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Abstract
Cutaneous blood flow plays a key role

in numerous physiological and patho-

logical processes and has significant

potential to be used as a biomarker to

diagnose skin diseases such as basal

cell carcinoma (BCC). The determina-

tion of the lesion area and vascular

parameters within it, such as vessel

density, is essential for diagnosis, sur-

gical treatment and follow-up proce-

dures. Here, an automatic skin lesion

area determination algorithm based on

optical coherence tomography angiog-

raphy (OCTA) images is presented for

the first time. The blood vessels are

segmented within the OCTA images and then skeletonized. Subsequently, the skel-

eton is searched over the volume and numerous quantitative vascular parameters

are calculated. The vascular density is then used to segment the lesion area. The

algorithm is tested on both nodular and superficial BCC, and comparing with der-

matological and histological results, the proposed method provides an accurate,

non-invasive, quantitative and automatic tool for BCC lesion area determination.
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1 | INTRODUCTION

Basal cell carcinoma (BCC) is the most common type of
skin cancer in the Caucasian population [1]. Pathogenesis of
BCC is closely linked to UV exposure and often occurs in
readily visible areas of the skin. According to clinical fea-
tures, BCCs are mainly classified as nodular (the most com-
mon clinical subtype), superficial (the second most common
subtype) and morpheaform (accounting to 5%-10% of the
cases) [2].

To diagnose BCC, imaging has traditionally been done
using a magnifying lens. More recently, dermatoscopy has
been employed in routine clinical work, as it is particularly
suitable for diagnosis of pigmented lesions and provides
important morphological insights for a range of skin pathol-
ogies [3]. Biopsies remain the gold standard for diagnosis of
BCC and provide highly detailed images of the lesion. The
biopsy sample is used for diagnosis and gives information
about the depth of the tumor invasion. During the surgical
resection, the width of the excisional area is given by
dermatoscopy and the depth information is provided by
biopsies [4, 5]. Owing to the invasive nature of excision,
along with their inability to provide longitudinal data of the
same lesion, and the risk of adverse effects and scarring,
biopsies are not ideal for monitoring the effect of local ther-
apy of BCC with chemotherapeutic and immune-modulating
agents. Non-invasive, more accurate imaging techniques are
therefore highly urgent. Magnetic resonance imaging [6],
computed tomography angiography [7] and ultrasound [8]
have been reported to visualize skin vasculature, but they
have limited resolution which is not high enough to reveal
the microvasculature in the superficial layer of skin.

Optical coherence tomography (OCT) is a powerful
imaging technique that enables non-invasive, in vivo, high-
resolution, cross-sectional imaging in biological tissues.
OCT systems can achieve axial and lateral resolutions of a
few micrometers [9, 10]. A promising field of application
for OCT is in dermatology, where it has two distinct virtues:
whereas dermatoscopy provides a high-resolution en face
view of the skin surface, OCT offers cross-sectional imaging
revealing tissue morphology down to a depth of 1 to 2 milli-
meters. In addition, compared with the gold standard histol-
ogy, non-invasiveness of OCT allows repeated imaging
sessions to monitor pathogenesis and therapy over time
without the need of taking tissue samples [3]. Recently, it
has been proved that OCT can be used in the diagnosis of
BCC [11, 12]. However, there are numerous other features
that can be mistaken for tumors in OCT images, such as hair
follicles, cysts and benign neoplasms. Lacking the specific-
ity needed for BCC diagnosis, morphological imaging using
OCT alone is not enough. In view of this, a functional exten-
sion of OCT, named OCT angiography (OCTA), may fill in

the gap by giving vasculature information of the underlying
lesion and surrounding areas.

By acquiring B-scans at the same position for multiple
times, OCTA can contrast the pixels corresponding to blood
vessels using the intensity and/or phase modulation exerted
by moving hemoglobin in the vessels [13]. Currently, OCTA
is the most successful functional extension of OCT, since it
can be implemented in any OCT platform and it meets an
immediate clinical diagnostic need [14, 15]. Knowing that
in vivo visualization of cutaneous blood vessels may aid in
diagnosis and treatment of dermatological disorders [16], in
the past few years, OCTA has been actively applied in der-
matological research for a variety of skin diseases [17]. By
performing an OCTA scan on skin, both tissue and vascular
morphologies can be extracted in a non-invasive manner in
just a few seconds. The specific appearance of cutaneous
vasculature gives clinicians a valuable reference for their ini-
tial diagnosis of skin diseases.

However, it is of fundamental importance to be able to
extract not only qualitative information, but also quantitative
parameters that can objectively describe the complexity of
the examined blood vessels [18]. Extracting quantitative
information from OCTA volumes is a recent hot topic in
research, and various studies exist in literature, many of
which focus on retinal microvasculature [19–22], preclinical
animal models [23–25], and specific dermatological
cases [26–31]. Among the various methods to assess the
complex vasculature, skeletonization techniques have been
shown to characterize and quantify vascularization in numer-
ous clinical and preclinical applications using different
imaging modalities, such as contrast-enhanced ultrasound
[32, 33], acoustic angiography [34], photoacoustics [35] and
more recently also in OCTA [36, 37]. Skeletonization is
based on an initial segmentation of the vasculature, which is
then reduced to a minimal representation, the skeleton. The
skeleton can then be automatically searched, and quantita-
tive parameters can be calculated within specific regions-of-
interest (ROI). A disadvantage of this approach is that the
ROI is typically placed manually on the volume to determine
the quantitative parameters within an area that is decided by
the user, generating inter- and intra-operator variability of
the ROI placement.

When considering non-dermatological applications,
quantitative vascular parameters have been used for studying
retinal microvascular changes in uveitis and showed how
skeleton-based OCTA algorithms are robust enough to
detect changes in uveitis subjects [3]. The technique was,
however, only semi-automatic, and the entire imaged region
was considered either healthy or diseased, precluding the
need for distinguishing a lesion area within the imaged
volume.

2 of 11 MEIBURGER ET AL.



When considering dermatological applications, a correla-
tion mapping mask was proposed for improving microcircu-
lation imaging of human skin and the method quantitatively
assessed the difference between a burn scar and normal skin
of one subject using the vessel area density parameter, show-
ing how this parameter can distinguish between the two skin
conditions [38]. The repeatability of the vessel density mea-
surement in human skin using OCTA volumes acquired on
healthy individuals has been presented recently [39]. In their
study, the authors acquired three different OCTA volumes
on four locations (volar wrist, volar forearm, shoulder, and
volar upper arm) and then segmented the volumes and calcu-
lated the vessel density of each skin layer (papillary dermis,
reticular dermis and the whole dermis layer). Their results
showed that the quantification of vessel density using OCTA
volumes is repeatable in healthy individuals. It is shown in
another study that human skin wound healing can be moni-
tored over time using OCTA by extracting the vessel diame-
ter and density and may help to ascertain wound severity
and possible healing outcomes [30].

In this paper, we demonstrate an automatic skin lesion
area determination algorithm based on the OCTA data of
BCC. This algorithm firstly extracts multiple quantitative
vascular parameters for the whole volume. Then the vascular

density parameter is used to marginalize the lesion zone
based on a parametric analysis.

2 | MATERIALS AND METHODS

2.1 | The OCT system

The schematic diagram of the OCT system is shown in
Figure 1. The system employs a swept source with a central
wavelength of 1340 nm and a bandwidth of 37 nm running
at the sweep repetition rate of 200 kHz (SSOCT-1340;
Insight Photonic Solutions, Inc). The power incident upon
the sample is measured to be 5.8 mW. The data are acquired
by a digitizer (ATS9360, Alazar Technologies, Inc.) at
400 MS/s. The lateral resolution is 54.64 μm in air. The
axial resolution is 26.86 μm in air (18.52 μm in tissue). The
horizontal imaging range is 10 mm × 10 mm, and the pene-
tration depth is around 1.2 mm. With a customized imaging
unit, the system can access various parts of the patients' bod-
ies. For details of the system please refer to previous studies
[14, 40].

The post-processing employs a complex signal–based
OCTA algorithm [41, 42]. Motion contrast is achieved by
calculating the difference of consecutive B-scans in the same

FIGURE 1 Schematic diagram of the optical coherence tomography angiography system used in the experiments
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position. Four consecutive B-scans in the same position are
used in our system and numerical stabilization algorithms
are used to improve the phase stability.

2.2 | Human subjects

Seven patients with BCC were imaged. One of them pres-
ented a nodular BCC (nBCC) on the head. The other six
presented superficial BCCs (sBCCs) on the leg or the arm.
The age of the patients ranged from 30 to 70 years, and both
genders were recruited.

The experimental procedure was approved by the Ethics
Committee of the Medical University of Vienna (EK 1246/
2013). Informed consent was obtained from participating
subjects prior to the experiment.

2.3 | Lesion area determination algorithm

Figure 2 outlines the main steps of the algorithm, which are
described in further detail in the following sections. The
automatic skin lesion area determination algorithm relies on
the calculation of three-dimensional (3D) quantitative vascu-
lar parameters on the skeletonized vasculature. To acquire a

correct skeleton, an accurate segmentation of the vessels is
required. Hence, the acquired OCTA volume was first
preprocessed and then a threshold was used to obtain the
segmentation. The skeleton was obtained from the automatic
segmentation and subsequently, an automatic lesion area
determination algorithm was applied to determine the loca-
tion of the BCC lesions.

2.3.1 | Image preprocessing and segmentation

One OCTA volume includes 512 B-scans, 490 A-lines with
410 pixels per A-line. This corresponds to a volume size of
10 mm × 9.57 mm (horizontal direction) × 1.35 mm
(in depth). Most vasculature visible in the OCTA volumes is
in a specific depth range, so first of all, a 0.3 mm depth win-
dow containing most of the vasculature was isolated from
the acquired volume to reduce the computational time. This
was done automatically by calculating the intensity of the
OCTA signal in all the slices and finding the most superfi-
cial slice and the deepest slice that included the entire inten-
sity distribution the best.

Subsequently, a 3D median filter (kernel size 3 × 3 × 3
pixels) was applied on the raw data to reduce the noise

FIGURE 2 Image processing steps. All sub-figures are given as en face view maximum intensity projection images. Scale bar: 1 mm. A,
Original optical coherence tomography angiography volume. B, Preprocessed volume. C, Segmented volume. D, Skeleton volume. E, Preprocessed
volume with skeleton overlaid in green. F, Skeleton volume presented in vascular density heat map. G, Preprocessed volume presented in vascular
density heat map. The lesion area is encircled by the white line. H, Heat map of the preprocessed volume with the lesion area (blue square) and
healthy area (green) regions-of-interests. Bottom right: heat map scale for normalized vascular density
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present in the volume. Then, a Frangi vesselness filter was
applied to the volume since the objects of interest in the vol-
ume are blood vessels [43]. The Frangi filter simultaneously
reduces noise in the volume that does not correspond to
blood vessels and enhances the vessels. This filter is charac-
terized by the scale that determines the dimensions of the
vessels that are recognized and enhanced in the 3D volume.
It is possible to combine multiscale measurements and there-
fore recognize both larger and smaller vessels. In this study,
we adopted a scale size ranging from 1 to 5 with a step size
of 1 to enhance both capillaries and vessels with a larger
diameter. The filtered maximum intensity projection (MIP)
en face image can be seen in Figure 2B.

To obtain a final binary volume where white corresponds
to vessels, the preprocessed slices of the volume must be
correctly segmented. Each slice clearly represents either the
lack of an OCTA signal (hence structures not containing
moving hemoglobin) or the presence of a signal, that corre-
sponds to structures containing flowing hemoglobin. There-
fore, in order to segment the vessels, a fast adaptive
thresholding technique [44] was employed slice by slice in
order to reconstruct the final 3D volume. The final seg-
mented en face MIP view can be seen in Figure 2C.

2.3.2 | Skeletonization

After the segmentation, a 3D skeletonization method was
employed on the segmented volume to reduce the represen-
tation of the vascular network. Skeletonization techniques
are designed to reduce the segmented binary volume into a
minimal representation of the vascular network while still
preserving its morphology. Specifically, a medial axis
extraction algorithm [45, 46] was used since the morphology
of interest in this study is that of the blood vessels. Hence,
the final skeleton represents the medial axis of the seg-
mented vessels. The en face view of the obtained skeleton is
shown in Figure 2D. The final skeleton overlaid on the
OCTA MIP en face view is displayed in Figure 2E.

2.3.3 | Vascular parameter extraction &
lesion area determination

The obtained 3D skeletons can be used to analyze the char-
acteristics of the vessel network thanks to a skeleton search
algorithm and the calculation of quantitative vascular param-
eters within a specific ROI. In this work, seven quantitative
parameters are considered, which are as follows:

1. Number of trees: number of independent vascular trees
into which the search algorithm decomposes the skeleton
volume.

2. Vascular density (VD): number of skeleton voxels in a
unit volume within the ROI.

3. Number of branches (NB): number of branches found
within the structure.

4. Mean radius (MR): MR of the vessels found within
the ROI.

5. Two-dimensional distance metric (DM): defined as the
ratio between the actual path length of a considered ves-
sel and the linear distance between the first and the end
points of that vessel. This measures the bidimensional
tortuosity of the vessel, given that a straight line would
yield a DM of 1, whereas as the curvature of the vessel
increases, so does the DM.

6. Inflection count metric (ICM): defined as the DM multi-
plied by the number of inflection points found along the
vessel path. This parameter considers not only the over-
all curvature of the vessel but also the number of times
the vessel changes direction in its path.

7. Sum of angles metric (SOAM): defined as the sum of all
the angles that a curve has in space. This tortuosity
parameter is helpful in the case of tightly coiled vessels,
which are not well-represented by either the DM
or ICM.

As mentioned in the introduction, these quantitative vas-
cular parameters are typically calculated within manually
placed volume ROIs, usually considering a healthy area and
a lesion area. Here, we instead present a completely auto-
matic approach to determine the skin lesion area in BCC. To
achieve this, the following procedure was used:

• A grid of ROIs was generated with a 30% overlap in the
horizontal and vertical dimension between juxtaposed
ROIs. Each of the ROIs corresponded to a volume size of
2.5 mm × 2.5 mm × 0.3 mm.

• The quantitative vascular parameters were calculated for
each ROI.

• A skeleton and a vessel volume were obtained for each
vascular parameter. As an example, Figure 2F,G show
the skeleton volume and the preprocessed volume as a
heat map of the VD, respectively. These volumes are
no longer binary; rather, the previously considered
binary object (ie, the skeleton or the vessel segmenta-
tion) assumes the value of the calculated vascular
parameter. The overlap of ROIs was introduced to
allow a smoother transition from different values of the
quantitative parameters; in fact, in the areas that were
overlapped, the average value of the quantitative vascu-
lar parameter is reported as the final value. The general
flowchart of this approach is detailed in Figure S1 in
the supplementary material.
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For BCC lesions, it was found that the VD parameter can
be used to discriminate the lesion area, which can be deter-
mined by setting a threshold on the heat map of the VD.

First of all, however, it is necessary to consider the case
that a lesion may not always be present within the OCTA
volume. In the case of no lesion present within the acquired
volume, it can be assumed that the underlying vasculature
presents a similar architecture and distribution within the
entire volume. Therefore, to discriminate the case of no
BCC lesion present, the SD of all of the VD values calcu-
lated within the 3D VD skeleton was calculated. In the case
of no lesion, this value is expected to be small since there is
an even distribution of vascular density throughout the vol-
ume, so a minimum value of 4 × 10−5 was used.

Once determining if a lesion is actually present, the
lesion area determination algorithm then does an initial
thresholding on the heat map of the VD, using a value equal
to 75% of the maximum. A check is then done to determine
if the BCC lesion is superficial or nodular. In the case of a
sBCC, the areas that present a high vascular density corre-
spond to the lesion area, so only one potential lesion area is
found with this initial threshold. In the case of a nBCC, on
the other hand, the lesion is represented by a low vascular
density, so numerous potential lesion areas are found with
the initial threshold. Due to the different characteristics of
these two lesions (ie, sBCC or nBCC), two different
processing methods were used to determine the final lesion
area, once they were correctly distinguished.

• For sBCC, after comparing with the results given by biop-
sies along with dermatologists' judgment, the proper
threshold was chosen to be equal to 75% of the maximum
value in the heat map. This area was then enlarged and
smoothed using a morphological operation (disk struc-
tural element, radius 20). Figure 2G indicates the lesion
area over the whole scanning range in an en face view.

• For nBCC, an iterative process was followed by
thresholding the VD heat map using a threshold equal to
20% higher than the non-zero minimum value. If two or
more distinct areas were found in the volume, the thresh-
old was increased by 30% until the final lesion area was
determined. This area was then enlarged and smoothed
using a morphological operation (disk structural element,
radius 20).

Once the lesion area was determined, the seven quantita-
tive vascular parameters were calculated within a ROI
(2.5 mm × 2.5 mm × 0.3 mm) centered on the maximum of
the VD heat map. Subsequently, the healthy area in which to
calculate the same quantitative vascular parameters was
determined as the ROI in the volume that was found to be
the furthest away from the lesion area, which is

demonstrated in Figure 2H. The flowchart of the lesion area
determination procedure is detailed in Figure S2 in the sup-
plementary material.

3 | RESULTS AND DISCUSSION

3.1 | Validation of the automatic segmentation
algorithm

In order to validate the proposed algorithm, we compared
the results from the automatic algorithm with those obtained
using a semi-automatic segmentation method provided by a
commercial software (Thermo Scientific Amira, version
6.4.0). The semi-automatic method can select the pixels
corresponding to a branch of vessel that is associated with
similar intensities [47]. By manually choosing the branches
one by one, the whole blood vessel network can be seg-
mented. After the semi-automatic segmentation, the same
procedures as described in Sections 2.3.2 and 2.3.3 are
applied for skeletonization, vascular parameter extraction,
and finally lesion area determination.

We then calculated the vascular parameters within the
determined lesion and healthy areas for both the completely
automatic method and the semi-automatic method. The
parameters generated by these two methods were then com-
pared using a paired Student's t-test. The centroid of the
lesion area obtained by both methods was also compared to
verify the localization of the determined lesion areas. The
intra-operator variability of the semi-automatic method was
assessed by letting the same operator perform the same task
at two different time points 1 week apart (T1 and T2, where
T2 = T1 + 7 days).

Owing to the complexity of the vessel network, we chose
to validate the segmentation against a semi-automatic
approach, considering that a manual segmentation would be
very time-consuming and be prone to errors due to the pres-
ence of microvasculature and noise. Furthermore, the main
focus of this work is the development of a lesion area deter-
mination algorithm and not a vessel segmentation algorithm,
hence we did not perform a pixel-based validation of the
vessel segmentation with the semi-automatic algorithm but
preferred to focus on the calculation of the quantitative vas-
cular parameters.

Figure 3 demonstrates how the automatic algorithm
determines the lesion area very closely to the semi-
automatically determined area.

The averaged quantitative vascular parameters calculated
in the automatically determined lesion and healthy areas for
all seven cases are shown in the first and the second rows of
Table 1, respectively. The third and the fourth rows are the
quantitative vascular parameters calculated using the semi-
automatic method for T1. The last two rows are the same as
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the third and the fourth rows but for T2. Finally, the average
distance between the centroids of the lesion areas calculated
by the automatic and semi-automatic methods was found to
be 0.59 ± 0.42 mm.

3.2 | Validation of the lesion area
determination algorithm

To demonstrate the accuracy of the automatic lesion area
determination algorithm, a validation with histological
results using the nBCC case was performed. For this case,
firstly a dermatoscopy examination was given. Then the area
of interest was scanned by OCTA. Finally, three biopsies

were taken. The first biopsy was taken at the position where
the thickest blood vessel is found in the blue dashed square
in Figure 4B in the x axis direction. The other two biopsies
were taken with a ± 1 mm shift in the y axis relative to the
position of the first biopsy.

From the dermatoscopy image shown in Figure 4B, we
can only see a few superficial blood vessels, which are not
enough to accurately set the margin of the lesion. The white
dashed line in Figure 4B marks the approximate position
where one biopsy was taken. Figure 4C shows the histologi-
cal findings in a cross-sectional image where the lesion is
indicated by the color of dark purple. The corresponding
OCT B-scan is shown in Figure 4D. Figure 4G indicates the

FIGURE 3 Completely
automatic and semi-automatic lesion
area determination. Scale bar: 1 mm.
Each image is shown as an en face
view of the vascular density
(VD) generated heat map. The upper
row (panels A, B, C) shows the results
generated by the completely automatic
algorithm with the lesion area
encircled by a solid white line while
the lower row (panels D, E, F) shows
the results by the semi-automatic
method with the lesion area encircled
by the dashed white line. Bottom left:
heat map scale for normalized VD

TABLE 1 Quantitative vascular parameter results

NTa,b NBa,b,c,f,g VDa,b,c,d,f,g MRa,b,c,d,f [mm] DM ICM SOAMa,c,d

Auto lesion area 1.29 ± 0.49 148.86 ± 31.47 0.002 ± 0.000 0.115 ± 0.007 2.56 ± 0.32 70.31 ± 19.25 0.29 ± 0.04

Auto healthy area 3.00 ± 1.29 91.71 ± 40.01 0.001 ± 0.001 0.145 ± 0.017 2.27 ± 0.20 55.05 ± 19.50 0.21 ± 0.08

Semi-auto lesion area T1 1.57 ± 0.79 193.43 ± 69.00 0.003 ± 0.001 0.099 ± 0.006 2.46 ± 0.20 64.58 ± 13.82 0.32 ± 0.05

Semi-auto healthy area T1 2.14 ± 1.22 108.29 ± 21.26 0.001 ± 0.000 0.131 ± 0.015 2.48 ± 0.16 63.74 ± 16.52 0.26 ± 0.04

Semi-auto lesion area T2 1.00 ± 0.00 239.29 ± 59.82 0.004 ± 0.001 0.093 ± 0.010 2.44 ± 0.26 63.55 ± 13.93 0.31 ± 0.06

Semi-auto healthy area T2 2.00 ± 1.00 145.27 ± 33.61 0.002 ± 0.001 0.116 ± 0.009 2.38 ± 0.14 58.69 ± 12.74 0.30 ± 0.07

aStatistically significant difference between automatic lesion and healthy area.
bStatistically significant difference between semi-automatic lesion and healthy area at time point 2 (T2, with T2 = T1 + 7 days).
cStatistically significant difference between semi-automatic lesion and healthy area at time point 1 (T1).
dStatistically significant difference between automatic and semi-automatic lesion area (T1).
eStatistically significant difference between automatic and semi-automatic healthy area (T1).
fStatistically significant difference between semi-automatic lesion area T1 and T2.
gStatistically significant difference between semi-automatic healthy area T1 and T2.
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automatically determined lesion area by the white line in an
en face view. The purple dashed lines across Figure 4C,D,G
mark the approximate span of the lesion in the x axis direc-
tion. As can be seen, the OCT B-scan and the automatically
determined lesion area match well with the histological find-
ings. We can also notice from Figure 4D that the upper
boundary of the lesion extends to the epidermis and that the
dermal-epidermal junction fades away along this upper
boundary.

Figure 4A shows the OCTA resolved vasculature in the
first half millimeter in skin. Numerous micro-vessels are
seen in this image. Figure 4E shows the vasculature between
0.5 mm – 1 mm in skin. In this layer, thicker vessels which
feed the microcirculation above are visualized. Figure 4F
gives a depth color coding to the vessels over 1 mm. Com-
paring Figure 4A,E,F we can see that capillary loops in the
healthy area start at a depth of about 0.3 mm while those in
the lesion zone start at shallower depths. This finding agrees
with the observation in Figure 4D.

The robustness of the automatic algorithm is demon-
strated using the remaining six sBCC cases. The results are
presented in Figure 5 with each row representing one case.
The leftmost column of Figure 5 shows the depth-color-
coded vasculature over the depth range between 0.1 and
1 mm for all six cases. The two middle columns show the
MIP en face view of the vessels in depth ranges of

0.2-0.5 mm and 0.5-1 mm. Finally, the rightmost column
displays the VD heat map with the automatically determined
lesion areas encircled by the while line.

The ability to evaluate vessel network morphology and
complexity in a non-invasive and quantitative manner can
provide crucial information for the diagnosis and treatment
of dermatological disorders. For BCC, this study demon-
strates that the developed automatic algorithm gives compa-
rable results with those yielded by the semi-automatic
method but using much less time. Since the steps after the
segmentation for determining the final lesion area are the
same for both the automatic and the semi-automatic
methods, the main time difference is due to the segmentation
method. In particular, the developed automatic algorithm
takes less than 1 minute to segment the entire volume,
whereas the semi-automatic commercial software required
up to 1 hour to provide an acceptable segmentation of the
entire vessel network of one volume.

Moreover, for the NB, VD and MR parameters, statisti-
cally significant differences between the healthy and lesion
areas are confirmed not only by the automatic method, but
also by the semi-automatic method at two time points.
Admittedly, a statistically significant difference is noticed
between the automatically and the semi-automatically calcu-
lated VD, MR and SOAM in the lesion area, but when the
healthy areas are considered, this difference is not noticed.

FIGURE 4 Validation of the automatic method using the nodular basal cell carcinoma case. Scale bar: 1 mm. A, optical coherence
tomography angiography (OCTA) maximum intensity projection (MIP) image for the depth range between 0.1 and 0.5 mm below skin surface. B,
Dermatoscopy image of the lesion. C, One biopsy image. Dark purple area in the center indicates the lesion. D, B scan given by OCT. C, OCTA
MIP image for the depth range between 0.5 and 1 mm below skin surface. F, OCTA MIP image with depth color coding from 0.1 to 1 mm. G,
vascular density heat map with the automatically determined lesion area encircled by the white line. The dotted white lines in (B) and (G) indicate
the position of the cross section shown in (C) and (D)
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FIGURE 5 Legend on next page.
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At the same time, however, we can see how the semi-
automatic segmentation should not necessarily be considered
the ground truth, as it presents a high intra-operator variabil-
ity. In fact, a statistically significant difference was found
when considering the lesion area in two different time points
for the NB, VD, and MR parameters; when considering the
healthy area, a significant difference was found for the NB
and VD parameters.

It can be appreciated how the VD and MR parameters
often showed a statistically significant difference in several
comparisons (ie, automatic vs semi-automatic, or semi-
automatic in two time points). This can be explained by the
fact that the program Amira allows a semi-automatic seg-
mentation by adjusting a threshold on the considered vessel
or branch. Therefore, a slight increase or decrease of this
threshold will produce a subsequent under-segmentation (ie,
vessels are thinner and at times disconnected) or over-
segmentation (ie, vessels are thicker, and more noise is pre-
sent), which directly affects these two vascular parameters.

Moreover, it is important to underline that the considered
vascular parameters should always be evaluated in compari-
son with values calculated in the same manner and in the
same considered volume area, as a nominal value may
change if considering a larger or smaller ROI. Moreover, as
our results show, a different vessel segmentation can influ-
ence the nominal values of the quantitative vascular parame-
ters but influences in a much smaller degree the comparison
between the nominal values in the healthy and lesion areas.

Although the statistical analysis reported here shows very
promising results, some limitations still exist. Firstly, more
data needs to be acquired and analyzed in order to have a
stronger statistical significance. Secondly, the proposed
approach needs to be validated with new test datasets that
were not used for the development of the method. This is
specifically important for the validation of the thresholds
used in the algorithm, in particular considering the threshold
used for determining the presence of an actual lesion.
Thirdly, the technique does not address potential errors that
may be caused by the automatic segmentation and
skeletonization, such as spurious branches and disconnected
vessels or the presence of artifacts due to shadow graphic
projection from superficial large vessels on deeper layers,
also known as the tail artifact. Future work includes increas-
ing the robustness of the developed approach by
implementing advanced algorithms to reduce shadowing
artifacts [48], and to remove spurious branches and connect
disconnected vessels [49, 50]. The accuracy of the border

detection needs to be compared with other in vivo examina-
tion techniques such as confocal laser scanning microscopy
and with histopathology in a prospective study. Finally, as
the OCTA database size of BCC lesions and other skin dis-
eases increases, we plan to implement machine learning
techniques for the automatic classification of the lesion area
and the lesion type.

4 | CONCLUSION

In conclusion, this work presents a novel automatic method
for skin BCC lesion area determination using 3D skeleton-
ized OCTA images that can aid the diagnosis and treatment
of dermatological disorders. We believe our system and
algorithm will potentially have a great influence on the rou-
tine diagnosis of BCC and plan to explore the application of
this technology in other skin diseases.
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