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Abstract

Diffusion processes on network systems are ubiquitous. An epidemic outbreak in
an interconnected population, the adoption of a new smartphone application by the
members of a social community, and the spread of a genetically modified organism
in a geographic area are just three examples of real-world phenomena that can be
represented through the formalism of diffusion dynamics on networks. The main goal
of this dissertation is to study the evolution of these diffusion processes and predict
their outcome. Specifically, we aim to investigate whether the diffusion process
reaches large part of the network and how long does the spreading process lasts,
unveiling the influence of i) the topological structure of the networked system, and
ii) the characteristics of the diffusive dynamics. In order to address this issues, we
formulate a general and flexible theory for diffusion processes which can be tailored
to suit the specific features of many real-world phenomena. The main strength
of our theory is that the mathematical models designed in accordance to it satisfy
Markov property, enabling us to analytically treat them. The main contribution
of this dissertation, besides proposing a mathematical model for general diffusion
processes on networks, is thus the development of a set of analytical techniques,
which are used to gain new insights into the the effect of the network topology on
the evolution of diffusive real-world phenomena and to develop effective control
techniques for the system.

After having introduced our general formulation and having developed the tech-
niques mentioned above, we focus on the analysis of three relevant applications of
our general theory, which exemplify different physical and social phenomena and
include various distinct features into our framework. Specifically, we consider an
epidemiological, a marketing, and a biological application. First, we deepen the
analysis of a well established model for the diffusion of an infectious disease: the
susceptible-infected-susceptible model. The techniques developed in our general
theory enable us i) to gain new insights into the epidemic process, enhancing the
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characterization of its phase transition; and ii) to obtain short- and medium-term
predictions of the evolution of the outbreak, from few empirical data. Second,
we tailor our general theory to propose a novel model for the adoption of a new
technological asset. The main modeling novelty is the presence of positive exter-
nalities, i.e., the indirect effect of the adoption of the asset by a user, which boosts
its diffusion. Using the techniques developed in our theory, we are able to study
the system, showing a complex bi-stability phenomenon: besides the success and
failure regimes — which are similar to the endemic and fast extinction regimes in
epidemic models, respectively — we witness the presence of an intermediate regime,
where the outcome of the system depends on the initial condition. Third, we model
evolutionary dynamics using our framework, enabling us to extend the theoretical
analysis of these models and to study the effect of the introduction of an external
control. We apply evolutionary dynamics to model the insertion of a mutant species
in a geographic area to substitute the native one, e.g., the species of mosquitoes that
transmit Zika virus. Our general analysis enables us to understand the effect of the
topology and of the control policy adopted on the time required to spread the mutants
and on the effort needed to achieve this goal, and allows also for the definition of an
effective feedback control policy to speed up the diffusion process.
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Chapter 1

Introduction

1.1 Introduction and Motivation

In the last few decades, the world has become more and more deeply and globally
connected. First, distances of thousands of kilometers can be physically covered in
few hours, thanks to the developments in transportation systems of the last century.
Then, the progresses in information technology and the diffusion of digital media
has completely reshaped the world, transforming the notion of distance in our “Small
World” where the information can flow all around the globe in a heartbeat.

In this framework, networks have emerged as very powerful mathematical tools
to deal with the inherent complexity of networked systems in such a hyper-connected
reality. For this reason, networks have been used in many different fields to represent,
e.g., physical interacting particles systems [1], social systems where individuals
exchange opinions and information [2–4], biochemical systems made of molecular
regulators interacting with enzymes [5, 6], technological systems of connected
sensors and devices [7, 8], or transportation systems made of moving vehicles [9].

The study of dynamics on networks has been absolutely effective in improving
our understanding of several physical, social, and biological phenomena. Besides
the theoretical contributes due to the insights into the phenomena gained through
these studies, the increased awareness of the mechanisms ruling the various inter-
acting systems allows for the development of several useful prediction and control
techniques, with many benefits for the society.
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A paradigmatic example is the study of epidemic spreading. The deep improve-
ments in the understanding of their diffusion on a generic network [10–12] paved the
way for the design and the analysis of an array of control policies that have direct
applications to the health system in the last few years [13–17]. Another archetypal
example consists in the analysis of the diffusion of opinions and ideas. In this field,
the voter model was one of the first model proposed [1] and an extensive analysis in
terms of long-run behavior and convergence time to consensus on lattices and regular
structures is available [1, 18]. More recently, game-based opinion models have been
proposed and analyzed [19, 20]. From these theoretical results, many control policies
and relevant applications have been developed. Among the others, we mention an
analytical study aiming to maximize the influence of an opinion depending on the
position in the network it is introduced [21], and a study of the spread of hoaxes
and false news [22]. These two examples help us to comprehend the wide range of
possible applications in social sciences of the theoretical results on opinion dynamics
on networks.

In this dissertation, we focus on diffusion processes. Diffusion processes are
ubiquitous: the analysis of an epidemic outbreak in an interconnected population,
as well as the study of the adoption of a new technological asset such as a smart-
phone application, or the control and removal of a dangerous mosquito species in
a geographic area, which are the three main applications we will discuss in this
dissertation, are just three of the many possible real-world dynamics that involve
diffusion processes. Having already mentioned the effectiveness of networks in
capturing the complexity of physical and social systems, it is very natural to embed
diffusion dynamics in networked systems and study them using tools form network
science.

Here, we analyze a relevant class of diffusion processes where the spreading
mechanism is essentially ruled by two simple mechanisms: pairwise contacts be-
tween the components of a network (e.g., the individuals of a population) and
spontaneous mutations. The rationale for these models is that simple local dynamics
on complex networks give rise to interesting, and sometimes unexpected, emergence
phenomena. We remark that a totally different approach to diffusion processes (and
in general to network dynamics), is the one followed in many papers in the litera-
ture [19, 20, 23, 24], where the diffusion is driven by nontrivial neighbors-based
dynamics, often model in a game-theoretical framework.
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Specifically, we develop a general theory to model pairwise-based diffusion
processes on networks. Our general formulation encompasses and generalizes
several well known dynamics: epidemic models such as the Susceptible–Infected
(SI) and the Susceptible–Infected–Susceptible (SIS) [25, 26], opinion dynamics as
the voter model [1], and biological models as evolutionary dynamics [27]. Then,
along this dissertation, we propose some relevant applications, in which the general
model is tailored to the specific features of the considered diffusion phenomenon.
The objective of the study of these applications is twofold. On the one hand, we
want to gain novel insights on the specific phenomena analyzed, thanks to the new
results we have developed in our general theory. On the other hand, through these
applications, we emphasize the generality of our framework, showing how it allows
to include into the system’s dynamics nonstandard features, such as heterogeneity (as
in the SIS model considered in Chapter 3), nontrivial indirect effects of the diffusion
(as we show in Chapter 4), as well as exogenous control policies (that are considered
in Chapter 5).

1.2 Organization of the Dissertation

The thesis is organized as follows. In Chapter 2 we introduce our general framework.
First, in Sections 2.1 and 2.2 we recall some basic notions of graph theory and
continuous time Markov processes in order to formulate and analyze our model.
Then, in Section 2.3 we present our general formalism by introducing the pairwise-
based mechanism that rules the spreading processes. Section 2.4 is devoted to the
analysis of the stochastic process induced by these mechanisms, and in Section 2.5
we present an important technique to derive a deterministic approximation of the
stochastic process useful for perform predictions and estimations on the system’s
evolution. The following chapters are devoted to present relevant applications of our
general theory to different fields. In these applications our general model is tailored
in order to fit the specificity of the considered dynamics to model and additional
features are added, proving the flexibility of our theoretical framework.

In Chapter 3, we adapt our formalism to the application field of epidemics spread-
ing. Specifically, we analyze the SIS model, already mentioned above. The chapter
is divided into three parts. First, in Section 3.1, we present the epidemic model
studied and we show how our general framework can be tailored to it. Then, we
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revisit some important results available from the literature. Specifically, we identify
two regimes depending on the epidemic strength and on the network properties:
in the first regime, the epidemic quickly extinguish; in the second one, instead, it
becomes endemic. In Section 3.2, leveraging tools from our general theory, we give
new insights on the epidemic process by proposing an interesting refinement of the
existing results, specifically concerning with the long persistence of the epidemics
when it becomes endemic. Finally, in Section 3.3 we analyze a different issue related
to the same model: understand how an epidemic outbreak evolves if the network
of interactions is time-varying and heterogeneous. Specifically, our contribution
consists in the proposal of an effective method to produce accurate short and medium
time horizon predictions of the epidemic curve, both when no data are available, and
when epidemics data at the population level can be sampled at fixed time windows
in order to dynamically correct the predictions.

In Chapter 4, instead, we face a problem in the field of social sciences, specif-
ically a marketing problem: to develop and analyze a model for the diffusion of a
new technological asset, such as a smartphone application. This model includes a
nontrivial global effect of the diffusion, known in economics as externalities: the
more a product is diffused, the more likely a new potential user decides to adopt
it. Section 4.1 is devoted to the design and the discussion of the model. Then, the
model is studied in order to predict whether the product will be successful of not,
depending on its characteristics and on the structure of the network of interactions.
Specifically, the analysis is performed in three steps: i) in Section 4.2, we study the
model under a fully-mixing assumption (i.e., assuming that all the individuals can
communicate) and we witness the presence of a failure regime, a success regime,
and an intermediate regime where the outcome depends on the initial condition,
being the main novelty of this model; ii) in Section 4.3, we extend our analysis
to non connected networks of interactions, and finally iii) in Section 4.4 the case
of a general network of interactions is analytically studied, along with numerical
simulations on relevant topologies.

In Chapter 5, a controlled evolutionary dynamics is considered, inspired by a new
method to control mosquitoes-borne diseases which consists in inserting harmless
genetically modified mosquitoes in a geographic region to substitute those that
diffuse pathogens (e.g., Zika or Dengue) [28, 29]. The chapter is divided into three
parts. In the first one, we tailor our general pairwise-based interaction diffusion
process in order to model the specific features of evolutionary dynamics. In Section
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5.2, we use our theoretical results to perform the analysis of the model and we
discuss the possibility to control it and speed up the diffusion, depending on the
topology of the geographic region and on the control policy adopted. Finally, in
Section 5.3 we propose a feedback control policy for the system and we show its
effectiveness through two relevant examples.





Chapter 2

Diffusion Processes on Networks: a
General Formulation

This chapter is divided into two parts. In the first one, we present some mathematical
preliminaries on graph theory and Markov processes and we introduce the notation
used throughout this dissertation. Then, we develop a general formulation for
diffusion processes on networks driven by pairwise interactions.

The rest of this chapter is organized as follows. In Section 2.1, we recall some
important notions of graph theory and we present the notation used in this disser-
tation. In Section 2.2, we briefly present Markov jump processes focusing on the
important sub-family of birth-death Markov processes. At this stage, we can finally
introduce the mechanism that governs pairwise-based diffusion processes in Sec-
tion 2.3. In Section 2.4, we deduce and discuss the Markov jump process induced
by the mechanisms we have introduced. Finally, Section 2.5 is devoted to present a
deterministic finite time-range approximation of the stochastic process presented in
the previous section, which allows for the development of accurate prediction of the
evolution of diffusion processes on large-scale networks.

2.1 Notions of Graph Theory

In this section we present some basic notions of graph theory and we introduce
the notation and the terminology used in the rest of this dissertation. Finally, we
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conclude presenting some relevant examples of graph topologies we will use in this
dissertation.

A graph G = (V,E) is a mathematical entity identified by an ordered pair of
objects:

• a set of N nodes, usually labeled by positive integer numbers, gathered in the
node set V = {1, . . . ,N}; and

• a set of ordered pairs of nodes (i, j), i, j ∈V , named edges, which are collected
in the edge set E ⊆V ×V .

The presence of the edge (i, j) has to be interpreted as a connection between node i
and node j. Connections between nodes can be represented in a more compact way
using the adjacency matrix A ∈ {0,1}V×V , which is defined as follow:

Ai j =

{
1 if (i, j) ∈ E
0 if (i, j) /∈ E.

(2.1)

Therefore a graph can be defined either through the couple V and E, or through V
and A.

Given a node i ∈V , we refer to the nodes that are connected to it as neighbors of
node i. Namely,

Ni := { j ∈V : (i, j) ∈ E} . (2.2)

Given a node i, we define its degree as

di := ∑
j∈V

Ai j = |Ni|. (2.3)

The maximum degree of a graph is denoted by ∆, wheres the average degree is
denoted by d̄. Graphs with di = d, ∀ i ∈V are said to be regular.

A graph is said to be undirected if (i, j) ∈ E =⇒ ( j, i) ∈ E, which implies A to
be a symmetric matrix. Otherwise, we refer to it as a directed graph. For directed
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1 2 3 4

5
6

7 8 9

Fig. 2.1 A graph G = (V,E) with N = 9 nodes. An arrow from i to j represents an edge from
i to j, whereas a segment from i to j represents a couple of edges (i, j) and ( j, i). The graph
is directed, since, e.g., (6,7) ∈ E, but (7,6) /∈ E. The set N6 = {2,3,5,7} of the neighbors
of nodes 6 is colored in red, so d6 = 4.

graph, the in-degree of a node can also be defined as

d−
i := ∑

j∈V
A ji, (2.4)

and, similarly, ∆in denotes the maximum in-degree. We remark that the average
in-degree coincides with d̄.

A path is a sequences of nodes γ = (γ0, . . . ,γl), such that (γi,γi+1) ∈ E, ∀i =
0, . . . , l −1. If, for any pair of nodes i and j there is a path on the graph that goes
from i to j passing only on existing edges, then we say that the graph G is strongly
connected. In this work we will mostly consider strongly connected graphs, but for
a short parenthesis in Chapter 4. Fig.2.1 depicts a graph, explaining some of the
notions presented here.

Given a graph G, a positive weight Wi j > 0 can be associated to each edge (i, j)∈
E. All the weights can be gathered in a matrix W ∈ RV×V

+ named weight matrix. We
notice that Wi j > 0 ⇐⇒ (i, j) ∈ E or, in other words, Wi j > 0 ⇐⇒ (i, j) ∈ Ai j = 1.
A graph equipped with a weight matrix G = (V,E,W ) is called weighted graph.

A weighted graph with all the weights equal, i.e., W = αA, α > 0, is said to be
simple and all the information of the weight matrix can be condensed in the unique
parameter α . Similar to the unweighted case, also a weighted graph is said to be
undirected if W is a symmetric matrix. We observe that the notion of undirected
weighted graph is more strict than the one for unweighted graphs. In fact, undirected
weighted graphs are also undirected (unweighted) graphs, but the reverse implication
is not true for nonsimple graphs, since Wi j ̸=Wji ̸= 0 =⇒ Ai j = A ji.
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1 2 3 4

5
6

7 8 9

2

6

12 6

4

5

7

6

3 59

Fig. 2.2 A weighted undirected graph G = (V,E,W ) with N = 9 nodes. The weight of node
1 is w1 = 16 (corresponding edges are in red), while w4 = 14 (edges in blue).

Similar to the degree for unweighted graphs, given a node i of a weighted graph,
we define its weight as

wi := ∑
j∈V

Wi j. (2.5)

In the case of a simple graph, we observe that the weight of the nodes is proportional
to their degree:

wi = ∑
j∈V

Wi j = ∑
j∈V

αAi j = α|Ni|= αdi. (2.6)

Fig.2.2 depicts an example of weighted graph, clarifying the notions presented so
far.

We conclude this section by presenting some relevant examples of graphs we will
use in the rest of this dissertation. In order to keep the notation and the presentation
simple, when not differently specified graphs are always simple. Moreover, when
dealing with simple graphs the weight matrix is omitted since all its information is
condensed in a single parameter α .

Example 2.1 (Complete graph). A graph with N nodes, each one connected to
itself and to all the other nodes is called complete graph and it is denoted by KN .
We remark that Ni = V , ∀ i ∈ V . Hence, simple complete graphs are undirected
and regular with di = N, ∀ i ∈V . An example of a complete graph is presented in
Fig. 2.3(a).

Example 2.2 (Line graph). A line graph with N nodes is a graph where node i is
connected to nodes i+1 and i−1, but the first node that is connected only with the
second one, and the last is only connected with node N −1. Simple lines are thus
undirected but not regular.
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Example 2.3 (Ring graph). A Ring graph, denoted by CN is obtained from a line
graph by adding the couple of edges (1,N) and (N,1). Simple ring graphs are thus
undirected and regular with di = 2, ∀ i ∈V . An example is presented in Fig. 2.3(b).

Example 2.4 (Star graph). A graph with N +1 nodes, where all the first N nodes
are connected to node N +1 and node N +1 is connected to all the other nodes is
named star graph and denoted by SN . Simple stars are undirected but not regular:
all nodes but N +1 have degree 1, instead, node N +1 has degree N. An example of
a star graph is presented in Fig. 2.3(c).

Example 2.5 (Barbell graph). A graph with N (even) nodes partitioned into two
complete communities with N/2 nodes each with a symmetric edge connecting a
single node of the first community to a single node of the second one is named barbell
graph. Simple barbel graphs are undirected but not regular: all nodes have degree
N/2−1, but the pair of nodes belonging to different communities that are linked:
they have degree N/2.

Example 2.6 (Erdős-Rényi random graph). The Erdős-Rényi (ER) model G(N, p)
is the first random graph model, introduced in 1959 [30]. G(N, p) is a random
undirected simple graph with N nodes where each couple of edges (i, j) and ( j, i)
is present with a probability p ∈ (0,1), independently of the other couple of edges.
Thus, the graph is undirected. The degree of each node is thus a realization of a
binomial random variable with parameters N −1 and p. Standard concentration
results [11] show that with high probability (w.h.p.) as N → ∞, d̄ ≍ ∆ ≍ N p. An
example of an Erdős-Rényi graph is presented in Fig. 2.3(d).

Example 2.7 (Barábasi-Albert model). The Barábasi-Albert model is a model for a
simple graph introduced in 1999 to represent social networks [31]. Starting from
an initial connected graph, at each time step a node is added to the graph and it is
connected to m existing nodes with a probability proportional to their degrees, until
there are N nodes [31]. This algorithm constructs a graph whose degree distribution
follows asymptotically a power-law [31] (in particular P[dv = k] ∝ k−3). As N → ∞

it is immediate to verify that d̄ = m+o(1) (due to construction). On the other hand,
from [32], ∆ =

√
N(1+o(1)).
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(a) Complete graph. (b) Ring Graph. (c) Star Graph. (d) ER Graph.

Fig. 2.3 Relevant graph topologies presented in the examples of this section.

2.2 Notions on Markov Processes

In this section we briefly present an important family of stochastic processes that will
be used throughout this dissertation: Markov processes. The literature of Markov
processes is extremely wide and they have been studied from many point of view in
different fields and with different applications. In this section, we will stick to the
specific case of continuous-time finite-space processes and we will present only those
properties that will be useful in the rest of this dissertation. For a more complete
treatment of these processes one can see [33, 34].

Definition 2.1 (Markov jump process [33]). A continuous-time Markov jump process
X(t), t ∈ R+ is a stochastic process taking values in a finite (or countable) space S ,
such that Markov property is verified, i.e.,

P[X(t +∆t) = s |Ft ] = P[X(t +∆t) = a |X(t)], ∀∆t ≥ 0, ∀a ∈ S, (2.7)

where Ft is the natural filtration of the process X(t) at time t.

Hence, the transitions a Markov jump process can have at time t, are only
influenced by its actual state at time t. Therefore, the process is fully determined
by its initial condition X(0) = X0 ∈ S, and by a nonnegative (entry-wise) matrix
Λ = (λrs)r,s∈S with null diagonal entries that governs the transitions of the process,
according to the following infinitesimal definition:

P[X(t +∆t) = s |X(t) = r] = λrs∆t +o(∆t), ∀s ̸= r ∈ S. (2.8)

The elements of the matrix Λ are called transition rates of the process. The state space
and the transitions of a Markov jump process can be represented through a weighted
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graph where the node set V = S , the weight matrix is Λ, and (r,s) ∈ E ⇐⇒ λrs > 0.
We will refer to this graph as transition graph of the Markov process.

A first fundamental example of Markov jump process is the Poisson process N(t),
having N(0) = 0, S = N, and all transition rates null, but λi,i+1 = λ , ∀ i ∈ N. Hence,
a Poisson process can only have jumps in which the state increases by 1. Throughout
this dissertation, we refer to this process as a Poisson clock with rate λ . We say that
a Poisson clock clicks at time t, if a transition of the process occurs at time t.

From the infinitesimal definition in (2.8), the explicit law governing the transi-
tions can be derived [34]. When the process X(t) enters in state r at time t, it spends
there an exponentially distributed random time T with parameter ∑s∈S λrs, i.e.,

P[T ≤ t] =

{
1− exp{−∑s∈S λrst} t ≥ 0
0 t < 0.

(2.9)

Then, after a time T , the process X(t) enters in its following state, that is selected
stochastically, according to

P[X(t +T ) = s] =
λrs

∑s∈S λrs
. (2.10)

Finally, another equivalent and interesting interpretation of Markov jump pro-
cesses is the one of a discrete-time Markov chain X(k), k ∈ N, coupled with a vector
τ encapsulating the temporal features of the process [34]. Both the discrete-time
process and the temporal vector are initialized at 0, i.e., X(0) = X0 and τ0 = 0. We
introduce a matrix Q = (qrs)r,s∈S , which is related to Λ as follows,

qrs =



λrs

∑p λrp
if ∑

p
λrp > 0

1 if ∑
p

λrp = 0, r = s

0 if ∑
p

λrp = 0, r ̸= s,

(2.11)

and we define the transition of the discrete-time Markov chain accodring to the
following probabilistic law:

P[X(k+1) = s |X(k) = r] = qrs. (2.12)
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(a) Transition graph.
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OFF
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t

X(t)

(b) Admissible trajectory.

Fig. 2.4 Transition graph and an admissible trajectory of the Markov jump process presented
in Ex. 2.8.

The vector τ is obtained recursively: given X(k) = r, we let

τk+1 = τk +Tk, (2.13)

where Tk is an exponentially distributed random variable with parameter ∑s∈S λrs.
The information on the state reached by the Markov jump process after each transition
and the time this transition occur is thus divided into two processes. Specifically,
τk is the time the Markov jump process has its k-th jump, while X(k) is the state
the process enters, after the jump. This interpretation is very powerful to perform
theoretical analysis of Markov jump processes as well as to perform fast numerical
simulations [35].

We present now a very simple example of Markov jump process to clarify our
notation.

Example 2.8. Let us consider a system consisting in a light and its switch. The light
is initially of OFF. When the light is OFF, then it is switched ON after a random time
that is exponentially distributed with parameter 2. Then, if the light is ON, then it is
switched OFF after a time that is exponentially distributed with parameter 3. The
variable X(t), denoting the state of the light at time t, is a Markov jump process with
transition matrix

Λ =

[
0 2
3 0

]
, (2.14)

where the first line is associated with the state OFF and the second one with the
state ON and X(0) = OFF. The transition graph and an admissible realization of
X(t) are represented in Fig. 2.4.
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From (2.11), we immediately deduce that a state s ∈ S with ∑r λsr = 0 has the
remarkable property that, if X(t) ever enters in s, then it never exits. States exhibiting
this property are named absorbing states. In this dissertation, we will mainly focus
on Markov processes possessing at least one absorbing state, and we will analyze the
probability that the process is absorbed into one of these states and the time needed
for such event to occur.

We introduce now an important family of Markov jump processes for which
many analytical results are available due to the simplicity of their transition graphs:
birth-death Markov jump processes.

Definition 2.2 (Birth-death Markov jump process). A continuous-time finite-space
Markov jump processes Z(t) is a birth-death process if and only if its transition
graph is a (possibly nonsimple) line graph (see Ex. 2.2).

Remark 2.1. We remark that, due to its structure, a birth-death Markov jump process
Z(t) admits at most two transitions from each state: the one to the previous state on
the line graph, and the one to the following one. We refer to these rates as increasing
and decreasing rates, respectively, and we denote them as λ±(z).

In our dissertation, we focus on birth-death Markov jump process whose state
space is in the form SN := {0,1/N, . . . ,1}, or, equivalently, S̃N := {0,1, . . . ,N}. We
remark that, due to the specific structure of the transition graph of a birth-death
process, its state space can always be mapped into SN , where N = |S|−1. Therefore,
from now on, without any loss in generality we stick our analysis to processes on SN

The notion of birth-death process can be naturally generalized to non-Markov
processes, where the transition graph of the process representing the admissible
transitions is a line, but (2.8) is not verified because, typically, it is not possible
to define the transition rates. We generally refer to such processes as birth-death
processes. In order to deal with these processes, ancillary Markov processes acting
as estimations and bounds on the original process are defined, using the important
notion of stochastic dominance, presented in the following.

Definition 2.3. Let Z(t) and Z̃(t) be two stochastic processes on the same state
space S. We say that Z(t) stochastically dominates Z̃(t), denoted as Z(t)≽ Z̃(t), if

P[Z̃(t)≤ s]≤ P[Z(t)≤ s], ∀ t ≥ 0, ∀s ∈ S. (2.15)
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A simple method to prove stochastic domination between two processes consists
in defining a bi-dimensional process (Y (t),Ỹ (t)), in which i) the marginal distribu-
tion Y (t) coincides with the distribution of Z(t); ii) the marginal distribution Ỹ (t)
coincides with the distribution of Z̃(t); and iii) Y (t)≥ Ỹ (t), ∀ t ≥ 0 [11].

Using stochastic domination, we are able to reduce the analysis of many non-
Markov stochastic processes, to the analysis of some Markov bounds on them. In
order to perform these analysis, besides the standard results known from the literature
[33, 34], we often leverage a couple of technical results, which are extensively
presented and proven in Appendix A.

2.3 Pairwise-Based Diffusion Mechanism

Let us consider a system made of a set of N interconnected components (agents).
Each one can be identified with a node of a graph G = (V,E), where the presence of
the edge (i, j) ∈ E has to be interpreted that agent i can be influenced by agent j. In
order to model the evolution of the diffusion process, each node is given a state Xi(t)
which is equal to 1 if node i has been reached by the diffusion process at time t ∈R+

or 0 otherwise. States can be assembled in a N-dimensional vector X(t) ∈ {0,1}V ,
called configuration of the system, which is the state variable of the system.

We introduce two dynamics: mutations and pairwise interactions. The former
consists in spontaneous state updates, whereas in the second dynamics, an agent
updates its state after an interaction with another agent in its neighborhood.

Mutations are modeled as follows: each node i ∈V is equipped with a Poisson
clock with rate λi. All Poisson clocks are one independent of the others. When
the clock associated with agent i clicks, if the state of agent i is 0, then it updates
its state to 1 with probability m01. Otherwise, if its state is 1, it change its state
from 1 to 0 with probability m10. The probabilities m01 and m10 are called mutation
probabilities.

Similarly, pairwise interaction acts as follows. Each edge (i, j) ∈V is equipped
with a Poisson clock with rate Wi j, independent of the others. When the clock
associated with edge (i, j) clicks, then agent i is allowed to update its state depending
on the state of agent j. Specifically, if agent i has state 0 and agent j has state 1, then
agent i change its state to 1 with probability p01. On the contrary, if agent i has state
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0 1

p01

p10

m10

m01

Fig. 2.5 State transitions characterizing the pairwise-based mechanism. Black solid lines
are spontaneous mutation, colored dashed lines are transitions taking place after a pairwise
interaction with a node with the other state.

1 and agent j has state 0, then agent i updates to 0 with probability p10. Otherwise,
nothing happens. These transitions are represented in Fig. 2.5, which will be used in
the following chapters to depict the specificity of the several models analyzed. The
probabilities p01 and p10 are called copying probabilities.

The rates of the Poisson clocks associated with the edges can be gathered into a
matrix W , whose nonnull entries correspond to positions Wi j with (i, j) ∈ E. Thus,
we can model the network of interactions between the agents using a weighted graph
G = (V,E,W ). We refer to a homogeneous pairwise-based diffusion process when
all the rates Wi j = λe are equal, which means that W is simple. In this case, the
network of interactions between agents can be modeled using an unweighted graph
and the parameter λe.

This formulation is very general and allows for the inclusion of several features
depending on the phenomenon to model. In fact, the probabilities m01,m10, p01, and
p10 can be constant or, more in general, they can be functions of the state of the
system and/or can depend on external parameters and quantities. In this dissertation
we consider different scenarios: cases in which all these probabilities are fixed (as in
the case of the SIS epidemic model studied in Chapter 3, cases in which are functions
of the state of the system (as in Chapter 4), and cases in which they are function of
an exogenous control (as in the evolutionary dynamics analyzed in Chapter 5.

2.4 Markov Process and its Analysis

Mutations and pairwise interactions yield state transitions that depend only on the
state of the system at the specific time the transition happens, without any memory
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i (x)

i

Fig. 2.6 Transition graph of the jump Markov process X(t) induced by the pairwise-based
diffusion mechanism.

of the past. Therefore, they induce a Markov jump process X(t) on the configuration
space {0,1}V [34]. The Poisson clocks involved in the dynamics are all independent
of the others. Hence, no concurrent clicks can occur [34]. Therefore, the only
transitions that can take place from a generic state X(t) = x = (x1, . . . ,xn) are the
ones to states that differ from x in a single entry, represented in the transition graph
in Fig. 2.6. The corresponding transition rates are denoted as λ

±
i (x) for the transition

rate from x to x±δ (i). These rates are
λ
+
i (x) = (1− xi)

[
λim01 + ∑

j∈Ni

Wi jx j p01

]

λ
−
i (x) = xi

[
λim10 + ∑

j∈Ni

Wi j(1− x j)p10

]
.

(2.16)

We observe that, if m01 = 0, then an agent with state 0 will never update its state
unless it contacts an agent with state 1. Therefore, the pure configuration where all
the agents have state 0, denoted as 01, is an absorbing state. Similarly, if m10 = 0,
the pure configuration where all agents have state 1, denoted as 1, is an absorbing
state. In all the models we consider in this dissertation, and in many other diffusion
models, at least one of the two mutation probabilities is set equal to 0. Under this
assumption, the Markov process X(t) admits at least an absorbing state, being one of
the two pure configurations. Moreover, ifthe copying probability p01 > 0 (p10 > 0 )
and the graph is strongly connected, then i) no other absorbing states can be present;
ii) the pure configurations 1 (01) can be reached with non null probability from
each configuration that is not absorbing. Therefore, we conclude that, under the
hypothesis that at least one mutation probability is null and that at least one of the
copying probability is nonnull, then the process eventually enters (in finite time) in
one of the absorbing states with probability equal to 1, due to Borel-Cantelli lemma
[34].
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The main issues for these models consist thus in understanding how the initial
condition, the topology of the network of interactions, and the model parameters
influence i) the absorbing state reached, where more than one absorbing states is
present; and ii) the time needed for the process to enter an absorbing state. In the
literature, several works are focused on tackling the first problem in situation with
multiple absorbing states [36, 19, 20]. In this work, instead, we focus our analysis on
dynamics possessing only one absorbing state and we deepen the study of the second
issue: estimating the absorbing time and predicting the evolution of the spreading
process.

The size of the system is one of the main limitations for the analysis of the
process. In fact, the size of the state space of X(t) grows exponentially with the
number of agents N, and also the number of possible transitions from a configuration
increases as N grows. Hence, for large scale graphs, the analysis of the process X(t)
becomes almost unfeasible. This issue can be approached by defining and analyzing
the following one dimensional projection of X(t):

Z(t) = z(X(t)) :=
1
N

N

∑
i=1

Xi(t), (2.17)

which counts the fraction of agents having state equal to 1.

The process Z(t) is a stochastic process on the state space SN = {0,1/N, . . . ,1}
whose transition graph is a line, as represented in its transition Fig. 2.7, therefore it
is a birth-death process. Analogously, we can define the birth-death process as

Z̃(t) :=
N

∑
i=1

Xi(t) = NZ(t), (2.18)

which counts the number of agents having state equal to 1 and is also a birth-death
process. In this dissertation, for the sake of simplicity, depending on the specificity
of the model we consider, we will decide either to analyze Z(t) or Z̃(t) that are
equivalent but for a scaling factor.

The study of Z(t) makes intuitively the analysis of the system more tractable.
In fact, the size of the state space of this process grows only linearly with N, and
the possible transitions from each state are, at most, two. However, an important
property is lost in the projection from X(t) to Z(t): the birth-death process could in
general be non-Markov. This has a simple explanation: the distribution of 1’s in a
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0 1/N . . . z . . . 1

λ+(z|x) λ+(z|x) λ+(z|x) λ+(z|x) λ+(z|x)

λ−(z|x) λ−(z|x) λ−(z|x)λ−(z|x) λ−(z|x)

Fig. 2.7 Transition graph of the birth-death Markov jump process.

neighborhood of a node is in general different from the global distribution of 1’s in
the population, hence, the transition rates λ± depend on the whole process X(t) and
not just on Z(t). To stress this dependence, we denote them as λ±(z|x).

We assume all the agents activation to be homogeneous, so that all the clocks
associated with their activation have the same rate λi = λ , ∀ i ∈V . This homogeneity
assumption will be kept throughout this dissertation, but for a specific case consid-
ered in Chapter 3, when we will analyze a heterogeneous epidemic model, and in
Chapter 5, where the rates are time-varying and ruled by exogenous control policies.
Then, we introduce the notion of active boundaries of the process. An edge (i, j)
belongs to the active boundary B01(t) at time t if Xi(t) = 0 and X j(t) = 1. Similarly,
if Xi(t) = 1 and X j(t) = 0, the edge (i, j) belongs to the active boundary B10(t). We
define the size of an active boundary at time t as the sum of the weights of the edges
belonging to the boundary, namely

ξ01(t) := ∑
(i, j)∈B01(t)

Wi j = ∑
i∈V

(1−Xi(t)) ∑
j∈V

Wi jX j(t) (2.19)

and
ξ10(t) := ∑

(i, j)∈B10(t)
Wi j = ∑

i∈V
Xi(t) ∑

j∈V
Wi j
(
1−X j(t)

)
(2.20)

We notice that, when the graph G is undirected, it holds B01(t) = B10(t), ∀ t ≥ 0.
Therefore, we have ξ01(t) = ξ10(t) and the notation can be simplified by dropping
the indexes.

At this stage, we can analyze the process Z(t) and notice that, even if Markov
property is lost due to the one-dimensional projection, when conditioned to ξ01(t)
and ξ10(t), the process is Markov. Notably, when conditioned to ξ01(t) = ξ01 and
ξ10(t) = ξ10, Z(t) is a birth and death jump Markov process whose transition rates
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from the state z to z+1/N and z−1/N are, respectively λ+(z|ξ01) = N(1− z)λm01 +ξ01 p01

λ−(z|ξ10) = Nzλm10 +ξ10 p10,
(2.21)

In fact, fixed X(t) = x, the quantities B01(t) = B01, ξ01(t) = ξ01, and Z(t) = z are
given. Hence, we compute

λ+(z|x) = ∑
i∈V

λ
+
i (x)

= ∑
i∈V

(1− xi)

[
λm01 + ∑

j∈Ni

Wi jx j p01

]
= N(1− z)λm01 + ∑

i, j∈V
(1− xi)x jWi j p01

= N(1− z)λm01 + ∑
(i, j)∈B01

Wi j p01

= N(1− z)λm01 +ξ01 p01 = λ
+(z|ξ01).

(2.22)

A similar computation allows to derive the decreasing rate λ−(z|x) as a function of
the only ξ10.

However, the difficulties arise from the fact that the processes ξ01(t) and ξ10(t)
are, in general, not explicitly known. There is a single case in which ξ01(t) and
ξ10(t) are deterministic functions of Z(t): when G is a simple complete graph.
Since complete graphs are undirected, we can drop the indexes and we write ξ (t) =
ξ01(t) = ξ10(t). Being the graph simple, all the weights are equal, thus, we set
Wi j = λe, ∀ i, j ∈V . Therefore, the active boundary is a deterministic function of the
process Z(t) that is so Markov itself, namely ξ (t) = N2λeZ(t)(1−Z(t)). To sum up,
the transition rates (2.21) read λ+(z) = N(1− z) [λm01 +Nλezp01]

λ−(z) = Nz [λm10 +Nλe(1− z)p10] .
(2.23)

The assumption of homogeneity (i.e., λi = λ ) and fully-mixed network of interaction
(i.e., G simple complete graph) go under the name of mean field assumptions for the
model.
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2.5 Hydrodynamic Limit

Another important tool that is used along this dissertation is the hydrodynamic limit
of the model. Under mean field assumption, we can consider the limit case in which
N → ∞. In this limit case, the evolution of the stochastic birth-death Markov jump
process Z(t) can be approximated arbitrarily well with a deterministic function ζ (t)
for fixed (finite) time-windows. Figure 2.8 depicts this approximation, which is more
accurate, the larger is N. The detherministic function ζ (t) is defined in the following
theorem.

Theorem 2.1 (Kurtz Theorem [37, 38]). Let us suppose there exist two Lipschitz
continuous functions λ̃+ : [0,1]→ R+ and λ̃− : [0,1]→ R+ such that

λ+(z)
N

→ λ̃
+(z), and

λ−(z)
N

→ λ̃
−(z), (2.24)

uniformly as N → ∞. Let Z(0)→ ζ0 as N → ∞ and let ζ (t) be the solution of the
following Cauchy problem:ζ ′(t) = F(ζ ) := λ̃+(ζ )− λ̃−(ζ )

ζ (0) = ζ0.
(2.25)

For every T > 0 ∃CT > 0, the following exponential decay holds

P

(
sup

0≤t≤T
|Z(t)−ζ (t)|> ε

)
≤ 4exp

(
−CT Nε

2) , (2.26)

where CT only depends on T and on the sup norm of the right-hand-side of equa-
tion (2.25) and is bounded away from 0 when the two quantities are both bounded.

Remark 2.2. A typical choice that is often made to guarantee the two functions λ̃±

to be Lipschitz-continuous consist in setting the weight of each edge proportional
to the inverse of the average degree of the graph. In the case of the complete graph
the average degree is equal to the size of the graph, therefore, it is set Wi j = λe/N,
∀ i, j ∈V . In this case (2.25) reduces to

ζ̇ = F(ζ ) = (1−ζ )(λm01 +λeζ p01)−ζ (λm10 +λe(1−ζ )p10) . (2.27)



2.5 Hydrodynamic Limit 23

10 20 30 40

0.2

0.4

0.6

0.8

1

0
0

t

ζ (t)

(a) N = 1000.

10 20 30 40

0.2

0.4

0.6

0.8

1

0
0

t

ζ (t)

(b) N = 10000.

Fig. 2.8 Comparison between the stochastic process (red) and the solution of the Cauchy
problem (2.25) (blue) for increasing values on N for the SIS model, presented in Chapter 3.
As the size of the system grows, the deterministic approximation becomes more accurate.

We conclude this section by presenting an useful generalization of Kurtz’s Theo-
rem for k-dimensional stochastic processes Z(t) = (Z1(t), . . . ,Zk(t)) taking values
in SN1 × ·· ·×SNk , where the component Z j takes values in SNk and can only in-
crease or decrease by 1/N j at each transition. The transition graph of Z(t) is thus
a N1 ×·· ·×Nk lattice. We name λ

±
j , the transition rates of the j-th component of

process Z(t), i.e., λ
+
j (z) represents the transition probability from z to z+N−1

j δ ( j).
Let N = ∑ j N j. This result allows to deal with heterogeneous dynamics, as we will
see in Chapter 3.

Theorem 2.2 (Generalized Kurtz Theorem [37, 38]). Let us suppose N j/n → η j > 0,
∀ j = 1, . . . ,k as N → ∞ and that there exist 2k Lipschitz continuous k-dimensional
functions λ̃

+
j : [0,1]k → R+ and λ̃

−
j : [0,1]k → R+, j = 1, . . . ,k, such that

λ
+
j (z)

N
→ λ̃

+
j (z), and

λ
−
j (z)

N
→ λ̃

−
j (z), (2.28)

uniformly as N → ∞, for j = 1, . . . ,k. Let Z(0) → ζ0 as N → ∞. Let ζ (t) =
(ζ1(t), . . . ,ζk(t)) be the solution of the following k-dimensional Cauchy problem:ζ ′

j(t) = F(ζ ) := λ̃
+
( j)(ζ )− λ̃

−
( j)(ζ ) j = 1, . . . ,k

ζ j(0) = Z j(0) j = 1, . . . ,k.
(2.29)
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Then, for every T > 0 ∃CT > 0, the following exponential decay holds:

P

(
sup

0≤t≤T
|Z(t)−ζ (t)|> ε

)
≤ 2k+1 exp

(
−CT Nε

2) , (2.30)

where CT only depends on T and on the sup norm of the right-hand-side of equa-
tion (2.29) and is bounded away from 0 when the two quantities are both bounded.

2.6 Conclusion

In this Chapter, first, we have presented the preliminaries and tools that will be
used in this dissertation. Then, we have formalized our general model for diffusion
processes. In Section 2.1, we have started by recalling some important notions on
graph theory and by presenting the notation used throughout this work. We have
also proposed and analyzed a bunch of network topologies, which will be used in the
following chapters as examples for the considered dynamics. Then, in Section 2.2,
we have revisited some relevant notions on continuous-time Markov jump process,
useful in our further results.



Chapter 3

Susceptible–Infected–Susceptible
Epidemic Model

In this chapter, we consider and study the SIS epidemic model. The SIS model,
introduced in 1927 [25], is one of the most popular and extensively analyzed math-
ematical models for epidemics and it describes the evolution of an outbreak of a
contagious disease transmitted by contacts for which recovered individuals do not
acquire immunity and can contract the disease again.

In Section 3.1, we formally define the SIS model within the general framework
developed in Chapter 2. Then, we present some important results available in the
literature. Specifically, we show that the SIS model exhibits a phase transition
between two regimes, depending on the model parameters and on the network
structure: in the first regime the epidemic is circumscribed to a small subset of
individuals, and quickly vanishes; in the other one the epidemic becomes endemic,
spreading all over the network for (typically) a long time. In the literature, this
characterization has been analyzed in terms of expected duration of the dynamics
before reaching the disease-free equilibrium.

In Section 3.2, we improve the characterization of the second regime. We analyze
the time needed for the epidemics to extinguish, proving that, if the strength of the
epidemics is sufficiently high, i.e., larger than a threshold which depends on the
topology of the network and on the initial condition, the time to extinction grows
exponentially in the size of the population, with probability converging to 1 as
the size of the population grows large. This provides new insights with respect
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to the results from the literature, which are mainly focused on the expected time
to extinction, as already mentioned. In particular, new insights into the epidemic
process are gained through our improved characterization of the phase transition,
yielding a better understanding of the properties of the model in the regime above
this threshold, depending on the topology of the network of interactions and on the
initial condition.

Then, in Section 3.3, we study the SIS model from a different point of view.
Specifically, we study an epidemic outbreak spreading on a heterogeneous time-
varying network of interaction and we develop an array of techniques to predict
its evolution for short and medium time horizons. Finally, we test our framework
against two real-world case studies, which exemplify different physical phenomena
and time scales. Part of the work described in this chapter has been previously
published in [39–41].

3.1 Model and Mean Field Analysis

The SIS model [25, 26] can be formalized within our general theory for diffusion
processes. We naturally set Xi(t) = 1 if and only if agent i is infected at time t
and Xi(t) = 0 else, if the agent i is susceptible to the disease. Two mechanisms
characterize the SIS model: i) the spread, through which infection spreads along the
edges connecting a susceptible agent to an infected one; and ii) the recovery, through
which infected agents can spontaneously recover from infection and return to the
susceptible state. Coherently, we set the mutation probability m10 and the copying
probability p01, associated with the two admissible transitions (spontaneous mutation
from 1 to 0 and update from 0 to 1 after an interaction) to be strictly positive, whereas
the other two probabilities are set to zero, i.e., m01 = p10 = 0. Admissible transitions
are represented in Fig. 3.1.

Hence, the transition rates (2.16) for the SIS model read λ
+
i (x) = (1− xi)p01 ∑

j∈Ni

Wi jx j

λ
−
i (x) = λm10xi.

(3.1)
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0(S) 1(I)

p01

m10

Fig. 3.1 State transitions characterizing the SIS epidemic model. Black solid lines are
spontaneous mutation, colored dashed lines are transitions taking place after a pairwise
interaction with a node with the other state.

The process X(t) has a unique absorbing state 01 that corresponds to the disease-
free configuration. As already observed, since there exists a path of non zero
probability transitions from every state to the absorbing state, then, almost surely,
there exists a t for which X(t) = 01 [34]. We can thus define the absorbing time of
the process as the following random variable:

τ = min{t ∈ R+ : X(t) = 01}. (3.2)

In the homogeneous mean field case, we set Wi j = λe/N, according to Remark 2.2.
This case have been extensively studied, both using finite-horizon predictions ob-
tained through Theorem 2.1, and by directly analyzing the absorbing time τ , en-
abling the technical community to define a phase transition in correspondence of
λe p01/λm10 = 1.

In order to present these important results, we focus on the process Z(t). Its
transition rates read  λ+(z) = N(1− z)zλe p01

λ−(z) = Nzλm10.
(3.3)

Hence, the ODE described by Theorem 2.1 is simply

ζ̇ = ζ [(1−ζ )λe p01 −λm10] . (3.4)

We define the effective infection rate as β = λe p01/λm10. The results of the
analysis of (3.4) can be summarized in the following Proposition.
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(a) λe = λ = 1, p01 = 0.5, p10 = 0.7.
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(b) λe = λ = 1, p01 = 0.5, p10 = 0.3.

Fig. 3.2 Solutions of the Cauchy problem (3.4) for different values of the parameter show
the presence of the two regimes, depending on β .

Proposition 3.1. If β < 1, the disease-free equilibrium is the only stable point
of (3.4). Otherwise, if β > 1, the disease-free state is unstable and ζ̄ = 1−β−1 is
the only stable equilibria of the system.

Figure 3.2 depicts this phase transition phenomenon.

Hence, for finite time horizons, the trajectories of the process converge close
to 0, if β < 1, and close to ζ̄ , else. As the stochastic process is considered, the
phase transition of the deterministic approximation reflects into a bifurcation in the
expected absorbing time τ . The following proposition is a well known result from
the literature [11].

Proposition 3.2. Let X(t) be an SIS model on a complete graph with transition
rates (3.1), and let Z̃0 = ∑i Xi(0)> 0. Then,

1. if β < 1, it holds

E[τ]≤ 2
1−β

[
1+ ln

(
Z̃0
)]

; (3.5)

2. if β > 1, it exists C > 0 such that

E[τ]≥ exp{CN}. (3.6)

3.2 Analysis of the Absorbing Time

Here, we study the absorbing time τ for general graphs, specifically focusing on
its tail probabilities, in order to deepen the understanding of the phase transition
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phenomenon analyzed above under mean field assumptions. Without any loss in
generality, we can assume λ = p01 = m10 = 1 and λe = β , since, as mentioned
above, the discriminating parameter is the effective infection rate, i.e. λe p01/λm10.
Our benchmark are the results in [11], briefly summarized in the following, that
extend the bounds in Proposition 3.2, which proves the presence of a phase transition,
far beyond the fully connected graph. In that work, the absorbing time τ has been
studied in terms of its expected value, i.e., E[τ], for large-scale networks, analyzing
its asymptotic behavior as a function of the number of nodes N. For the sake of
simplicity, we stick our analysis to the homogeneous case, where the graph G is a
simple graph.

Remark 3.1. In order to keep consistency with the results in [11], here we set
A =W and we re-scale the effective infection rate β , differently from our standard
homogeneous settings, where we re-scale the adjacency matrix as A = W/d̄. We
remark that the systems obtained according to the two different re-scaling methods
are equivalent.

Definition 3.1. Given a subset of nodes S ⊂ V , its cut, denoted by c[S], is the
cardinality of the set of out-going edges from S to V rS, in formula:

c[S] := |{(i, j) ∈ E : i ∈ S, j /∈ S}|= ∑
i∈S, j/∈S

Ai j. (3.7)

We remark that this definition can be naturally extended to the case of weighted
graph summing the terms of the weight matrix W instead of the adjacency matrix
in (3.7). This generalized definition will be used in Chapter 5, when dealing with
dynamics on a weighted graph.

Definition 3.2. The isoperimetric constants of the graph [11] are a set of N constants,
defined as follows:

η(m) = min
S⊆V :|S|=m

c[S]
m

, ∀m ∈ {1, . . . ,m}. (3.8)

Remark 3.2. Since η(n) = 0, only N − 1 of the isoperimetric constants actually
have a non trivial value. The notion of isoperimetric constants is related to the
Cheeger constant for directed graphs [42], that is γ = minm η(m). Cheeger constant
will be used later in this dissertation, in Chapter 4. Note that while γ gives only a
global measure of the presence of bottlenecks and isolated subsets in the graph, the
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isoperimetric constants point out the presence of isolated subsets of nodes of any
fixed dimension.

The following two Theorems are the two main theoretical results, which charac-
terize the phase transition of the SIS model on a general network of interactions.

Theorem 3.1 (Corollary 8.2.1 from [11]). Let G be a graph with by N nodes and let
us consider an SIS model on G with effective infection rate β . Let ρ be the spectral
radius of the adjacency matrix of G. Then, if βρ < 1, it holds that

E[τ]≤ ln(N)+1
1−βρ

. (3.9)

Theorem 3.2 (Corollary 8.4.1 from [11]). Let G be a graph with N nodes and let
us consider an SIS model on G with effective infection rate β and initial condition
X(0) ̸= 01. If ∃m > 0 such that βη(m)> 1+ ε, for some ε > 0. Then

E[τ]≥ exp(bεm), (3.10)

where bε is a positive constant only depending on ε .

If we consider a sequence of graphs for which βρ is below and kept bounded
away from 1, Theorem 3.1 says that the expected time to extinction grows at most
logarithmically in N. Using Markov inequality, we can actually assert that such
behavior holds for τ , with probability converging to 1 as N grows. Indeed, for every
∀α > 1,

P[τ ≥ (lnN)α ]≤ lnN +1
(1−βρ)(lnN)α

. (3.11)

On the other hand, Theorem 3.2 does not enable us to analogously conclude that
τ will undertake an exponential growth with high probability, even in the case when
the parameter m grows linearly in N. Indeed, the behavior of the expected value
could be determined by events of small or even negligible probability. This situation
could arise, e.g., when an SIS model satisfies the hypothesis of Theorem 3.2, but
starts from a single node i infected at time t = 0. In this case, even if (3.10) holds
true, node i recovers before any other gets infected with probability 1/β |Ni| > 0,
implying that with nonzero probability the disease immediately extinguishes. We
remark that situations with few nodes initially infected are not the only relevant cases
in which a huge discrepancy between E[τ] and the tail probabilities of τ is present. In
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fact, also the topology of the network of interaction may cause analogous phenomena.
As an example, we consider a line of infected individuals connected with a complete
graph made of susceptible nodes. In situations like these, the analysis of E[τ] is not
sufficient to understand and predict the behavior of the epidemic process.

3.2.1 New Bounds on the Tail Probabilities

Here, we provide a direct (lower bound) estimation of the tail probabilities of τ . This
will show that, for β above a certain threshold (depending on the model parameters
and on the isoperimetric constants of the graph), the time to extinction τ indeed
grows exponentially in N asymptotically almost surely.

In order to develop our estimate, we start by defining a new measure of connec-
tivity based on the isoperimetric constants of the graph, which will play a central
role in our estimation.

Definition 3.3. Given constants α and s with 0 < α ≤ s, we define the (α,s)-
bottleneck of a graph G as

γα,s = max
k∈{⌈αN⌉,...,⌈sN⌉}

min
m∈{k−⌈αN⌉,...,k}

η(m), (3.12)

where η(m) is the set of isoperimetric constants.

The quantities we have just introduced give information regarding the existence
of sequences of subsets of nodes poorly connected to the rest of the graph. More
precisely, a small value of the (α,s)-bottleneck points out the presence of a sequence
of αN subsets of nodes of consecutive increasing cardinality below sN. Intuitively,
the presence of such a sequence creates an obstacle to the diffusion of the epidemics
when its size is still below sN.

The following is the main technical result of this section: it gives an estimate of
the tail probabilities of the time to extinction in terms of the γα,s-bottlenecks.

Theorem 3.3. Let G be a graph with N nodes and let us consider a SIS model X(t)
with effective infection rate β on G. Assume that X(0) is deterministic and that
X(0) ̸= 01. Let ξ0 = N−1

∑i Xi(0) be the initial fraction of infected nodes and put

a = max
α∈(0,ξ0]:βγα,ξ0

>1
α

(βγα,ξ0
−1)2

8β (βγα,ξ0
+1)2 . (3.13)
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(conventionally a = −∞ if βγα,ξ0
≤ 1 for every α). Then, ∀ε > 0, the time to

extinction of X(t) satisfies the inequality

P
[
τ < e(a−ε)N

]
≤ 9(βN2 +N)e−2εN + e−(a−ε)N . (3.14)

Proof. We consider the process Z̃(t) = ∑i Xi(t), counting the number of infected
agents in the population. According to (2.21), its transition rates from Z̃(t) = z, when
the boundary is such that ξ (t) = ξ , are{

λ+(z|ξ ) = βξ

λ−(z) = z.
(3.15)

We observe that (3.8) yields the following implication: Z̃(t) = z =⇒ ξ (t)≥ zη(z).
Hence, standard arguments [11] show that Z̃(t) stochastically dominates [34] a birth
and death process Z̄(t) with the same initial condition Z̄(0) = Z̃(0) and transition
rates {

λ̄+(z) = β zη(z)
λ̄−(z) = z.

(3.16)

Hence, observed that also Z̄(0) admits the disease-free state 0 as unique absorbing
state, we name

τ̄ = min{t ≥ 0 : Z̄(t) = 0}. (3.17)

The stochastic domination between processes Z̃(t) and Z̄(t) implies that also the
time to extinction τ of Z̃(t) stochastically dominates τ̄ of Z̄(t). In fact, stochastic
domination means that ∀ t ∈ R+ and ∀z ∈ {0, . . . ,N},

P[Z̃(t)> z]≥ P[Z̄(t)> z]. (3.18)

In particular, by setting z = 0, this yields

P[τ > t]≥ P[τ̄ > t], (3.19)

which the stochastic domination between τ and τ̄ .

From now on, we focus on the process Z̄(t) and on the estimation of τ̄ . We
fix α to be a maximum point of the expression (3.13). Let M∗ be an element
in the argmax of (3.12) for the (α − ξ0)-bottleneck of G, m∗ = M∗−⌈αN⌉ and
I = {m∗,m∗+1, . . . ,M∗}. Then, if the process Z̄(t) never goes beyond m∗ in a time
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range T, then it is surely not absorbed in the disease-free equilibrium in that time
range, which implies

P[τ̃ < T ]≤ P
[

inf
t∈[0,T ]

Z̄(t)≤ m∗
]
. (3.20)

Considering that Z̄(0)≥ M∗, for Z̄(t) to be absorbed in the disease-free configu-
ration 01, necessarily Z̄(t) has to cross completely the interval I from top (i.e., M∗)
to bottom (i.e., m∗). This remark will now be used in order to estimate the right hand
side of (3.20) using Lemma A.1, considering that i) being η(z)≤ N,

µ := max
z∈{0,...,N}

(β zη(z)+ z)≤ βN2 +N; (3.21)

ii) (A.1) is verified by δ = βγα,ξ0
−1; and iii) (A.10) can be re-written as

P(El) =

l
2−

εN
2

∑
h=0

(
l
h

)
ph(1− p)l−h ≤ exp

{
−(2p−1)2l

8p

}
≤ exp

{
−(2p−1)2l

8

}
.

(3.22)
Finally, from the last passage of the proof of Lemma A.1, by fixing ε > 0 and putting
T = e(a−ε)N , we conclude that (A.14) reduces to

P
[

inf
t∈[0,T ]

Z̄(t)≤ m∗
]
≤ 9(βN2 +N)e−2εN + e−(a−ε)N . (3.23)

This together with (3.20) and the stochastic domination between τ and τ̄ , yields the
thesis.

Notice first that if βγα,ξ0
> 1 for some α ≤ ξ0, then a > 0. In this case, inequal-

ity (3.14) can be written in a more compact way, as follows.

Corollary 3.1. Let G be a graph with N nodes and let us consider a SIS model
X(t) with effective infection rate β on G. Assume that X(0) is deterministic and
that X(0) ̸= 01. Let ξ0 = N−1

∑i Xi(0) be the initial fraction of infected nodes and
let βγα,ξ0

> 1. Then, defined a according to (3.13), for any 0 < ε < a/2 and N
sufficiently large,

P [τ < exp{(a− ε)N}]≤ e−εN . (3.24)
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The typical application of Corollary 3.1 consists in considering a family of graphs
G(N) made by N nodes such that the quantity a defined in (3.13) is lower bounded
by a strictly positive constant. In this way, it is ensured the presence of a long lasting
diffusion regime in which the epidemic becomes endemic and it lasts for a time that
grows at least exponentially in N almost surely when N → ∞.

We remark that, on the one hand, inequality (3.24) is a stronger result than the
estimation in Theorem 3.2). On the other hand, the hypothesis of Corollary 3.1
are more restrictive. In fact, βγα,ξ0

> 1 for some α ≤ ξ0, implies βη(m) > 1 for
some m ≤ Nξ0, but the reverse implication is not always verified. Therefore, in
principle, our result is stronger in the probability estimation but identifies a higher
epidemic threshold. However, in the examples presented in the following section, we
will show that the epidemic thresholds identified by Corollary 3.1 and the one from
Theorem 3.2 for the expected time to extinction actually coincide for many relevant
graph topologies.

3.2.2 Application on Specific Topologies

In this section, we apply our new analytical bound on some relevant graph topologies.
Specifically, we analyzed several expander graphs (such as complete, ER graphs,
star graphs), and an interesting example of nonexpander graph for which our result
can be applied, giving condition for having an exponentially long absorbing time.

Example 3.1 (Complete graph). Let us consider a complete graph with N nodes,
as described in Ex. 2.1. With the natural parametrization β = c/N, from to [11]
it is known that the expected time to extinction grows exponentially in N if c > 1.
Theorem 3.3 allows us to refine this result proving that the time to extinction grows
exponentially in N a.a.s. as N → ∞. In particular, for any choice of ε > 0, formula
(3.14) holds true with

a =


ξ0

(c(1−ξ0)−1)2

8(c(1−ξ0)+1)2 if ξ0 ≤ 1−
√

4c+5−2
c

1
8
−
√

(4c+5)3 −12c−11
16c(c+1)

else.
(3.25)

Proof. In the case of a complete graph, the isoperimetric constant is η(m) = N −m.
Due to its monotonicity in m we can immediately obtain that γα,ξ0

= (1−α)N. Thus,
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the maximization problem (3.13) becomes

max
α∈[0,min{ξ0,

c−1
c }]

φ(α) := α
(c(1−α)−1)2

8(c(1−α)+1)2 . (3.26)

The domain α ∈ [0,min{ξ0,
c−1

c }) is a consequence of having α ≤ ξ0 and βγα,ξ0
>

1 ⇐⇒ α < c−1
c .

We first solve the maximization problem in the relaxed domain α ∈ [0, c−1
c ).

Through standard computations we claim that the function φ(α) has a maximum in
the relaxed domain for

α
∗ = 1−

√
4c+5−2

c
, (3.27)

while it is monotonically increasing from 0 to α∗ and then monotonically decreasing
to c−1

c . Therefore if ξ0 > α∗, then α∗ is in the original domain, so a = φ(α∗).
Otherwise, if ξ0 ≤α∗, φ(α) is monotonically increasing in the whole original domain
of the maximization problem, therefore its maximum is attained at the extreme
α = ξ0, that is a = φ(ξ0). Formulae in (3.25) come from explicit computations of
φ(α) in this two cases.

We remark that, a more precise result for the parameter of the exponential in the
case of the complete graph is available in [43]. This result has been obtained through
the direct analysis of the process Z(t), that in the specific case of a complete graph is
a Markov birth and death process. The result therein can be rewritten according to
our formulation in Corollary 3.1. Then, ∀ε > 0,

P(τ < e(b−ε)N)≤Ce−εN , (3.28)

for some C > 0, where b = logc−1+1/c, which is always greater then or equal to
the value of a from (3.25).

Even though the result in [43] yields a better estimate, the strength of our
computation is that it can be immediately applied to many interesting network
topologies, not comprised in the work cited above, such as Erdős-Rényi random
graphs.

Example 3.2 (Erdős-Rényi random graphs). Let G be an Erdős-Rényi random graph,
as presented in Ex. 2.6. The same result for a computed for complete graphs can
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also be applied to ER graphs with p >> lnN/N with the parametrization β = c/N p,
when c > 1.

Proof. It is known that p = lnN/N is the connectivity threshold function of an ER
random graph [44, 45]. This means that, if p >> lnN/N, the graph is connected
w.h.p.. As the isoperimetric constant is considered, from [11] we claim that w.h.p.
η(m) = (1+o(1))(N−m)p. As in the complete graph case, due to the monotonicity
of η(m), we can conclude that γα,ξ0

= (1+o(1))(1−α)N p. Therefore, the maxi-
mization problem (3.13) for an ER graph reads exactly as the one for the complete
case:

max
α∈[0,min{ξ0,

c−1
c }]

α
(β (1−α)N p−1)2

8(β (1−α)N p+1)2 = max
α∈[0,min{ξ0,

c−1
c }]

α
(c(1−α)−1)2

8(c(1−α)+1)2 .

(3.29)

This means that in an ER graph over the connectivity threshold, for any choice
of ε > 0, formula (3.14) holds with the exponential rate a given by (3.25). However,
because of the different parametrization, c represent a different parameter with
respect to the complete case.

Example 3.3 (Star graph). Let G be a star graph, presented in Ex. 2.4. We prove
that, if β > 1, then formula (3.14) holds with the following exponent

a =



(β −1)2

8(β +1)2 ξ0 if ξ0 ≤
1
2

max
{

ξ0(β (1−ξ0)−ξ0)
2

8(β (1−ξ0)+ξ0)2 ,
(β −1)2

16(β +1)2

}
if ξ0 ∈ A

(β −1)2

16(β +1)2 if ξ0 > ξ̄ , β ≤ β ∗

2β 3 +14β 2 +11β −β
√
(4β +5)3

16(β −1)3 if ξ0 > ξ̄ , β > β ∗,

(3.30)

where β ∗ is the second real solution of

x7 −11x6 −3x5 −29x4 +131x3 +59x2 − x−19 = 0, (3.31)
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i.e., β ∗ ≈ 2.10165,

ξ̄ = 1−
β
√

4β +5−2β −1
β 2 −1

. and A =

(
1
2
, ξ̄

]
. (3.32)

The regime in which the time to extinction grows at least exponentially in N w.h.p.
is, therefore, when β > 1. On the other hand, in [46], it have been prove that if
β > α/

√
N, for some constant α , then E[τ] grows exponentially with N. This paves

the way for further research in order to clarify the behavior of the system in the
regime with α/

√
N < β < 1, by studying the probability distribution of τ in that

regime.

Proof. The isoperimetric constant of a star can be obtained considering two different
situations: if m ≤ N/2, then we have η(m) = 1. Otherwise, if m > N/2, η(m) =

(N −m)/m. For this reason γα,ξ0
can be written in the following piece-wise form:

γα,ξ0
=

{
1 if α ≤ 1/2
(1−α)/α if α > 1/2.

(3.33)

If ξ0 ≤ 1/2, then (since α ≤ ξ0) only the first expression is present and the maxi-
mization problem (3.13) yields

a = max
α∈[0,ξ0]

α
(β −1)2

8(β +1)2 = ξ0
(β −1)2

8(β +1)2 . (3.34)

A more complex situation occurs when ξ0 > 1/2. In this case we can partition
the domain of the maximization problem in two parts according to the piece-wise
definition of γα,ξ0

, solve the maximization problem in each one of the two domains
and then compare the two results (called a′ and a′′, respectively) and find the global
maximum.

As the first domain is considered, i.e. [0,1/2], the problem is trivial since the
function is monotonically increasing, so we have the first candidate

a′ =
(β −1)2

8(β +1)2 . (3.35)
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In the second part of the domain we have the following maximization problem

max
α∈( 1

2 ,min{ξ0,
β

β+1}]
φ(α) := α

(
β (1−α)

α
−1
)2

8
(

β (1−α)
α

+1
)2 . (3.36)

The domain α ∈ (1
2 ,min{ξ0,β/(β + 1)}) is a consequence of having α ≤ ξ0 and

βγα,ξ0
> 1 ⇐⇒ α < β/(β +1). Thus we consider the maximization problem on

the relaxed domain α ∈ [0,min{ξ0,β/(β + 1)}), noticing that if the maximum is
attained for some α < 1/2, then it is trivial that a′ > a′′, so this extension does not
influence the final result.

We find out that φ(α) is monotonically increasing from 0 to

α
∗ = 1−

β
√

4β +5−2β −1
β 2 −1

, (3.37)

and then decreasing till β/(β + 1). Hence if ξ0 > α∗, a′′ = φ(α∗); otherwise
a′′ = φ(ξ0).

After some computations we obtain the results in (3.30). Unfortunately, the
maximum in the second expression depends both on β and ξ0, so it is not possible to
give simple conditions under which the maximum is attained by the first term or by
the second one. On the contrary, this is possible in the case ξ0 > α∗ (since φ(α∗)

does not depend on ξ0), giving the third and the fourth expressions.

These expander graphs (complete, ER graphs, star graphs), characterized by the
presence of a large isoperimetrical constants for almost every level m, present very
similar behavior. We present now a relevant example of the application of our result
to a nonexpander graph possessing a bottleneck, on which our result can be applied.

Example 3.4 (Barbell graph). Let G be a barbell graph, presented in Ex. 2.5. Similar
to the complete graph, we parametrize β = c/N, from [11] we can deduce that the
expected time to extinction grows exponentially in N when c > 2. Theorem 3.3
ensures that formula (3.14) holds with

a =


ξ0

(c(1/2−ξ0)−1)2

8(c(1/2−ξ0)+1)2 if ξ0 ≤ 1
2 −

√
2c+5−2

c
1

16
−
√

(2c+5)3 −6c−11
8c(c+2)

else.
(3.38)
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Proof. Taking advantage of the structure of the graph, the isoperimetric constant of
a barbell graph can be easily computed and it is

η(m) =

{
N/2−m+1/m if m ≤ N/2
(m−N/2)(N −m)/m if m > N/2,

that immediately implies that, for large N, ∀α ≥ 1/2, γα,ξ0
→ 0, since η(N/2) =

2/N → 0. Therefore choosing α < 1/2, we obtain γα,ξ0
= (1/2−α)N. Hence, the

maximization problem (3.13) reads

max
α∈[0,min{ξ0,

c−2
2c }]

α
(c(1/2−α)−1)2

8(c(1/2−α)+1)2 . (3.39)

The domain α ∈ [0,min{ξ0,(c−2)/2c}] is a consequence of having α ≤ ξ0 and
βγα,ξ0

> 1 ⇐⇒ α < (c−2)/2c.

This problem can be reduced to a maximization problem very close to the one
solved in the case of a complete graph by defining α ′ = 2α and c′ = c/2:

max
α ′∈[0,min{2ξ0,

c−2
c }]

φ(α ′) := α
′ (c′(1−α ′)−1)2

16(c′(1−α ′)+1)2 . (3.40)

Hence, relaxing the domain to α ∈ [0,(c′−2)/c′], φ(α ′) is monotonically increasing
from 0 to its maximum in

α
′∗ = 1−

√
4c′+5−2

c′
=⇒ α

∗ =
1
2
−

√
2c+5−2

c
, (3.41)

and decreasing then until (c′− 2)/c′. The same argument used for the complete
graph leads to the result.

3.3 Predictions for Time-Varying Networks

Here, we analyze the spread of a disease on time-varying heterogeneous networks
and we seek to establish an analytical framework to study the entire dynamics at
the population level (from the zero-infected condition to the endemic equilibrium).
In the last few years, activity driven networks (ADN) [47, 48] have emerged as a
powerful paradigm to analyze time varying networks. In this work, differently from
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the original ADN formulation, where a discrete-time epidemic model is implemented
with a continuous probability distribution for the nodes’ activities, we formulate a
continuous-time model with a discrete distribution, which can be modeled within
our framework. This change of perspective leads to a rigorous analytical treatment,
without the need of extensive Monte Carlo simulations that have constituted the
primary tool for the study of ADNs. Our approach is not prone to the confounds
associated with the selection of the time step, which has been proven to influence
the dynamics of the discrete-time dynamical process [49]. Our theory relies on a
reduced number of parameters with respect to traditional ADNs. This is critical for
robust parameter identification from real-world data.

We consider a (large) population of N individuals, each associated with an
agent of an undirected weighted graph. Each agent i ∈ V is assigned a time-invariant
activity rate ai which represents the expected number of contacts that node i generates
in a unit time interval. Contacts are generated uniformly at random among all
the individuals of the population. Hence, the weight of the edge (i, j) is given
by Wi j = (ai + a j)/N. The relationship with discrete-time ADN models [47] is
straightforward. In a time step ∆t, the continuous-time model establishes as many
edges as in a realization of the discrete-time model. Therefore, the time-varying graph
obtained in the discrete-time model can be retrieved by integrating the edges created
by the continuous-time model over ∆t. The activity rate of a node in continuous-time
corresponds to the product of its activity potential and the number of contacts it
can establish in the time step. The probability that an infected node recovers in a
discrete-time step is 1− e−λm10∆t . The per-contact infection probability does not
change between continuous- and discrete-time.

The proposed discrete activity distribution follows a power-law with k equidistant
activation classes, characterized by an activity rate ah (a1 < · · · < ak). For the
generic h-th class, we denote with nh its number of nodes and we let Nh ∝ a−γ

h . The
parameter γ controls the heterogeneity among individuals, similar to the classical
ADN paradigm with a continuous distribution of activity potentials. The original
formulation of ADNs posits a continuous power-law distribution with 2 ≤ γ ≤ 3.

We indicate by Z(t) the k-dimensional stochastic process Z(t), encapsulating the
fraction of infected nodes in each activation class. In the hydrodynamic limit N → ∞,
the fraction of nodes (N1/N, . . . ,Nk/N) in each of the activation classes converges
to (η1, . . . ,ηk), independent of N. Then, Theorem 2.2 ensures that for every finite
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time horizon, the stochastic process Z(t) is close to ζ (t), solution of

ζ̇h =−λm10ζh + p01(1−ζh)(ahx1 + x2), (3.42)

with h = 1, . . . ,k and ζh(0) = Zi(0). Here, the macroscopic variable x1 = ∑ηhζh

represents the fraction of infected individuals across all classes, which is the main
observable in the study of epidemic spreading. The macroscopic variable x2 =

∑ηhahζh takes into consideration the fraction of infected nodes weighted by their
individual activity rates. In general, we define x j = ∑ηha j−1

h ζh.

From (3.42), we appreciate that the drift in the fraction of infected nodes in
each class is determined by three effects: the recovery of infected nodes (−λm10ζh);
the spreading associated with active nodes in the h-th class generating contacts
toward infected nodes (p01(1−ζh)ahx1); and the spreading related to active infected
nodes generating contacts with the nodes of the h-th class (p01(1− ζh)x2). The
k-dimensional Cauchy problem (3.42) has a unique solution due to Picard-Lindelöf
theorem. Moreover, [0,1]k is a positive invariant set, since ζ̇i is positive when ζi = 0
and negative when ζi = 1. Therefore, trajectories with initial conditions within the
set do not escape from it. This, along with the monotonicity of the system [50],
guarantees that all trajectories converge to a constant solution, that is, an equilibrium.

The elegant form of the system dynamics (3.42) in terms of the variables
ζ1, . . . ,ζk lends itself into rigorous and revealing schemes to gain insight into the
physics of the epidemic spreading. Here, we focus on two complementary strategies
that could be systematically utilized for short- and long- term predictions. First,
we propose the use of differential inclusions to establish rigorous bounds for the
transient and endemic equilibrium of the system. Second, we explore the integration
of estimation techniques to accurately predict the population of infected individuals
from sporadic data which could be collected in real-world scenarios.

Integrating (3.42) allows to closely simulate the epidemic spreading without
the need of Monte Carlo simulations. To verify this claim and demonstrate the
correspondence between continuous- and discrete-time epidemic models, we con-
sider two different dynamics on real-world phenomena, modeled through ADNs: flu
spreading in a university campus and trend diffusion on Twitter. System parameters
are obtained from case studies, as detailed in the Supplemental Material of [40], and
are summarized in Table 3.1. We compare the outcome of Monte Carlo simulations
averaged over 200 trials for both the continuous- and the discrete-time processes,
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Fig. 3.3 Time evolution of the fraction of infected nodes for the case studies. Comparison
between discrete-time continuous-distribution ADN process (blue, dashed), our continuous-
time discrete-distribution approach (green, dotted) model, and theoretical predictions (red,
solid) from (3.42).

along with the integration of the deterministic system (3.42). In both examples, the
activity distribution is discretized over k = 59 equidistant activation classes. Fig. 3.3
demonstrates the equivalence of our approach with respect to traditional ADNs in
Monte Carlo simulations, along with the validity of equation (3.42) to exactly predict
the epidemic spreading.

3.3.1 System of Macroscopic Variables

To facilitate the mathematical treatment of the k-dimensional system (3.42), we
rewrite the system dynamics in terms of the first k macroscopic variables, x1, . . . ,xk,
using the following proposition.

Table 3.1 Parameters of real-world case studies based on ADNs

Parameter flu Twitter
N 30896 531788
k 59 59
γ 2.09 2.10

p01 0.430 0.332
λm10 0.138 0.0997

α1 0.317 0.536
α2 0.381 0.781

time unit day minute
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Proposition 3.3. System (3.42) is equivalent to the following:

ẋ1 = (p01α1 −λm10)x1 + p01x2 −2p01x1x2,

ẋ2 = p01α2x1 +(p01α1 −λm10)x2 − p01x1x3 − p01x2
2,

ẋ3 = p01α3x1 + p01α2x2 −λm10x3 − p01x1x4 − p01x2x3,

. . .

ẋk = p01αkx1 + p01αk−1x2 −λm10xk − p01x1 ∑ηhak
hζh − p01x2xk,

(3.43)

where α j = ∑ηha j
h are the moments of the activity rates distribution, whose first two

values are also reported in Table 3.1 for completeness. This system is well-posed
since the term ∑ηhak

hζh in the k-th equation is a linear combination of the linearly
independent variables x1, . . . ,xk.

Proof. Recalling that x j = ∑ηha j−1
h ζh, we compute the right-hand-side determining

the evolution of x1 in the ODE system (3.43):

ẋ1 = ∑ηhζ̇h

= −λm10 ∑ηhζh + p01x1 ∑ηhah + p01x2 ∑ηh − p01x1 ∑ηhahζh

−p01x2 ∑ηhζh

= −λm10x1 + p01x1α1 + p01x2 − p01x1x2 − p01x2x1.

(3.44)

A similar computation can be carried out for x2, yielding

ẋ2 = ∑ηhahζ̇h

= −λm10 ∑ηhahζh + p01x1 ∑ηha2
h + p01x2 ∑ηhah − p01x1 ∑ηha2

hζh

−p01x2 ∑ηhahζh

= −λm10x2 + p01x1α2 + p01x2α1 − p01x1x3 − p01x2
2.

(3.45)
For a generic j = 3, . . . ,k−1, we obtain

ẋ j = ∑ηha j−1
h ζ̇h

= −λm10 ∑ηha j−1
h ζh + p01x1 ∑ηha j

h + p01x2 ∑ηha j−1
h − p01x1 ∑ηha j

hζh

−p01x2 ∑ηha j−1
h ζh

= −λm10x j + p01x1α j + p01x2α j−1 − p01x1x j+1 − p01x2x j.
(3.46)

When considering the last macroscopic variable xk, the previous formula reads

ẋk =−λm10xk + p01x1αk + p01x2αk−1 − p01x1 ∑ηhak
ζh − p01x2xk, (3.47)
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where the term ∑ηhakζh is not linearly independent of x1, . . . ,xk. In fact, the first
k macroscopic quantities are linearly independent due to the nonsingularity of the
Vandermonde matrix and the system has exactly k degrees of freedom. Hence,

∑ηhakζh can be written as a linear combination of the first k macroscopic quantities.

Finally, notice that (3.43) is obtained from the k equations in (3.42 with a change
of variables. Hence, the existence and uniqueness of a solution along with the
convergence of any trajectory toward an equilibrium are automatically inherited.

The study of (3.43) offers important insight on the epidemic spreading, beyond
the mere computation of the epidemic threshold (α1 +

√
α2)

−1 from linear stability
analysis [47, 48]; details are presented in the Supplemental Material of [40]. How-
ever, numerical instabilities may emerge when considering power-laws with γ ∈ [2,3],
where all statistical moments from the second onwards may blow up. Moreover,
prescribing initial conditions for higher order macroscopic variables beyond x1 may
be not feasible when dealing with experimental data.

3.3.2 Low-dimensional System of Differential Inclusions

A possible approach to address these issues is to project the k-dimensional dynamics
to a lower dimensional space consisting of only k∗ ≪ k equations. We approximate
the term xk∗+1 using two elementary bounds: a1xk∗ ≤ xk∗+1 ≤ akxk∗ and xk∗+1 ≤ αk∗ .
Using these bounds, we can reduce system of k ODEs in (3.43) to a system of k∗

ordinary differential inclusions (ODIs) [51], consisting of one inclusion and k∗−1
equations.

If k∗ = 1, we bound a1x1 ≤ x2 ≤ min{α1,akx1}, reducing (3.43) to

ẋ1 ∈ (p01α1 −λm10)x1 + p01(1−2x1) [a1x1,min{α1,akx1}] . (3.48)

This one-dimensional system should not be contemplated to accurately predict the
evolution of the process during the transient, between the zero-infected condition
and the endemic equilibrium, due to the conservativeness of the bounds during such
a transient phase. However, it can be effectively used to analytically determine an
interval I for the endemic equilibrium x̄1, as follows.
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Proposition 3.4. It holds x̄1 ∈ I, where

I =

[
max

{
p01α1

p01α1 +λm10
,

p01(ak +α1)−λm10

2p01ak

}
,

p01(a1 +α1)−λm10

2p01a1

]
,

(3.49a)

if p01α1 > λm10, and

I =

[
p01(a1 +α1)−λm10

2p01a1
,min

{
p01α1

p01α1 +λm10
,

p01(ak +α1)−λm10

2p01a1

}]
,

(3.49b)

if p01α1 < λm10. If p01α1 = λm10, we analytically compute x̄1 = 1/2.

Proof. The computation can be split depending on the sign of the term (p01α1 −
λm10). If p01α1 < λm10, then the first term on the right-hand-side of (3.48) is
negative, such that the second one should be positive to sum up to zero. Thus, the
endemic state x̄1 lies in the interval between the solution xl of

p01α1 −λm10 + p01(1−2xl)a1 = 0, (3.50)

and the solution xu of

(p01α1 −λm10)xu + p01(1−2xu)min{α1,akxu}= 0. (3.51)

Solving for xl and xu, we establish the bounds (3.49b). Following a similar line of
arguments, we obtain the other bounds in the case p01α1 > λm10. Since x̄1 ∈ [0,1],
the bounds for the endemic state can be trivially tighten as [xl,xu]∩ [0,1].

To demonstrate the use of these bounds we refer, here and henceforth, to the
two real-world case studies on flu spreading and trend diffusion on Twitter. From
simulations in Fig. 3.4, we evince that the accuracy of the bounds depends on the
system parameters. Specifically, our results suggest that the closer is the endemic
state to x̄1 = 1/2 (that is, α1 p01 = λm10), the more precise the bounds are.
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Fig. 3.4 Averaged Monte Carlo simulations of a discrete-time continuous-distribution ADN
process (blue) and theoretical bounds (red) from Propositions 3.4 and 3.5 (with ε = 10−3).

An improved prediction of the transient phase is obtained with k∗ = 2, which
leads to the following ODI for the evolution of x2:

ẋ2 ∈ p01α2x1 +(p01α1 −λm10)x2 − p01x2
2 + p01x1[−min{akx2,α2},−a1x2],

(3.52)
coupled to the first ODE in (3.43).

Proposition 3.5. We establish the two following ancillary ODEs:

ẋ2 = p01(α2 −φε,x2(x1))x1 +(p01α1 −λm10)x2 − p01x2
2, (3.53a)

ẋ2 = p01(α2 −φε,x2(1− x1))x1 +(p01α1 −λm10)x2 − p01x2
2, (3.53b)

where φε,x2(x1), is a continuous function that, in the limit ε → 0,

φε,x2(x1)→

{
a1x2 if x1 < 1/2,
min{akx2,α2} if x1 > 1/2.

(3.54)
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Upper- and lower-bounds for x1 are obtained by coupling the first ODE in (3.43)
with (3.53a) and (3.53b), respectively, and integrating in the limit as ε → 0.

Proof. The two ODEs are obtained as follows. To upper-bound the evolution of x1,
we select among all possible right-hand-sides for ẋ2 in (3.52) those that yield the
largest ẋ1. From (3.43), in the right-hand-side of ẋ1, the only term that depends on x2

is multiplied by (1−2x1). Therefore, when x1 < 1/2, the derivative ẋ1 increases as
x2 increases; whereas, when x1 > 1/2, it decreases as x2 increases. We encapsulate
this relationship through the continuous function φε,x2(x1).

From (3.52) and (3.54), we establish the ancillary ODE (3.53a). We obtain the
sought upper-bound by coupling the first ODE in (3.43) with (3.53a), and integrating
for small values of ε . We comment that φε,x2(x1) is introduced to provide regularity
to the right-hand-side of the ancillary ODE (3.53a). In fact, Lipschitz-continuity of
φε,x2(x1) guarantees existence and uniqueness of the solution of the system, which
would be hindered by the use of a Heaviside function. The lower-bound is obtained
by following a similar argument, thereby considering, among all the possible right-
hand-sides of ẋ2 in (3.52), those that yield the smallest ẋ1.

Simulation results in Fig. 3.4 demonstrate the accuracy of the bounds in cap-
turing the transient response. Higher endemic equilibria seem manifest into tighter
prediction bounds during the transient, albeit the upper bound becomes conservative
as time progresses. In general, the predictions of the endemic state from k∗ = 2 are
less precise than the simpler closed-form results for k∗ = 1. This is related to the
solutions of the ancillary ODEs (3.53a) and (3.53b) leaving the bounds for k∗ = 1.
With this in mind, the overall prediction accuracy could be improved combining the
two bounds in Figs. 3.4.

3.3.3 Online Prediction Technique

An alternative strategy for the analysis of system (3.43) entails the use of epidemic
data, sampled at the population level at a time period T , to drive the reduction
of the dynamics on a lower dimensional space. Given the accuracy of (3.53) in
estimating the transient response of the system, we focus on a two-dimensional
dynamics in terms of x1 and x2. With reference to (3.43), we consider only the first
two ODEs and we hypothesize that x3 is linear in x1 with a proportionality constant
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C that is estimated from epidemic data. Specifically, we propose the following
two-dimensional dynamics:ẋ1 =−λm10x1 + p01α1x1 + p01x2 −2p01x1x2,

ẋ2 = p01α2x1 +(p01α1 −λm10)x2 − p01Cx2
1 − p01x2

2.
(3.55)

As a first approximation, we hypothesize that C is constant throughout the
entire epidemic spreading and set to C = α2, which corresponds to a homogeneous
distribution of infected individuals over all the activation classes. Our prediction of
the infected population is defined piece-wise in time. In particular, we denote the
piece-wise predictions with x(h)1 (t) and x(h)2 (t), in the interval t ∈ [hT,hT +T ), where
h ∈ Z+. These predictions are informed by the knowledge of the overall infected
fraction of population XhT at the sampling times hT . We initialize the algorithm at
time t = 0 by setting x(0)1 (0) = X0 and x(0)2 (0) = X0α1. The algorithm loops through
the following steps:

i) system (3.55) is integrated from hT to (h+1)T , producing the solutions x(h)1 (t)
and x(h)2 (t);

ii) at t = (h+1)T , the initial conditions for marching in time are set as x(h+1)
1 (t) =

X(h+1)T and x(h+1)
2 (t) = x(h)2 (t); and

iii) h is incremented by 1 and the process resumes to step i).

We remark that this algorithm is only based on few data: the fraction of infected
nodes at the inception of each time window of duration T , which is central for
real-world applications. For example, it may be possible to periodically estimate
the number of individuals affected by flu or the number of mentions and re-tweets
of a specific trend. The knowledge of the detailed state of all the network nodes
is not required by the algorithm, which dispenses with information about higher
order microscopic variables. In Fig. 3.5, we demonstrate the use of the prediction
algorithm against a simulation for the flu case study, by using a time window of a
day or a week. Short-term forecasts (daily) are very close to the real dynamics (the
average error is less than 1%), while forecasts on longer horizons (weekly) tend to
be less accurate (with an average error around 10%).

To improve on the finite horizon forecast algorithm, we may treat C as piece-wise
constant in time and adaptively update it during each prediction window. We initiate
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Fig. 3.5 Simulation of a discrete-time continuous-distribution ADN (blue), for the flu case
study, and our predictions over a finite time horizon of one day and one week (red). Predic-
tions in (a) and (b) are obtained with a constant estimate for C, while those in (c) and (d) are
based on the on-line adaptive update in (3.56) with β = 1. A similar result for the Twitter
case study is presented in the Supplemental Material of [40].

the algorithm by setting C0 = α2. Then, fixing a real constant β > 0, at the end of
each iteration, Ch is updated as

Ch+1 =Ch

(
1+β

X(h+1)T − x(h)1 ((h+1)T )
1−2X(h+1)T

)
. (3.56)

Here, C is incremented by a term that is proportional to the prediction error at
the inception of a new prediction window. The effect of the denominator is to
change the sign of the increment when X(h+1)T > 1/2, following a line of reasoning
similar to the one used to define φε,x2(x1) in (3.54). In Fig. 3.5, we demonstrate the
improvement of the approach, which is successful in closely predicting population
level dynamics even with only data available on a weekly basis.
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3.4 Conclusion

In this chapter, we have adapted our general theory to study the SIS epidemic
model. The formalism developed in Chapter 2 and the technical results presented in
Appendix A have been leveraged to gain new insights into the epidemic process.

In Section 3.2, we have dealt with the computation of the time to extinction of an
epidemic process. Specifically, we have focused our analysis on the tail probabilities
of its distribution, improving the results available in the literature, which are mostly
concerned with its expected value. The new insights into the epidemic process
have enabled us to deepen the characterization of the slow-extinction regime of
the process. Specifically, we have proved that, under some conditions, the disease
becomes endemic and diffuses in the population for a time that grows at least
exponentially with the number of individuals, with probability converging to 1 for
large populations. The technique proposed here also allows for an explicit estimation
of the rate of such an exponential time, depending on i) the model parameters, ii)
topological properties of the graph related with the structure of its bottlenecks, and
iii) the initial condition of the system.

Our analysis has also a methodological purpose for the analysis of more complex
dynamics on networked systems. In fact, the central observation of our proving
argument is that, under some conditions, the system has a drift, yielding the disease
to diffuse faster than the spontaneous regression due to recover. A similar strategy
can be applied to any other model exhibiting this feature. Therefore, one future
research line consists in extending our results to more general epidemic models and
other diffusion dynamics on networks.

In Section 3.3, we have applied the deterministic approximation of the system
(detailed in Section 2.5) to study disease spreading on heterogeneous, time-varying
large-scale networks of interactions, putting forward a mathematically tractable
approach to study these complex phenomena from their onset to the endemic equi-
librium. Techniques from the field of differential inclusions have been leveraged to
gather insight on the transient response and endemic equilibrium. Toward connecting
the theoretical framework with real data, we have introduced an adaptive estima-
tion technique that affords the accurate prediction of the epidemics from coarse
information only seldom acquired.
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Although we specialized the treatment to SIS processes, the framework could be
extended to other processes, by tailoring the individual dynamics. Details on this
extension to a general epidemic model can be found in [41]. Several improvements
to our model are envisaged and will be subject of further research. First, future work
should seek to clarify the relationship between our predictions based on analytical
bounds and model parameters. Second, a further effort should be devoted to cast
the finite-time-horizon prediction techniques in an optimization context, to ease the
selection of sampling periods and assess accuracy a priori. Finally, we aim at further
empowering our framework with realistic phenomena, relevant from an epidemic
modeling point of view, such as memory processes in link formation, spatial locality,
and formation of communities. Some preliminary results in this direction can be
found in [52], in which a model that includes self-excitement mechanisms has been
proposed and analyzed, and in [53], in which the authors present a model for activity
driven networks with communities.





Chapter 4

Model for Diffusion of Innovation

In this chapter, we study the spread of a new technological item (e.g., a smartphone
application) in a population. We model its diffusion using a two-step adoption
dynamics: the word-of-mouth yields a learning channel, through which potential
users get aware of the existence of the item, whereas the probability of adoption
increases the more the product is already diffused in the population, thanks to an
effect known in economics as positive externalities [54].

In Section 4.1, we present the mathematical model within the general framework
introduced in this dissertation. Then, we analyze its asymptotic behavior, in order to
understand how the topology of the network of interactions and the model parameters
influence the outcome of the diffusion of the asset. First, we study the model in
two mean field topologies. Specifically, in Section 4.2, we consider a community
connected through a complete graph, whereas in Section 4.3 the case of two isolated
(mean field) communities is considered. This second analysis allows us to discuss
the effect of the positive externalities, even in absence of direct connections between
the two communities. Then, in Section 4.4 we extend our analysis to a general
network of interaction, studying the effect of the topology of the graph in the
asymptotic behavior of the system. The chapter is concluded by Section 4.5, where
our theoretical results are applied to some specific topologies (such as Erdős-Rényi
random graphs, configuration models, and other network structures) corroborated
by Monte Carlo simulations. Part of the work described in this chapter has been
previously published in [55, 56].
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4.1 Model

In the literature, the spread of innovations and of new behaviors is often modeled
and studied under a network game scenario [19, 20, 23, 24]. In this setting each
agent tends to maximize its own payoff by coordinating its choice with that of its
neighbors. This hypothesis seems to be realistic when dealing with what we might
call “big choices”, such as the terms of economic contracts [20] or the choice of an
operating system [19]. In such cases, a wrong decision can be very costly for the
one who took it, therefore it is reasonable that an individual contacts many of his
or her friends/colleagues (i.e. the neighbors) before taking the “big choice”. In this
work we instead focus on those we might call “light choices”, (e.g. downloading
an application for smartphone or joining an online community/social network). In
such cases, negative consequences of the choice are usually mild, hence we can
assume that individuals take their own choices after a pairwise interaction with one
of their neighbors (a recent survey [57] supports our hypothesis highlighting the
centrality of the world-of-mouth in the spread of assets), instead of involving their
whole neighborhood in the choice.

The original feature of this model, with respect to classical epidemic models as
the SIS model analyzed in Chapter 3, lays in the fact that the strength of the gossip
persuasion depends on the global diffusion already reached by the new technological
item in the population. Instead of a diffusion channel, the gossip mechanism plays
here the role of a learning channel. It is the media through which agents gets aware
of the existence of this new item, while its attraction for a potential new adopter
in the end depends on the size of the diffusion of such an item not just among the
neighbors, but in the whole population. This is a phenomenon known in economics
as a “positive externalities” effect [58]. It should also be remarked that the model for
diffusion of innovation (DoI) differs, substantially, from network dynamical model
with neighborhood effects (typically cascade dynamics) where the driving force
depends on the number of neighbors possessing the new feature. Notice that this
does not mean that in our model the probability that an agent adopts the asset is not
influenced by the numbers of neighbors having it, since the more the innovation is
diffused in the neighborhood of an agent, the more it is likely that the agent gets
aware of the existence of the asset. However, once the agent is informed of the
existence of the new asset and considers whether to adopt it or not, then this decision
is not influenced by the neighborhood, but by the global diffusion of the innovation.
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The presence of the spontaneous dropping mechanism has various motivations.
It may model a tendency to abandon technologies that have a maintenance cost or,
also, a limitation of the time during which an agent can influence their neighbors.
Mathematically, the case when only the persuasion mechanism is present is not
particularly interesting as in this case the item, if originally present, will eventually
diffuse to the whole population, independently of the strength of the mechanism and
on the topology of the network. Our analysis, however, covers also, as a limit case,
the situation when the dropping mechanism is not present.

We develop the DoI model within the general framework presented in Chapter
2. Similarly to an SIS model, the probabilities m01 and p10 are set equal to 0. Then,
without any loss in generality, we set λ =m10 = 1. Edges activate at rate Wi j = β d̄−1,
where d̄ is the average degree of the graph, ∀(i, j) ∈ E. When edge (i, j) activates,
agent i has the possibility to revise its state from 0 to 1 if X j(t) = 1. This happens
with probability p01 = φ(Z(t)), where φ : [0,1] → [0,1] is a C2 function, called
persuasion strength, satisfying the following properties:

(A1) φ is nondecreasing: φ ′(z)≥ 0, ∀z;

(A2) φ is concave: φ ′′(z)≤ 0, ∀z;

(A3) φ ′(0)> φ(0).

From this moment on, we refer to a φ satisfying properties (A1) to (A3) as to an
admissible persuasion strength. Fig. 4.1 depicts the admissible state transitions.

Remark 4.1. We briefly motivate these properties. Property (A1) is a natural
consequence of the “positive externalities effect” [58] cited before: the more the
new item is diffused, the higher is its persuasion strength. Regarding property (A2), a
sub-linear growth of the persuasion strength with respect to the diffusion of the new
item can be inferred from real world observations: trivially, an increase of a single
new agent adopting the item has a bigger impact when adopters are still few than
when they are more numerous. Finally, (A3) is assumed for the sake of simplicity:
the case φ ′(0)< φ(0), studied in [55], leads to a theory with essentially no novelties
with respect to the SIS model, whose long-run behavior is analyzed in Section 3.2.
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0 1

φ(z)

1

Fig. 4.1 State transitions characterizing the DoI model. Black solid lines are spontaneous
mutation, colored dashed lines are transitions taking place after a pairwise interaction with a
node with the other state.

The jump Markov process X(t) has transition rates λ
+
i (x) = β d̄−1(1− xi) ∑

j∈Ni

x jφ(z(x))

λ
−
i (x) = xi.

(4.1)

Remark 4.2. When φ is constant, this model reduces to the standard SIS model
analyzed in Chapter 3 with p01 = φ .

The main feature and novelty of this model is the fact that, when the function
φ is instead not constant, the gossip dynamics is affected by the global distribution
of the state in the population of agents. In this model agents influence each other
through two “information channels”: the one determined by the graph edges and the
another one due to the pressure of the global population state. These two channels
are coupled through the persuasion mechanism described above.

Similar to the SIS dynamics, the pure configuration 01 is the only absorbing state
of X(t) and from every configuration there is a non zero probability of reaching it
in finite time. Consequently, X(t) enters the absorbing state 01 in a finite time with
probability 1. Our aim is to study the behavior of the system in the transient phase,
i.e. before the occurrence of the absorbing event.

In the SIS model, we witness the presence of two different regimes determined
by a threshold value that is function of connectivity features of the graph. If the
strength of the contagion mechanism with respect to the rate of regression is below
this threshold, the epidemic quickly decades to the absorbing state. Whereas if it is
above this threshold, the epidemic expands and remains persistent in the population
for a time exponentially large in the size of the population. Further details can be
found in Chapter 3 that is devoted to the analysis of the SIS model.
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Here, we show that for many network topologies (comprising complete graphs,
two complete isolated communities, expander graphs,...) a double bifurcation phe-
nomenon occurs, with probability converging to 1 as N → ∞. The first bifurcation
takes place with respect to the parameter β . If β is smaller than a given threshold, the
process Z(t) enters forever into an ε-neighborhood of 0 in a time independent of the
size of the graph. If β is larger than another threshold, Z(t) reaches a level zs(β ) in a
time that does not depend on N and remains above that level for an exponentially (in
N) long time. Furthermore, for intermediate values of the parameter β , we witness a
further bifurcation with respect to the initial condition Z(0), governed by a threshold
zu(β ) such that, if Z(0)< zu(β ), we have the analogous fast extinction phenomenon
that takes place for β small, whereas if Z(0)> zu(β ), we have the analogous slow
extinction phenomenon as for large values of β .

In plain words, in the DoI model, besides these two regimes, we witness in
many cases the presence of a third intermediate regime where the behavior strictly
depends on the initial condition, namely the original fraction of agents in state 1 in
the population. In this third regime, if the initial fraction of 1’s in the population is
below a certain level, the item will not be able to spread. Whereas if it is sufficiently
large, the persuasion mechanism will be able to push towards a wide and persistent
diffusion. This is the main novelty of our model with respect to standard SIS, where
the initial condition instead (as long as the fraction of infected agents is initially non
zero) never influences qualitatively the behavior of the system.

Coherently with to our interpretation of the model, from now on the two behaviors
described above, namely the fraction of 1’s that quickly becomes smaller than ε ,
or instead that remains large for a long time are respectively called, a failure and a
success. As already pointed out, the main novelty of the DoI model is the presence
of the intermediate regime where failure and success depend on the initial condition.

Due to the specificities of the model, the transition rates of process Z(t) depend
only on the boundary B01(t) and not on B10(t). Hence, we can drop the indices and
denote ξ (t) := ξ01(t). Hence, the fransition rates (2.21) read{

λ+(z,ξ ) = β d̄−1ξ φ(z)
λ−(z) = Nz.

(4.2)

Of course, the difficulty arises from the fact that the process ξ (t) is not explicitly
known. The next section is devoted to the analysis of the process when G is a
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complete graph, which is essentially the only case in which ξ (t) can be expressed as
a deterministic function of Z(t), so that Z(t) is Markovian itself. The general case
will be taken up in Section 4.4.

4.2 Mean Field I: Complete Graph

In this section we assume the graph to be complete, so ξ (t) = N2Z(t)(1−Z(t)),
implying that Z(t) is a Markov birth and death process and (4.2) reduces to{

λ+(z) = Nβ z(1− z)φ(z)
λ−(z) = Nz.

(4.3)

Of course, in this case, the local gossip interaction and the global influence are some-
how mixed together but some key interesting phenomena can already be observed
here. For such processes a quite complete analysis is available and its results are
gathered in the following Theorem.

Theorem 4.1. Consider the birth and death jump Markov process Z(t) whose transi-
tion rates are given in (4.3) where β > 0 and φ is an admissible persuasion strength
(i.e. properties (A1), (A2), and (A3) are satisfied). Put

β
∗ =

[
max

z∈[0,1]
(1− z)φ(z)

]−1

. (4.4)

Then, for every ε > 0 we can find Cε(β ) > 0 and Tε > 0 for which the following
holds true, if N is sufficiently large,

1. β < β ∗, then ∀z,

Pz

(
sup
t≥Tε

Z(t)> ε

)
< e−Cε N ; (4.5)

2. β ∗ < β < φ(0)−1, then ∀z < zu(β )− ε ,

Pz

(
sup
t≥Tε

Z(t)> ε

)
< e−Cε N , (4.6)
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and ∀z > zu(β )+ ε ,

Pz

(
inf

t∈[Tε ,Tε+eCε N ]
Z(t)< zs(β )− ε

)
< e−Cε N ; (4.7)

3. β > φ(0)−1, then ∀z > ε ,

Pz

(
inf

t∈[Tε ,Tε+eCε N ]
Z(t)< zs(β )− ε

)
< e−Cε N . (4.8)

With the understanding that if φ(0) = 0 case 3. does not show up. Points zs(β ) and
zu(β ), when they exist, can be characterized as follows

zu(β ) = min{z > 0 : β (1− z)φ(z)−1 = 0},

zs(β ) = min{z > zu(β ) : β (1− z)φ(z)−1 = 0}.
(4.9)

The proof of this theorem is based on three steps: at first we consider the hydrody-
namic limit, analyzing a deterministic approximation of the stochastic process [59].
Then, a couple of technical lemmas combined with the results of the analysis of the
hydrodynamic limit allow to bound the probabilities that appear in Theorem 4.1.
Finally, algebraic manipulations allow for guaranteeing the exponential decay of the
probabilities, when N is sufficiently large.

4.2.1 Hydrodynamic Limit

At first, according to Theorem 2.1, we approximate Z(t) with ζ (t), solution of the
following Cauchy problem:ζ ′(t) = F(ζ ) = βζ (1−ζ )φ(ζ )−ζ

ζ (0) = Z(0).
(4.10)

The analysis of (4.10) follows from the analysis of the zeros of F(ζ ).

Lemma 4.1. Let β ∗ from (4.4), zu(β ) and zu(β ) from (4.9). Then,

1. β < β ∗, then F has one zero in 0 and F ′(0)< 0;
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2. β ∗ < β < φ(0)−1, then F has three zeros 0 < zu(β ) < zs(β ) and F ′(0) < 0,
F ′(zu(β ))> 0, and F ′(zs(β ))< 0.

3. β > φ(0)−1, then F has two zeros 0 < zs(β ) and F ′(0)> 0 and F ′(zs(β ))< 0.

With the understanding that if φ(0) = 0 case 3. does not show up.

Proof. Let F(ζ ) = f (ζ )ζ , where f (ζ ) = β (1− ζ )φ(ζ )− 1. It is straightforward
to check that f (ζ ) is a concave function, that f (1) < 0 and that f ′(1) < 0. More-
over, since f ′(ζ ) = β (1−ζ )φ ′(ζ )−βφ(ζ ), φ ′(0)> φ(0) implies f ′(0)> 0. The
function f (ζ ) is thus concave, increasing in a neighborhood of 0 and decreas-
ing in a neighborhood of 1, so it possesses a global maximum point zmax ∈ (0,1)
and f (zmax) = β (β ∗)−1 − 1. In case 1., f (zmax) < 0. In case 2., f (0) < 0 and
f (ζmax)> 0, hence f (ζ ) = 0 has two distinct solutions zu(β )< zs(β ). Finally, in
case 3. f (0)> 0, implying a single solution of f (0) = 0, that is zs(β ). Sign of deriva-
tives in 0 can be checked directly, while other signs follow from the monotonicity
properties of f .

Then, the asymptotic behavior of (4.10) is an immediate consequence of previous
result:

Lemma 4.2. The following hold:

1. if β < β ∗, then ζ (t)→ 0 ∀z0;

2. if β ∗ < β < φ(0)−1, then ζ (t)→ 0 ∀ζ0 < zu(β ) and z(t)→ zs(β ) ∀ζ0 > zu(β );

3. if β > φ(0)−1, then ζ (t)→ zs(β ) ∀ζ0 ̸= 0.

With the understanding that if φ(0) = 0 case 3. does not show up.

Corollary 4.1. The following holds true:

1. if β < β ∗, then ∀ε > 0 ∃T (ε,β )> 0 and ∃C(ε,β )> 0 such that

Pz (Z(T )≥ ε/2)≤ 4exp(−CN) ∀z, (4.11)

where T (ε,β ) is bounded and C(ε,β ) does not annihilates for any ε bounded
away from 0 and β bounded away from the upper limit of the case (φ(0)−1 or
β ∗).
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t

z(t)

(a) Case 1.

t

z(t)

(b) Case 2.

t

z(t)

(c) Case 3.

Fig. 4.2 Simulations of (4.10) with different values of β and functions φ show the existence
of the three regimes.

2. if β ∗ < β < φ(0)−1, then ∀ε > 0 ∃T (ε,β )> 0 and ∃C(ε,β )> 0 such that

Pz (Z(T )≥ ε/2)≤ 4exp(−CN) ∀z < zu(β )− ε; (4.12)

and

Pz (Z(T )≤ zs(β )− ε/2)≤ 4exp(−CN) ∀z > zu(β )+ ε, (4.13)

where T (ε,β ) is bounded and C(ε,β ) does not annihilates for any ε bounded
away from 0 and β bounded away from β ∗ and φ(0)−1.

3. if β ∗ > φ(0)−1, then ∀ε > 0 ∃T (ε,β )> 0 and ∃C(ε,β )> 0 such that

Pz (Z(T )≤ zs(β )− ε/2)≤ 4exp(−CN) ∀z > ε, (4.14)

where T (ε,β ) is bounded and C(ε,β ) does not annihilates for any ε bounded
away from 0 and β bounded away from φ(0)−1. With the understanding that
if φ(0) = 0 case 3. does not show up.

Proof. In item 1. the equation ζ (t) converge to the equilibrium 0, from Lemma 4.2.
It follows that ∀ε > 0 ∃T (ε,β )> 0 for which ζ (T )< ε/4 for any initial condition.
We notice that T (ε,β ) is bounded when ε is bounded away from 0 and when β is
bounded away from β ∗. The proof is completed combining this result with the bound
on P(|Z(T )−ζ (T )|> ε/4) from Theorem 2.1. Properties of C(ε,β ) comes from
those of T (ε,β ). The other two items are obtained using a similar argument.
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4.2.2 Markov Process

In this second step, we prove a slightly different formulation of Theorem 4.1, which
can be state for any value of N (instead of N sufficiently large) at the cost of losing
the exponential decay. Finally, at the end of this section, we will derive our original
formulation using some algebraic manipulations.

Theorem 4.2. Consider the birth and death jump Markov process Z(t) whose transi-
tion rates are given in (4.3) where β > 0 and φ is an admissible persuasion strength
(i.e. properties (A1), (A2), and (A3) are satisfied). For every ε > 0 we can find
Cε > 0 and Tε > 0, both depending on β , for which the following holds true

1. if β < β ∗, then ∀z,

Pz

(
sup
t≥Tε

Z(t)> ε

)
< 5Ne−Cε N ; (4.15)

2. if β ∗ < β < φ(0)−1, then ∀z < zu(β )− ε ,

Pz

(
sup
t≥Tε

Z(t)> ε

)
< 5Ne−Cε N , (4.16)

and ∀z > zu(β )+ ε ,

Pz

(
inf

t∈[Tε ,Tε+eCε N ]
Z(t)< zs(β )− ε

)
< 14(1+β )2N2e−Cε N ; (4.17)

3. if β > φ(0)−1, then ∀z > ε ,

Pz

(
inf

t∈[Tε ,Tε+eCε N ]
Z(t)< zs(β )− ε

)
< 14(1+β )2N2e−Cε N . (4.18)

The constant T (ε,β ) is bounded for any ε bounded away from 0 and β bounded and
bounded away from β ∗ and φ(0)−1, whereas C(ε,β ) is bounded away from 0 in the
same cases. If φ(0) = 0 case 3. does not show up.

Proof. As a general remark notice that the sign of the right-hand side of (4.10) is
positive (negative) if and only if λ+(z)/λ−(z) is, respectively, above (below) 1.
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In case 1. we estimate as follows:

Pz

(
sup
t≥Tε

Z(t)> ε

)
≤ Pz

(
sup
t≥Tε

Z(t)> ε | Z(Tε)<
ε

2

)
+Pz

(
Z(Tε)≥

ε

2

)
, (4.19)

where Tε is defined, according to Corollary 4.1, as z(Tε) = ε/4, where z(t) is the
solution of (4.10) with z(0) = 1. Conclusion now follows by estimating the first term
using Lemma A.2, where the parameter δ in the inequality λ−(z)≥ (1+δ )λ−(z) is
exactly

δ =

[
β max

z≤ε
(1− z)φ(z)

]−1

−1, (4.20)

and clearly depends on both β and ε , therefore the constant C = ln(1+ δ ) that
comes from Lemma A.2 depends itself on β and ε , so we denote it as Cε,β , and it
is bounded away from 0 when β is bounded away from the upper limit of the case
(φ(0)−1 or β ∗). The second term is bounded using item 1 from Corollary 4.1, where
the constant is denoted as C′

ε,β . Therefore we conclude

Pz

(
sup
t≥Tε

Z(t)> ε

)
≤ ε

4
N exp{−Cε,β εN}+4exp{−C′

ε,β N}

≤ 5N exp{−min{Cβ ,εε,C′
ε,β}N}

≤ 5N exp{−C(ε,β )N},

(4.21)

where C(ε,β ) is bounded away from zero for ε bounded away from zero and β

bounded away from the upper limit of the case.

In case 3. we estimate as follows:

Pz

(
inf

t≥Tε

Z(t)< zs − ε

)
≤ Pz

(
Z(Tε)≤ zs −

ε ′

2

)
+

+ Pz

(
inf

t≥Tε

Z(t)< zs − ε ′ | Z(Tε)> zs −
ε ′

2

)
.

(4.22)

where ε ′ = min{ε,zu(β )}. Tε is defined, according to Corollary 4.1, as |z(Tε)−
zs(β )| = ε/4, where z(t) is the solution of (4.10) with z(0) = ε . Conclusion now
follows by estimating the first term using using item 2 from Corollary 4.1, naming
the constant C′

ε,β , and the second term using Lemma A.1, where the parameter δ in
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the inequality λ−(z)≥ (1+δ )λ−(z) depends again on β and ε , being

δ = β · min
z≤zs(β )−ε ′/8

(1− z)φ(z)−1, (4.23)

Therefore the constant C depends itself on the two parameters and the exponent is
now linear in ε ′ (that may depend on β itself). We collect all these terms in the
constant denoted by Cε,β and we notice that this constant is bounded away from 0 if
ε is bounded away from 0 and β from φ(0)−1. Finally, the energy of the Poisson
process µ ≤ (1+β )N, therefore we conclude

Pz

(
inf

t≥Tε

Z(t)< zs − ε

)
≤ 10(1+β )2N2 exp{−Cε,β N}+4exp{−C′

ε,β N}

≤ 14(1+β )2N2 exp{−min{Cε,β ,C
′
ε,β}N}

≤ 14(1+β )2N2 exp{−C(ε,β )N},
(4.24)

where C(ε,β ) is bounded away from 0 for ε bounded away from zero and β bounded
away from φ(0)−1.

Finally, case 2. follows by similar arguments in dependence of the initial condi-
tion of the process using item 3 from Corollary 4.1 and, in one case Lemma A.2, in
the other one Lemma A.1.

Theorem 4.2 is not sufficient to prove the existence of the three different regimes.
In fact, depending on the parameters and on N, the bounds on the probability in the
right-hand-sides of the inequalities may be not informative. For this reason, and in
order to give a nicer presentation of our results, we can manipulate these (quasi)
exponential terms, obtaining an exponential decay when N is sufficiently large. Here
we consider, as an example, the case 1., where the right-hand-side can be bounded
by a purely exponential function as follows:

5N exp{−C(ε,β )N}= exp{−C(ε,β )N + ln(5N)} ≤ exp
{
−C(ε,β )

2
N
}
, (4.25)

when N ≥ Ñε(β ), where Nε(β ) is the only solution of C(ε,β )N = 2ln(5N).

Using a similar argument on 2. and 3., the exponential decay is obtained on all
the right-hand-sides when N is greater that all the different values of Ñε(β ), proving
Theorem 4.1.
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4.3 Mean Field II: Two Disconnected Graphs

Here, we present the analysis of the DoI model on a graph made of two complete
sub-graphs (with self-loops) with respectively N1 and N2 = N −N1 agents, without
any edge between them. This is one of the simplest example (and it is indeed
analytically tractable) where the local gossip interaction and the global influence
depend on different parameters. In fact, for an agent of the i-th sub-graph, the first
effect depends on the fraction of 1’s in the i-th community Zi(t), while the second one
is a function of the global fraction of 1’s in the whole graph, denoted by Z̄(t). The
goal of this analysis is to show the effect of positive externalities, in interconnecting
the dynamics into the two different communities, comparing with the case of the
SIS model, where two isolated communities evolve totally independently one of the
other.

In this work, we will limit our study to the hydrodynamic limit of the model.
The increased dimensionality of the system of ODEs poses some more issues in
the analysis. Without loss of generality we can consider the first sub-graph to be
the biggest one, i.e. N1 ≥ N2. In order to observe the spread of the asset in the two
sub-graphs we introduce the bi-dimensional process Z(t) = (Z1(t),Z2(t)), where
Zi(t) = Zi(X(t)) is a process taking values in SNi denoting the fraction of 1’s in the
i-th sub-graph. Clearly, we have that the total fraction of 1’s can be obtained as

Z̄(t) =
N1Z1(t)+N2Z2(t)

N
. (4.26)

At first we notice that the process Z(t) is a bi-dimensional Markov jump process
and its transition rates, from (z1,z2) to, respectively, (z1±N−1

1 ,z2) and (z1,z2±N−1
2 )

are the following: 
λ
+
1 (z1,z2) = N1β z1(1− z1)φ(z̄)

λ
−
1 (z1,z2) = N1z1

λ
+
2 (z1,z2) = N2β z2(1− z2)φ(z̄)

λ
−
2 (z1,z2) = N2z2,

(4.27)

where z̄ denotes the global fraction of 1’s.

In order to take the hydrodynamic limit, we suppose that N1 is such that N1/N →
η , as N → ∞, for some η ∈ [1/2,1). Consequently, also N2/N → 1−η .
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Theorem 2.2 guarantee that, for finite time ranges, the stochastic process is
exponentially close to the solution ζ (t) = (ζ1(t),ζ2(t)) of the following system of
ODEs: ζ̇1 = βζ1(1−ζ1)φ(ζ̄ )−ζ1

ζ̇2 = βζ2(1−ζ2)φ(ζ̄ )−ζ2,
(4.28)

where ζ̄ = ηζ1 +(1−η)ζ2.

Notice first that the diagonal ζ1 = ζ2 as well the two axis ζ1 = 0 and ζ2 = 0 are
invariant lines for the dynamics.

To complete the theoretical analysis of the system, put

F(ζ1,ζ2) = (F1(ζ1,ζ2),F2(ζ1,ζ2)), (4.29)

to be the right-hand side of (4.28) and notice that

∂F1

∂ζ2
= (1−η)βζ1(1−ζ1)φ

′(ζ̄ )≥ 0;

∂F2

∂ζ1
= ηβζ2(1−ζ2)φ

′(ζ̄ )≥ 0.
(4.30)

This implies that the system is monotone [50], which means that for any couple
of initial conditions x0 ≥ y0 (component-wise), then the same ordering holds for
the solutions, namely x(t)≥ y(t), ∀ t > 0. Monotonicity provides many important
properties to the system. In particular limits cycles are excluded. Hence, compactness
of the domain insures all solutions to converge to critical points of the system, namely
to solutions of the equation F(ζ1,ζ2) = 0. The following result gives a complete
characterization of critical points. A further consequence of (4.30) is that Jacobian
eigenvalues are always real so that critical points are either nodes (stable or unstable)
or saddle points.

Proposition 4.1. Assume φ(ζ̄ ) is an admissible persuasion strength. Let β ∗ from (4.4)
and put

β ∗
1 =

[
maxζ (1−ζ )φ(ηζ )

]−1 ;

β ∗
2 =

[
maxζ (1−ζ )φ((1−η)ζ )

]−1
.

(4.31)

Then, the following critical points show off in (4.28):

1. if β < β ∗, the origin is the only critical point and it is a stable node;
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2a. if β ∗ < β < β ∗
1 , two more critical points are added, (zu(β ),zu(β )), which is a

saddle and (zs(β ),zs(β )), which is a stable node;

2b. if β ∗
1 < β < β ∗

2 , two more critical points are added, (zu1(β ),0), which is an
unstable node and (zs1(β ),0), which is a saddle;

2c. if β ∗
2 < β < φ−1(0), two more critical points are added, (0,zu2(β )), which is

an unstable node and (0,zs2(β )), which is a saddle;

3. if β > φ−1(0), the origin becomes unstable and critical points (zu1(β ),0),
(0,zu2(β )) and (zu(β ),zu(β )) disappear.

Proof. Critical points on the diagonal (ζ ,ζ ) are simply the critical points in the
one-dimensional case (see Section 4.2), which are (0,0), and, depending on β , two
more (zu(β ),zu(β )) and (zs(β ),zs(β )).

Notice now that any critical points (ζ1,ζ2) for which ζ1 ̸= ζ2 must be such that
ζ1 = 0 or ζ2 = 0. Indeed, if ζ1 ̸= 0 and ζ2 ̸= 0, by dividing the two equations
Fi(ζ1,ζ2) by ζi and taking the difference, we immediately obtain that ζ1 = ζ2.
Clearly, (ζ1,0) is a critical point if and only if

βζ1(1−ζ1)φ(ηζ1)−ζ1 = 0, (4.32)

leading to one or two more critical points (zs1(β ),0) and (zu1(β ),0) depending if
β > β ∗

1 or if β ∗
1 < β < φ(0)−1 with zu1(β ) < zs1(β ). Similarly, for ζ2 = 0, we

finally obtain one or two more critical points (0,zs2(β )) and (0,zu2(β )) if β > β ∗
2 or

if β ∗
2 < β < φ(0)−1 with zu2(β )< zs2(β ). Considering that β ∗

2 ≥ β ∗
1 and assembling

all these information we obtain the existence results of the various critical points. It
remains to be analyzed their stability.

Notice first of all that

F ′(0,0) =

(
βφ(0)−1 0

0 βφ(0)−1

)
, (4.33)

so that (0,0) is a stable node if β < φ−1(0) and unstable otherwise.

In order to analyze the stability of the other two points on the diagonal notice
first of all that along the diagonal (zs(β ),zs(β )) is always stable and (zu(β ),zu(β ))

always unstable. It remains to be studied the stability of the other eigendirection of



68 Model for Diffusion of Innovation

the Jacobian. To this aim put δ = ζ1 −ζ2 and consider

δ̇ = F1(ζ1,ζ2)−F2(ζ1,ζ2) = δ [βφ(ζ̄ )(1−ζ1 −ζ2)−1]. (4.34)

Notice that at any critical point (ζ1,ζ2) with ζ1 = ζ2 = ζ > 0, it holds

βφ(ζ̄ )(1−ζ1 −ζ2)−1 = βφ(ζ )(1−2ζ )−1 < β (1−ζ )φ(ζ )−1 = 0. (4.35)

This says that in a neighborhood of such a point δ = ζ1 −ζ2 is always monotoni-
cally decreasing, and clearly implies that the eigenvalue corresponding to the non
diagonal eigendirection must necessarily be negative (indeed, if positive, moving
along that direction there would be a local increase in δ ). Therefore, when present,
(zs(β ),zs(β )) is a stable node while (zu(β ),zu(β )) a saddle point.

Finally, regarding the critical point on the boundaries, notice that, for symmetry
arguments, we can restrict our analysis to (zu1(β ),0) and (zs1(β ),0). Along the
invariant axis ζ2 = 0, usual one-dimensional considerations imply that, when present,
(zs1(β ),0) is always stable while (zu1(β ),0) is always unstable. To study the stability
of the other Jacobian eigendirection, remember that the points considered show up
only when β > β ∗

1 and notice that

F2(ζ1,ζ2) = ζ2[β (1−ζ2)φ(ζ̄ )−1]
≥ ζ2[(1−ζ2)β (1−ζ1)φ(ηζ1)−1]
≥ ζ2[(1−ζ2)β (β

∗
1 )

−1 −1].
(4.36)

Therefore, for ζ2 sufficiently small, F2(ζ1,ζ2) > 0. This implies that the other
eigendirection is always unstable. Therefore, (zs1(β ),0) is always a saddle point
while (zu1(β ),0) is always an unstable node. This completes the proof.

Critical points of (4.28), their characterization and their stability can therefore be
summarized in Table 4.1.

The asymptotic behavior of this model is thus quite similar to the one-dimensional
case. In fact, for almost all initial conditions (i.e those which are not critical points
or on stable manifolds of saddle points), it holds

1. if β < β ∗, then ζ (t)→ 0;
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2. if β ∗ < β < φ−1(0), then ζ (t)→ 0 or ζ (t)→ (zs(β ),zs(β )), depending on
the initial condition;

3. if β > φ−1(0), then ζ (t)→ (zs(β ),zs(β )).

Table 4.1 Critical points of (4.28)

Coordinates Characterization Existence Stability
(0,0) Node ∀β β < φ−1(0)
(zu(β ),zu(β )) Saddle β ∈ (β ∗,φ−1(0)) Unstable
(zs(β ),zs(β )) Node β > β ∗ ∀β > β ∗

(zu1(β ),0) Node β ∈ (β ∗
1 ,φ

−1(0)) Unstable
(zs1(β ),0) Saddle β > β ∗

1 Unstable
(0,zu2(β )) Node β ∈ (β ∗

2 ,φ
−1(0)) Unstable

(0,zs2(β )) Saddle β > β ∗
2 Unstable

In the intermediate regime β ∗ < β < φ−1(0), where two stable nodes show up, the
study of the dependence on the initial condition is more involved than in the one-
dimensional case. Denote by D0 and Dzs the two basin of attractions of, respectively,
(0,0) and (zs(β ),zs(β )). The stable manifold corresponding to the saddle point
(zu(β ),zu(β )) separates the two basins. Because of the monotonicity properties of
the system, such manifold admits a parameterization of the form (ζ1,σ(ζ1)) with
ζ1 ∈ [a,b] and where

a = inf{ζ1 : (ζ1,ζ2) ∈ Dzs};
b = sup{ζ1 : (ζ1,ζ2) ∈ D0};

σ(ζ1) = inf{ζ2 : (ζ1,ζ2) ∈ Dzs}= sup{ζ2 : (ζ1,ζ2) ∈ D0}.
(4.37)

Another immediate consequence of the monotonicity of the system is that σ = σ(ζ1)

is a monotone decreasing function. Standard considerations which use continuous
dependence on the initial conditions, the fact that trajectories can not intersect and
the absence of limit cycles, lead to claim that the stable manifold parametrized by
σ is a curve defined between two points on the boundary of the domain, namely
(a,σ(a)) and (b,σ(b)). Moreover, for the same reasons, these two points, if on
the invariant axis ζ1 = 0 or ζ2 = 0, must coincide with the corresponding unstable
nodes (zu1(β ),0) and/or (0,zu2(β )). In this case a = 0 and b = zu1(β ). Otherwise
the extremes are point of the form (a,1) and/or (1,σ(1)).

The various possible cases are summarized in the following Corollary.
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(a) Regime 1. (β = 3).
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(b) Regime 2a. (β = 4.5).
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(c) Regime 2b. (β = 6.5).
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(d) Regime 2c. (β = 11).

Fig. 4.3 Simulations of (4.28) with η = 0.6 and φ(z) = z show the different regimes of
Proposition 4.1 and Corollary 4.2. The black line is a numerical approximation of σ .

Corollary 4.2. Under the assumptions of Proposition 4.1,

a. if β ∗ < β < β1, then a > 0, b = 1, σ(a) = 1, σ(1)> 0;

b. if β ∗
1 < β < β ∗

2 , a > 0, b = zu1(β ), σ(a) = 1, σ(b) = 0;

c. if β ∗
2 < β < φ−1(0), then a = 0, b = zu1(β ), σ(a) = zu2(β ), σ(b) = 0.

The key qualitative difference among the three regimes is the following: in case
(a) even if we start from an initial condition where the asset is present in all members
of one of the two communities, the dynamics will converge to 0 unless the asset
has a sufficient spread also in the other community. In case (b) instead, for any non
zero initial spread of the asset in the smaller community, a sufficiently high spread
of the asset in the largest community is sufficient to guarantee convergence to the
non zero equilibrium. In case (c), finally, also the smaller community acquires this
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leading capability. Figure 4.3 shows the various possible behaviors when φ(0) = 0,
highlighting the separatrix σ .

4.4 Analysis on General Graphs

Finally, we partially extend Theorem 4.1, proving the existence of the three regimes
(in particular of the intermediate one), for a large family of expander graphs.

For the epidemic SIS model, an estimation of the mean absorbing time has
been carried on general graphs [11, 10, 60]. Notably, fast extinction results have
been obtained [10] by upper bounding the original process with another one whose
transition rates depend linearly on the state variable x and for which, consequently,
the moment analysis turns out to be particularly simple. The key graph parameter in
this estimation is the spectral radius of the corresponding adjacency matrix. On the
other hand, slow extinction has been analyzed by essentially estimating the active
boundary in terms of bottleneck ratios of the graph and then lower bounding the
process with a simple birth and death process.

However, the techniques developed in [10] can not be straightforwardly applied
to the DoI model. Indeed, the presence of the persuasion strength φ poses a number
of technical issues that are absent in the SIS model. This will be particularly evident
in the analysis of the intermediate regime where success or failure depends on the
initial condition.

In the next three subsections we determine a series of lower and upper bounds of
process Z(t) using standard coupling techniques, inspired by the results in [11, 10,
60]. Specifically, in 4.4.1 we propose a lower bound based on bottleneck estimation
that allows to prove the existence of the success regimes - thereby extending the
second part of item 2. and item 3. of Theorem 4.1. In 4.4.2 instead, we propose
a quite simple upper bound sufficient to prove the existence of the failure regime
- extending item 1. of Theorem 4.1. Finally, in 4.4.3 we develop a stronger upper
bound using a linearization technique and a second moment analysis in order to prove
the existence of the failure regime depending on the initial condition - extending the
first part of item 2. of Theorem 4.1. This last case is the most original technical part
of this chapter. Though inspired by [11, 10, 60], our technique is based on a detailed
second order analysis of the bounding process, which is not needed in the analysis of
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the SIS model. All these partial results are assembled in 4.4.4 where the main result
is finally stated and proved. Specifically, our main result is formulated for general
graphs as Theorem 4.2, then the standard formulation can be derived, similarly to
the mean field cases, for many families of expander graphs.

Fixed a strongly connected graph G = (V,E), its Cheeger constant [61] is defined
as

γ = γG = inf
S⊂V

|{(i, j) : i ∈ S, j /∈ S}|
min{|S|, |V \S|}

. (4.38)

We notice that there is a straight relation between Cheeger constant and isoperimetric
constants (3.8), in fact, if G is undirected, then

γ = min
m≤n/2

η(m). (4.39)

We recall that X(t) is a jump Markov process on the state-space {0,1}V having
transition rates given by (4.1). Z(t) = z(X(t)) denotes the total fraction of 1’s in the
population and ξ (t) = ξ (X(t)) is the active boundary.

4.4.1 Bottleneck-Based Lower Bound

The following result, inspired by an argument used in [62], yields a lower bound of
the process Z(t) in terms of a birth and death jump Markov process.

Proposition 4.2. There exists a coupling of the process X(t) with a birth and death
jump Markov process Z̃(t) over SN having transition rates{

λ̃+(z) = Nβ d̄−1γz(1− z)φ(z)
λ̃−(z) = Nz,

(4.40)

in such a way that Z(t)≥ Z̃(t) for all t.

Proof. From (4.38), choosing as S the set of all agents with state equal to 0, we
obtain

γ ≤
|{(i, j) : Xi = 0, X j = 1}|

min{z|V |,(1− z)|V |}
≤ ξ

z(1− z)|V |
=

ξ

z(1− z)|V |
=

ξ

z(1− z)N
. (4.41)
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This implies that the active boundary satisfies the inequality ξ ≥ γNz(1− z). This
yields, using (4.2),

λ
+(z,ξ )≥ λ̃

+(z) and λ
−(z,ξ ) = λ̃

−(z). (4.42)

The proof is now concluded by applying a simple coupling argument, similarly to
the one used to prove Theorem 8.8 in [11].

The following Corollary proves the existence of the two success regimes, extend-
ing the second part of item 2. and item 3. of Theorem 4.1 to general graphs.

Corollary 4.3. Let Z(t) follow (4.2) and let φ be an admissible persuasion strength.
Put zu = zu(β d̄−1γ) and zs = zs(β d̄−1γ) as defined in (4.9). For every ε > 0 we can
find Cε > 0 and Tε > 0 for which the following hold true

1. if d̄γ−1β ∗ < β , then, ∀z > zu + ε ,

Pz

(
inf

t∈[Tε ,Tε+eCε N ]
Z(t)< zs − ε

)
≤ AN2e−Cε N ; (4.43)

2. if, moreover, d̄γ−1φ(0)−1 < β , then, ∀z > ε ,

Pz

(
inf

t∈[Tε ,Tε+eCε N ]
Z(t)< zs − ε

)
≤ AN2e−Cε N , (4.44)

where A = 14(1+β )2. The constants Cε and Tε only depend on the quantity d̄−1γβ

and are, respectively, bounded away from 0 and bounded, when this quantity is
bounded away from β ∗ and φ(0)−1.

Proof. Using Proposition 4.2, process Z(t) can be lower bounded by a birth and
death jump Markov process Z̃(t) having transition rates (4.40). Hence Pz[Z(t) <
z̄]≤ Pz[Z̃(t)< z̄], ∀z, z̄. A comparison with (4.3) shows that the transition rates of
Z̃(t) coincide with the ones of the mean field model (4.3) with β replaced by β d̄−1γ .
Results then follow from items 2. and 3. of Theorem 4.1.
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4.4.2 Degree-Based Upper Bound

In this subsection we provide a simple upper bound that depends only on the degrees
of the nodes in the graph. Let ∆in be the maximum in-degree in G, then the following
proposition holds.

Proposition 4.3. There exists a coupling of the process X(t) with a birth and death
jump Markov process Z̃(t) over SN having transition rates{

λ̃+(z) = N∆ind̄−1β zφ(z)
λ̃−(z) = Nz,

(4.45)

in such a way that Z(t)≤ Z̃(t) for all t.

Proof. This follows from ξ = |{(i, j) : Xi = 0,X j = 1}| ≤ ∆inNz.

The following Corollary proves the existence of the failure regime, extending
item 1. of Theorem 4.1 to general graphs.

Corollary 4.4. Let Z(t) follow (4.2) and let φ be an admissible persuasion strength.
If β < d̄∆

−1
in φ(1)−1, then, for every ε > 0 we can find Cε > 0 and Tε > 0 for which

Pz

(
sup
t≥Tε

Z(t)> ε

)
≤ 5Ne−Cε N , ∀z. (4.46)

For every ε > 0, the constants Cε and Tε only depend on the quantity β d̄−1∆in and
are, respectively, bounded away from 0 and bounded, when this quantity is bounded
away from φ(1)−1.

Proof. From Proposition 4.3, process Z(t) can be upper bounded by a birth and
death jump Markov process Z̃(t) having transition rates (4.45). Hence Pz[Z(t) >
z̄]≤ Pz[Z̃(t)> z̄], ∀z, z̄. We now apply (2.30) to the process Z̃(t). The assumption
β < d̄∆

−1
in φ(1)−1 implies that 0 is asymptotically stable in (4.10). More precisely,

the solution ζ (t) of (4.10) with ζ (0) = 1 converges to 0 when t → +∞ and this
clearly implies that, for every fixed ε > 0, there exists Tε > 0 such that ζ (t)< ε/2
for every t ≥ Tε and for every initial condition z(0) = ζ . Moreover, Tε only depends
monotonically on the quantity d̄−1β and blows up when this quantity approaches
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φ(1)−1. Using (2.30) with T = Tε we thus obtain that there exists C′
ε > 0 such that

Pz
(
Z̃(Tε)> ε/2

)
≤ 4e−C′

ε N ∀z. (4.47)

It follows from (2.30) and from the considerations above on Tε that C′
ε only depends

on d̄−1β and it is bounded away from 0, when this quantity is bounded away from
φ(1)−1. If we apply Lemma A.2 to Z̃(t) with 1+ δ = d̄∆

−1
in β−1φ(1)−1 > 1, we

obtain that, for every z < ε/2,

Pz
(
∃ t ≥ 0 : Z̃(t)> ε

)
≤ ε

2
Ne−[ln(1+δ )]ε/2N . (4.48)

From (4.47) and (4.48) we finally obtain that, ∀z

Pz

(
sup
t≥Tε

Z(t)> ε

)
≤ Pz

(
sup
t≥Tε

Z̃(t)> ε

)
≤ 5Ne−Cε N ,

where Cε = min{C′
ε , [ln(d̄∆

−1
in β−1φ(1)−1)]ε/2}. In consideration of the properties

already discussed for the quantity C′
ε , the result is now proven.

4.4.3 Linearization-Based Upper Bound

What remains to be shown is the existence, for general graphs, of the failure regime
as described in the first part of item 2. of Theorem 4.1. This is fundamental in order
to prove the existence of the bifurcation with respect to the initial condition. In this
subsection we tackle this issue by upper bounding the process Z(t) with another
jump Markov process whose transition rates depend linearly on the configuration
vector. In [10] a similar idea was used to analyze the SIS model. However, while
in [10] it was sufficient to carry on a first moment analysis of the linearized process to
prove the existence of the fast extinction regime, here a much more complex analysis
is needed. In fact, differently from the SIS model, in our model the fraction of 1s
influences the persuasion strength and, ultimately, the behavior of the system. In the
study of the bifurcation in dependence on the initial condition, to make our bounding
technique effective, we must make sure that the fraction of 1s always remains below
a certain threshold. For this, a first moment analysis of the linearized process is no
longer sufficient. It must be coupled with a concentration result based on a second
moment analysis.
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Consider the jump Markov process Y (t) over Θ = NV , with transition rates λ̄
+
i = µ ∑

j∈Ni

y j

λ̄
−
i = yi,

(4.49)

where µ = β d̄−1φ(1).

Notice that the original process Z(t), taking values in {0,1}V , can be naturally
extended to Θ by simply putting λ

+
i = 0 if yi > 0 and using the same expression

for λ
−
i = yi. In the case when β < d̄ρ

−1
A φ(1)−1, it follows that λ̄

+
i ≥ λ

+
i for

all y and for all i ∈ V . We now consider any coupling between X(t) and Y (t)
such that X(0) = Y (0) and X(t) ≤ Y (t) (entry-wise) for all t. Clearly, it holds
Z(t)≤ ZY (t) := z(Y (t)) for all t.

For the sake of readability, we present this detailed analysis in Appendix B, and
we report here our final result, that is Lemma 4.3 (whose proof is in Appendix B,
along with the rest of the analysis of the linearized jump Markov process), where the
asymptotic behavior of ZY (t) is analyzed.

Lemma 4.3. Let ZY (t) = z(Y (t)) with Y (t) following (4.49). Assume that µρA < 1.
For every ε > 0 there exists a time Tε > 0 and a constant Kε > 0 such that

1. if ZY (0)≤ a2, it holds

P(∃ t ≥ 0 : ZY (t)> a+ ε)≤ KεN−1/2; (4.50)

2. for every ZY (0), it holds

P(∃ t ≥ Tε : ZY (t)> ε)≤ KεN−1/2. (4.51)

Moreover, for every ε > 0, the constants Kε and Tε only depend on the quantity µρA

and are bounded when this quantity is bounded away from 1.

We are now ready to go back to our original process Z(t). The following Corollary
proves the existence of two failure regimes, one that does not depend on the initial
condition and the second one that does depend on it, extending items 1. and the
first part of item 2. of Theorem 4.1 to general graphs, respectively. Notice that a
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different extension of item 1. was already obtained in Corollary 4.4. Later on we
will comment on the relation between these two estimations.

Corollary 4.5. Let Z(t) follow (4.2) and let φ be an admissible persuasion strength.
For every ε > 0, there exist Kε > 0, K′

ε > 0, Tε > 0, and T ′
ε > 0 such that

1. if β < d̄ρ
−1
A φ(1)−1, then for every z,

Pz(∃ t ≥ Tε : Z(t)> ε)≤ KεN−1/2; (4.52)

2. if d̄ρ
−1
A φ(1)−1 < β < d̄ρ

−1
A φ(0)−1, let z∗ be the unique solution of the equa-

tion φ(z∗) = β−1d̄ρ
−1
A and assume that ε < z∗/2. Then, for every z ≤

(z∗−2ε)2, it holds

Pz(∃ t ≥ T ′
ε : Z(t)> ε)≤ K′

εN−1/2. (4.53)

Moreover, the constants Kε and Tε only depend on the quantity β d̄−1ρA and are
bounded when this quantity is bounded away from φ(1)−1. The constants K′

ε and T ′
ε

only depend on ε .

Proof. Item 1. is a straightforward consequence of the stochastic domination
between Z(t) and ZY (t) and of item 2. is a consequence of Lemma 4.3 with
µ = β d̄−1φ(1).

Regarding item 2., notice first of all that because of the assumptions on φ , we have
that |{z : φ(z) = w}|= 1 for every w ∈ [φ(0),φ(1)). This implies the uniqueness of
z∗. At this stage, we consider the jump Markov process Y (t) with transition rates
given by (4.49) and µ = β d̄−1φ(z∗− ε). We notice that

µρA = β d̄−1
φ(z∗− ε)ρA =

φ(z∗− ε)

φ(z∗)
< 1, (4.54)

and that λ̄y,y+δv ≥ λy,y+δv as long as y is such that z(y)≤ z∗− ε . Put

T̄ = inf{t : Y (t)> z∗− ε}. (4.55)

We can establish a coupling between X(t) and Y (t) such that X(0) = Y (0) and
X(t)≤ Y (t) for all t < T̄ . Choose now Tε that satisfies item 2) of Proposition 4.3. It
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holds

P(∃ t ≥ Tε : Z(t)> ε) =

= P(∃ t ≥ Tε : Z(t)> ε , T̄ =+∞)+P(∃ t ≥ Tε : Z(t)> ε , T̄ <+∞)

≤ P(∃ t ≥ Tε : ZY (t)> ε)+P(∃ t ≥ 0 : ZY (t)> z∗− ε).

(4.56)

Result now follows from Proposition 4.3 with a = z∗−2ε and δ = ε . The fact that
we get constants K′

ε and T ′
ε that only depend on ε is due to the fact that for every

ε > 0 the quantity µρA in (4.54) is uniformly bounded away from 1 when β varies
in the specified interval.

4.4.4 The Core Result

The main result of this chapter can be finally obtained by combining Corollar-
ies 4.3, 4.4 and 4.5. For the sake of readability, we recall here the standing assump-
tions.

Let G = (V,E) be a fixed graph having average degree d̄, maximum degree ∆,
Cheeger constant γ and spectral radius of the adjacency matrix ρA. We recall that
X(t) is a jump Markov process on {0,1}V governed by the transition rates (4.1)
and Z(t) = z(X(t)) is a process counting the fraction of nodes having state 1. The
persuasion strength φ is assumed to be admissible, namely it satisfies properties
(A1), (A2), and (A3). The following result holds true.

Theorem 4.3. Let z′u ≤ z′′u < zs be points in [0,1] defined by

φ(
√

z′u) = β
−1d̄ρ

−1
A , z′′u = zu(∆ind̄−1

β ), zs = zs(∆ind̄−1
β ), (4.57)

where zu(·) and zs(·) have been defined in (4.9). Depending on the conditions of the
various parameters each of this point may exist or not. Below, whenever we write
them, we are implicitly affirming their existence. Let A = 14(1+β )2.

For every ε > 0 we can find Ci
ε > 0, T i

ε > 0 for i = 1,2,3, Kε > 0, and Sε > 0
such that
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1. if β < d̄∆
−1
in φ(1)−1, then ∀z,

Pz

(
sup
t≥T 1

ε

Z(t)> ε

)
≤ 5Ne−C1

ε N ; (4.58)

2. if d̄γ−1β ∗ < β < d̄ρ
−1
A φ(0)−1, then

• ∀z < z′u −4ε ,

Pz

(
sup
t≥Sε

Z(t)> ε

)
≤ KεN−1/2, (4.59)

• ∀z > z′′u + ε ,

Pz

(
inf

t∈[T 2
ε ,T 2

ε +eC2
ε N ]

Z(t)< zs − ε

)
≤ AN2e−C2

ε N ; (4.60)

3. if d̄γ−1φ(0)−1 < β , then ∀z > ε ,

Pz

(
inf

t∈[T 2
ε ,T 2

ε +eC2
ε N ]

Z(t)< zs − ε

)
≤ AN2e−C2

ε N . (4.61)

With the understanding that if φ(0) = 0, then case 3. does not show up. Moreover,
for every ε > 0, the various constants exhibit the following dependence on the
parameters. C1

ε and T 1
ε only depend on the quantity β d̄−1∆ and are, respectively,

bounded away from 0 and bounded, when this quantity is bounded away from φ(1)−1.
C2

ε and T 2
ε only depend on the quantity β d̄−1γ and are, respectively, bounded away

from 0 and bounded, when this quantity is bounded away from β ∗ and φ(0)−1.
Finally, Kε and Sε only depend on ε .

Proof. Item 1. is a consequence of Corollary 4.4. Regarding item 2), notice first that
the following inequalities hold

γ ≤ ρA ≤ d̄ ≤ ∆in and φ(1)−1 ≤ β
∗ ≤ φ(0)−1. (4.62)

The first and third inequalities of the first expression are trivial, while the second one
comes form [63]. The second expression is a direct consequence of the monotonicity
of φ(z). This yields, in particular, γ−1β ∗ ≥ ρ

−1
A φ(1)−1. Item 2. now follows from
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item 2. of Corollary 4.5 and from item 1) of Corollary 4.3. Finally, item 3. comes
from item 2. of Corollary 4.3.

Remark 4.3. Using item 1. of Corollary 4.5, we can obtain the following variant of
item .) of Theorem 4.3: 1 bis. if β < d̄ρ

−1
A φ(1)−1, then ∀z,

Pz

(
sup
t≥T ′

ε

Z(t)> ε

)
≤C′

εN−1/2, (4.63)

where the constants C′
ε and T ′

ε only depend on the quantity β d̄−1ρA and are bounded
when this quantity is bounded away from φ(1)−1. On the one hand, 1 bis. improves
the result by widening the interval for β , as ρA ≤ ∆ and the gap between the two
quantities may actually be large. On the other hand, it weakens the result in terms of
probability decay. Bound 1 bis. can be useful when dealing with large-scale random
graphs, where results on the concentration of ρA and ∆ have already a slow decay in
probability, so that the exponential decay would be lost in any case.

Theorem 4.3 is a result that holds true for any possible graph. Of course, its most
interesting use is for sequences of graphs having size N →+∞. Since the various
thresholds and constants involved in the statement depend on graph properties (and
thus ultimately on N), suitable assumptions on the sequence of graphs are needed in
order for the three regimes to be observed in the large scale limit, similarly to the
mean field case. Notably, in order to ensure the existence of the intermediate regime
with the bifurcation with respect to the initial condition, we need to consider graphs
where the Cheeger constant (4.38) and the average degree have the same asymptotic
behavior, as the population size N grows. In the next section we will show some very
interesting topologies with this property. To sum up, in Theorem 4.3 we notice two
important differences with respect to the results established in Theorem 4.1. First, the
cases considered in Theorem 4.3 are not exhaustive as the various intervals considered
for the parameter β do not cover the whole positive line. Second, exponential decay
of probabilities is not always insured.

4.5 Application on Specific Topologies

In this section, we discuss the application of Theorem 4.3 to specific sequences
of graphs with increasing size N. For the sake of simplicity we stick to the case
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φ(z) = z. This choice of the persuasion strength yields β ∗ = 4 and to the occurrence
of only the cases depicted in items 1. and 2. of Theorem 4.3.

First we introduce the notion of a regularly expansive sequence of graphs that
includes popular random graphs examples like Erdős-Rényi graphs and random
configuration models. For such graphs, we show that Theorem 4.3 guarantees the
existence of the two regimes: the first one where failure always occurs and the second
one where both failure and success may occur, depending on the initial condition.
Finally we present some numerical simulations on Erdős-Rényi graphs and random
configuration models corroborating our analytical results. We conclude with some
simulations on graphs for which Theorem 4.3 does not give any information. Such
simulations suggest that these bifurcation phenomena should hold under less stringent
assumptions than those assumed in results.

We recall below the graph parameters that need to be computed (or at least
estimated) in order to use Theorem 4.3:

• d̄ and ∆in are, respectively, the average and the largest in-degree of the graph;

• γ is the Cheeger constant of the graph, defined in (4.38);

• ρA is the spectral radius of the adjacency matrix.

A sequence of graphs GN with increasing number of nodes N is called (a,e1,e2)-
regularly expansive if, for every N,

d̄∆
−1
in ≥ a and e1 ≤ d̄ρ

−1
A ≤ d̄γ

−1 ≤ e2. (4.64)

Notice that, because of (4.62), we can always choose e1 ≥ a.

For such graph sequences, Theorem 4.3 can be reformulated as follows.

Corollary 4.6. Assume that φ(z) = z and that GN is a (a,e1,e2)-regularly expansive
sequence of graphs. Let z′u ≤ z′′u < zs be points defined by

z′u = β−2e2
1,

z′′u =
1
2
− 1

2

√
1− 4e2

β
,

zs =
1
2
+

1
2

√
1− 4e1

β
.

(4.65)
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Let A = 14(1+β )2. For every β > 0 and for every ε > 0 we can find Cε > 0, Kε > 0,
and Tε > 0 for which the following holds true for every N:

1. if β < a, then ∀z,

Pz

(
sup
t≥Tε

Z(t)> ε

)
≤ 5Ne−Cε N ; (4.66)

2. if β > 4e2, then ∀z < z′u −4ε ,

Pz(∃ t ≥ Tε : Z(t)> ε)≤ KεN−1/2; (4.67)

and ∀z > z′′u + ε ,

Pz

(
inf

t∈[Tε ,Tε+eCε N ]
Z(t)< zs − ε

)
≤ AN2e−Cε N . (4.68)

Proof. It is an immediate consequence of Theorem 4.3, of the explicit computation
of (4.9), and the inequalities (4.62).

Remark 4.4. We stress the fact that the quantities Cε , Kε and Tε appearing in the
statement of Corollary 4.6, only depend on the graph parameters a,e,1,e2 and on
the choice of β , but not on the size N.

We notice that, the condition a > 0 ensures that there exists a transition with
respect to the parameter β from the failure regime to the intermediate regime. Instead,
the condition e1 > 0 ensures the presence of the transition with respect to the initial
condition in the second regime.

Below we present two fundamental examples of random graph ensembles which
yield, under specific assumptions, regularly expansive graphs sequences.

Example 4.1. (Erdős-Rényi graphs) We consider the ER model G(N, p), presented
in Example 2.6. We restrict our analysis to the case above connectivity threshold, i.e.
when lnN

N p → 0. In this regime, w.h.p. G(N, p) is connected [11, 32] and

d̄γ
−1 = 2+o(1) and d̄ρ

−1
A = 1+o(1). (4.69)

This implies that in the connectivity regime, G(N, p) is w.h.p. (1−δ ,1−δ ,2+δ )-
regularly expansive for any δ > 0.
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Fig. 4.4 Simulations of the DoI model on random expander graphs with N = 1000. In blue
ER with p = 0.05, in red regular configuration model with d̄ = 20.

Example 4.2. (Configuration model) Consider a probability distribution qd over
{3, . . . ,dmax}. The configuration model G(N,qd) is a random undirected simple
graphs with N nodes whose degrees are independent random variables distributed
according to qd and where edges are created through a random permutation [45].
Notice that, by construction, 3 ≤ d̄ ≤ ∆in ≤ dmax. Moreover, ∃α > 0 such that
γ ≥ α for all finite N and w.h.p. as N → ∞ [45]. Consequently, G(N,qd) is w.h.p.
(3/dmax,3/dmax,dmax/α)-regularly expansive.

Numerical simulations with Erdős-Rényi graphs and with regular configuration
models are shown in Figs. 4.4 and 4.5. In particular, Fig. 4.4 shows the bifurcation
with respect to β and the bifurcation with respect to the initial condition in the
intermediate regime for β = 10. Simulations seem to show that such bifurcations are
sharp as it was happening in the mean field case (notice also that the bifurcation with
respect to β is placed in the same position β ∗ = 4). Fig. 4.5 deepens the analysis of
the bifurcation with respect to the initial condition that seems to become sharper for
larger and larger values of N.

In this final paragraph we consider some examples of graph sequences that are
not regularly expansive and for which, consequently, Theorem 4.3 can not infer
the presence of the phase transitions. Nevertheless, we show through numerical
simulations that such phenomena (or at least some of them) do take place.
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Fig. 4.5 Simulations of the DoI model on ER random graphs with β = 10 and N = 800
(blue), N = 1200 (red) and N = 1600 (green). The vertical dotted lines are the estimated
thresholds z′u and z′′u . As N increases the transition seems to be sharper. Notice that the
analytical thresholds from Corollary 4.6 are z′u = 0.01 and z′′u ≃ 0.2764.

Example 4.3. (Barábasi-Albert model) Consider a Barábasi-Albert graph, pre-
sented in Ex. 2.7. As N → ∞ we know that [32], ∃α > 0 such that w.h.p.

d̄ = m+o(1), ∆in =
√

N(1+o(1)), ρA =
4
√

N(1+o(1)), and γ ≥ α. (4.70)

Therefore, Barábasi-Albert graphs are only (0,0,m/α +δ )-regularly expansive, for
any δ > 0.

Example 4.4. (Toroidal graphs) A 1-torus is a simple ring graph Cn (Ex. 2.3. A
k-torus can be defined as a k-dimensional generalization of this topology: the 2-torus
is a toroidal grid, and so on. In general, a k-torus can be formally defined as the
cartesian product between k 1-tori with k

√
N nodes each, details can be found in [64].

For a k-torus we have that γ ≍ N−k/2 and d̄ = 2k is constant. Therefore, d̄/γ always
diverges.

Therefore, in these two examples Corollary 4.6 can not be applied to prove any
phase transitions neither on β , nor on the initial condition. Nevertheless, in the case
of Barábasi-Albert graphs, simulations presented in Fig. 4.6 show the existence of
the two different regimes: the failure regime, and a regime where success and failure
are both possible depending on the initial condition. However, from our simulations,
the phase transition in this intermediate regime seems to be smooth, even increasing
N (see Fig. 4.6b).

Similarly, even in the case of k-tori, simulations (see Fig. 4.6) seem to show
the existence of the intermediate regime. In this case the transition with respect
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Fig. 4.6 Simulations of the DoI model on nonexpander topologies: Barábasi-Albert graphs
with N = 1000 and m = 6 (red), k-tori (blue k = 1, green k = 2) with N = 1024.

to the initial condition seems to be sharp, as one can see in Fig. 4.6b. Finally, the
simulations in Fig. 4.6 also suggest that the various thresholds for a k-torus are
monotonically decreasing in the dimension k. This is intuitive for the role played by
the connectivity features of the graph in the diffusion dynamics.

4.6 Conclusion

In this Chapter, we have used our theory to develop a novel network dynamics
modeling the adoption of a new technological item, such as a smart-phone application
or a software, in a networked system. To model this phenomenon, we have proposed
a gossip spreading mechanism whose strength depends on the global diffusion of
the item in the community through a positive externalities effect, coupled with a
spontaneous regression drift. This model, named diffusion of innovation (DoI)
model, can also be interpreted as a generalization of an SIS epidemic model (studied
in Chapter 3) with a nonfixed state-dependent infection probability.

We have performed our analysis in three steps. First, in Section 4.2, we have
studied the system under the assumption of a fully connected network of interactions.
In particular, we have been able to prove that, depending on the strength of the gossip
mechanism, three possible regimes may show up: i) a failure regime; ii) a success
one; and iii) an intermediate regime where failure and success are both are possi-
ble, depending on the initial fraction of users. This intermediate regime presenting
the bistability phenomenon is the main novelty of the DoI model with respect to
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a standard SIS epidemic model, where, instead, the outcome of the dynamics is
always independent of the initial condition. Then, Sections 4.3 and 4.4 are devoted
to extend our results to non fully connected topologies, showing the existence of
the intermediate regime in more realistic scenarios. First, we have studied the case
of two isolated communities, proving that, under some conditions, the presence
of a sufficiently high initial condition in one of the two is sufficient to diffuse the
product in both the communities, due to the effect of positive externalities. Finally, a
general network of interactions has been considered, enabling us to define a family of
network topologies in which the intermediate regime is present. We have concluded
this chapter by presenting a number of numerical results to corroborate our theo-
retical results and to suggest that the transitions phenomena which characterize the
intermediate regime could be present even in more general graphs, non encompassed
by our theoretical result, paving the way for future research to extend our theoretical
findings.

Besides the extension of our results to other families of network topologies, a
relevant line of future research consists in testing the DoI model in real world case
studies. Our aim is to acquire temporal data describing the spread of a technological
asset in a social community (e.g., the use of a service or the downloads of an
application for smartphone) and, against them, to test our model also in comparison
with classical epidemic models and with standard model used for “big choices”.



Chapter 5

Controlled Diffusive Systems for
Evolutionary Dynamics

Evolutionary dynamics [27] study the spread of a new species (usually called mu-
tants) in a geographic area. An important application is thus to analyze the effects of
the introduction of a genetically modified organism (GMO) in a certain area, with the
goal of replacing a native species. This problem is a hot topic in epidemics control,
since several diseases are transmitted by intermediate hosts (e.g., dengue, malaria,
and, more recently, Zika). In the last few years, many efforts have been done by
researchers to create GMOs similar to the intermediate hosts, but in such a way that
they can not transmit the pathogen. Furthermore, some trials in which these mutants
are introduced in nature have been done, with different outcomes [28, 29].

The main goals of the analysis of such a processes is to compute the probability
that the mutants diffuse widely in the area (called fixation probability) and to estimate
the duration of the spreading process, depending on the topology of the network.
However, very few analytical results are available, since the results in the literature
are mainly based on extensive Monte Carlo simulations [27, 65, 66], but for the
computation of the fixation probability in some very specific network topologies [67,
68], and the computation of loose bounds on the absorbing time for regular directed
graph [69]. As a consequence of this lack of results, at now, very few control policies
for evolutionary dynamics have been proposed and studied.

In this chapter, inspired by evolutionary dynamics, we propose a new model for
mutant diffusion that presents two different features with respect to the one previously
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mentioned: i) the diffusion process is modeled through link-based (instead of node-
based as in the cited work) activation mechanisms; and ii) an explicit control action
is incorporated. This change of perspective enables us to obtain, on the one hand,
new analytical insights, notably concerning the expected duration of the spreading
mechanism. On the other hand, it also allows for the development of control policies
to speed up the spread of the mutant. With this in mind, we propose and analyze an
effective feedback control strategy based on few knowledge on the network topology
and on the evolution of the spreading process.

The chapter is organized as follows. In Section 5.1, we introduce the stochastic
evolutionary model. In Section 5.2, we present our main results on the time needed
for the mutants to occupy the whole network, along with practical examples of their
use on specific network topologies. Then, in Section 5.3, we propose and analyze
a feedback control policy which allows for a remarkable speed up of the diffusion
of the mutant using few observables and topological data. Finally, two examples
show the increased performance of our feedback control policy with respect to the
constant one, both for synthetic artificial networks and for a case study. Part of
the work described in this chapter has been previously published [70], accepted for
pubblication [71] and is part of current working papers [72] .

5.1 Model

In our model the geographical setting is described as a graph whose nodes are
locations that we assume to be fully occupied by just one species, either the native
one or the mutant one. A spreading mechanism and an external control are the
mechanisms through which species occupation varies with time. Below we detail the
various definitions. Here, we present these two mechanisms using a slight different
formulation with respect to the standard one proposed for pairwise-based diffusion
processes in Chapter 2. This is because it allows for an easier and clearer presentation
of the external control strategy. Then, we show how this model fits the formalism we
developed in this dissertation.

• The geographical graph. We consider an undirected connected weighted graph
G = (V,E,W ) whose node set V = {1, . . . ,N} represents locations of a geo-
graphical network, whose links {i, j} ∈ E represent proximity of nodes i and
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Fig. 5.1 State transitions characterizing the Controlled Diffusive System. Black solid lines
are spontaneous mutation, colored dashed lines are transitions taking place after a pairwise
interaction with a node with the other state.

j, and whose nonnegative weights Wi j measure the frequency of interactions
between neighbor nodes. We suppose W to be symmetrical and that Wi j > 0 if
and only if {i, j} ∈ E.

• The spreading mechanism. We assume each link {i, j} to be equipped with an
independent Poisson clock with rate Wi j, modeling the times the two species in
nodes i and j come in contact. When the clock associated with the link {i, j}
clicks, if both locations i and j are occupied by the same species, nothing
happens, whereas, if the two species in i and j differ, then a conflict takes
place and the winning species occupies both locations. Conflicts are solved
according to a stochastic law: the probability for mutants to win a conflict is
assumed to be a constant β ∈ [0,1].

• The external control. We fix an integrable function U(t) = (u1(t), . . . ,uN(t))∈
RN
+ where t ∈ R+. ui(t) represents the rate at which mutants are introduced in

node i at time t.

Remark 5.1. The formulation as pairwise-based diffusion processes is straight-
forward. The probabilities are set as follow: p01 = β , p10 = 1−β , m01 = 0, and
m10 = 1, wheres, a heterogeneous time-varying activation rate is given to each node,
where λi(t) = ui(t). Possible state transitions are represented in Fig. 5.1.

The triple (G,β ,U(t)) is called a Controlled Diffusive System (CDS). To it, we
now associate a Markov process describing the spreading of the mutants. Nodes are
characterized by a binary state Xi(t) ∈ {0,1}. We assume that each geographical
node i at a certain time t is either fully occupied by the native species Xi(t) = 0 or by
the mutant Xi(t) = 1. States of the various nodes is assembled in a vector X(t) that
is called the configuration at time t. X(t) is a time inhomogeneous jump Markov
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process on the configuration space {0,1}N , whose initial condition is assumed to
be a deterministic vector X(0). Typically, we will choose the initial condition to be
the mutant-free pure configuration, i.e., X(0) = 01. Its transition rates from (2.16)
reads: 

λ
+
i (x) = (1− xi)

(
β ∑

j∈V
Wi jx j +ui(t)

)
λ
−
i (x) = xi(1−β ) ∑

j∈V
Wi j(1− x j).

(5.1)

Remark 5.2. We observe that, in the special case without external control (i.e.,
U(t)= 0, ∀ t ≥ 0), when all links have the same weight, and when β = 1/2, this model
reduces to an isothermal voter model [1] (recalling that, in its original formulation,
voter model was actually developed for biological applications), whereas when β ̸=
1/2 it leads to a biased isothermal voter model [73]. Therefore our model generalizes
isothermal voter models (both fair and biased) through the inclusion of external
control and heterogeneity of link activation rates. Moreover, an (homogeneous)
agent-based version of our model without control, where clocks are associated
with nodes instead of links, has been proposed as an evolutionary model [27].
Notice that isothermal models and homogeneous agent-based ones coincide only on
regular networks. However, as already mentioned, the very few analytical results
on evolutionary models are limited to the computation or the estimation of the
probability that the whole network is eventually occupied by mutants, before the
native species does (the so told, fixation probability) and to a deeper analysis only on
some very specific network topologies [67, 68], while convergence times are tackled
only through extensive Monte Carlo simulations.

Remark 5.3. Also, observe that a different interpretation of our model consists in
thinking the external control as the addition of a fictitious stubborn node s with
constant state Xs(t) = 1, ∀ t ≥ 0, linked to each one of the nodes of the target set
i ∈ M0(t) with Wsi = Wis = ui(t)/β . In the case of a time-varying control policy,
this interpretation yields a time-varying network, where the nodes connected to the
stubborn node and the weight of the relative links change in time. Models with
stubborn nodes have been analyzed, e.g., within opinion dynamics [4]. However,
despite this interesting different point of view, the presence of a single stubborn node
in our model poses different issues with respect to those usually analyzed in the
literature.
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In order to model the evolutionary advantage given to the GMO with respect
to the native species and the presence of an external control, we focus on the case
where

β ∈ (1/2,1] and X(t) = 01 =⇒ ∃ i : ui(t)> 0 . (5.2)

From (5.1) and (5.2), it follows that the pure configuration 1, the one with
the whole network occupied by mutants, is the only absorbing state and that it is
reachable from any other state. Therefore, in the long run, mutants will almost surely
occupy the whole network. What is of interest, from the applicative viewpoint, is
the transient behavior of our system that we capture in two indices: the expected
absorbing time and the expected control cost.

τ = E [inf{t ≥ 0 : X(t) = 1}] , J = E
[∫

∞

0
1

TU(t)dt
]
. (5.3)

with the understanding that, once the process is absorbed in 1, then U(t) is set to
0. We notice that, under constant control policies, J = τU . It is evident that τ and
J will exhibit a trade-off behavior and fundamental limitations will show up from
our analysis. The effectiveness of various control policies will be compared through
the analysis of these two quantities. Another natural bound on the expected control
cost, holding true under any control policy, ties J with the number of nodes in which
mutants are introduced through the external control, as formalized in the following
statement.

Proposition 5.1. Let (G,β ,U(t)) be a controlled diffusive system and let X(t) be its
associated diffusive dynamics. If, during the evolution of the system, mutants are
introduced via the external control in K nodes, then J ≥ K.

Proof. The duration of each introduction is an exponentially distributed random
variable with expected value equal to the inverse of the rate. Hence, the expected
contribution of each introduction to the total expected control cost is equal to 1,
which yields the inequality.

We observe that, in general, the expected control cost J could be greater than the
bound in Proposition 5.1 because further effort could be wasted by controlling nodes
already occupied by the mutants, or by controlling nodes that will be occupied by
mutants due to the spreading mechanism.
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There are typically some constraints that we want to enforce on the control
policies we want to use. In general, the external control U(t) is constrained to be
active only at certain specified nodes. We define the support of U(t) as

MU(t) = {i ∈V : ui(t)> 0}. (5.4)

Given M ⊆ V , we say that U(t) is M-supported if MU(t) ⊆ M for every t. In this
case the triple (G,β ,U(t)) is called an M-controlled diffusive system.

Below we will consider, in particular, constant control policies U(t) =U , ∀ t ≥ 0
and, more generally, feedback control policies where U(t) is chosen to be a function
of the process X(t) itself. Precisely, we consider a function U : {0,1}N → RN

+ and
we take U(t) = U(X(t)). The triple (G,β ,U) is called a feedback controlled diffusive
system. If MU(x) ⊆ M, ∀x ∈ {0,1}N , we say that U is M-supported and that (G,β ,U)
is a feedback M-controlled diffusive system. Considering that each configuration
x ∈ {0,1}N can be equivalently characterized by its support Mx = {i : xi = 1}, we
will also use the notation U(Mx) for U(x). In particular, defining the process

MX(t) = {i : Xi(t) = 1}, (5.5)

we will also write U(t) = U(MX(t)).

5.2 Main Results on Controlled Diffusive Systems

In this section, we study the performance that can be achieved by a controlled
evolutionary dynamics depending on the control policy adopted and on the network
topology. Specifically, in Section 5.2.1 we define two fundamental limitations on
the performance, while an upper bound on τ is presented in Section 5.2.2. From
these technical results, we establish some easy-to-use Corollaries for some specific
choices of the control policy.

Finally, we propose some examples of the application of our findings on relevant
network topologies presenting different large-scale behaviors.

In order to present our results, let us recall some notion related to the isoperimetric
constants of a symmetric weighted graph, we have already used in Chapters 3 and 4.
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We briefly recall that the cut of a subset of nodes S ⊆V of a weighted graph G is

c[S] = ∑
i∈S

∑
j/∈S

Wi j. (5.6)

Definition 5.1. Given an undirected weighted graph G = (V,E,W ) with |V |= N, its
(minumum) conductance profile is a function φ : {1, . . . ,N −1}→ R, defined as

φ(z) = min
S⊂V,|S|=z

c[S], (5.7)

while its (maximum) expansiveness profile is a function ψ : {1, . . . ,N − 1} → R,
defined as

ψ(z) = max
S⊂V,|S|=z

c[S], (5.8)

We remark that, conductance profile can be seen as a re-scaling of the isoperi-
metric constants in Definition 3.2, since φ(z) = zη(z). Finally, in order to tackle
the analysis of this evolutionary dynamics and present our results, we define three
stochastic processes, obtained as one-dimensional observables of the process X(t).
Two of them are well known objects, i.e., Z̃(t) and ξ (t), measuring the number of
locations occupied by mutants and the overall weights of the links connecting nodes
with different state, i.e., ξ (t) = c[MX(t)], respectively. Then, we introduce

C(t) := (1−X(t))T U(t), (5.9)

which measures the total effective control rate in nodes occupied by the native
species.Given this set of one-dimensional observables of the process, one can express
the intensity of the non-homogeneous Poisson process X(t) through the following
Proposition.

Proposition 5.2. The intensity of the non-homogeneous Poisson process X(t) can
be written as a function of the one-dimensional observables B(t) and C(t) as

µ(t) = ξ (t)+C(t). (5.10)
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Proof. From (5.1), we write

µ(t) = ∑
i∈V

[
λ
+
i (X(t))+λ

−
i (X(t))

]
= (1−X(t))T

βWX(t)+(1−X(t))TU(t)

+X(t)T (1−β )W (1−X(t))

= βξ (t)+(1−β )ξ (t)+C(t),

(5.11)

where the last equality is verified since W =W T .

5.2.1 Fundamental Limitations on the Performance

Here, we present a number of results showing fundamental limitations for the
performance of feedback controlled diffusive systems. They are expressed in the
form of lower bounds on the average absorbing time τ , depending on topological
properties of the network and on the specific form of the external control adopted.

Before presenting our results, we state a pair of lemmas, presenting some relevant
monotonicity properties for the controlled diffusive systems. In order to improve the
readability of this section, some technical proofs of the results presented here will be
detailed in Appendix C.

Lemma 5.1. Let (G,β ,U(t)) and (G,γ,U(t)) be two controlled diffusive systems
with diffusive dynamics X(t) and Y (t), respectively. If

β ≤ γ , X(0)≤ Y (0) ,

then there exists a coupling Z(t) = (X(t),Y (t)) of the two processes such that

X(t)≤ Y (t) , ∀t ≥ 0 .

In particular, τY ≤ τX and JY ≤ JX , where the subscript denotes the two processes.

Remark 5.4. Here, we remark that Lemma 5.1 holds true for any control policy
U(t). We emphasize that, if U(t) = U(Y (t)) is a feedback control policy, where U(t)
is a function of the process Y (t), then, when considering the process X(t), U(t) is
not a feedback control policy for X(t).
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Lemma 5.2. Let (G,1,U(t)) and (G,1,0) be two controlled diffusive systems with
state X(t) and Y (t), respectively. If

(1−Y (0))TU(t) = 0 , ∀ t ≥ 0 ,

i.e., if the control of the first process is supported on a subset of the support of the
initial state of the second process, then, there exists a coupling Z(t) = (X(t),Y (t)),
such that

X(t)≤ Y (t) , ∀ t ≥ 0 .

In particular, τY ≤ τX , where the subscript denotes the two processes.

Lemma 5.2 implies that, for a controlled diffusive system where mutants always
win (i.e., when β = 1) it is always optimal for the control to insert the mutants
as soon as possible in the system. We wish to emphasize that controlled diffusive
systems with β < 1 do not enjoy this monotonicity property and, as a consequence,
their optimal control design problem is much more difficult.

The main result is obtained considering the limitations on the admissible trajecto-
ries of the diffusive dynamics posed by the spreading mechanism and by the control
policy, and then solving a minimization problem. Given an M-controlled diffusive
system (G,1,U(t)), the following definition captures the limitations that the process
MX(t) inherently receives from the way jumps can occur.

Definition 5.2. Given a graph G= (V,E), a neighborhood monotone crusade (NMC)
from S ⊆ V , denoted by ωωω = (ω1, . . . ,ωk+1) where k = N − |S|, is a sequence of
subsets of V such that:

• ω1 = S;

• ω j = ω j−1 ∪{v j}, with v j ∈Nω j−1 rω j−1;

• ωk+1 =V .

The set ΩS collects all the NMCs from S. Finally, let

τ(S) = min
ωωω∈ΩS

n−|S|−1

∑
j=0

1
c[ω j]

, (5.12)

act a lower bound on the expected duration of a NMC from S.
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Given a set S ⊆V , we define the quantity

C[S] :=
(
1−δ

(S)
)T

U(S), (5.13)

which measures the sum of the control rates in the nodes occupied by the native
species under the feedback control policy U . Similarly to the relation between the
cut of a subset c and the process B(t), we remark that C(t) = C[MX(t)].

Before presenting the main result of this section, we prove a technical lemma, in
which we estimate the expected contribution to the control cost given by the insertion
of mutants in a single location.

Lemma 5.3. Let (G,1,U(t)) and be a controlled diffusive system and let

Ji :=
∫

∞

0
ui(t)dt (5.14)

be the contribution to the control cost given by the insertion of mutants in node i ∈ V .
Namely, J = ∑i∈V Ji. Let Ei be the following event:

EI :=′′ Xi turns to 1 as an effect of the external control′′. (5.15)

Then it holds E[Ji|Ei]≥ 1.

Proof. Let T be a random variable modeling the time node i turns to 1. Since the
transition is triggered by the external control, then it holds

P[T ≤ t] = 1− exp
{
−
∫ t

0
ui(s)ds

}
=: F(t).

Then, we estimate

E[Ji|Ei] ≥ E
[∫ T

0
ui(t)dt |Ei

]
= E

[∫
∞

0

(∫ t

0
ui(s)ds

)
F ′(t)dt |Ei

]
= lim

t→∞
E[F(t)|Ei]−E[F(0)|Ei] = 1.
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We remark that the actual expected control cost can be larger than its bound in
Lemma 5.3 due to wastes of external control in nodes already occupied by mutants,
or in nodes that will be occupied by mutants because of the spreading mechanism,
without the need of external control. Moreover, if β < 1, further contributions to the
control cost can be consequences of multiple introductions of mutants in the same
node.

Theorem 5.1. Let G = (V,E,W ) be a graph, M ⊆ V a subset of nodes, and β ∈
[0,1]. Then, for any M-controlled diffusive system (G,β ,U(t)) with initial condition
X(0) = 01, the expected absorbing time τ and the expected cost J satisfy

τ ≥ min
µ∈MJ

∑
S⊆M

µSτ(S), (5.16)

where τ is defined as in (5.12), µ is a probability measure over the power set of U
that belongs to MJ , defined as

MJ :=

{
µ : ∑

S⊆M
µS|S| ≤ J

}
. (5.17)

Proof. Let X(t) be the state of the M-controlled diffusive system (G,β ,U(t)). Let
K ⊆ M be the set of nodes controlled during the evolution of the system. The set K
is a random variable and depends on the whole evolution of the controlled diffusive
system from t = 0 till the occurrence of the absorbing event. The argument we use
in this proof is based on the conditioning of the the evolutionary dynamics on the
realization of K. Under this conditioning, we are able to compute the (conditioned)
expected value of τ . Finally, we obtain the result by using the law of total probability
and minimizing over all the admissible probability distributions for K.

Let us condition on K = S, then it holds J ≥ |S| as a straightforward consequence
of the application of Lemma 5.3 for the |S| nodes controlled during the dynamics.
The process Y (t) associated with the diffusive system (G,1,U(t)), with Y (0) = 01
has, because of Lemma 5.1 an expected absorbing time τY ≤ τ . The process YS(t)
associated with the diffusive system (G,1,0), with YS(0) = δ (S) has, because of
Lemma 5.2 an expected absorbing time τY,S ≤ τY ≤ τ .

We estimate τY,W by using the following observation. The set of all admis-
sible trajectories of YS(t) coincides with the set ΩS of all NMCs from S. Let
ωωω = (ω0, . . . ,ωn−|S|) be the trajectory followed by the process, and let Tj be time
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spent in state MY (t) = ω j, for j = 0, . . . ,n−|S|−1. Due to linearity of the average
operator, it holds

τY = E

[
n−|S|−1

∑
j=0

Tj

]
=

n−|S|−1

∑
j=0

E[Tj]. (5.18)

We also observe that, when we condition the process to follow a given trajectory, the
random variable Tj depends on ωωω only through ω j. In fact, Tj is an exponentially dis-
tributed random variable with parameter equal to the intensity of the Poisson process
YS(t), computed according to Proposition 5.2, that is c[ω j]. Then, by conditioning
on the NMC ωωω followed by the process YS(t), we estimate

τY,S = ∑
σσσ∈ΩS

E[Tk |ωωω = σσσ ]P(ωωω = σσσ)

= ∑
σσσ∈ΩW

P(ωωω = σσσ)
n−|S|−1

∑
j=0

E[Tj|ω j = σ j]

= ∑
σσσ∈ΩW

P(ωωω = σσσ)
n−|S|−1

∑
j=0

1
c[σ j]

≥ τ(S).

(5.19)

Then, we obtain the result which relates the two indices τ and J by means of the law
of total probability for the conditioning on the set K = S and, finally, by minimizing
over all the probability distributions for the set K for which the expected control is at
most J, that is the set MJ in (5.17).

This result, can be applied to detect hard controllable topologies, where no
feedback control policy is able to achieve fast diffusion. Rings are a relevant example
of hard controllable network structures. In the following, we prove the impossibility
of designing a fast diffusive control policy for large-scale ring graphs. For the sake of
simplicity, in all our examples we consider isothermal models, i.e., we set Wi j = w,
for any {i, j} ∈ E . Moreover, to avoid the weights from blowing up, in all our
examples we parametrize w = α/∆, where ∆ is the maximum degree of the graph.

Example 5.1 (Impossibility of fast diffusion on rings). Let G =Cn be a ring graph
with n nodes, all the weights of the links equal to α/2, and let us consider a
M-controlled diffusive system (G,β ,U(t)) with X(0) = 01, where M can possibly
coincide with the whole V . In order to prove impossibility of fast diffusion of the
mutants on the ring for any control policy, we derive a bound on τ(S) that depends
only on the cardinality of S. If fact, we observe that the spreading mechanism cannot
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increase the boundary of the process: after an occurrence of the spreading process,
the boundary decreases by α (if the node that changes state is surrounded by two
nodes occupied by the other species) or it remains the same (otherwise). Moreover,
given a subset S ⊆ V , it holds c[S]≤ α|S|. Hence, we bound

τ(S)≥ 1
α|S|

N − 1
α
, (5.20)

which enables us to write (5.16) and its constraints (5.17) as a minimization problem
involving only the variable |W|. Since (5.20) is a convex function of |W|, Jensen’s
inequality yields

τ ≥ min
µ∈MJ

∑
S⊆M

µS
1

α|S|
N − 1

α

≥ min
µ∈MJ

1
α ∑S⊆M µS|S|

N − 1
α

≥ 1
αJ

N − 1
α
,

which proves that the diffusion is slow on large-scale graphs, unless letting the
expected control cost to blow up as n grows large.

Even though the result in Theorem 5.1 is very general, some limitations on
its direct use hamper its applicability. First, the computation of the exact solution
of (5.16) is not always a simple problem as it is for the ring graphs in Example 2.3,
whose topological properties pose strong constraints on the boundary of the sets
along a NMC. Second, the result in Theorem 5.1 is conditioned to the knowledge (or
the estimation) of the number of nodes controlled during the process, which is in
general a random variable for non-constant control policies U(t). To address these
issuse, we present two simple but immediate corollaries, which provide weaker but
easier-to-use bounds on τ .

In the first corollary, we give an immediate bound on τ for M-controlled diffusive
systems, not depending on the specific form of the control policy adopted (which
could be even a non-feedback one, as remarked below), nor on the control rates. Our
estimation depends only on structural limitations posed by the topology of G and
on the support of the control M, depending on the presence of bottlenecks in the
sub-graph that cannot be controlled.
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Corollary 5.1. For any feedback M-controlled diffusive system (G,β ,U(t)), it holds

τ ≥
(

min
M⊆R⊂V

c[R]
)−1

. (5.21)

Proof. Consider a set R ⊇ M and let Y (t) be the M-controlled diffusive system
(G,β ,U(t) =U(t))) with initial condition Y (0) = δ (R). Lemma 5.1 yields τ ≥ τY .
Finally, Theorem 5.1 can be used and the sum in (5.12) can be lower bounded by its
first term, that is c[R]−1, since C′[R] = 0. The inequality holds for any R ⊇ M, so the
maximum of these quantities (that is achieved by the subset R that minimizes c[R])
yields the tighter bound.

Remark 5.5. We remark that this result depends only on the network topology and
on the controllable set of nodes. Hence, it holds for any M-controlled diffusive
systems, not depending on the specific control policy adopted.

We propose now an intuitive but explanatory application of Corollary 5.1 to
prove slow diffusion of the spreading process on barbel graphs.

Example 5.2 (Slow diffusion for barbell graph). Let G = Bn be a barbell graph
with N (even) nodes equally divided into two complete sub-communities V1 and
V2, linked by a single link and let us consider any M-controlled diffusive dynamics,
where M ⊆V1 and with initial condition X(0) = δ (S) with S ⊆V1. Since ∆ = n/2 we
parametrize w = 2α/n. Corollary 5.1 yields

τ ≥
(

min
M⊆R⊂V

c[R]
)−1

= c[V1]
−1 =

N
2α

, (5.22)

which grows linearly in the size of the system.

In the second Corollary, we relax the lower bound on the expected absorbing
time by dropping its dependence on the feasibility of a trajectory. This relaxation
yields the simplified expression for (5.16) in the following.

Corollary 5.2. Let G = (V,E,W ) be a graph, M ⊆ V a subset of nodes, and β ∈
[0,1]. Then, for any M-controlled diffusive system (G,β ,U(t)) with initial condition
X(0) = 01, then the expected absorbing time τ and the expected cost J satisfy

τ ≥ min
µ∈M̃J

∑
m≤|S|

µm

n−1

∑
z=m

1
ψ(z)

(5.23)
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where ψ is defined as in (5.8) and µ is a probability measure over {0, . . . , |S|} that
belongs to M̃J , defined as

M̃J :=

{
µ : ∑

m≤|S|
µmm ≤ J

}
. (5.24)

Proof. The proof comes from the definition of maximum expansiveness profile in
(5.8) which implies c[S]≤ ψ(|S|), for any set S ⊆V .

We remark that the estimation of the expected absorbing time from Corollary 3.1
is a simpler and more treatable problem than the minimization problem in Theorem
5.1. The drawback of using this result, is that the fundamental limit computed therein
could be in some cases unreachable and far from the achievable values of τ and
J. This gap is due to the fact that we do not take into account the admissibility of
high expansiveness trajectories due to local topological constraints. For example,
Corollary 3.1 cannot be used to prove slow diffusion for ring graphs. In fact, the
maximum expansiveness profile of a ring graph is ψ(z) = α min{z,N − z}, so (5.23)
yields a lower bound that grows as lnN, which is far from the linear growth in N,
proved using Theorem 5.1).

We present now a second Theorem, providing a lower bound on the expected
absorbing time τ , under some conditions verified by the controlled diffusive system,
during the evolution of the process. We remark that this result is not directly applied
to the process, but a relevant corollary in which a fundamental limit that ties τ and J
is provided, will be established using it.

Theorem 5.2. For any controlled diffusive system (G,β ,U) with X(0) = δ (S), if the
following inequality is verified:

ξ (t)+C(t)≤ g(Z̃(t)), ∀ t ≥ 0, (5.25)

where g : {0, . . . ,N −1}]→ R+ is a positive function. Then

τ ≥
N−1

∑
z=|S|

1
g(z)

. (5.26)

The detailed proof of this Theorem, as well as the one of Theorem 5.3, that is its
upper bound counter-part, goes through some technical results for the analysis of the
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stochastic process X(t) and it will be extensively presented in Appendix C. However,
an intuitive heuristic can be found in the analysis of a mean field deterministic
relaxation of the evolutionary process, which is presented in the next section, in
Remark 5.6.

5.2.2 Upper Bound on the Expected Absorbing Time

In this section we present our upper bound on τ and we provide a simple interpretation
of this result in terms of a mean-field approximation of the stochastic process. Then,
we show how this result can be directly applied in the case of constant control,
presenting an explanatory example on expander graphs.

We state now the main contribution of this Section, that gives an upper bound
on the expected absorbing time τ , under some conditions verified by the controlled
diffusive system, during the evolution of the process. Similarly to the lower bound
in Theorem 5.2, we remark that also this result is not directly applied to the process,
but two relevant corollaries will be established using it, for constant control policy
(in this section) and for a specific feedback control policy (in the following section),
respectively.

Theorem 5.3. For any controlled diffusive system (G,β ,U) if the following inequal-
ity is verified:

ξ (t)+C(t)≥ f (Z̃(t)), ∀ t ≥ 0, (5.27)

where f : {0, . . . ,N −1}]→ R+ is a positive function. Then

τ ≤ β

(2β −1) f (0)
+

1
2β −1

N−1

∑
z=1

1
f (z)

. (5.28)

As already mentioned, the detailed proof of this result is presented in Appendix C.
Here, we propose an intuitive heuristic for the results in Theorems 5.2 and 5.3 can
be found in the following analysis of a mean field deterministic relaxation of the
evolutionary process in the following.

Remark 5.6. Let the state of each node to assume a continuous value ρi ∈ [0,1],
representing the probability that mutants occupy that location. According to a N-
Intertwined Mean Field Approximation [74], the variables ρ evolve according to the
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following ODE:

ρ̇ = βdiag(1−ρ)(Wρ +U)− (1−β )diag(ρ)W (1−ρ). (5.29)

Similar to the stochastic process, let ζ (t) = 1
T ρ(t), χ(t) = ρ(t)TW (1−ρ(t)), and

κ(t) = (1−ρ(t))TU(t), then ζ (t) is the solution of the Cauchy problemζ̇ = (2β −1)χ +κ.

ζ (0) = 0
(5.30)

Let τ̄ = inf{t ≥ 0 : ζ (t) = N}. If f (ζ )≤ χ +κ ≤ g(ζ ), with f and g strictly positive
functions in [0,N). Then it holds

∫ N

0

ds
g(s)

≤ τ̄ ≤ 1
2β −1

∫ N

0

ds
f (s)

. (5.31)

In fact, positivity of f and g implies strict monotonicity of ζ (t). On the one hand,
χ +κ ≤ g(ζ ) =⇒ ζ̇ ≤ g(ζ ). Thus, both sides can be divided by g(ζ ) and integrated
with respect to t, from 0 to τ̄ , obtaining

∫
τ̄

0

ζ̇ (t)dt
f (ζ )

≤
∫

τ̄

0
dt =⇒ τ̄ ≥

∫ N

0

ds
g(s)

, (5.32)

by substituting s = ζ (t) in the first integral and recalling the boundary condition
ζ (0) = 0. Similarly, we obtain the second inequality.

As already mentioned, Theorem 5.3 is used in the following of the paper to
establish upper bounds on τ under specific control policies. First, the case of
constant control is considered. In this case, Theorem 5.3 yields an upper bound
in which the expected absorbing time is related to the evolutionary advantage of
the mutants given by the parameter β and to topology of the network through its
minimum conductance profile.

Corollary 5.3. For any controlled diffusive system (G,β ,U) under fixed control
policy U(t) =U, let φ be the minimum conductance profile of G. Then it holds

τ ≤ β

(2β −1)1TU
+

1
2β −1

N−1

∑
z=1

1
φ(z)

(5.33)
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Fig. 5.2 Monte Carlo estimation (200 simulations) of the expected absorbing time τ of a
CDS on complete graphs for different values of N (α = 1), with 90% confidence intervals.
The two solid lines are the theoretical bounds from (5.34).

Proof. We observe that, for any z ∈ {1, . . . ,N}, for all subsets S ⊂V with |S|= z, it
holds φ(a)≤ c[S]. Therefore, if Z̃(t) = z =⇒ ξ (t)+C(t)≥ φ(x). If X(t) = 0, then
C(t) = 1

TU . Hence, (5.28) from Theorem 5.3 is applied with f (z) = φ(z), for z ̸= 0,
and f (0) = 1

TU .

Here, we present an application of Corollary 5.3, which characterizes the family
of expander graphs as easy controllable network structures. In fact, we ensures fast
diffusion to be achieved under any constant control policies.

Example 5.3 (Fast diffusion on expander graphs). Let G be an expander graph with
N nodes. Expander graphs, such as complete graphs, Erdős-Rényi random graphs,
small-world networks [75] and Ramanujan graphs [76], have high conductance
profile in the sense that ∃γ > 0 such that φ(i) ≥ γ min{i,N − i}. We parametrize
w = α/∆ and we notice that any set S has at least c[S] ≥ αφ(|S|). Therefore,
Theorem 5.2 and Corollary 5.3 yield

2
α

ln
N
2
≤ τ ≤ 2

γ(2β −1)
ln

N
2
+

β

(2β −1)1TU
. (5.34)

Expander graphs can be considered as a benchmark for fast-diffusive topologies.
In fact, in large-scale expander graphs (i.e., N → ∞), the bounds (5.34) are (order-
)tight, guaranteeing τ to grow logarithmically with N. Figure 5.2 presents Monte
Carlo estimations of the expected absorbing time, together with the two analytical
bounds from (5.34) for complete graphs.
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Fig. 5.3 Monte Carlo estimation (200 simulations) of the expected absorbing time τ of a
CDS on ring graphs for different values of N (α = 1), with 90% confidence intervals. The
two solid lines are the theoretical bounds computed.

In a similar fashion, Corollary 5.3 can be used to compute an upper bound on τ

under a constant control for the two Examples presented in Section 5.2.1, i.e., ring
graphs and barbell graphs. In both cases, order-thigh upper bounds are computed,
ensuring τ to grow linearly with N.

Example 5.4 (Ring Graphs cont’d). In Example 5.1 we proved that fast diffusion
is not achievable on ring graphs, since τ is bounded to grow at least linearly with
N. Here, we show that this lower bound is actually order-tight. Computation of
the conductance profile is straightforward. In fact, it holds φ(z) = α . Therefore,
Theorem (5.3) yields

τ ≤ β

(2β −1)1TU
+

1
(2β −1)α

(N −1). (5.35)

Numerical simulations in Fig. 5.3 are consistent with our analytical results.

Example 5.5 (Barbell Graphs cont’d). Let us consider the barbell graph studied in
Example 5.2. Since the two sub-communities V1 and V2 form complete graphs, the
conductance profile is

φ(z) =


αz
(

1
2
− z

N

)
if z < N/2

α/N if z = N/2

α(N − z)
(

z
N
− 1

2

)
if z > N/2,

(5.36)
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Fig. 5.4 Monte Carlo estimation (200 simulations) of the expected absorbing time τ on
barbell graphs for different values of N (α = 2), with 90% confidence intervals. The two
solid lines are the theoretical bounds computed.

Hence we obtain

τ ≤ 1
α(2β −1)

(
N +4ln

N
2

)
+

β

(2β −1)1TU
, (5.37)

leading to τ to grow linearly with N. Numerical simulations can be found in Fig. 5.4.

We conclude the section by presenting an example where the upper- and the
lower bound we developed are not sufficient to understand an order-thigh bound. In
this example, we consider a square lattice, where a single node can be controlled,
and the initial condition is the mutant-free configuration. From the Monte Carlo
simulations we performed, it seems that the lower bound is the weak result, paving
the way for further efforts to improve it.

Example 5.6 (Square Lattices). Let G be a square lattice with N (square number)
nodes. We parametrize w = α/4. The conductance profile can be estimated, for
large-scale networks, as

φ(z) =

{
[α/2+o(1)]

√
z if z ≤ N/2

[α/2+o(1)]
√

N − z if z > N/2,
(5.38)

see [10]. On the other hand, Corollary 5.1 is ineffective, yielding τ ≥ 1/α , and
the minimization problem in Theorem 5.1 cannot be trivially solved. However, its
minimum can be estimated through the following two (order-)tight bounds. At first,
since after each node addition in a NMC the weighted boundary cannot increase by
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Fig. 5.5 Monte Carlo estimation (200 simulations) of the expected absorbing time τ of a
CDS on square lattices for different values of N (w = 1), with 90% confidence intervals.

more than α/2, a natural upper bound is c[ωi]≤ αi/2. On the other hand, a NMC
in which ωωω the mutants at first spread in the first line and in the first column, then
they invade all the other odd lines (columns) in increasing order, finally they occupy
the remaining nodes, has ∑c[ωi]

−1 =
[ 2

α
+o(1)

]
lnN, giving a tight lower bound.

Therefore ∃K1,K2 > 0 such that

K1

α
lnN ≤ τ ≤ K2

(2β −1)α

√
N. (5.39)

In large-scale networks, this yields nontight asymptotic bounds: τ grows at least
logaritmically in N, at most with its square root. Numerical simulations in Fig. 5.5
suggest τ to be close to its upper bound and to grow, thus, with the square root of N.

5.3 Feedback Control Policy

In the examples proposed in the previous section, we have been able to see different
behaviors of the evolutionary dynamics on different network topologies. Some cases,
such as expander graphs, are easy to be controlled. In fact, for these topologies,
a very simple constant control policy provides fast diffusion of the mutants. On
the other hand, we presented examples of hard controllable topologies such as ring
graphs and barbell graphs (at least under constant control policies). Moreover, we
show that some of these topologies exhibit structural limitations to achieve fast
diffusion (e.g., ring graphs), while for other topologies no fundamental limitations
are present (e.g., barbell graphs).
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In this section, we focus on the design of a feedback control policy capable of
speeding up the process, for these cases where no structural limitations prevent us
from achieving fast diffusion, but constant control policies fail. Theorem 5.3 will be
used to evaluate the effectiveness of our control strategy. The case of barbell graphs
will be presented as an effective example where our feedback control policy is able
to ensure fast diffusion of the spreading process.

The first stage to develop our feedback control policy consists in noticing that it
is useless to insert mutants in locations already occupied by them, therefore we move
the support of the control MU(t) during the spreading mechanism in such a way that
the nodes in it have always state 0. As we shall discuss later, the optimal choice
for MU(t) to maximize its influence, which in general is a computationally hard
problem [21], is not required in our policy, therefore, we simply set MU(t) to be a
singleton m(t) in such a way that U(t)> 0 =⇒ Xm(t)(t) = 0. From Theorem 5.3, we
argue that the diffusion process mainly depends on the number of locations occupied
by mutants Z̃(t) and on the boundary of the process ξ (t). Therefore, we set U(t) to be
a feedback function of these two observables, i.e., U(t) = U(X(t)) = U(Z̃(t),ξ (t)).

In [70], we have proposed a preliminary effort in this direction. Therein, we set
U(X(t)) = ξ (t) f (Z̃(t)). This control policy allowed for a simple analysis and its
effectiveness in speeding up the diffusion process had been shown, e.g., for barbell
graphs. However, less regular network topologies (typical in real-world applications)
may arise issues, restricting the usability of the proposed control policy. In fact,
that control policy i) is very sensible to small errors in the data (e.g. if a node is
added to one of the two components of the barbell graph, the control policy fails
in activating in correspondence to the real bottleneck); and ii) could waste energy
uselessly, inserting mutants when the process is already evolving fast.

Then, we have addressed these two issues by proposing a feedback control policy
in which the knowledge of ξ (t) is exploited in a more thoughtful way, improving the
robustness of our control technique for its real-world use, as the two applications we
will propose at the end of this section suggest.

In view of all our observations on the importance of ξ (t), the goal of our control
policy should intuitively be that of speeding up the process when ξ (t) is small. To
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this aim, fixed a positive parameter C > 0 and i ∈V with Xi(t) = 0, we define

Ui(X(t)) =

{
C−ξ (t) if Z̃(t)< N, ξ (t)<C
0 else,

(5.40)

and U j(t) = 0, ∀ j ̸= i. We remark that C > 0 guarantees convergence to the absorbing
state.

In this new setting, we want to estimate the absorbing time τ to the state X(t) = 1

as well the expected cost of the control policy JU . First, we define the following
modification of the conductance profile.

Definition 5.3. Given an undirected weighted graph G = (V,E,W ) with |V |= n and
a constant C ≥ 0, its C-floor conductance profile is a function φC : {1, . . . ,N−1}→R,
defined as

φC(z) := max{φ(z),C}= max
{

min
S⊂V,|S|=z

c[S],C
}
. (5.41)

We observe that, for C ≤ minS⊆V φ(S), and in particular in the case C = 0, the C-floor
conductance profile coincides with the minimum conductance profile φ . Moreover,
due to its definition, the monotonicity φC ≥ φC′ holds true for any C ≥ C′. Using
this notion of C-floor conductance profile, we deduce the following corollary of
Theorem 5.3, which establish an upper bound on the expected absorbing time and on
the expected cost of the feedback control policy.

Corollary 5.4. For the feedback controlled diffusive system (G,β ,U), where U
follows the control policy (5.40), let φC be the C-floor conductance profile of G. Then
it holds

τ ≤ β

(2β −1)C
+

1
2β −1

N−1

∑
z=1

1
φC(z)

; (5.42)

and

J ≤ β

2β −1
+

1
2β −1 ∑

z:φ(z)<C

C−φ(z)
C

≤ β

2β −1
+

1
2β −1

|{z : φ(z)<C}| .

(5.43)

Proof. The upper bound (5.42) comes straightforward from Theorem 5.3, being
µ(t) = ξ (t)+C(t) = ξ (t)+1

TU(t)≥ φC(z).
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To prove (5.43), if Z̃(t) jumps in z at time t, from Proposition (5.2) we estimate

µ(t) = ξ (t+)+1
TU(t+)

= max{ξ (t+),C}
≥ max{φ(z),C}= φC(z),

(5.44)

while the control rate is 1TU(t+) =C−ξ (t+) if ξ (t+)<C, and 0 otherwise. Hence,
the expected contribution to control cost of a sojourn in z, denoted by Jz, depends on
the boundary of the process: if ξ (t+)<C, then the intensity in (5.44) is equal to C,
and we have

Jz =
C−ξ (t+)

C
≤ C−φ(z)

C
≤ 1. (5.45)

Otherwise, if ξ (t+)≥C, Jz = 0. We remark that, being ξ (t+)≥ φ(z), if φ(z)≥C,
it holds Jz = 0.

Finally, the upper bound in (5.43) is obtained by summing up the bounds in (5.45)
over all the sojourns in all the states of process Z̃(t) that give a nonnull contribution.
In the worst-case scenario, these states are z : φ(z)<C, which completes the proof.

The upper bounds of the expected absorbing time and on the control cost are
functions of the control policy U (through the choice of the parameter C) and of
the minimum conductance profile φ so, ultimately, of the network topology. Due to
the monotonicity property of φC pointed out above, the upper bound in (5.42) is a
nonincreasing function in C, while (5.43) is nondecreasing in C, yielding typically
a trade-off between faster diffusion and higher cost. Therefore, an optimization
problem for our control policy consists in finding an optimal value for the parameter
C, representing the best compromise between fast diffusion (obtained for large values
of C) and affordable cost (achieved by small values of C).

To sum up, despite i) the very myopic choice of our control policy in which
no optimization is done on the choice of the support of the control policy MU(t),
ii) the few a-priori knowledge on the topology (only φ ), and iii) the use of only
two observables in the design of the feedback function (from a N-dimensional state
variable), we have been able to obtain an effective control policy that can be used in
optimization over networks, far beyond the usually analyzed mean field case.
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Fig. 5.6 Monte Carlo estimation (200 simulations) and 90% confidence intervals of the
expected absorbing time τ of a CDS on barbell graphs for different N (w = u0 = 1), with
β = 0.7 (blue circles) and β = 0.8 (red squares), under the constant control policy (a) and
the feedback one (b).

An immediate application of our control technique allows to achieve fast diffusion
in barbell graphs, as we show in the following example.

Example 5.7 (Feedback control policy for a barbell graph). Let us consider the
barbell graph analyzed in Examples 5.2 and 5.5. Let us fix any C < α(1

2 −
1
N ). Then,

φC(z) = φ(z), ∀z ̸= N/2, and φ(N/2) =C, yielding

τ ≤ 4
α(2β −1)

ln
N
2
+

1+β

C(2β −1)
, (5.46)

which is a great improvement from (5.37), obtained with constant control policy.
In fact, if constant control policy yields τ to grow linearly with N, our feedback
control policy ensures τ to grow logaritmically with N, with a bounded expected
cost. Fig. 5.6 shows the magnitude of the improvement from constant control policy
to the feedback one.

We conclude this chapter by presenting two relevant applications of the feedback
control policy we proposed. First, we apply it on a synthetic realistic network created
according to a stochastic block model [77]. In this framework we are able to prove
analytically the high performance obtained by our control strategy. Then, we apply
it on a case study, where the network structure as well as the model parameters have
been estimated from real-world data. Even though an analytical treatment cannot be
performed due to the complexity of the network structure, Monte Carlo simulations



112 Controlled Diffusive Systems for Evolutionary Dynamics

Fig. 5.7 Realization of a SBM with p = 0.3, L = 2 N = 13 and c = 6/13.

allows us to prove a statistically significant improvement with respect to the constant
control policy adopted in the trials [28, 29].

5.3.1 Synthetic Network: Stochastic Block Model

Here, we propose a relevant application of our feedback control policy, far beyond
the toy example of barbell graphs. We consider a realistic situation consisting in
a geographical network made by densely connected communities, linked by few
connections. The presence of communities is a typical features of spatial and
geographical networks [78, 79], being a consequence of to the physiography of the
area: e.g., the presence of mountain ranges and isthmuses separates a geographic
area into communities. For the sake of simplicity, we only consider the case of two
communities, modeled by a stochastic block models (SBM) [77] as described below.
Then, our results can be intuitively generalized to SBMs with more communities.
Due to the stochastic nature of SBMs, then all the following results hold true with
high probability. Fig. 5.7 depicts an realization of a SBM.

First, we a constant control policy. In order to simplify the computations we set
U(t) = δ (1), ∀ t. The result can be easily generalized for any control with support in
V1 and for any U . Then, we show how our feedback control policy can dramatically
improve the speed of convergence.

Let G be a SBM made by two nonoverlapping communities V1 and V2 of car-
dinality |V1| = cN and |V2| = (1− c)N, with c ∈ (0,1/2]. Here, we consider an
implementation of a SMB useful to model network presenting highly intercon-
nected communities with few connections between them: the two communities
are Erdős-Rényi random graphs, i.e. each link is present with constant probability
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p > 0, independently on the others [44]. Then, a set of L links positioned uniformly
at random connects nodes belonging to different communities. We parametrize
w = α[N p(1− c)]−1.

Remark 5.7. Barbell graphs can be seen as a limit case of SBMs with p = L = 1.

Corollary 5.1 yields

τ ≥ N p(1− c)
Lα

(5.47)

In order to compute an upperbound o τ , we can consider that, if the graph is not an
expander graph, the communities considered on their own are so. In particular they
have γ = c

2N pw = cα

2(1−c) [10], which means that, if zi is the number of locations
occupied by mutants in the i-th community at time t, then ξ (t)≥ γzi. Therefore, we
can bound φ(z) by considering the worst case scenario as follows:

φ(z)≥ cα

2(1− c)
min

z1,z2:z1+z2=z
{min{z1,cN − z1}+min{z2,(1− c)N − z2}} . (5.48)

For z = z1 or z = z2, (5.48) yields the trivial bound φ(z)≥ 0. However, the presence
of L links between the two communities ensures

φ(z)≥ Lα

N p(1− c)
, if z ∈ {z1,z2}. (5.49)

combining (5.48) and (5.49), we deduce

N

∑
i=1

1
φ(z)

≤
(

2N p
Lα

+
4(1− c)

cα
lnN

)
. (5.50)

Hence,

τ ≤ 2
α(2β −1)

(
N p
L

+
2(1− c) lnN

c

)
+

β

2β −1
. (5.51)

This implies slow diffusion of the mutants, since τ grows at least linearly with N.

We consider now the control policy in (5.40) for any C ≤ cα

2(1−c) . Expansiveness
in (5.48) guarantees the mutants to diffuse fast when not in correspondence of a
bottleneck, that is where one community is occupied by the mutants and the other
one by the native species. The choice of the parameter C ensures the control function
to be equal to zero when the process is not in a bottleneck [80]. Therefore, φC(z)
verifies inequality (5.48) and φC(z) ≥ C for z ∈ {cN,(1− c)N}. Proposition 5.4
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Fig. 5.8 Monte Carlo estimation (200 simulations) of the expected absorbing time τ and
expected cost JU of CDSs on SBMs with N = 800, u0 = 1, α = 1, β = 0.8, c = 0.4, p = 0.1
and L = 5 for different values of the parameter C. The red line is a numerical solution of
the fundamental limit in Corollary 5.2. Green squares are Monte Carlo estimation of the
expected absorbing time τ and expected cost under a control policy where the control is
always moved to a node occupied by the native species, but the observable ξ (t) is not used.

concludes that

τ ≤ β

(2β −1)
+

2(1− c)
cα(2β −1)

lnN +
2

C(2β −1)
. (5.52)

On the other hand, activation of the control function only in correspondence of
bottlenecks ensures (5.43) to read

JU ≤ 2+β

2β −1
. (5.53)

To sum up, our feedback control policy ensures τ to grow logarithmically with N,
bounding the cost not to grow with the dimensionality of the problem.

In Fig. 5.8 we analyze the trade-off between absorbing time and cost of the
control policy by increasing C: after a first phase presenting a fast improvement,
the time decreases slowly as the cost increases. In the same figure, our feedback
control policy is also compared with the fundamental limit computed numerically
according to Corollary 5.2 and with an even simpler control policy, under which
the observable ξ (t) is not used and mutants are introduced with a constant rate in a
singleton, moved in such a way that it has always state 0. From this comparison, we
claim that the use of the observable ξ (t) in our feedback control policy provides a
great improvement in the results. Then, Fig. 5.9 shows the great improve provided
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Fig. 5.9 Monte Carlo estimation (200 simulations) and 90% confidence intervals of the
expected absorbing time τ of a CDS on SBMs for different N with u0 = 1, α = 1, β = 0.8,
c = 0.4 and L = 5, under the feedback control policy (red squares), compared with those
obtained with the constant one (blue circles), for different values of p. The red solid lines are
the theoretical upper bound from Proposition 5.4 and a numerical solution of the fundamental
limit in Proposition 5.2 with the expected cost estimated from the simulations.

by the feedback control policy, in particular as N increases. We also notice that, for
highly connected communities (i.e., for large values of p) the improvement with
respect to the constant control policy increases in magnitude.

As already pointed out above, the main strength of this control policy consists in
the fact that only few data and information about the network topology are required:
notably, the two observables Z̃(t) and ξ (t) are used in the feedback control function,
and the conductance profile allows for thoughtfully set the trade-off between the
speed of the process and the cost of the control. For example, in this application on
SBMs, the control strategy is designed without the knowledge of the exact partition
of the nodes into the two communities, and even the cardinality of each community
is not used. This property of our control policy is very important since it provides
robustness in real-world situations, where few data might be available and some
uncertainty on the exact network structure can be present.

5.3.2 Case-study: Zika Virus in Rwanda

In this section, we present a case study to show the potentiality our feedback control
policy to speed up evolutionary dynamics in networked systems. Inspired by a current
hot topic in epidemic control, we consider a possible strategy to control the Zika
outbreak in Rwanda [81] by substituting Aedes aegypti mosquitoes with genetically
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Fig. 5.10 Topological network of the considered geographic area. Links connect locations
within 11.7 km.

modified organisms (GMOs) that are similar to the original mosquitoes but do not
transmit the Zika virus. Similar control strategies that use GMOs have been proposed
and adopted in trials and experiments for fighting other mosquitoes-borne diseases
such as dengue fever [28, 29].

The geographical network is constructed as follows. We consider a data set of
1621 locations in Rwanda with their GPS coordinates [82]. Two nodes should be
connected, if and only if the mosquitoes in the two locations can contact. Hence,
we establish a threshold corresponding to 11.7 km, that is the maximum distance

Table 5.1 Parameters of the Rwanda case study

Parameter Meaning Value
N Number of locations 1621

Wi j Activation rate 0.1
β Evolutionary advantage 0.53

1
TU Control rate (constant) 2
C Control parameter (feedback) 1.5
t Time unit day
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traveled by mosquitoes to lay their eggs [83]: locations reachable within this distance
are connected. The so obtained network is represented in Fig. 5.10. Since the
duration of the life cycle of an Aedes aegypti lasts in average 10 days [84], we set
the activation rate of each link (i, j) ∈ E equal to Wi j = 0.1. Finally, we give the
GMOs a little evolutionary advantage. In our simulations this advantage is modeled
by setting β = 0.53.

We performed 200 Monte Carlo simulations of the evolutionary dynamics on
the networked system for each control policy (constant control policy and the new
feedback one). Simulations are generated according to a Gillespie algorithm [35].

In order to compare the two policies, we set the specific parameters of the two
control policies in such a way that the two estimated costs coincide. As we remarked
above, the cost of a constant control policy grows linearly with the absorbing time.
However, in order to have a more challenging benchmark to improve on, we consider
only the cost for the constant policy when controlling a node occupied by the native
species. Following the trials [28, 29], we set the support of the constant control to
coincide with a random node i ∈V of the graph, and we fix Ui = 2 (for the constant
control) and C = 1.5 (for the feedback one).

Parameter used are summarized in Tab. 5.1. Our simulations in Fig. 5.11 allows
for estimating the magnitude of the improvement given by the feedback control
policy with respect to the constant control policy. We observe that, at the same
cost (even not considering the energy wasted controlling nodes already occupied
by the mutants), the diffusion time reduces in average by more than 56% (the level
of significance of this improvement is guaranteed by a p-value p << 0.001). The
comparison in Fig. 5.11 also shows that the outcomes of feedback control policy are
variable than the ones of constant control policy. Hence, the feedback control policy
we proposed seems to outperform the constant one, not only in average, but also
considering worst case scenarios.

5.4 Conclusion

In this Chapter, inspired by a real-world problem concerning with the diffusion of a
GMO in a geographic area, we have proposed a new formulation for evolutionary
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Fig. 5.11 Comparison of control policies for the Rwanda case study. In (a), 200 realizations
of a CDS with their diffusion time and control cost. Monte Carlo estimation (200 simulations)
of the expected diffusion time τ , in (b), and of the expected control cost, in (c), with 95%
confidence intervals. Both for the constant (blue squares) and the feedback control policy
(red circles).
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dynamics that allows for an analytical treatment and incorporates an exogenous
control input mechanism.

In Section 5.1, we have declined our mathematical framework for diffusion
processes on networks into a link-based spreading process modeling controlled
evolutionary dynamics including an exogenous, possibly time-varying control in-
put. Then, we have analyzed the model obtained, providing some general results
which allows for understanding how the time needed for the mutants to diffuse in
a geographic region and the effort required to achieve this spread depend i) on the
topological structure of the geographic region and ii) on the control policy adopted.

Specifically, we have identified three categories of network structures: i) the
ones easy to control, for which a simple time-invariant control policy is sufficient to
achieve fast diffusion (e.g., expander graphs); ii) the hard to control ones, for which
we proved that no control policy is able to guarantee fast diffusion (e.g., ring graphs);
and iii) those topologies for which fast diffusion can be achieved, but not adopting a
simple time-invariant control policies, such as the case of barbell graphs.

In order to improve the performance for the latter class of topologies, in Section
5.3, we have finally designed an effective feedback control policy that, using few
topological data and observables on the system, provides a dramatic improvement
on the speed of the evolutionary process. The efficiency of our proposed feedback
control policy have been proved both analytically (in Corollary 5.4) and through two
relevant applications: i) on a synthetic network generated according to a stochastic
block model and ii) on a case study inspired by real-world data from Zika outbreak
in Rwanda.

We strongly believe that the generality of the results in this chapter as well as the
effectiveness of the feedback control policy proposed in Section 5.3 could lead to
the application of a similar approach also to other diffusion dynamics over networks
such as epidemic models or opinion dynamics.





Chapter 6

Conclusion and Further Research

6.1 Conclusion

In this dissertation, we have proposed a general and flexible theory for diffusion
processes on networked systems. Then, we have considered different real-world
diffusion phenomena, and we have analyzed them using the results developed in our
general theory. Specifically, we have studied an epidemic outbreak (in Chapter 3),
the diffusion of a new smartphone application (in Chapter 4), and the competition
between two species in a biological system (in Chapter 5),

In the first part of this theses, we have formalized diffusion processes in a
unique, flexible theory, which, on the one hand, can be used to provide general
results for this class of dynamics, and, on the other hand, can be tailored to suit the
specificity of the various applications, giving novel insights on the various diffusion
phenomena. Within this general framework, we have adapted and developed some
useful techniques for the analysis of a diffusion process, as detailed in Chapter 2 and
in Appendix A.

In the second part of the thesis, we have tailored our general theory to repre-
sent some specific scenarios. In Chapter 3, we have analyzed an SIS epidemic
model, which study the diffusion of a disease in a connected community. Our main
contributions are the followings.

• We have refined the results on the phase transition between the fast extinction
regime and the one where the disease becomes endemic. Specifically, we
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have proposed a novel bound on the tail probabilities of the time to extinction
distribution, extending the results available in the literature, which are only
concerned with its expected value. Using this bound, we have found conditions
for the disease to become endemic with high probability, depending on the
topology of the network of interactions and on the initial condition.

• We have applied our result to specific topologies, gaining new insights in the
epidemic process and demonstrating the use of our theoretical result.

• We have developed a new analytically treatable theory to deal with epidemics
on a heterogeneous time-varying network of interaction by shifting the ADN
paradigm into our formulation of diffusion dynamics.

• Using this new theory, we have been able to estimate the number of infected
individuals when the disease becomes endemic, and to predict the short- and
medium-term evolution of the epidemic process using few empirical data
sampled at the population level as the disease spreads.

In Chapter 4 we have dealt with a marketing problem: does a new smartphone
application diffuse deeply in the population or will it sink into oblivion soon? To
predict this, we have developed a new mathematical model, within our general theory.
Our main results are the followings.

• We have developed a model within our general theory, which is capable of
modeling the effect of positive externalities, as discussed in Section 4.1.

• We have analyzed the system under mean field hypotheses, proving the pres-
ence of three regimes: a regime where the diffusion fails and the product
extinguish soon, a second regime where the diffusion succeeds and we guar-
antee a fraction of population to use the product for a long time, and, finally,
an intermediate regime where the initial condition determines the outcome
of the diffusion, depending on the model’s parameters. The presence of the
intermediate regime is the main novelty of this model.

• We have studied the model on a general network of interaction, identifying
topological conditions for the existence of the three regimes described above.

• Using these results, we have detected a family of network topologies, charac-
terized by a large expansivity, which exhibit the intermediate regime.
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In Chapter 5, instead, we have focused on controlled evolutionary dynamics. Our
work have been inspired by a hot topic in epidemics control: to create harmless
genetically modified mosquitoes, which can be introduced in nature to substitute the
dangerous mosquitoes responsible of transmitting infections and diseases, without
modifying the environmental equilibria. Our main contributions are the followings.

• We have designed our model within the general theory developed in Chapter 2.
The main novelty with respect to the models presented so far is in the presence
of an external control.

• We have studied the system, understanding the effect of the topology and of
the control policy adopted on the time needed for the mutants to spread in the
whole network.

• Using these results, we have identified three classes of network structures:
i) those easy to control, for which a simple control policy guarantees fast
diffusion (e.g., expander graphs); ii) those hard to control, for which it is not
possible to obtain fast diffusion (e.g., ring graphs); and, finally, iii) the ones
controllable with feedback control, for which simple control strategies are
not sufficient to achieve fast diffusion, but we have been able to propose a
feedback control policy that yields fast diffusion.

• We have extensively analyzed the feedback control policy proposed demon-
strating its high performances both on artificial networks and on a case study.

To sum up, in this dissertation we have proposed a flexible analytical theory to
deal with diffusion processes on networks. Using this framework, we have been able
to improve the analysis of a well established model, giving new insights into the
diffusion phenomenon (Chapter 3), as well as include and study external control into
a dynamical system (Chapter 5), or even develop a new mathematical model to study
a realistic dynamics on a networked system (Chapter 4).

6.2 Current and Future Research

Besides the extension and the generalization of the various results found in the
applications considered in this dissertation, which have been already extensively
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discussed in the conclusion of the relative chapters, two main goals are envisaged
for our current and future research. Specifically, i) we want to extended our general
theory to non-binary cases, where nodes have more than two states; and ii) we aim
to explore a further application of our theory, to study learning dynamics in the
framework of population game on networks.

In this dissertation, for the sake of simplicity and in order to keep the notation as
simple as possible, we have restricted our analysis to the binary case, where each
node can have either state 0 or 1. However, to model more realistic phenomena,
nodes can have more than two states. For example, in epidemics, different states
can be used to model individuals that are exposed but not jet infectious, or those
that are immunized and/or vaccinated; in opinion dynamics, more that two beliefs
can be present among a population (e.g., elections in a multi-party system). On the
one hand, the formal extension of our theory to non-binary systems comes naturally
by introducing a set of mutation probabilities mi j and copying probability pi j for
each possible pair of states. On the other hand, unfortunately, it is not trivial and it
is still an open problem to understand how the results for the binary model can be
generalized to multi-dimensional systems.

Some promising preliminary results, however, encourage us to tackle this prob-
lem. In [41], we have successfully extended our techniques to predict the evolution
of the epidemic curve of an SIS model (see Section 3.3 for details), to a generic
epidemic model, with an arbitrary number of health states and admissible transitions
between them. Our goal is thus to extend also the results on the Markov process to
more general dynamics, in order to successfully model and analyze realistic diffusion
phenomena.

Second, imitation dynamics [85] in the framework of population game on net-
works are subject to our current and future research. In contrast to most of the
other learning dynamics studied in the literature, such as best response and its noisy
versions [86, 87] or logit learning [88], imitation dynamics require very little infor-
mation about the game and its structure to be known by the players: each player only
has to know his/her own current utility and to be able to observe the one of some
of her/his fellow players. Then, players can exchange information through pairwise
interactions and, in response to this information, they can update the strategy they
play (that in general is wider than a binary choice) according to some stochastic
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rules. Hence, they fit our general theory for diffusion processes and can be analyzed
by means of the tecniques we have developed in this dissertation.

The main goal of our analysis consists in understanding the long-run behavior of
the system, to find conditions under which the system converges close to some “good”
Nash equilibria of the game. We have some preliminary results toward this objective:
in [89] we have analyzed the deterministic approximation of an imitation dynamics,
obtained using the techniques presented in Section 2.5, proving its convergence to
the set of Nash equilibria. Then, we have extended our studies to the Markov jump
process to gain more insights on the learning process. In [90], we have analyzed
the system under a mean field assumption, proving convergence and long-lasting
permanence close to the a desired subset of the Nash equilibria. Encouraged by
these preliminary results, we are now planning to extend our results beyond the fully
mixed case leveraging the techniques developed in this dissertation, to understand
the effect of the communication networks on the evolution of the system.
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Appendix A

Technical Results on Birth-Death
Markov Jump Processes

We present here the two technical lemmas on Markov birth-death jump processes
along with their detailed proofs. Both lemmas deal with the computation of some
bounds on the probability that a process takes “too many” steps “against the drift”.
Specifically, the first Lemma considers a scenario in which the increasing probability
is greater than the decreasing one in an interval, and concludes that the probability
that the process exits from this interval from below is exponentially small in the
length of the interval. The second Lemma, instead, considers a scenario in which
the increasing probability is less than the decreasing one in an interval close to the
left-most extreme, which is an absorbing state, concluding that with probability
exponentially large the process never exists from that interval, if it starts there.

Lemma A.1. Let Z(t) be a birth and death process on the state-space SN with
transitions rates, respectively, λ+(z) and λ−(z). Let µ := maxz[λ

+(z)+ λ−(z)].
Assume there exists an interval (z0 − ε,z0 + ε)⊆ (0,1), where z0 ∈ (0,1) and ε > 0,
such that

λ
+(z)≥ (1+δ )λ−(z), ∀z ∈ SN ∩ (z0 − ε,z0 + ε) (A.1)

for some δ > 0. Then, for any z > z0, there exists C > 0 only depending on δ such
that

Pz

(
∃ t ∈ [0,eCεN ] : Z(t)< z0 − ε

)
< 10µ

2e−CεN , (A.2)

where C = δ 2/24(1+δ )(2+δ ) is a constant only depending on δ .
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Proof. In order to simplify the notation, we consider the process Z̃(t) = NZ(t). Let
Λ(t) be the number of jumps the process Z̃(t) does in the time interval [0, t]. Λ(t) is
a time-varying Poisson process, whose rate is equal to the sum of the two transition
rates of the process Z̃(t). For this reason, Λ(t) is dominated by a Poisson process
with rate µ .

Let us denote by Z̃+(k) the state of the process Z̃(t) immediately after its k-th
jump and let us define

A(t) := {k = 1, . . . ,Λ(t) : Z̃+(k−1) ∈ N(z0 − ε,z0 + ε)}. (A.3)

Let ζk be the Bernoulli random variable that assumes value 1 if the k-th jump of Z̃(t)
increases Z̃(t) by 1. If Z̃+(k−1) ∈ N(z0 − ε,z0 + ε), then

P(ξk = 1) =
λ+(z)

λ+(z)+λ−(z)
≥ 1+δ

2+δ
=: p. (A.4)

Now, we bound the number of jumps of the process Z̃(t) during a fixed time
range T , with

P(Λ(T )> KµT )≤
+∞

∑
k=⌈KµT+1⌉

e−µT (µT )k

k!
≤ (µT )⌈KµT⌉

⌈KµT⌉!
≤
( e

K

)⌈KµT⌉

.
(A.5)

We notice that, for any K > e, (A.5) guarantees an exponential decay of the probabil-
ity of having too many jumps during a time range T.

We now estimate the probability that Z(t) goes below z0 − ε starting from above
z0, by conditioning on the number of jumps in the time range T , i.e., Λ(T ), and
splitting the summation into two parts, where each one can be bounded using different
techniques, as follows:

P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε)

)
= ∑

L∈N
P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε) | Λ(T ) = L
)
·

·P(Λ(T ) = L)

≤
3µT

∑
L=1

P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε) | Λ(T ) = L
)
·

·P(Λ(T ) = L)+P(Λ(T )> 3µT ).
(A.6)
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We focus on the estimation of first term, since the second on can be easily
bounded with (A.5). The estimation we carry on is based on the fact that for the
process Z̃(t) to reach N(z0 − ε) there must exist a sequence of l ≥ εN consecutive
jumps while the process is in N(z0 − ε,z0 + ε) for which the number of overall left
transitions minus the number of overall right transitions in the sequence is above εN.
Henceforth, using an union bound, we have

P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε) | Λ(T ) = L
)
≤

L

∑
k=1

L

∑
l=⌈εN⌉

P(El), (A.7)

where the event El is defined as

El :=
l−1⋂
i=0

{k+ i ∈ A(t)}
⋂{l−1

∑
i=0

ξk+i ≤
l
2
− ε

N
2

}
. (A.8)

At this stage, we recall the Chernoff bound. Given a sequence of random Bernoulli
variables ξi i.i.d. with success probability p, then

P

(
l−1

∑
i=0

ξi ≤ (1−α)l p

)
=

(1−α)l p

∑
h=0

(
l
h

)
ph(1− p)l−h ≤ exp

{
−l p

α2

2

}
. (A.9)

Using (A.4) and applying (A.9) with α = (2p−1)/2p, we can estimate the proba-
bility of event El as

P(El) =

l
2−

εN
2

∑
h=0

(
l
h

)
ph(1− p)l−h ≤ exp

{
−l p

(
2p−1

2p

)2
}

= exp
{
−(2p−1)2l

8p

}
.

(A.10)
Then, by substituting the expression for p in (A.4), (A.10) reads

P(El)≤ exp
{
−(2p−1)2l

8p

}
= exp

{
− δ 2l

8(1+δ )(2+δ )

}
. (A.11)
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Combining (A.7) and (A.11), we bound

P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε) | Λ(T ) = L
)

≤
L

∑
k=1

L

∑
l=⌈εN⌉

P(El)

≤
L

∑
k=1

L

∑
l=⌈εN⌉

exp
{
− δ 2l

8(1+δ )(2+δ )

}
≤ L2 exp

{
−ε

δ 2

8(1+δ )(2+δ )
N
}
,

(A.12)
Finally, since the bound in (A.12) is monotonically increasing in L, we bound

3µT

∑
L=1

P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε) | Λ(T ) = L
)
P(Λ(T ) = L)

≤ P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε) | Λ(T ) = 3µT
)3µT

∑
L=1

P(Λ(T ) = L)

≤ P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε) | Λ(T ) = 3µT
)

≤ (3µT )2 exp
{
−ε

δ 2

8(1+δ )(2+δ )
N
}
.

(A.13)

To conclude,we bound the second term of (A.6) using (A.5) with K = 3, obtaining

P
(

inf
t∈[0,T ]

Z̃(t)≤ N(z0 − ε)

)
≤ (3µT )2 exp

{
−ε

δ 2

8(1+δ )(2+δ )
N
}
+
(e

3

)⌈3µT⌉
.

(A.14)
Fix now ε > 0 and put

T = exp
{

δ 2

24(1+δ )(2+δ )
εN
}
. (A.15)

Using the fact that (e/3)x < x−2 for all x > 0, we immediately obtain the thesis.

Lemma A.2. Let Z(t) be a birth and death process on the state-space SN with
transitions rates, respectively, λ+(z) and λ−(z). Assume that λ+(0) = λ−(0) = 0
and that there exists ε > 0 such that

λ
−(z)≥ (1+δ )λ+(z), ∀z ∈ SN ∩ (0,2ε], (A.16)
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for some δ > 0. Then, called C = ln(1+δ ), for any z < ε ,

Pz (∃ t ≥ 0 : Z(t)> 2ε)< εN exp{−CεN}. (A.17)

Proof. First, for any k ∈ {0, . . . ,⌈2δN⌉}, put ek = Pk/N (∃ t ≥ 0 : Z(t)≥ ⌈2εN⌉/N).
A straightforward argument based on conditioning on the transition at the first jump
leads ek to satisfy Laplace equation:

ek =
λ+(k/N)ek+1 +λ−(k/N)ek−1

λ+(k/N)+λ−(k/N)
. (A.18)

This, along with the boundary condition e0 = 0, gives

(ek+1 − ek) =
k

∏
j=1

λ−( j/N)

λ+( j/N)
e1. (A.19)

We can bound e⌈εN⌉ ≤ 1, obtaining

e1 ≤

(
⌈2εN⌉−1

∑
k=0

k

∏
j=1

λ−( j
N )

λ+( j
N )

)−1

≤

(
⌈2εN⌉−1

∏
j=1

λ−( j
N )

λ+( j
N )

)−1

(A.20)

Combining (A.19) and (A.20) we finally obtain

e⌊εN⌋ =
⌊εN⌋−1

∑
k=0

k

∏
j=1

λ−( j/N)

λ+( j/N)
e1 ≤ ⌊εN⌋

⌊εN⌋−1
∏
j=1

λ−( j/N)
λ+( j/N)

⌈2εN⌉−1
∏
j=1

λ−( j
N )

λ+( j
N )

≤ ⌊εN⌋
⌊2εN⌋−1

∏
j=⌊εN⌋

λ+( j/N)

λ−( j/N)
≤ ⌊εN⌋(1+δ )−εN ,

(A.21)

which yields the thesis.





Appendix B

Second-Order Analysis of Linear
Markov Jump Process

We present here the details of the second order analysis of a linear jump Markov
process, straightening the convergence results known in the literature from the first-
order analysis [10]. These stronger results coming from the second-order analysis
will be used in Section 4.4, when analyzing the failure regime in the model for
diffusion of innovation.

Consider the jump Markov process Y (t) over Θ = NV , with transition rates λ̄
+
i = µ ∑

j∈Ni

y j

λ̄
−
i = yi,

(B.1)

where µ = β d̄−1φ(1).

The analysis of ZY (t) proceeds as follows. In Lemma B.1, we provide an upper
bound for its first moment. Then, an analysis on its second moment and a bound on
its variance is provided in Lemmas B.2 and B.3. Finally, we combine these results in
Lemma B.4 that analyzes the asymptotic behavior of ZY (t).

Lemma B.1. Let ZY (t) = z(Y (t)) with Y (t) that following (B.1). Then it holds

E[ZY (t)]≤ exp((µρA −1)t)Z(0)1/2. (B.2)
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Proof. Let us denote the first moment of the process Y (t) by M(1)(t) = E(Y (t)).
The distribution p(t) ∈ [0,1]Θ of Y (t) satisfies the forward Kolmogorov equation
ṗ =−pL(λ̄ ) where L(λ̄ ) is the Laplacian of the process (i.e. L(λ̄ )xy = ∑y′ λ̄xy′ − λ̄xy,
where λ̄xy is the transition rate from state x to state y). Therefore, M(1)(t) satisfies
the ODE

Ṁ(1) = (µA− I)M(1). (B.3)

We can thus estimate

||M(1)(t)|| ≤ exp((µρA −1)t)||Y (0)||, (B.4)

where ρA is the spectral radius of A. This yields

E[ZY (t)]≤ N−1N1/2 exp((µρA −1)t)||X(0)||= exp((µρA −1)t)Z(0)1/2. (B.5)

Remark B.1. Since µ = β d̄−1φ(1), it holds

µρA −1 = β d̄−1
ρAφ(1)−1. (B.6)

Hence, β < d̄ρ
−1
A φ(1)−1 implies µρA − 1 < 0, yielding an exponential decay of

E[Z(t)] to 0 . However, as already pointed out above, this is not yet sufficient to
generalize item 1. of Theorem 4.1.

We now undertake a second order analysis of the process Y (t). To this aim, put
M(2) = E(Y (t)Y (t)∗) and Ω = M(2)−M(1)M(1)∗.

Lemma B.2. Ω satisfies the ODE

Ω̇ = µ(AΩ+ΩA)−2Ω+µdiag(AM(1))+diag(M(1)), (B.7)

with Ω(0) = 0.

Proof. Using the Kolmogorov equation it follows that

Ṁ(2) = ∑
x∈Θ

ṗxxx∗

= ∑
x∈Θ

µ ∑
v∈V

px−δv(A(x−δv))vxx∗+ ∑
x∈Θ

∑
v∈V

px+δv(xv +1)xx∗+

− ∑
x∈Θ

µ ∑
v∈V

px(Ax)vxx∗− ∑
x∈Θ

∑
v∈V

pxxvxx∗.

(B.8)
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We rearrange the first two terms of (B.8) by adding and subtracting δv to both x and
x∗, expanding the products and, finally, changing the indexes. We thus obtain

∑
x∈Θ

µ ∑
v∈V

px−δv(A(x−δv))vxx∗ =

= µ ∑
v∈V

∑
x∈Θ

px(Ax)vxx∗+µ(AM(2)+M(2)A)+µdiag(AM(1)),
(B.9)

and

∑
x∈Θ

∑
v∈V

px+δv(xv +1)xx∗ = ∑
v∈V

∑
x∈Θ

pxxvxx∗−2M(2)+diag(M(1)). (B.10)

Substituting (B.9) and (B.10) into (B.8), we finally obtain

Ṁ(2) = µ(AM(2)+M(2)A)−2M(2)+µdiag(AM(1))+diag(M(1)). (B.11)

Thesis now follows by differentiating the expression M(1)M(1)∗ with the use of (B.3)
and then subtracting it from (B.11).

We can now bound Var(ZY (t)) = N−2
1
∗Ω1 through the following Lemma.

Lemma B.3. Let ZY (t) = z(Y (t)) with Y (t) following (B.1). Then it holds

Var(ZY (t))≤ N−1/2 1+µρA

1−µρA
e(µρA−1)tZY (0)1/2. (B.12)

Proof. Let S(V ) be the set of symmetric matrices over V and let L : S(V )→S(V )

be the linear operator given by L(M) = µ(AM+MA)−2M. Then, using (B.7), we
can represent the centered second moment as

Ω(t) =
t∫

0

exp((t − s)L)U(s)ds, (B.13)

where
U(t) = µdiag(AM(1)(t))+diag(M(1)(t)). (B.14)

Hence,

Var(ZY (t)) = N−2
1
∗

t∫
0

1
∗[exp((t − s)L)U(s)]ds1. (B.15)
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Using the representation

exp(tL)M = exp(t(µA− I))M exp(t(µA− I)), (B.16)

we can estimate the variance as follows:

Var(ZY (t))≤ N−2N1/2
t∫

0
e(2(t−s)(µρA−1)||U(s)||dsN1/2, (B.17)

where ||U(s)|| is the induced 2-norm of U(s). From (B.14), it can be estimated as

||U(s)|| ≤ µ max
v

|δ ∗
v AM(1)|+max

v
|δ ∗

v M(1)| ≤ (µρA +1)exp((µρA −1)s)||Y (0)||.
(B.18)

Combining this estimation with the previous inequality, we obtain the thesis.

We are now ready to analyze the convergence behavior of the process ZY (t) in
the case when µρA < 1.

Lemma B.4. Let ZY (t) = z(Y (t)) with Y (t) following (B.1). Assume that µρA < 1.
For every ε > 0 there exists a time Tε > 0 and a constant Kε > 0 such that

1. if ZY (0)≤ a2, it holds

P(∃ t ≥ 0 : ZY (t)> a+ ε)≤ KεN−1/2; (B.19)

2. for every ZY (0), it holds

P(∃ t ≥ Tε : ZY (t)> ε)≤ KεN−1/2. (B.20)

Moreover, for every ε > 0, the constants Kε and Tε only depend on the quantity µρA

and are bounded when this quantity is bounded away from 1.

Proof. Consider the underlying discrete time Markov chain Ỹ (k) for k = {0,1, . . .}
and the corresponding ZỸ (k) = z(Ỹ (k)). The Poisson process Λ(t) governing the
jumps of Y (t) has intensity ν = (β +1)N. Hence it holds

Var(ZY (t)) = ∑
k≥0

Var(ZỸ (k))P(Λ(t) = k)≥ Var(ZỸ (⌊νt⌋))P(Λ(t) = ⌊νt⌋). (B.21)
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The last multiplicative term of (B.21) can be lower bounded using Stirling’s approxi-
mation:

P(Λ(t) = ⌊νt⌋) = (νt)⌊νt⌋

⌊νt⌋!
e−νt ≥ (νt)⌊νt⌋

⌊νt⌋⌊νt⌋
e⌊νt⌋√
2π⌊νt⌋

e−νt ≥ 1
9⌊νt⌋

. (B.22)

From (B.21) and (B.22) we obtain that

Var(ZỸ (k))≤ 9kVar(ZY (k/ν)), ∀k = {0,1, . . .}. (B.23)

Combining the assumption ZY (0)≤ a2 with the estimation in Lemma B.1, we bound

P(∃ t ≥ 0 : ZY (t)> a+ ε) ≤ P(∃k ≥ 0 : ZỸ (k⌊εN/2⌋)> a+
ε

2
)

≤ ∑
k≥0

P
(
|ZY (k⌊εN/2⌋)−E(ZY (k⌊εN/2⌋))| ≥ ε

2

)
≤ 4

ε2 ∑
k≥0

Var(ZỸ (k⌊εN/2⌋)).

(B.24)
Using now estimation (B.23) and Lemma B.3, we obtain item 1.

Item 2. can be proven in a similar fashion. First, we notice that Lemma B.1
implies that there exists Tε > 0 such that E(ZY (t)) ≤ ε/2 for all t ≥ Tε . We then
conclude using again the variance estimation in (B.3).





Appendix C

Analysis of Controlled Diffusive
Systems

In this Chapter, we gather all the technical proofs of the results on the Controlled
Diffusive Systems, as well as a detailed analysis of the process. We start presenting
the proof of Lemma 5.1.

Proof of Lemma 5.1. We first prove the lemma under assumption β = γ and X(0)<
Y (0). We define the coupled process Z(t) = (X(t),Y (t)) as a bi-dimensional pro-
cess on the state space ({0,1}n,{0,1}n), with initial condition Z(0) = (X(0),Y (0)),
associated with a (unique) geographical graph G. The coupling mechanism is the
following. Each link {i, j} is equipped with an independent Poisson clock with
rate Wi j. When the clock associate with the link {i, j} clicks, then the spreading
mechanism acts on that link for both X(t) and Y (t) as for a standard controlled
diffusive systems, but for the fact that, if a conflict occur in both processes, then the
outcome is the same. Each node i is given an inhomogeoneous Poisson clock with
rate ui(t), associated with the external control in node i. When the clock associated
with node i clicks, then both Xi and Yi turn to 1. We immediately deduce that the
two marginals X(t) and Y (t) are controlled diffusive system (G,β ,U(t)) with the
desired initial conditions.

We show now that, in this coupling, Y (t)≥ X(t), for every t ≥ 0. At t = 0 this
is verified by assumption. Then, we show that, after each transition of the coupled
process, the inequality is preserved. To this purpose, we suppose the process has a
transition at time t, we name Z(t) = (X(t),Y (t)) the state of the process before the
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transition, and Z(t+) = (X(t+),Y (t+)) the state after the transition. If X(t) = Y (t),
then due to the coupling mechanism we have X(t+) = Y (t+). If Y (t) > X(t), we
analyze the possible transitions:

• Spreading mechanism. Edge {i, j} activates and a conflict occur. Then, being
Y (t)> X(t), the following configurations can occur:

1. Xi(t) = Yi(t) = X j(t) = 0, Yj(t) = 1 and mutants win. Then, Xi(t+) =
X j(t+) = 0, Yi(t+) = Yj(t+) = 1 =⇒ Y (t+)> X(t+).

2. Xi(t) = Yi(t) = X j(t) = 0, Y j(t) = 1 and native species win. Then,
Yi(t+) = Yj(t+) = Xi(t+) = X j(t+) = 0 =⇒ Y (t+)≥ X(t+).

3. Xi(t) = Yi(t) = 0, X j(t) = Y j(t) = 1 and mutants win. Then, Yi(t+) =
Yj(t+) = Xi(t+) = X j(t+) = 1 =⇒ Y (t+)> X(t+).

4. Xi(t) = Yi(t) = 0, X j(t) = Y j(t) = 1 and native species win. Then,
Yi(t+) = Yj(t+) = Xi(t+) = X j(t+) = 0 =⇒ Y (t+)> X(t+).

5. Xi(t) = 0, Yi(t) = X j(t) = Y j(t) = 1 and mutants win. Then, Yi(t+) =
Yj(t+) = Xi(t+) = X j(t+) = 1 =⇒ Y (t+)≥ X(t+).

6. Xi(t) = 0, Yi(t) = X j(t) = Y j(t) = 1 and native species win. Then,
Xi(t+) = X j(t+) = 0, Yi(t+) = Yj(t+) = 1 =⇒ Y (t+)> X(t+).

• External control. Mutants are introduced in node i, that is not occupied
by mutants in both the processes. Then, being Y (t) > X(t), the following
configurations can occur:

1. Xi(t) = Yi(t) = 0 Then, Xi(t+) = Yi(t+) = 1 =⇒ Y (t+)> X(t+).

2. Xi(t) = 0, Yi(t) = 1 Then, Xi(t+) = Yi(t+) = 1 =⇒ Y (t+)≥ X(t+).

Therefore, we conclude that, after each transition of the process, the inequality
Y (t)≥ X(t) is preserved (possibly, a strict inequality can mutate into an equality).

The proof of the Lemma under the assumption β < γ and X(0) = Y (0), is
performed using a similar argument. The coupled process Z(t) = (X(t),Y (t)) is a
bi-dimensional process on the state space ({0,1}n,{0,1}n), with initial condition
Z(0) = (X(0),Y (0)), associated with a (unique) geographical graph G. The coupling
mechanism is the following. Each link {i, j} is equipped with an independent Poisson
clock with rate Wi j. When the clock associate with the link {i, j} clicks, then the
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spreading mechanism acts on that link for both X(t) and Y (t). If a conflict occur in
only one of the two processes, then it is solved as in a standard controlled diffusive
system with probability for the mutants to win the conflict equal to β and γ for the
components X(t) and Y (t), respectively. If the conflict occurs in both processes,
then with probability β mutants win in both components, with probability γ −β

mutants win only in component Y (t), and with probability 1− γ mutants lose in
both components. Each node i is given an inhomogeoneous Poisson clock with rate
ui(t), associated with the external control in node i. When the clock associated with
node i clicks, then both Xi and Yi turn to 1. We immediately deduce that the two
marginals X(t) and Y (t) are controlled diffusive system (G,β ,U(t)) and (G,γ,U(t)),
respectively, with the same desired initial condition X(0) = Y (0).

Similar to the proof of the lemma under the assumption X(0)< Y (0), we have
now to show that, in the coupling Z(t), Y (t)≥ X(t), ∀ t ≥ 0. At t = 0 this is verified,
being X(0) = Y (0). Then, following the same procedure used above considering the
state of the system after each transition, it is easy to show that both the spreading
mechanism and the external control preserve the inequality. Finally, the case in
which both β < γ and X(0)<Y (0) can be obtained by combining the two couplings
described above.

To conclude the proof, the existence of the coupling Z(t) = (X(t),Y (t)) such that
Y (t)≥ X(t) for every t ≥ 0, yields the stochastic domination Y (t)≽ X(t) [11]. The
inequality τY ≤ τX is a straightforward consequence of the stochastic domination
and, being U(t)≥ 0 and U(t) = 0 once the process is absorbed, we have

JX =
∫

τX

0
U(t)dt =

∫
τY

0
U(t)dt+

∫
τX

τY

U(t)dt ≥ JY , (C.1)

which completes the proof.

Proof of Lemma 5.2. We define the coupled process Z(t) = (X(t),Y (t)) as a bi-
dimensional process on the state space ({0,1}N ,{0,1}N), with initial condition
Z(0) = (X(0),Y (0)), associated with a (unique) geographical graph G. The coupling
mechanism is the following. Each link {i, j} is equipped with an independent Poisson
clock with rate Wi j. When the clock associate with the link {i, j} clicks, then the
spreading mechanism acts on that link for both X(t) and Y (t), with β = 1. Each
node i is given an inhomogeoneous Poisson clock with rate ui(t), associated with the
external control in node i. When the clock associated with node i clicks, Xi turns to 1.
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We immediately deduce that the two marginals X(t) and Y (t) are controlled diffusive
system (G,1,U(t)) and (G,1,0) with the desired initial conditions, respectively.

We show now that, under this coupling, Y (t)≥ X(t), for every t. At t = 0 this is
verified by assumption. In the following, we show that, after each transition of the
coupled process, the inequality is preserved.

• Spreading mechanism. Being β = 1, mutants always win. So only three
transitions can occur when edge {i, j} activates and a conflict occurs:

1. Xi(t) =Yi(t) =X j(t) = 0, Yj(t) = 1. Then, Xi(t+) =X j(t+) = 0, Yi(t+) =
Yj(t+) = 1 =⇒ Y (t+)> X(t+).

2. Xi(t) = Yi(t) = 0, X j(t) = Yj(t) = 1. Then, Yi(t+) = Y j(t+) = Xi(t+) =
X j(t+) = 1 =⇒ X(t+)≥ Y (t+).

3. Xi(t) = 0, Yi(t) = Y j(t) = X j(t) = 1. Then, Yi(t+) = Y j(t+) = Xi(t+) =
X j(t+) = 1 =⇒ Y (t+)≥ X(t+).

• External control. We observe that i) mutants can be only introduced in the
process X(t) in nodes i ∈ M′, for which Yi(0) = 1, and ii) being β = 1,
Yi(0) = 1 =⇒ Yi(t) = 1, for any t ≥ 0. Hence, also external control preserves
the inequality Y (t)≥ X(t), which completes the proof.

Finally, Lemma 5.3 gives JX ≥ |M′|.

At this stage, we deepen our analysis of the Controlled Diffusive Systems. In
order to perform this analysis, we focus on the process Z̃(t). The dependency of the
process Z̃(t) on the control U(t) restricts the possibility to analyze it directly using
the techniques from Section 2.4. We tackle this issue defining an ancillary stochastic
process Z̄(t), obtained by dropping the dependence on C(t), whose transition rates
now depend only on ξ (t) in a linear way. Z̄(t) is a stochastic process with the
following increasing and decreasing transition rates from state Z̄(t) = z, conditioned
to ξ (t) = ξ : 

λ̄+(z|ξ ) = u0 if z = 0
λ̄+(z|ξ ) = βξ if z ∈ {1, . . . ,N −1}
λ̄−(z|ξ ) = (1−β )ξ if z ∈ {1, . . . ,N −1},

(C.2)

where u0 := inft:X(t)=01U(t). The assumption (5.2) guarantees u0 > 0.
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0 1 . . . z . . . N
u0 βξ βξ βξ βξ

(1−β )ξ (1−β )ξ (1−β )ξ(1−β )ξ

Fig. C.1 The transition graph of the continuous-time process Z̄(t), conditioned to ξ (t) = ξ .

Lemma C.1. It holds Z̃(t)≽ Z̄(t).

Proof. In order to prove the stochastic domination, we exhibit a coupling (Z̃(t), Ā(t))
in which Z̃(t)≥ Z̄(t). This coupling comes naturally since, as noticed above, λ+ ≥
λ̄+, while λ− = λ̄−, similarly to [10].

The structure of the transitions of process Z̄(t) can be seen in Fig. C.1. We notice
that Z̄(t) is still not Markovian, but all its transition rates depends on X(t) only
through ξ (t), that will be very useful in our further analysis of the process.

At this stage, we prove a technical Lemma that will be used further on, combined
with the stochastic domination from Lemma C.1, to compute our upper bound of τ .

Lemma C.2. Let Nz be the random variable counting the number of times the process
Z̄(t) enters in state z. Then it holds

E [N0]≤
β

2β −1
, (C.3)

and, ∀z ∈ {1, . . . ,N}, it holds

E [Nz]≤
1

2β −1
. (C.4)

Proof. Let {Tk} be the set of random times at which the transitions of the process
Z̄(t) occur. We can define the embedded discrete-time process Y (k) = Z̄(Tk), that
evolves coupled with Z̄(t) and has a discrete time step for each transition of the
continuous-time process. Differently form the continuous-time process, Y (k) is
a birth-death Markov chain, since in its transition probabilities we get rid of the
dependence on the boundary B(t). Notably, the non-zero increasing (decreasing)
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0 1 . . . y . . . N
1 β β β β

1−β 1−β 1−β1−β

1

Fig. C.2 The transition graph of the embedded discrete-time process Y (k) = Z̄(Tk).

probabilities of Y (k) are
q+(y) = 1 if z = 0,
q+(y) = β if z ∈ {1, . . . ,N},
q−(y) = 1−β if z ∈ {1, . . . ,N}.

(C.5)

Moreover, being N an absorbing state, a self-loop with probability 1 is added to
it. The process Y (k), whose structure is represented in Fig. C.2, is a well known
birth-death Markov chain. In fact, between two consecutive entrances in 0, it acts as a
Moran process [36]. Therefore, from the relative literature, we define the probability
that, starting from a generic state z, the chain is absorbed in N before entering z−1,
as

fz =

2β −1
β

1−
(

1−β

β

)N−z+1 ≥ 2β −1
β

. (C.6)

Therefore, N0 to be a geometrically distributed random variable with success proba-
bility (2β −1)/β , whose expected value is upper bounded by β/(2β −1).

As the generic E[Nz] is considered, the process enters at least once in any state
z ∈ {1, . . . ,N −1}. Then, we bound the expected number of returns by conditioning
on the first jump, as

Rz = β (1− fz)(Rz +1)+(1−β )(Rz +1)

≤ β
1−β

β
(Rz +1)+(1−β )(Rz +1)

≤ 2−2β

2β −1
,

(C.7)

which yields the conclusion

E[Nz] = 1+Rz ≤ 1+
2−2β

2β −1
≤ 1

2β −1
. (C.8)
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We observe that the upper bounds provided in Lemma C.2 does not depend on
the size of the network N. We are now ready to prove Theorems 5.2 and 5.3.

Proof of Theorem 5.2. Let Nz be the random variable counting the number of times
the process Z̃(t) enters in state z. Since Z̃(0) = 0 and the process is eventually
absorbed in N, it holds Nz ≥ 1. We bound

E[Tz] = E

[
Nz

∑
i=1

E
[
Si

z |Nz
]]

= E

[
Nz

∑
i=1

1
ξ (t̄i)+C(t̄i)

]
≥ E [Nz]

g(z)
≥ 1

g(z)
. (C.9)

Thus, the proof is concluded by summing up the time spent in each state.

Proof of Theorem 5.3. Let Nz be the random variable counting the number of times
the process Z̃(t) enters in state z. Stochastic domination in Lemma C.1 ensures that
Nz ≤ Ñz. Using the property of linearity of the expected value, τ can be expressed
as the sum of the expected amounts of time the process Z̃(t) spends in each one of
the non-absorbing states. In formula τ = ∑

N−1
z=0 E[Tz], where Tz is the amount of time

the process Z̃(t) spends in state z. Let Si
z be the i-th sojourn-time in state z (i.e. the

time spent in z the i-th time it enters in it). Si
z is an exponentially distributed random

variable with parameter ξ (t)+C(t). Finally, denote by t̄i the time of the i-th entrance
in state z of the process Z̃(t). Using Lemma C.2 and the fact that Nz is independent
from the various Si

z’s, we can now estimate, ∀z ∈ {1, . . . ,N −1},

E[Tz] = E

[
Nz

∑
i=1

E
[
Si

z |Nz
]]

= E

[
Nz

∑
i=1

1
ξ (t̄i)+C(t̄i)

]
≤ E [Nz]

f (z)
≤ 1

(2β −1) f (a)
,

(C.10)
and, similarly,

E[T0]≤
E [N0]

f (0)
≤ β

(2β −1) f (0)
. (C.11)

Thus we complete the proof by bounding

τ =
N−1

∑
a=0

E [Tz]≤
β

(2β −1) f (0)
+

1
2β −1

N−1

∑
z=1

1
f (z)

. (C.12)
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