not been extracted,
the high-level correlations betweenMusical Instrument and other groupswere extracted
and can be analyzed.

4.5 Summary
This study describes a new pattern, called GHUI, which represents sets of items

groups, each one characterized by a high total profit. The significance of the proposed
pattern and the performance of the proposed GHUI mining algorithm have been evalu-
ated on retail data, with the goal of planning advertising campaigns of retail products.
Future extensions of the work could address the efficient extraction of significant sub-
sets of GHUIs (e.g., closed or minimal GHUIs).
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Chapter 5

Integration of business activities
between different web directories

A pervasive problem on the web is represented by the integration of information
coming from various sources. Specifically, all the major web directories of national and
international level (e.g., Google Maps, Facebook Pages, Pagine Gialle) are continuously
acquiring new information regarding business activities from external partner organi-
zations.The acquired information is typically described using a taxonomy of categories.
However, the taxonomy used by external partners is often significantly different from
the one used internally by the company.Therefore, a correct categorization of the newly
acquired information is a critical issue.

To address this problem, the approach usually applied is to create a static mapping
between each category of the source taxonomy and one of the categories of the target
taxonomy. The mappings can be created manually or by means of semi-automatic spe-
cialized software tools (e.g., PROMPT [60], OBSERVER [55], HCONE [44]). Still, this ap-
proach is ineffective when the levels of granularity of the source and target taxonomies
are different. For example, a generic restaurant category, which lacks any specification,
cannot be mapped to a finer level of granularity, such as an Indian, Chinese, or Italian
restaurant.

To overcome this limitation, a system named TACOMA (Text-bAsed CategOry
MApping) is introduced in this study. In TACOMA the issue of mapping among tax-
onomies has been reformulated as a classification problem. Each target category could
be treated as a class, and all the significant information about the business activity is
taken into account to build a classification model. Additionally, the multi-level struc-
ture of a taxonomy allows to compensate the conceptual distance among inherently
different taxonomies. When the target category of a specific instance cannot be found
using classification, the parent, i.e., more general category can be used. The goal is to
provide the most cohesive set of categories from different taxonomies corresponding to
one and the same business activity.

The approach proposed in this thesis has been validated using different classification

77



5 – Integration of business activities between different web directories

algorithms (e.g., Artificial Neural Networks, Support Vector Machines, Random Forest).
The experiments were executed on a real dataset regarding business activities coming
from a prominent business activity web directory (i.e., Pagine Gialle1). Due to the good
level of accuracy, the results of this study have been integrated into the company pro-
duction system.

5.1 Related work
The main argument of this study can be considered as a specific case of the more

general issue of the ontology mapping, which is yet an open topic despite the fact that it
has been extensively researched. Moreover, as reported in the survey performed by Fal-
coner et al. [27] (a group of researchers from the universities of Stanford and Victoria),
the fundamental ontology mapping issues, such as different model conceptualizations
and language ambiguity, are difficult, if not impossible problems to solve even for a
team of humans.

Thor et al. [78] have summarized the principal methodologies used to achieve a
mapping among different ontologies as: (i) metadata-based, when just the information
contained in the ontology are exploited to perform the mapping; (ii) instance-based,
when the specific instances of each concept are leveraged in the process; and (iii) mixed-
forms, when both metadata and instance approaches are combined.

Aanen et al. [1] proposed ametadata-based approach of product taxonomymapping
that incorporated an extension of the Park and Kim algorithm [63]. The work of Aanen
et al. is mainly targeted at improving the process of the word sense disambiguation,
which is out of scope of the current study.

Agrawal and Srikant [4] have proposed an example of instance-based approach,
which leverages a modified Naïve Bayes classification to correctly map a source taxon-
omy to a master one. Their contribution was to exploit a locality principle: documents
coming from the same source category will have a tendency to be placed into the same
target category.

A mixed-form schema mapping approach called SimilarityFlooding is presented by
Melnik et al. [54] using a graph-based database for its implementation. The data struc-
tures to be matched can be represented by data schemas, data instances, or both. To
perform the initial mapping of the nodes, a simple string similarity is applied, which
later transforms into calculation of similarities of schema nodes that are directly related
(i.e. adjacent). The algorithm by Melnik et al. can be applied to taxonomies, however,
according to [27] a possible downside is the lower efficiency of the process due to the
hierarchical structure of the data.

A repository that represents a valuable ontology matching resource is the Ontology
Matching website [72] which incorporates a list of state-of-art studies dedicated to this

1https://paginegialle.it
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topic. Hereafter follow several studies considered particularly relevant in the field of
ontology alignment by means of classification.

Nkisi-Orji et al. [59] have leveraged a random forest classifier to automatically
match feature vectors composed of a combination of similarity measures. The advan-
tages of this approach are: the ability to handle knowledge-light ontology resources and
the absence of the need to calculate weights for each of the components of the similar-
ity measures in the feature vector. However, the approach [59], such as any metadata-
based approach, is not applicable to match categories at different granularity levels, and
it cannot be applied in case of multi-language ontologies like the ones considered in this
chapter.

Kejriwal and Miranker [43] have proposed an instance-based semi-supervised ap-
proach to match ontologies which reduces the effort of creating a sufficiently populated
training set. The methodology relies on an ensemble of classifiers which are trained
iteratively using only a small fraction of training data (i.e., around 2% of the data re-
quired by a standard supervised technique), thus, obtaining performance comparable
to a fully supervised approach. Despite being an interesting technique, the approach
proposed in [43] may provide a limited support in the context of this study, since a
substantial number of labeled samples was already available from the beginning. In ad-
dition, a human effort was required to provide samples for the uncovered classes, and
to filter out the ambiguous samples (e.g., merchants falling in multiple categories such
as restaurants which offer Chinese and Japanese cuisine at the same time).

Anotherworthful resource, theOntologyAlignment Evaluation Initiative (OAEI) [26],
is an established instrument to evaluate the ontology matching solutions in terms of
an annual competition performed on a common dataset and benchmarking platform.
Among the most recent proposals, Destro et at. [23] address the problem of matching
multi-lingual ontologies using English as a pivot language and relying on a mixture of
semantic and string distances to evaluate the result. Regardless of being a metadata-
based approach, which is not applicable in the specific case of this study, the proposed
methodology could be leveraged as a possible extension of the current study.This would
automate the process of mapping categories at the same level of granularity but differ-
ent in terms of language such as Apple (English) and Pagine Gialle (Italian), currently
performed manually with the help of a domain expert.

5.2 Theoretical background
This section contains a reference to the Term frequency - Inverse Document Frequency

technique used by TACOMA .
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Term Frequency (TF) and Inverse Document Frequency (IDF)
Preliminaries Let 𝐶 be a collection of documents, 𝐷 = {𝑑1,… , 𝑑𝑛} the set of docu-
ments in 𝐶, and 𝑇 = {𝑡1,… , 𝑡𝑘} the set of terms in 𝐶.

Definition 5.2.1 (Term Frequency (TF)). For each pair (𝑑𝑖, 𝑡𝑗) in 𝐶, the Term Frequency
𝑇 𝐹𝑑𝑖,𝑡𝑗 , is the relative frequency of the term 𝑡𝑗 in the document 𝑑𝑖. It is computed as
𝑓𝑑𝑖,𝑡𝑗/ ∑1≤𝑘≤| ∑ | 𝑓𝑑𝑖,𝑡𝑗 , where 𝑓𝑑𝑖,𝑡𝑗 is the number of times the document 𝑑𝑖 contains the
term 𝑡𝑗 and ∑1≤𝑘≤| ∑ | 𝑓𝑑𝑖,𝑡𝑗 is the total number of terms contained in 𝑑𝑖.

Definition 5.2.2 (Inverse Document Frequency (IDF)). The Inverse Document Frequency
𝐼𝐷𝐹𝑡𝑗 for a term 𝑡𝑗 is the frequency of 𝑡𝑗 in 𝐶. It is computed as log(|𝐷|/|𝑑𝑘 ∈ 𝐷 ∶
𝑓𝑑𝑘,𝑡𝑗 ≠ 0|) where |𝐷| is the number documents in 𝐶 and |𝑑𝑘 ∈ 𝐷 ∶ 𝑓𝑑𝑘,𝑡𝑗 ≠ 0| is the
number of documents in 𝐶 which contains at least one term 𝑡𝑗.

Mathematically, the base of the log function for IDF computation does not matter
and constitutes a constant multiplicative factor towards the overall result. The TF-IDF
weight 𝑤𝑑𝑖,𝑡𝑗 for the pair (𝑑𝑖, 𝑡𝑗) is high when the term 𝑡𝑗 appears with high frequency
in documents 𝑑𝑖 and low frequency in documents in the collection 𝐶.

When the term 𝑡𝑗 appears in more documents, the ration inside the IDS’s log func-
tion approaches 1, and the 𝐼𝐷𝐹𝑑𝑗

value and TF-IDF weight 𝑤𝑑𝑖,𝑡𝑗 become close to 0.
Hence, the approach tends to filter out common terms. A more formal definition of
TF-IDS follows.

Definition 5.2.3 (TF-IDF weight (w)). For each pair (𝑑𝑖, 𝑡𝑗) in 𝐶, the TF-IDF weight
𝑤𝑑𝑖,𝑡𝑗 is computed as 𝑤𝑑𝑖,𝑡𝑗 = 𝑇 𝐹𝑡𝑖,𝑑𝑗

∗ 𝐼𝐷𝐹𝑡𝑗 where 𝑇 𝐹𝑡𝑖,𝑑𝑗
is the Term Frequency and

𝐼𝐷𝐹𝑡𝑗 is the Inverse Document Frequency.

5.3 Motivation and an industry use case
The thorough analysis of the approaches mentioned in Section 5.1 showed that the

previous studies don’t address a fundamental issue, which is performing the taxonomy
mapping of the nodes at different levels of abstraction. Identification of this problem
served as a motivation to fill in the research gap in terms of this thesis. Specifically,
the objective of this study is to propose a method to map the instances of a certain
hypernym category of the source taxonomy with its hyponyms in the target taxonomy.

Let’s consider a running example of the issue coming from the industry which is
illustrated in Figure 5.1. The taxonomy of Pagine Gialle (on the left) is organized rigidly
according to three levels, while the Apple Maps2 taxonomy (on the right) has a more
flexible schema structure, with a variable number of hierarchy levels — currently from 3

2https://mapsconnect.apple.com/
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to 5— and extendible whenever necessary.Themore generic hypernym Ristoranti, at the
third level of the source taxonomy of Pagine Gialle, has a straightforward mapping with
the target category restaurants, at the first level of the Apple Maps taxonomy. Neverthe-
less, this kind of mapping “hides” the 332 hyponyms available in the target Apple Maps
category, ranging from restaurants.italian.sicilian to restaurants.chinese.shanghainese.

Figure 5.1: Mapping of categories at different abstraction levels.

To overcome thismethodology limitation, TACOMA has been developed as an instance-
based approach, to achieve the correct categorization of all the hyponyms in the target
taxonomy leveraging a classification model. As illustrated in Figure 5.1, the keywords,
name, and description fields altogether compose an auxiliary level of taxonomy that is
exploited by the classification model to produce a mapping among the source and target
categories.

It is worth to mention that TACOMA taxonomy mapping approach is agnostic of
the schema structure, i.e., the number of levels in each taxonomy may be arbitrary. Us-
ing a hierarchical classification approach, each target taxonomy level could be treated
independently: the result obtained by the classifier of a certain target level can be fur-
ther refined using another classifier to descend the target taxonomy level if needed. In
addition, the language used to define each Pagine Gialle taxonomy category, as well
as their instances, is Italian. Instead, the working language of the Apple Maps taxon-
omy is English. All the methodologies reported in Section 5.1, apart from the one of
Agrawal [4], would have failed to perform the mapping correctly due to this language
mismatch. In its turn, another advantage of TACOMA, as an instance of a classification
approach methodology, is to automatically overcome this language discrepancy.
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5.4 Methodology

5.4.1 Data preparation
The labeled dataset used to train the classification model has been composed with

the data coming from Pagine Gialle and Apple Maps information sources. Initially,
noticing that Apple Maps has adopted the Yelp taxonomy to categorize its business ac-
tivities, a custom software crawler was developed to obtain labeled data directly from
the Yelp website3. Employing the Pagine Gialle business activities dataset as an input,
which was composed of nearly 170000 entries, the crawler obtained around 3% of them
(5000) as labeled matches on Yelp. Another contribution to the training set was given by
Apple Maps, which has provided approximately 1000 manually labeled entries coming
from their data quality review.

However, there were still two issues to be tackled. (i) Since TACOMA has been de-
signed to address specific branches where the source taxonomy has a coarser granular-
ity than the target taxonomy, just a fraction of these specific categories were covered
by the training set. (ii) Additionally, the entries among the needed classes were strongly
unbalanced. To deal with both issues, i.e., the lack of data and the unbalanced dataset,
Pagine Gialle has given its contribution providing the labeled entries. Even synthetic
samples were created when the real ones were lacking to equally populate the appro-
priate classes.

Figure 5.2: The training set building process

3https://www.yelp.it
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5.4.2 Dataset description
The dataset resulted from the process illustrated in Section 5.4.1 is composed of 8

fields. Table 5.1 shows a real example reporting the data of a creperie.The first field is the
label, available just in the training set, while the others are split in two groups: (i) pure
free text fields (i.e., name, and description), (ii) and five keyword fields, which contain
keywords coming from a set tailored per business activity (i.e., activities, specialties,
services, products, and brands).

Empirical verification has shown that the free text fields, i.e., description and name,
significantly contribute in some cases to accurately categorize a business activity work-
ing as an implicit source for keyword enrichment.

In the Pagine Gialle / Apple Maps use case, analyzing the taxonomies involved,
four cases were found that required the application of TACOMA approach: food, shop-
ping.fashion, and restaurants with its subset restaurants.italian which in its turn has to
be processed to further refine the business activity category. Table 5.2 summarizes the
characteristics regarding the various training sets leveraged in the use case.

Attribute Value

Label restaurants.creperies

Name Crispus

Description
Located in the town of Alberobello … it is a place
where you can stay until late at night for a tasty snack.

Activities ”dinner aperitif”

Specialties ”main dishes” / ”traditional cuisine” / ”homemade desserts”

Services -

Products ”sandwiches” / ”pizza” / ”ice cream”

Brands -

Table 5.1: Example of a labeled entry from the training set (original data in Italian).

5.4.3 Classifier architecture
Figure 5.3 shows the processes to train the classificationmodel, test it, and finally use

it to classify unlabeled data. The three phases have in common the pre-processing steps
used to prepare the textual data for the classifier to train the model or query it. Each
of the input dataset fields (e.g., keywords, description) is filtered from the punctuation
and tokenized into single words. The smallest tokens (i.e., less than 3 characters long)
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Dataset Level Number of classes Samples per class Entries

restaurants 1 25 17 425

restaurants.italian 2 15 17 255

food 1 32 17 544

shopping.fashion 1 15 17 255

Table 5.2: Training set statistics.

are then eliminated along with the stopwords 4. Then, the stemming step is applied,
reducing each word to its root term. For instance, words like fishing, fished, and fisher
will all be reduced to their stem fish.

The TF-IDF step (Term Frequency–Inverse Document Frequency, see Section 5.2) is
then applied on the stems to obtain a series of vectors, one for each business activity
case, containing a weight for each stem. The TF-IDF weight increases proportionally
to the number of times the stem is repeated in the specific business activity data. Con-
versely, the weight is offset by its frequency in the entire business activities dataset.
This effect compensates the high frequency of the most common, not significant words
(and so, of their stems).

The stem matrix is then given as an input to the SVM classifier (Support Vector
Machine [67]) to train the model or, alternatively, to query it to obtain an appropriate
business activity category prediction.

To increase the classifier accuracy a hierarchical classification approach has been
usedwhen the target taxonomy hasmore than one finer levels with respect to the source
taxonomy. Any additional finer level present in the target taxonomy is dealt with using
a specialized classifier. In our use case, for instance, as reported in Table 5.2, when
the restaurants classifier assigns a restaurants.italian category, the data regarding the
business activity being analyzed are then passed to a second level classifier trained to
recognize 15 different kinds of Italian restaurants.

In addition, each classifier prediction is evaluated against a given user-specified con-
fidence threshold. If the confidence reported by the classifier is below a given threshold,
the upper level category of the target taxonomy is used as a result. Namely, the category
restaurants.italianwill be used in place of a low confidence prediction of restaurants.ital-
ian.altoatesine.

4 Commonly used and non significant words like the, is, at, which, and on.
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Figure 5.3: The TACOMA classifier architecture.

5.5 Experimental validation
The classification pipeline illustrated in Figure 5.3 has been developed using the

fast prototyping environment Rapidminer [56]. During the experiments several kinds
of classifiers (i.e., Decision Tree, Random Forest, Naive Bayes, GLM, Neural Net, SVM
with different kernels) have been tested with the support of a grid search to optimize
their parameters. The results reported hereafter are relative to the SVM classifier with
a linear kernel, which is the one that has best performed with the analyzed dataset. The
classification pipeline has been then deployed as a web service to be easily queryable
from the software module responsible to assign the Apple Maps target category to each
Pagine Gialle business activity.

The leave-one-out cross-validation (LOOCV ) method has been adopted to evaluate
the classification model. Using LOOCV, the model is trained against the entire dataset
but for one single sample for which a prediction is made with the trained model. The
values of the accuracy, precision, recall, and f1-score classifier performance indices are
then updated according to the outcome of this prediction (i.e., correctly or incorrectly
made). The process is then repeated, leaving out another sample and training the model
with the rest, till the entire dataset have been covered.

The accuracy, measuring the overall quality of the classifier, is the ratio of the num-
ber of correctly classified business activities over the total number of them. Precision
and recall analyze the performance of the classifier with respect to a given class c. Pre-
cision is defined as the number of business activities correctly classified in c divided
by the total number classified in c. Recall is the number of business activities correctly
classified in c divided by the number labeled with c in the dataset. F1-score is used to
combine precision and recall in a single value and it is equal to their geometric mean.
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Classifier Accuracy Average precision Average recall Average f1-score

restaurants 94.80% ± 22.20% 96.10% 94.84% 95.34%

restaurants.italian 94.12% ± 23.53% 95.55% 94.12% 94.63%

Table 5.3: Performance indices of the restaurants and restaurants.italian classifiers.

Class Precision Recall F1-score

restaurants.japanese 88,24% 88,24% 88,24%

restaurants.tradamerican 100,00% 94,12% 97,02%

restaurants.brazilian 100,00% 94,12% 97,02%

restaurants.creperies 100,00% 94,12% 97,02%

restaurants.arabian 100,00% 94,12% 97,02%

restaurants.african 100,00% 94,12% 97,02%

restaurants.asianfusion 86,67% 76,47% 81,41%

restaurants.bbq 88,24% 88,24% 88,24%

restaurants.chinese 94,44% 100,00% 97,18%

restaurants.indian 100,00% 94,12% 97,02%

restaurants.pizza 94,44% 100,00% 97,18%

restaurants.seafood 93,75% 88,24% 90,95%

restaurants.vegan 100,00% 88,24% 93,94%

restaurants.hotdogs 100,00% 94,12% 97,02%

restaurants.italian 56,67% 94,44% 73,16%

Table 5.4: Performance of a subset of classes of the level 1 restaurants classifier.

Table 5.3 shows the values of the above indices for both the level 1 and 2 classifiers
(i.e., restaurants, and restaurants.italian). In addition, Tables 5.4 and 5.5 illustrate the
performance of a subset of the classes involved.

The accuracy value of the restaurants classifier is quite high (94.8%), with very close
values for the average precision and recall, respectively 95.55% and 94.12%.The very high
values, supported with the sample tests performed on the production data, guarantees
the quality of the classification model. It is worth to comment the results relative to
the restaurants.italian class, for which the precision value (56.67%) is the lowest among

86



5.5 – Experimental validation

Class Precision Recall F1-score

restaurants.italian.apulian 100,00% 88,24% 93,94%

restaurants.italian.calabrian 94,44% 100,00% 97,18%

restaurants.italian.emilian 94,44% 100,00% 97,18%

restaurants.italian.friulan 100,00% 88,24% 93,94%

restaurants.italian.ligurian 100,00% 94,12% 97,02%

restaurants.italian.lumbard 61,54% 94,12% 76,11%

restaurants.italian.napoletana 93,33% 82,35% 87,67%

restaurants.italian.piemonte 100,00% 94,12% 97,02%

restaurants.italian.roman 100,00% 94,12% 97,02%

restaurants.italian.sardinian 89,47% 100,00% 94,59%

restaurants.italian.sicilian 100,00% 82,35% 90,75%

restaurants.italian.tuscan 100,00% 94,12% 97,02%

Table 5.5: Performance of a subset of classes of the level 2 restaurants.italian classifier.

all the other classes. This fairly low precision indicates that nearly the 50% of the pre-
dictions regarding the class are false positives. At the same time, the very high recall
(94.44%) shows that almost all the real restaurants.italian cases are correctly catego-
rized. This is most probably caused by the large variability of the cases falling into the
restaurants.italian class, which has 15 different sub-categories.

A similar scenario is found exploring the performance indices of the restaurants.ital-
ian classifier which has again a very high accuracy: 94.12% and close values for the
average precision, recall and f1-score. The restaurants.italian.lumbard class follows the
same lower precision (61.54%) / high recall (94.12%) pattern previously analyzed in the
restaurants.italian class while restaurants.italian.friulan has an opposite outcome. Its
precision is 100%, but the lower recall value (88.24%) indicates that more than the 10%
of the cases have been mistakenly placed in a different category.
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5.6 Summary
This study defines a classification model to support the integration of business ac-

tivities among different web directories (e.g., Pagine Gialle, Google Maps, Facebook
pages) characterized by taxonomies of different granularity levels. In particular, it ad-
dresses the problem of a source taxonomy, which has categories at a coarser concep-
tual level of granularity of the target taxonomy. For instance, a source taxonomy with
a hypernym concept of furniture whose instances should be mapped to the hyponym
concepts of chair, table, or bookcase in the target taxonomy. The issue is addressed us-
ing an instance-based classification approach, where the textual data of each case is
leveraged to correctly predict the appropriate category of the target taxonomy. The ex-
periments performed on real data coming from a prominent Italian web directory (i.e.,
Pagine Gialle) have proven the efficacy of the proposed methodology, which has been
already integrated in the production system of Pagine Gialle to export its data towards
an international partners such as Apple Maps.
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Chapter 6

Conclusions

The research activity described in this PhD thesis has focused on the design and
development of proper techniques for the integration and analysis of huge volumes
of heterogeneous data in urban and business application areas. Original contributions
of this PhD thesis are the study and development of novel data analysis frameworks
and novel patterns to extract useful insights from the targeted data collections tackling
important issues such as the large dataset cardinality, dimensionality, and the variable
data distribution. In the proposed frameworks, these results are obtained by means of
enriching the data with taxonomies placed on top of them with the aim of analyzing
data at multiple abstraction levels.

In Chapter 2, the fundamental issue of monitoring the air-pollution in the urban
environment is addressed. Two data mining frameworks, GECKO (GEneralized Cor-
relation analyzer of pOllution data) [14] and ARQUATA (AiR QUAlity patTern Ana-
lyzer) [12], are described. The data mining system GECKO leverages the power and
expressiveness of the generalized association rules to extract, interpretable correlations
among air pollution related data at different granularity levels. The data analyzed by
GECKO system covered various aspects of air quality such as meteorological condi-
tions, acquisition times, and vehicular trafficmeasurements. In its turn, the data analysis
performed inARQUATA is targeted at discovering combinations of pollutant concentra-
tions that averagely are in a critical condition.The weighted frequent itemset pattern, is
exploited to extract the novel type of pattern designed for this purpose, the air quality
pattern. To provide different insights to domain experts and municipality actors, these
patterns are extracted from several aggregations of the raw data following specific tem-
poral and spatial granularities. For instance, the data coming from the city center area
can be monitored along different seasons, or with the heating systems off and on, to
be examined by domain experts. GECKO and ARQUATA engines were validated on real
open data collected in a major Italian city (i.e., Milan). The discovered patterns demon-
strate their effectiveness in extracting interesting knowledge, which can be easily ex-
ploited by public administrators to monitor the air quality in urban environments by
means of the automatic reports generated.
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In Chapter 3, a novel exploratory data-driven methodology, named Bike Station
OvErLoad AnaLyzer (BELL) is presented with the aim of improving the user perception
and ease of maintenance of bike-sharing systems. BELL analyzes the occupancy level
data acquired from real systems to determine situations of dock overload in multiple
stations which could lead to service disruption. The proposed methodology relies on a
pattern mining approach. In particular, a new pattern type called Occupancy Monitor-
ing Pattern, has been designed to detect situations of dock overload in multiple stations.
Since stations are geo-referenced and their occupancy levels are periodically monitored,
occupancy patterns can be filtered and evaluated by taking into consideration both the
spatial and temporal correlation of the acquired measurements. The results achieved on
real data highlight the potential of the proposed methodology in supporting domain
experts in their maintenance activities, such as periodic re-balancing of the occupancy
levels of the stations, as well as in improving user experience by suggesting alternative
stations in the nearby area. During the empirical study, BELL has been thoroughly eval-
uated using a real dataset acquired from the bicycle sharing systems of two important
smart cities, i.e., Barcelona and New York. The experimental results demonstrated the
effectiveness of BELL in identifying useful knowledge regarding the spatio-temporal
distribution of possible service disruptions for the end users of bicycle sharing systems.

Chapter 4 presents a study goal of which is to discover recurrent combinations of
items characterized by high profit from transactional datasets. A novel type of pattern,
namely the Generalized High-utility Itemset (GHUI ), is defined and developed to com-
bine the expressiveness of generalized and High-Utility itemsets. GHUI represents a
combinations of items at different granularity levels characterized by high profit (util-
ity). According to a user-defined taxonomy, items are first aggregated into semantically
related categories. While profitable combinations of item categories provide interest-
ing high-level information, GHUIs at lower abstraction levels represent more specific
correlations among profitable items. A single-phase algorithm (i.e., ML-HUI Miner ) is
presented to efficiently discover utility itemsets at multiple abstraction levels. The ex-
periments, which were performed on both real and synthetic data, demonstrate the
effectiveness and usefulness of the proposed approach.

Chapter 5 introduces the TACOMA system. Starting from a real industry case it aims
at supporting the integration of data regarding business activities between differentweb
directories (e.g., Google Maps, Pagine Gialle, Apple Maps) characterized by taxonomies
of different granularity levels. In particular, TACOMA addresses the problem of a source
taxonomy, which has categories at a coarser conceptual level of granularity of the target
taxonomy. For instance, a source taxonomywith a concept of furniture whose instances
should be mapped to the concepts of chair, table, or bookcase in the target taxonomy.
The issue is addressed using a classification approach, where the textual data of each
case is leveraged to correctly predict the appropriate category of the target taxonomy.
The experiments performed on real data coming from a prominent Italian web directory
(i.e., Pagine Gialle) have proven the efficacy of the proposed methodology, which has
been already integrated in the production system of the company to export its data
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towards international partner systems (i.e., Apple Maps, Amazon Alexa).

The data mining frameworks and patterns proposed in this research activity proved,
through experimentation, to be effective solutions to get useful knowledge from het-
erogeneous data in the complex urban and business application domains. The results
confirm the importance of leveraging taxonomies to obtain useful insights from the
data at multiple levels of granularity. Several possibilities are open to further expand
the studies presented in this PhD thesis:

1. the GECKO and ARQUATA frameworks could be combined and enriched with
other kinds of interesting data affecting air quality such as people’s mobility and
private/public transport data;

2. BELL can be expanded integrating other data sources (e.g., environmental pollu-
tion, road network features, vehicular traffic, and the presence of cycling lanes)
to enrich the quality of the generated model;

3. Future extensions of the GHUI patterns could address the efficient extraction of
significant subsets of them (e.g., closed or minimal GHUI );

4. The TACOMA system can be expanded to support a multi-label classification.
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