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Abstract: Hastelloy X (HX) is a Ni-based superalloy which is employed to produce gas turbine
and gas-cooled reactor sectors due to its outstanding oxidation resistance and high tensile strength
at high temperatures. This alloy can be processed by laser powder bed fusion (LPBF) fabricating
complex geometries in a single step. However, post-processing thermal treatments must be applied
to generate a suitable microstructure for high-temperature applications. The investigation reports
the microstructure evolution of LPBF HX samples under specific post-processing treatments. A hot
isostatic pressing (HIP) treatment can close the internal cracks and reduce the residual porosity
(less than 0.1%). Moreover, the HIP-triggered recrystallization generated equiaxed grains, while the
slow cooling rate generated a film of intergranular carbides (Mo-rich M6C and Cr-rich M23C6) and
intragranular carbides (Mo-rich M6C carbides). Therefore, a solution annealing was performed to
dissolve the film of carbides which may reduce the ductility. The post solution annealed material
consisted of equiaxed grains with ASTM grain size number mainly 4.5-5.5 and inter/intragranular
Mo-rich M6C carbides. The microstructure is highly comparable with solution annealed wrought HX
alloy. Finally, after simulating short thermal exposure at 745 ◦C for 6 h, a significant formation of
Cr-rich M23C6 carbides was observed strengthening the LPBF HX alloy.

Keywords: laser powder bed fusion; additive manufacturing; Ni-based superalloys; hot isostatic
pressing; microstructure characterization

1. Introduction

The recent development of additive manufacturing (AM) processes makes it possible to produce
near-net-shape complex parts in a single step using a layer by layer process. These technologies are
an enormous attraction for the production of components made of superalloys with very complex
shapes, overcoming the issues related to their low machinability resulting from high hardness and
strength [1–3].

Among the AM technologies, laser powder bed fusion (LPBF) is extensively employed to fabricate
Ni-based superalloy components [4,5]. During the LPBF process, the laser beam melts very narrow
areas of powder, generating very high heating and cooling rates (around 105–106 ◦C/s [2,4]), repeating
it in consecutive layers in order to create the final components [6,7]. For Ni-based superalloys, the
LPBF process involves the formation of extremely fine dendritic/cellular structures and inhibits the
formation of large segregate areas. Moreover, the dissipation of heat flow from the melt pools to the
substrate triggers the formation of columnar grains along the building direction leading to anisotropic
mechanical properties [8–11].
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The LPBF process has been successfully employed for the fabrication of dense components made
of various Ni-based superalloys such as Inconel 625 and Inconel 718 [9,12,13]. However, several
Ni-based superalloys are prone to cracking during the LPBF due to their low weldability or the
inappropriate selection of process parameters [2,4,14–17]. For instance, Hastelloy X (HX) alloy is
characterized by susceptibility to crack formation when processed by LPBF [2,18–23]. This alloy is a
solid solution strengthened superalloy, which offers an exceptional oxidation resistance as well as high
strength and ductility at high temperatures [18,24], making it the perfect candidate for the production
of high-temperature components such as combustion parts in gas turbines as well as high-temperature
gas cooled reactors [24–26].

Various phenomena have been proposed in the literature to explain the crack formation of LPBF
HX alloy. Harrison et al. [2] found that a modified HX alloy with a higher concentration of solid
solution strengthened elements (e.g., Cr, Mo, W) resulted in fewer cracks with respect to the standard
HX alloy. They suggested that an added increment of the solid solution strengthened elements can
increase the thermal shock resistance of the alloy, reducing the formation of cracks. On the other hand,
Tomus et al. [20] produced crack-free HX samples using a reduced quantity of Mn and Si within the
starting HX powder. They stated that the high concentration of minor elements such as Mn, Si, and C
can enhance the sensitivity to crack formation due to the decreasing of the solidification temperature
of the alloy and microsegregation at grain boundaries [21].

In a previous work of the authors on LPBF HX alloy, microstructural analyses revealed the
presence of Mo-rich carbides close to the cracks along the grain boundaries, indicating that the cracks
are attributed to intergranular carbides together with high residual stresses induced by the LPBF
processes [27].

On the contrary, recently Sanchez-Mata et al. [23] reported the production of crack-free LPBF HX
samples without altering the chemical composition of the HX alloy. However, the as-built HX state
exhibits microstructure features not suitable for high-temperature applications, making it necessary to
perform specific post-processing treatments and reduce the porosity level.

Hot isostatic pressing (HIP) can consolidate possible internal cracks and reduce the porosity, and
also promote microstructure evolution [18,19,28–30]. According to the literature on LPBF HX alloy,
the as-built and hot isostatic pressed (HIPed) HX samples revealed higher yield strength (YS) and
ultimate tensile strength (UTS) but less ductility than hot forged HX alloy [18]. Moreover, Tomus et
al. [30] studied the microstructures and mechanical properties of as-built and post-processed LPBF HX,
performing a solution annealing, a HIP treatment, as well as a HIP treatment followed by solution
annealing. The as-built and post-processed HX revealed higher YS and similar UTS with respect to the
commercially available tensile data sheet on solution annealed wrought HX alloy, while the HIPed and
post-solution annealed HX alloy exhibited higher ductility than solution annealed wrought HX alloy.
Additionally, they showed the presence of very fine Mo-rich carbides along the grain boundaries of
HX samples subjected to HIP and post-solution annealing treatments. However, the limited number of
carbides can derive from the reduced quantity of carbon, five times inferior to the value reported in the
ASTM B435 for the HX alloy. It is therefore possible to assume that HX alloy with a standard chemical
composition results in the formation of more carbides thus strengthening the alloy. Han et al. [29]
mainly focused their attention to the mechanical properties of as-built and HIPed HX alloy, revealing
the increment of fatigue resistance for the HIPed state with respect to the as-built condition, due to the
reduction in stress concentration and residual stresses.

Nevertheless, little work has been done on the microstructure evolution of LPBF HX alloy under
post-processing and simulating possible operative thermal exposures, taking into account the phases
formed that could have a fundamental role in the mechanical properties of the alloy. More specifically,
it is well known that HX alloy is strengthened by the formation of carbides under specific thermal
exposures, and therefore, the formed carbides must be carefully investigated [25,31]. Additionally, it is
important to show a possible post-processing route to recover HX components if cracks occur.
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The current work will focus on the influence of post-processing on the microstructure and
hardness of LPBF HX alloy. For these reasons, a HIP treatment and solution annealing were performed
on LPBF HX alloy, and the microstructures were compared to solution annealed wrought HX alloy.
Finally, the post-solution annealed HX samples were subjected to thermal treatments at 745 ◦C for 6
hours in order to investigate the microstructure evolution simulating a thermal exposure typical for
Ni-based superalloy parts [31].

2. Materials and Methods

The gas atomized HX powder employed in this study was supplied by LPW Technology, with
a chemical composition in weight percentage (wt%) of Ni balance: Cr 21.70%, Fe 18.60%, Mo 9.20%,
Co 1.82%, Si 0.36%, W 0.90%, O 0.017%, and C 0.056% [27]. The particles exhibited spherical and some
irregular shapes as shown in Figure 1a, and the particle size distribution had a d10 of 24 µm and a
d90 of 52 µm determined by laser granulometry (Fritsch model Analysette 22 Compact, Fritsch,
Idar-Oberstein, Germany) [27]. Shells (white arrows in Figure 1a) and satellites (red arrows in
Figure 1a), typical defects of the powder atomization process, are detectable though in limited amounts.
The microstructure of the HX particles revealed interdendritic areas enriched in Mo caused by its high
tendency to segregate, as it can be seen in Figure 1b.
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Figure 1. Backscattered electron (BSE) SEM images of Hastelloy X (HX) particles showing: (a) particle
size and morphology; (b) dendritic microstructures of one particle with enrichment in Mo and depletion
of Fe and Ni within the interdendritic areas.

Cylindrical HX specimens with a length of 77 mm and a diameter of 14 mm were fabricated
along the building direction (z-axis) using an EOSINT M270 Dual Mode version (EOS GmbH, Munich,
Germany) equipped with an Ytterbium 200 W fiber laser, as schematically reported in a previous
work [27]. For protection of proprietary information, the process parameters are omitted.

A part of the samples was studied in the as-built state while some specimens were HIPed at
1160 ◦C for 4 h at 103 MPa argon pressure using standard industrial HIP parameters [32] with a slow
cooling rate lower than 10 ◦C/min. The slow cooling rate promotes carbide formation, and therefore,
another part of HIPed HX samples was subsequently solution annealed at 1175 ◦C (recommended
temperature [25,33]) for 30 min, to dissolve the intergranular filament of carbides. The solution
annealing was followed by water quenching in order to inhibit carbide re-precipitation during cooling.
Different solution annealing treatments were performed at 1175 ◦C for 15, 30, and 60 minutes revealing
that 30 min is effective in eliminating the filament of carbides.

Finally, on the post-solution annealed HX samples a heat treatment at 745 ◦C for 6 h followed
by water quenching was performed in order to characterize the developed microstructure and the
formed carbides. This temperature was selected in order to simulate a service temperature typical for
Ni-based superalloy parts [31].

Table 1 reports a summary of the post-processed LPBF HX samples and corresponding
treatment conditions.
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Table 1. Three post-processed conditions investigated: hot isostatic pressed (HIPed), post-solution
annealed, and heat-treated (HT).

State HIPed Post-Solution Annealed HT

Heat treatment 1160 ◦C 4 h 103 MPa 1175 ◦C for 30 min 745 ◦C for 6 h

Cooling rate <10 ◦C/min Water quenched Water quenched

The as-built and post-processed HX specimens were cut along the building direction (z-axis) and
perpendicular to the building direction (x-y plane) and then ground down to 1 micron using diamond
suspension. The polished samples were analyzed by light optical microscope (LOM, Leica DMI
5000 M, Wetzlar, Germany) to observe defects such as pores and cracks, and the residual porosity of
20 LOM images taken at 100× was determined by ImageJ software. Afterwards, the samples were also
etched using Kalling’s No.2 reagent (5 g CuCl2 in 100 mL HCl and 100 mL CH3CH2OH). The etched
samples were analyzed by LOM, a scanning electron microscope (SEM, Phenom XL, Phenom-World
BV, Eindhoven, The Netherlands), and a FE-SEM (field emission scanning electron microscope, Zeiss
Merlin, Oberkochen, Germany) both equipped with Energy Dispersive X-ray spectrometry (EDS) to
analyze the microstructure and chemical composition at different locations. By SEM and FE-SEM
analyses, the microstructure was examined by backscattered electron (BSE) in order to better detect
the phases by different chemical composition while secondary electron (SE) was employed to analyze
their morphology at high magnification. Additionally, the grain size of post-processed HX samples
was evaluated using the planimetric method on LOM micrographs according to the ASTM E112-12.

The Rockwell B (HRB) hardness values of the as-built and post-processed HX samples were
evaluated by performing five indentations on three samples for each condition using an EMCO TEST
M4U test machine in accordance with the standard ASTM E18-18a.

Finally, a certain amount of carbides of the three post-processed HX samples were collected by
electrolytic anodic extraction at 2 V using a solution of 25% HCl/75% CH3OH (in volume percentage)
at room temperature, according to a method reported in a previous work by the authors for the as-built
HX samples [27]. In order to study and determine the type of formed carbides within these three
post-processed HX states, the extracted carbides were observed by SEM + EDS as well as characterized
by X-ray diffraction (XRD, PANalytical, Almeno, The Netherland) using CuKα radiation in a Bragg
Brentano configuration from 35◦ to 65◦ employing a step size of 0.013◦ and a counting time of 35 s
per step.

3. Results and Discussion

3.1. Microstructure of As-Built Hastelloy X Alloy

The LOM images of polished as-built HX state reveal that cracks tend to form along the building
direction (z-axis) and at random locations in the x-y plane perpendicular to the building direction,
as shown in Figure 2a,b, respectively. Residual porosities of 0.29 ± 0.04% along the z-y plane and
0.34 ± 0.05% along the x-y plane were measured. The revealed pores exhibited a spherical shape,
thus they probably derive from entrapped gas within the starting powder [5].

After etching, it is possible to observe the melt pool contours generated along the z-axis (Figure 2c)
by the laser beam during the melting of powders. The heat flux dissipation along the z-axis from the
top to the building platform promotes the formation of columnar grains. The cracks mainly occur
along the columnar grain boundaries which represent the less resistant location path, highlighted by
red arrows in Figure 2c, as well as reported in the literature for LPBF HX alloy [2,20,21,27]. Figure 2d
and its inset show the presence of precipitates close to the cracks.

In a previous work focused on the microstructure of as-built LPBF HX alloy, the authors found
that the extremely fine precipitates are Mo-rich M6C carbides together with other possible metastable
Mo-rich carbides [27]. This gives clues to the fact that Mo-rich carbides, especially those located at
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intergranular regions, induce material embrittlement that causes crack initiation upon the onset of the
high residual stress state generated by the LPBF process.

For the LPBF HX, the presence of very fine nanometric Mo-rich carbides was also detected in other
works [23,30]. The very fine dendritic/cellular microstructures have a size typically lower than 1 µm,
resulting from the melting and solidification processes which occur with segregation mechanisms
acting in restricted areas and for a short time as a consequence of the high solidification rates (around
105–106 ◦C/s) [2,4,9,13,34].
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Figure 2. Light optical microscopy (LOM) images of as-built HX samples: (a,b) polished sample
showing the cracks along the z-y and x-y planes, respectively; (c) etched samples revealing the
microstructures and cracks along the z-y plane; (d) BSE SEM image of an as-built HX sample showing
cellular/dendritic structures and a crack with Mo-rich carbides together with an inset of the crack.

3.2. Microstructure Evolution of Post-Processed Hastelloy X Alloy

The HIP treatment completely consolidates the LPBF material, closing the cracks and reducing
the residual porosity (less than 0.1% was recorded for both planes). Furthermore, due to the high
temperature soaking and the limited heating and cooling rate, this treatment promotes recrystallization
with the formation of nearly equiaxed grains along the z-axis and x-y planes.

From Figure 3a, it should be noted that several residual pores, visible as black spots, and carbides,
identified by the grey spots located both along the grain boundaries and within the grains, are present
in LPBF samples. Intergranular carbides formed within the HIP treatment are film-like. The analysis
of the post-solution annealed HX state revealed that a dissolution of this film of carbides along grain
boundaries occurred. Actually, after this treatment stage, the polished HX exhibits only very fine
isolated spherical pores (as illustrated in the inset and the red circles in Figure 3b).

After etching, the optical micrographs of HIPed HX samples (Figure 3c) exhibited the
inter/intragranular carbides formed during the slow cooling rate of the HIP treatment. On the other
hand, after solution annealing the HX samples presented only globular and square inter/intragranular
carbides (Figure 3d). For HIPed and post-solution annealed HX samples, the ASTM grain size number
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was assessed to be 4.5–5.5 (with grain diameters included within 53.4 and 75.5 µm), indicating that the
post-solution annealing had a negligible impact on grain size. This evidences that thermal exposure
at 1175 ◦C for 30 min is sufficient to remove the film of carbides along the grain boundaries, but the
remaining intergranular carbides seem to hinder the grain growth.

The grain size of these two post-processed states is similar to the solution annealed wrought
Hastelloy X alloy reported in the literature with reference ASTM grain size number around 5 [25,26,35].
Similarly, Han et al. [29] reported recrystallization for HIPed LPBF HX samples.
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Figure 3. LOM images of polished post-processed HX samples along the x-y plane: (a) HIPed state
showing pores and carbides along the grain boundaries (GBs); (b) post-solution annealed state
exhibiting very fine isolated pores as highlighted by the SEM image in the inset; (c) HIPed state
showing film of intergranular carbides and globular and square intragranular carbides; (d) post-solution
annealed state exhibiting only globular and square inter/intragranular carbides.

For the HIPed HX samples, the SEM + EDS investigation pointed out the formation of two
different types of carbides identified as Mo-rich M6C and Cr-rich M23C6 carbides. In backscattered
electron (BSE) mode, the Mo-rich M6C carbides appear bright, whereas the Cr-rich M23C6 carbides are
grey as shown in Figure 4a,b.

The intragranular Mo-rich M6C carbides exhibit globular and square shapes with a size up to
around 2.5 µm. On the other hand, elongated both Mo-rich M6C (up to about 15 µm) and Cr-rich
M23C6 carbides (up to around 3 µm) can be observed at intergranular locations. These carbides are
contiguously located along GBs so that they form a continuous film.

The SEM images of the post-solution annealed HX samples (Figure 4c,d) evidence that a complete
dissolution of the elongated carbides along grain boundaries occurred, whereas that globular and
square inter/intragranular Mo-rich M6C carbides remained unaltered maintaining dimensions similar
to the HIPed condition. The current investigation highlights that the microstructures are in line with
the literature on solution annealed wrought HX alloys, which consisted of austenitic (γ) matrix and
loosely distributed Mo-rich M6C carbides throughout the material [25,26,35].
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samples with an energy dispersive X-ray spectrometry (EDS) map showing the presence of Mo-rich
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Mo-rich M6C carbides. Kalling’s No.2 etchant was used.

The post-solution annealed HX samples present a high concentration of carbon within the matrix
with respect to the HIPed HX state due to the dissolution of the intergranular filament carbides.
Therefore, the thermal exposure at 745 ◦C for 6 h promoted the significant formation of carbides
(Figure 5a,b), in particular filament carbides smaller than ones observed in the HIPed HX state
(Figure 3c). The precipitation of intergranular carbides hinders the grain growth resulting in a grain
size equal to the post-solution annealed state.

The SEM analysis (Figure 5c) shows the presence of Cr-rich M23C6 carbides along the grain
boundaries and within the grains, as also reported in the literature after treatments at around this
temperature [35], as well as the presence of Mo-rich M6C carbides. High magnification view (Figure 5d)
reveals that the intergranular Cr-rich M23C6 carbides tend to generate a continuous film exhibiting
sub-micrometric thickness.

3.3. Carbide Extraction

In order to further support carbide identification, the carbides were electrochemically extracted
from the matrix. The SEM images of the extracted carbides from HIPed, post-solution annealed,
and HT HX samples are provided in Figure 6a–c, whereas the EDS results of the extracted carbides are
reported in Table 2. The extracted carbides of the HT HX state (Figure 6c) show a significant fraction of
filament carbides identified as Cr-rich M23C6 carbides as well as a reduced number of globular and
square Mo-rich M6C carbides.
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Table 2. EDS results in weight percentage of the extracted carbides from HIPed, post-solution annealed,
and HT HX samples.

HX State Carbide Ni Cr Fe Mo Co W Si

HIPed
Mo-rich M6C 14.7 12.3 4.6 53.6 - 11.4 3.4

Cr-rich M23C6 4.8 63.1 4.9 21.0 - 4.8 1.4

Post-solution annealed Mo-rich M6C 13.6 12.3 5.2 51.8 0.7 13.4 3.0

HT Cr-rich M23C6 9.1 56.3 6.3 21.9 0.3 4.2 1.9

In order to lend support to the carbide identification, the extracted carbides were also analyzed by
XRD to determine their lattice parameters, evaluating the average value and standard deviation using
the peaks between 35◦ and 65◦. However, it should be noted that there are peaks of the γ phase due to
the presence of matrix residuals in the extracted carbides. This was also observed by EDS analysis.

The XRD data of the extracted carbides (Figure 7) confirmed the presence of Mo-rich M6C and
Cr-rich M23C6 carbides with lattice parameters of 11.05 ± 0.01 Å and 10.76 ± 0.02 Å, respectively.
The calculated lattice parameter of the Mo-rich M6C carbides is in line with the values reported in
the literature for Hastelloy X alloy, which are between 10.99 Å and 11.08 Å [26,35,36]. Regarding the
Cr-rich M23C6 carbides in superalloys, they have a characteristic lattice parameter from 10.50 Å to
10.70 Å [31], although an enrichment in W can increase this value [37].
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The XRD spectrum shows a greater intensity of the Mo-rich M6C carbides peaks than those of
Cr-rich M23C6 carbides, indicating the presence of a higher fraction of the former. This compositional
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feature can be explained by analyzing the time–temperature–transformation (T–T–T) diagram of the
Hastelloy X alloy [36]. During cooling the formation of Mo-rich M6C carbides occurs both at high
and low temperatures stages, whereas the formation of Cr-rich M23C6 carbides starts only at lower
temperatures. Therefore, the formation of this last type of carbides is limited by the depletion of carbon
already used to form the Mo-rich M6C carbides. For the post-solution annealed HX samples, the
extracted precipitates consisted only of Mo-rich M6C carbides with a lattice parameter of 11.05 ± 0.01 Å.
This clearly indicates that the solution annealing allows the full dissolution of Cr-rich M23C6 carbides,
which then upon rapid cooling are not formed again. Thermal exposure at 745 ◦C for 6 h pointed out
the increments of number and intensity of the peaks of Cr-rich M23C6 carbides with a lattice parameter
of 10.72 ± 0.02 Å. In this state, the concentration of Cr-rich M23C6 carbides is drastically superior to the
Mo-rich M6C carbides, as already noted in SEM investigation (Figure 6c). In this state the concentration
of Mo-rich M6C may be under the threshold of the instrument, explaining the reason why the peaks of
Mo-rich M6C carbides are not visible.

3.4. Hardness Investigation

Figure 8 compares the hardness of the as-built and post-processed states. The as-built HX samples
revealed a very high hardness of 97.0 ± 0.5 HRB mainly due to its very fine dendritic structures and
high residual stress state.

After HIP treatment the hardness tends to decrease to 84.0 ± 0.5 HRB due to the dissolution of
the dendritic structures and residual stress relief as well as the recrystallization and grain growth.
Additionally, the post-solution annealed HX state revealed a hardness of 80 ± 1 HBW, caused by
carbide dissolution. In this case, the thermal treatment dissolves the intergranular film of carbides
resulting in a slight hardness reduction. On the other hand, the thermal exposure at 745 ◦C for 6 h
involves the formation of sub-micrometric carbides along the grain boundaries and within the grains
leading to a drastic hardness improvement reaching 91.0 ± 0.5 HRB.

The hardness of the commercially available solution annealed HX alloy is higher than LPBF
post-solution annealed HX state with a value around 86 HRB [24], which may be caused by smaller
grain size or higher concentration of fine carbides with respect to the LPBF post-solution annealed
HX state.Materials 2019, 12, x FOR PEER REVIEW 11 of 14 
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4. Conclusions

The fabrication of LPBF HX components with a complex shape can reduce the production costs
compared to traditional processes. Nevertheless, post-processing treatments are crucial to generate a
tailored microstructure for high-temperature applications.

In this work, it is demonstrated that a standard HIP treatment could close the internal cracks,
reducing the residual porosity (residual porosity less than 0.1%) as well as generating equiaxed grains
along x-y and z-plane. However, the typical slow HIP cooling rate involved the formation of globular
and square Mo-rich M6C carbides mainly within the grains and elongated mixed Mo-rich M6C and
Cr-rich M23C6 carbides along the grain boundaries, thus forming a continuous film. A subsequent
solution annealing was then performed, resulting in the dissolution of the film of carbides at grain
boundaries. On the other hand, globular and square Mo-rich M6C carbides remained practically
unaltered. Furthermore, it is observed that the post-solution annealed HX samples consisted of
equiaxed grains similar to solution annealed wrought HX alloy. Finally, simulating a thermal exposure
compatible with components made of Ni-based superalloys (745 ◦C for 6 h), the HT HX samples
revealed the formation of sub-micrometric Cr-rich M23C6 carbides along the grains boundaries as well
as inside the grains, presenting a microstructure evolution similar to traditional annealed wrought
HX alloy.

The current microstructural investigation was performed on LPBF HX with a standard chemical
composition. The use of modified HX powder, in particular, HX powder with a reduced quantity of
carbon can reduce or inhibit the crack formation but limits the carbide precipitation under post thermal
treatments or service at high temperatures. The carbides play a primary role in the strengthening of
the HX alloy, and consequently, a lower formation of carbides can have an impact on the mechanical
properties. Therefore, future studies should take into account the mechanical properties of LPBF HX
alloy with standard and modified chemical composition under thermal exposures.

The main findings of the current work highlight the possibility of using a post-processing route to
obtain post-solution annealed LPBF HX with an extremely high densification level (residual porosity
<0.1%) as well as to generate tailored microstructure features in line with the traditional solution
annealed wrought HX alloy and, consequently, suitable for high-temperature applications. In addition,
for the post heat-treated LPBF HX alloy, the investigation points out the significant carbide formation
and their strengthened effect.
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