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Abstract. Resilience indicators are a convenient tool to assess the 
resilience of engineering systems. They are often used in preliminary 
designs or in the assessment of complex systems. This paper introduces a 
novel approach to assess the time-dependent resilience of engineering 
systems using resilience indicators. The temporal dimension is tackled in 
this work using the Dynamic Bayesian Network (DBN). DBN extends the 
classical BN by adding the time dimension. It permits the interaction 
among variables at different time steps. It can be used to track the 
evolution of a system’s performance given an evidence recorded at a 
previous time step. This allows predicting the resilience state of a system 
given its initial condition. A mathematical probabilistic framework based 
on the DBN is developed to model the resilience of dynamic engineering 
systems. A case study is presented in the paper to demonstrate the 
applicability of the introduced framework.   

1 Introduction 

Research on disaster resilience has recently been fostered due to the noticeable 

increase in the number of natural and human-caused disasters. Resilience has been 

defined differently depending on the field of study [1-3]. In engineering, resilience 

is the ability to withstand a disturbance caused by an external agent and recover 

quickly if damage occurs [4]. Resilience can be an outcome (static) or a process 

(dynamic) [5]. While most of the research work focused on analyzing engineering 

resilience from a static point of view [6-12], there is a significant gap in assessing 

the dynamic nature of resilience through quantitative approaches.  
This paper proposes a dynamic framework to quantitatively assess the resilience of 

systems of dynamic nature (i.e., critical infrastructures, buildings, communities, etc.) [13]. 

The framework can be used to assess the resilience of multiple systems at once and it 

adopts the DBN as an inference tool. A DBN model can be obtained by expert knowledge, 

from a database using a combination of machine-learning techniques, or both. These 

properties make the DBN formalism very useful in the disaster resilience domain as this 
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domain has an abundance of both expert knowledge and databases records. Moreover, A 

DBN allows performing a transient analysis of the system after the occurrence of disruption 

until the system was recovered from its disruptive states. The transient analysis can be 

rather useful to model the restoration process of the damaged system. The proposed 

resilience framework is presented in the form of a mathematical formulation that integrates 

the probability distribution of all variables’ states. A case study of a transportation network 

is used to demonstrate the proposed methodology. Results show the ability of the 

framework to dynamically model complex systems, even when data is scarce. 

2 Dynamic Bayesian Networks
Conventional Bayesian Networks (BNs) are used when the analyzed system is in a static 

state. This is often not the case in a dynamic, continuously changing world. This raises the 

need for a tool that is capable of accounting for system changes, such as the Dynamic 

Bayesian Network. DBN is a Bayesian network extended with additional mechanisms that 

are capable of modeling influences over time [14]. It extends the classical BN by adding the 

time dimension. It is suitable for describing dynamic systems where the performance 

fluctuates (e.g. before and after a disaster). Like the BN, the DBN is a directed acyclic 

graphical model used for statistical processes. A DBN consists of multiple BNs (often 

referred to as time-slices or time steps), each with its own variables. The variables within a 

single or successive time-slices are connected using links. A DBN can be defined as (B1, 

B→), where B1 is a BN that specifies the initial distribution of the variable states P(Z1) 

[14], where Zt = (Ut, Xt, Yt) is the input, hidden, and output variables of the model at time 

step t, while B→ is called a “two-slice temporal Bayesian network” (2TBN), which defines 

the transition model P(Zt|Zt-1), as in Equation (1). The nodes in the first slice of the 2TBN 

network do not have parameters associated with them, while Conditional probability tables 

(CPTs) are required for the nodes in the second slice. 
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where 
i
tZ  is the ith node at time t and could be a component of Xt, Yt, or Ut. Pa(

i
tZ ) are 

the parents of
i
tZ , which can be in the same or the previous time-slice.  

The process in a DBN is stationary and the structure repeats after the second time-slice, 

so the variables for the slices t=2, 3, ..,T  remain unchanged. This allows expressing the 

system using only two slices (i.e., the first and the second time-slices). Therefore, an 

unbounded sequence length could be modeled using a finite number of parameters. The 

probability distribution for a sequence of times-slices can be obtained by unrolling the 

2TBN network, as follows: 
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The DBN is often seen as a generalization of other temporal reasoning developments, 

such as the hidden Markov model (HMM) and the Kalman filter model (KFM) [15]. These 

models, which can be expressed in a compact form, are popular for their fast learning and 

fast inference techniques. In fact, DBNs generalize HMMs by expressing the state space in 

not only a single discrete random variable but also in a factored form. 
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3 Methodology: Time-dependent resilience analysis using 
Dynamic Bayesian Networks

In general, the resilience of a system tends to be a process rather than a state; thus, 

accounting for the performance variation of a system is important. Ordinary Bayesian 

Networks are unable to account for the time dimension in the analysis as they are limited to 

static systems. In this section, we propose a new methodology to assess the resilience of 

engineering systems in a dynamic manner. 

3.1 Dynamic resilience model 

The resilience model used in the dynamic resilience analysis is based on the resilience 

definition by Bruneau and Reinhorn [16] who describe the resilience of a system using four 

components, also called the four R’s of resilience (4R’s): 

� Robustness (R1): refers to the ability of a system to stand a certain level of stress 

preserving its functionality; 

� Redundancy (R2): indicates the alternative resources in the recovery stage when 

the primary ones are inadequate; 

� Rapidity (R3): the capacity to contain losses and avoid future disruption. It 

represents the slope of the functionality curve during the recovery phase; 

� Resourcefulness (R4): considers the human factor and the capacity to move 

needed resources. 

As shown in Fig 1, the first two resilience components (R1 and R2) define the damage 

level the system may encounter if exposed to a certain hazard. Robust and redundant 

systems would most likely experience less damage and function almost normally after the 

disaster. On the other hand, once damage occurs, the system’s recovery starts. the recovery 

process is defined by the recovery capacity and resources availability, such as human 

resources. Thus, the other two components (R3 and R4) interfere during the recovery stage 

as they are the main drivers of the system’s recovery. 

 

 

Fig. 1. The four resilience components (4R’s) and their interaction with the resilience curve. 

3.2 Network structure and elements connectivity

Assume that we have a system that is composed of 7 indicators (X1, X2, …, X7). The 

indicators are connected to the three resilience pillars according to their relevance. Such 

connections can be obtained from past experience or expert knowledge. One indicator can 

contribute to multiple pillars, as shown in the Bayesian network in Fig 2 where indicator X4 
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is connected to R1 and R2 while X7 is connected to R2 and R3. The final output (resilience 
index) represents a combination of all factors that contribute towards the resilience pillars. 

 

 

Fig. 2.  Bayesian network to compute the resilience index of a static system 

A DBN is a series of Bayesian networks with changing conditions. One main 

characteristic of DBN is that elements are connected through different time-steps. For 

example, element At can be linked to element Bt+1 using a temporal link if element Bt+1 has 

a dependency on At, where t is the time step. The connections between elements at different 

time steps is done using expert knowledge or from past data. Fig 3 shows a DBN where the 

individual networks at the different time steps are connected with one another. In our 

methodology, an element in a BN at time-step t can only affect itself at time-step t+1 (i.e., 

At affects At+1 and Bt affects Bt+1). 

Regarding the four resilience components (4R’s), they are incorporated in the network 

at different time-steps. In Fig 3, the first step (t=1) corresponds to the initial state of the 

system (i.e., before hazard occurrence). At this stage, none of the 4R’s is involved as the 

aim here is to assess the initial performance of the system. The second step (t=2) is 

dedicated to assessing the damage that would incur if a hazard of a certain magnitude 

occurs. The level of damage, or the drop in the functionality, can be determined by 

acquiring information about the hazard (H) and the system’s characteristics (i.e., R1 and 

R2). The combination of the parameters H, R1, and R2 can provide valuable information on 

how a system with a predefined initial state would behave. Thus, the two resilience 

components R1 and R2 are connected to the DBN at the second time-step (t=2).  

Once the drop in the serviceability is determined, the recovery needs to be evaluated. 

Since recovery is not an instantaneous action, several Bayesian networks are needed here. 

The recovery period is divided into a finite number of time-steps, each with a Bayesian 

network. Information about the rapidity and the resourcefulness (R3 and R4) of the system is 

integrated at all recovery time-steps as they will define how the variables (i.e., the 

indicators) will evolve from one step to another. Therefore, the same Bayesian network is 

copied from time-step t=3 until time step t=T. 

The result of each BN is a performance point. The collection of the performance points 

creates a resilience function that shows the changes in the system’s performance, starting 

from a stable state (the first uniform part of the function in Fig 3) and ending with a stable 

state, when the system is fully recovered (the second uniform part of the function). Once 

obtained, the resilience function can be used to obtain a resilience index. One method uses 

the area above the resilience curve and links it to the notion “loss of Resilience” [17; 16] 

while other methods consider other metrics to quantify the resilience [18]. 

 

�  , 0 (2019) https://doi.org/10.1051/matecconf /201928MATEC Web of Conferences 281

INCER 2019

0 0810 10108 

4



 

Fig. 3. Dynamic Bayesian network of an engineering system considering external factors such as the 

resilience characteristics (4R’s) and the Hazard 

3.3 Joint probability distribution

The proposed dynamic resilience analysis using the DBN approach can be mathematically 

written in probabilistic terms, as follows: 
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where C is the set of all static variables (contemporal variables), Z is the set of all 

dynamic variables (temporal variables), P(C) is the joint probability of the static variables, 
Pa(Zi) is the set of variables that are children of Zi, H is the hazard variable, R1 is the 

Redundancy variable, R2 is the Redundancy variable, R3 is the Rapidity variable, R4 is the 

Resourcefulness variable, N is the number of dynamic indicators, T is the total number of 

time steps.  

The first term on the right-hand side of Equation (3) refers to the joint probability of the 

variables at the first time-step, the second term refers to the joint probability of the 

variables at the second time-step, while the third part of the equation considers the 

remaining time steps. 

4 Conclusions
Unlike the static resilience analysis which assumes a constant state of a system and 

measures the resilience by a static quantity, the dynamic resilience analysis additionally 

models the evolvement of the system with time. This paper introduced a probabilistic 

resilience assessment and prediction framework using the Dynamic Bayesian Networks 

(DBNs). The framework employed resilience indicators for its implementation to make it 

more usable by decision makers in the industry. The methodology can handle both static 

and dynamic engineering systems using quantitative and/or qualitative data. The 

uncertainty in the inputs and in the variables’ relationships is accounted for and propagated 

throughout the model; hence, the output is probabilistic in nature. 
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The quantitative resilience analysis tools that can be readily available to system 

designers to model and quantify engineering resilience are still underdeveloped. this paper 

aims at motivating the resilience community to agree on the proposed universal resilience 

framework. The presented framework provides a tool for decision makers to systematically 

learn about the state of their systems given a specific event. It allows them to improve the 

systems’ performance using the backward analysis feature of BN. This is done by setting a 

desirable state of the resilience and getting the variables inputs that lead to the predefined 

resilience state. Future work will be oriented towards building detailed networks for the 

damage and recovery variables as this would allow expressing the system in more details. 

In addition, a procedure to evaluate the interdependency among the variables as well as 

their weighting factors will be further addressed. 
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