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Abstract

Given a commutative ring R with identity, letHR be the set of sequences of elements
in R. We investigate a novel isomorphism between (HR,+) and (H̃R, ∗), where + is
the componentwise sum, ∗ is the convolution product (or Cauchy product) and H̃R

the set of sequences starting with 1R. We also define a recursive transform over HR

that, together to the isomorphism, allows to highlight new relations among some well
studied integer sequences. Moreover, these connections allow to introduce a family of
polynomials connected to the D’Arcais numbers and the Ramanujan tau function. In
this way, we also deduce relations involving the Bell polynomials, the divisor function
and the Ramanujan tau function. Finally, we highlight a connection between Cauchy
and Dirichlet products.

Keywords: Bell polynomials; Convolution product; D’Arcais numbers; Ramanujan tau
function MSC 2010: 11A25, 11B75, 11T06, 13F25

1 An isomorphism between the convolution product and the
componentwise sum

Given a commutative ring (R,+, ·) with identity, let HR denote the set of all the sequences
a = (an)

∞
n=1 = (a1, a2, a3, ...), with an ∈ R, for all n ≥ 1. If we consider the operation

componentwise sum in HR, denoted by +, it is well known that (HR,+) is a group. Many
other interesting operations between elements of HR can be defined. In the following, we
focus on the convolution product (also called Cauchy product), defined by

a ∗ b = c, cn+1 =

n∑
h=0

ah+1bn−h+1, ∀n ≥ 0,

given any a, b ∈ HR. It is worth noting that (HR,+, ∗) is a ring with identity 1 =
(1, 0, 0, 0, ...). Moreover, let us observe that given any a, b ∈ HR with ordinary generating
functions A(t) and B(t), respectively, then c = a ∗ b has o.g.f. A(t)B(t).

Remark 1. The Cauchy product is strictly related to the binomial convolution product (also
called Hurwitz product). Given a, b ∈ HR, the Hurwitz product is defined as a ⋆ b = c,
where

cn+1 =
n∑

h=0

(
n

h

)
ah+1bn−h+1,

for all n ≥ 0. It is easy to see that the following map

γ : (HR,+, ∗) → (HR,+, ⋆)
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defined by γ(a) = b, where bn+1 = n!an+1, for all n ≥ 0, is an isomorphism. The ring
(HR,+, ⋆) is isomorphic to the Hurwitz series ring (see, e.g., [9]) that has been extensively
studied. Some results on the Hurwitz series ring and on the binomial convolution product
can be found in [1, 2, 4, 5, 8, 10, 14, 16].

A sequence a ∈ HR is invertible with respect to ∗ if and only if a1 ∈ R is invertible with
respect to ·. We denote H∗C

R the set of invertible elements of HR with respect to ∗. Thus,
(H∗C

R , ∗) is a group whose identity is (1, 0, 0, ...). If we consider the equivalence relation
ρ defined by aρb if and only if (a1, a2, ...) = (λ · b1, λ · b2, ...), then the quotient group
H∗C

R /ρ is isomorphic to (H̃R, ∗), where H̃R is the set of sequences in HR starting with 1.
Indeed, we can construct the isomorphism that maps a class of equivalence of H∗C

R /ρ into
the representative given by a sequence starting with 1. We can write an isomorphism φ
between (HR,+) and (H̃R, ∗) defined by φ(a) = u, where u is the sequence with o.g.f.

U(t) =

∞∑
h=0

uh+1t
h =

∞∏
k=1

(1 + tk)ak .

Remembering that the Cauchy product between two sequences is equivalent to the product
between their o.g.f., we clearly have

φ(a+ b) = φ(a) ∗ φ(b),

given any a,b ∈ HR. We can also observe that the function 1+t is the o.g.f. of the sequence
b(1) = (1, 1, 0, 0, ...) and 1 + tk is the o.g.f. of the sequence b(k) = (1, 0, ..., 0, 1, 0, 0, ...), i.e.,
the sequence with

b
(k)
1 = b

(k)
k+1 = 1

and 0 otherwise. These sequences are mutually independent, in the sense that < b(i) >
∩ < b(j) >= {1}, with i ̸= j, where < a > denotes the subgroup generated by a ∈ (H̃R, ∗).
Thus, we may consider the set {b(1), b(2), ...} as a basis of (H̃R, ∗) and in this way it is clear
that φ is an isomorphism.

Proposition 1. Given a ∈ HR, if u = φ(a), then

un+1 =
∑

i1+2i2+...+nin=n

(
a1
i1

)(
a2
i2

)
· · ·
(
an
in

)
for any n ≥ 1

Proof. From

∞∏
k=1

(1 + tk)ak =

∞∑
i1=0

∞∑
i2=0

· · ·
∞∑

in=0

· · ·
(
a1
i1

)(
a2
i2

)
· · ·
(
an
in

)
· · · t

∑∞
j=1 jij

the thesis easily follows.

Corollary 1. Given a ∈ HR, let u be the sequence having o.g.f.
∏∞

k=1(1− tk)ak . Then for
all n ≥ 1

un+1 =
∑

i1+2i2+...+nin=n

(−1)i1+i2+...+in

(
a1
i1

)(
a2
i2

)
· · ·
(
an
in

)
For the next proposition, we need to recall the definition of the partial ordinary Bell

polynomials.

Definition 1. Let us consider the sequence of variables X = (x1, x2, . . .). The complete
ordinary Bell polynomials are defined by

B0(X) = 1, ∀n ≥ 1 Bn(X) = Bn(x1, x2, . . . , xn) =
n∑

k=1

B0
n,k(X),
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where B0
n,k(X) are the partial ordinary Bell polynomials, with

B0
0,0(X) = 1, ∀n ≥ 1 B0

n,0(X) = 0, ∀k ≥ 1 B0
0,k(X) = 0,

B0
n,k(X) = B0

n,k(x1, x2, . . . , xn) = k!
∑

i1+2i2+···+nin=n
i1+i2+···+in=k

n∏
j=1

x
ij
j

ij !
,

or, equivalently,

B0
n,k(X) = B0

n,k(x1, x2, . . . , xn−k+1) = k!
∑

i1+2i2+···+(n−k+1)in−k+1=n−k+1
i1+i2+···+in−k+1=k

n−k+1∏
j=1

x
ij
j

ij !
,

satisfying the equality ∑
n≥1

xnz
n

k

=
∑
n≥k

B0
n,k(X)zn.

Proposition 2. Let a ∈ HR and u ∈ H̃R be two sequences such that u = φ(a). Then
a1 = u2 and

an =
∑

1 ≤ k ≤ n− 1
k|n

k

n
(−1)

n
k ak+

n∑
h=1

(−1)h−1

h
B0

n,h (u2, u3, . . . , un−h+2)

for any n ≥ 2.

Proof. Since u1 = 1, we have

log

(
1+

∞∑
n=1

un+1t
n

)
=

∞∑
h=1

(−1)h−1

h

( ∞∑
n=1

un+1t
n

)h

=

∞∑
n=1

(
n∑

h=1

(−1)h−1

h
B0

n,h (u2, u3, . . . , un−h+2)

)
tn.

On the other hand, we have

∞∑
k=1

ak

(
log
(
1 + tk

))
=

∞∑
k=1

ak

∞∑
s=1

(−1)s−1

s
tks =

∞∑
s=1

(−1)s−1

s

∞∑
k=1

akt
sk.

Let us observe that the exponents of t can be increasingly ordered starting from 1 by posing
sk = n and considering as coefficient of tn the following sum:∑

1 ≤ k ≤ n
k|n

k

n
(−1)

n
k
−1 ak.

Hence, we get ∑
1 ≤ k ≤ n

k|n

k

n
(−1)

n
k
−1 ak =

n∑
h=1

(−1)h−1

h
B0

n,h (u2, u3, . . . , un−h+2) (1)

from which the thesis follows.

Corollary 2. Let a ∈ HR and u ∈ H̃R be two sequences such that the o.g.f. of u is∏∞
k=1(1− tk)ak . Then a1 = −u2 and for all n ≥ 2

an = −
∑

1 ≤ k ≤ n− 1
k|n

k

n
ak−

n∑
h=1

(−1)h−1

h
B0

n,h (u2, u3, . . . , un−h+2) . (2)
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If we exploit the relation between partial ordinary Bell polynomials and ordinary Bell
polynomials, we can obtain

n∑
h=1

(−1)h−1

h
B0

n,h (u2, u3 . . . , un−h+2) =
1

n!

n∑
h=1

(−1)h−1 (h− 1)!Bn,h (1!u2, 2!u3, . . . , (n− h+ 1)!un−h+2) .

We also recall the inversion formula of the partial Bell polynomials, i.e.,

xn =

n∑
h=1

(−1)h−1 (h− 1)!Bn,h (y1, y2, . . . , yn−h+1) ⇐⇒ yn =

n∑
h=1

Bn,h (x1, x2, . . . , xn−h+1) .

Applying the last two equations to (1) and (2), we get for all n ≥ 1

un+1 =
1

n!

n∑
h=1

Bn,h (â1, â2, . . . , ân−h+1) ⇐⇒ ân = n!
∑

1 ≤ k ≤ n
k|n

k

n
(−1)

n
k
−1 ak

and

un+1 =
1

n!

n∑
h=1

Bn,h (ā1, ā2, . . . , ān−h+1) ⇐⇒ ān = −n!
∑

1 ≤ k ≤ n
k|n

k

n
ak. (3)

In the next section, we define a transform that together with φ allows us to introduce an
interesting family of polynomials connected to the Ramanujan tau function.

2 A recursive transform

Definition 2. Given a sequence a ∈ HR, we define a map α : HR → HR such that
α(a) = b is recursively defined by the following rules:

1. b1 = a1, b2 = a2;

2. for any i ≥ 2, let j be the first index such that bj = ai, then bj+k = bk, for k =
1, 2, ..., j − 1, and b2j = ai+1.

Example 1. Let us consider the sequence a = (a1, a2, a3, ...), by the first rule in Definition
2 we know that the first two elements of b = α(a) are a1 and a2, i.e.,

b = (a1, a2, ...).

Applying the second rule for i = 2 we get that b3 = a1 and b4 = a3:

b = (a1, a2, a1, a3, ...).

Now, considering i = 3 (always in the second rule of Definition 2) we get that after the
first occurrence of a3 in b we have the elements a1, a2, a1 that precede a3 itself and after
that we will have a4:

b = (a1, a2, a1, a3, a1, a2, a1, a4...),

and so on.

By Definition 2, we can write the elements of b = α(a) as follows:

b2t−1(2k−1) = at,

for t = 1, 2, ... and any k ≥ 1. From now on, we will focus on R = Z. We can see
that the transform α and the isomorphism φ appear to work in an interesting way on
integer sequences, highlighting interesting combinatorial aspects. In the next propositions,
we prove some new relations among integer sequences by means of α and φ. Moreover,
these connections will allow us to introduce in an original way a very interesting family of
polynomials connected to the D’Arcais numbers and the Ramanujan tau function.
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Proposition 3. Let r = (rn)
∞
n=1 = (2, 3, 2, 4, 2, 3, 2, 5, ...) be the sequence that counts the

number of divisors of 2n of the form 2k (sequence A085058 in OEIS [15]; note that in OEIS
sequences start with index 0 whereas our sequences start with index 1). Given the sequence
a = (2, 3, 4, 5, 6, ...), we have

α(a) = r.

Proof. Let q = (qn)
∞
n=1 = (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, ...) be the sequence of 2–adic valu-

ations of 2n (sequence A001511 in OEIS). It is well known that
∑∞

h=1 qht
h =

∑∞
k=0

t2
k

1− t2k

and r = q + (1, 1, 1, ...). Thus,

R(t) =
∞∑
h=1

rht
h =

∞∑
h=1

(qh + 1)th =
∞∑
k=0

t2
k

1− t2k
+

t

1− t
.

Let Gn(t) =
∑2n

h=1 α(a)[h]t
h where, for h ≥ 1, α(a)[h] is the h–th element of α(a). We

have

• G0(t) = 2t

• G1(t) = 2t+ 3t2 = (1 + t)G0(t) + t2

• G2(t) = 2t+ 3t2 + 2t3 + 4t4 = (1 + t2)G1(t) + t4.

In general, remembering that a = (2, 3, 4, 5, 6, ...) and by definition of α, it is easy to check
that

Gn(t) = (1 + t2
n−1

)Gn−1(t) + t2
n
.

From this, we get

Gn+1(t)−Gn(t
2) = (1 + t2

n
)(Gn(t)−Gn−1(t

2))

from which

Gn+1(t)−Gn(t
2) = (1 + t2

n
)(1 + t2

n−1
)...(1 + t2)(G1(t)−G0(t

2)) =
2t+ t2

1− t2
(1− t2

n+1
).

Now, if we consider n → +∞ (for |t| < 1), we have

G(t)−G(t2) =
2t+ t2

1− t2
=

t

1− t
+

1

1− t
− 1

1− t2
.

Thus, given the following differences

G(t)−G(t2) =
t

1− t
+

1

1− t
−

1

1− t2

G(t2)−G(t4) =
t2

1− t2
+

1

1− t2
−

1

1− t4

...

G(t2
n
)−G(t2

n+1
) =

t2
n

1− t2n
+

1

1− t2n
−

1

1− t2n+1

and finally we obtain

G(t)−G(t2
n+1

) =
∞∑
k=0

t2
k

1− t2k
+

1

1− t
−

1

1− t2n+1 .

For n → ∞ (for |t| < 1), we have G(t) = R(t) (note that G(0) = 0).

Corollary 3. With the notation of the previous proposition, if n = (1, 2, 3, . . . ) is the
sequence of positive integers, we have α(n) = q.
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Proposition 4. With the notation of the previous proposition, we have φ(q) = p, where
p = (pn)

∞
n=1 = (1, 1, 2, 3, 5, 7, ...) counts the number of partitions of n−1 (sequence A000041

in OEIS).

Proof. The elements of the sequence q satisfy the following conditions:{
q2n−1 = 1

q2n = qn + 1

for all n ≥ 1. The o.g.f. of φ(q) is

f(t) =
∞∏
k=1

(1 + tk)qk =
∞∏
s=1

(1 + t2s)q2s
∞∏
s=1

(1 + t2s−1)q2s−1 =
∞∏
k=1

(1 + tk)f(t2),

from which we get

f(t2
i−1

)

f(t2i)
=

∞∏
k=1

(1 + t2
i−1k).

Noting that

f(t)

f(t2n)
=

n∏
i=1

f(t2
i−1

)

f(t2i)
=

∞∏
k=1

(
n∏

i=1

(1 + t2
i−1k)

)
,

we obtain
f(t)

f(t2n)
=

∞∏
k=1

1− t2
nk

1− tk
.

Now, for n → ∞ (with |t| < 1), we have f(t) =
∏∞

k=1

1

1− tk
that is the o.g.f. of p.

Proposition 5. With the notation of the previous propositions, we have that φ(r) = p̃,
where p̃ = (p̃n)

∞
n=1 = (1, 2, 4, 8, 14, ...) is the sequence that counts the number of partitions

of n where there are two kinds of odd parts (see sequence A015128 in OEIS).

Proof. Since p = φ(q) and r = q + (1, 1, 1, ...), we have

∞∏
k=1

1

1− tk
=

∞∏
k=1

(1 + tk)qk .

Thus, the o.g.f. of φ(r) is

∞∏
k=1

(1 + tk)rk =

∞∏
k=1

(1 + tk)qk+1 =

∞∏
k=1

(1 + tk)

∞∏
k=1

(1 + tk)qk =

∞∏
k=1

1 + tk

1− tk
,

that is the o.g.f. of p̃ (see, e.g., sequence A015281 in OEIS [15]).

3 The D’Arcais numbers and the Ramanujan tau function

As a consequence of Corollary 3 and Proposition 4, we have that p = φ(q) = φ(α(n)) has

o.g.f.
∏∞

k=1

1

1− tk
. Thus introducing a variable x, the o.g.f. of the polynomial sequence

φ(α(xn)) = φ(α(x, 2x, 3x, ...)) = (ϕn(x))
∞
n=1 clearly is

d(t) =

∞∏
k=1

1

(1− tk)x
.
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Example 2. For n = 1, 2, 3, 4, 5, the polynomials above introduced are

ϕ1(x) = 1

ϕ2(x) = x

ϕ3(x) =
1

2
x(x+ 3)

ϕ4(x) =
1

6
x(x2 + 9x+ 8)

ϕ5(x) =
1

24
x(x3 + 18x2 + 59x+ 42).

The coefficients of the polynomials ϕn(x) are given by the D’Arcais numbers ([7], p.
159). These polynomials seem to be very interesting, since many important sequences
appear as special cases. For instance, we have seen that ϕn(1)

∞
n=1 is the fundamental

sequence that counts the number of partitions of an integer n (sequence A000041 in OEIS).
Moreover, ϕn(−1)∞n=1 is the sequence that counts the number of different partitions of
an integer n into parts of -1 different kinds (sequence A010815 in OEIS). A very famous
sequence belonging to the family of polynomials ϕn(x) is the sequence of the Ramanujan
numbers (A000594 in OEIS), i.e., the Ramanujan tau function introduced in [13], for some
recent studies see, e.g., [6], [11], [3]. The Ramanujan tau function corresponds to the
sequence (ϕn(−24))∞n=1. Thus, we have seen that it can be introduced in a combinatorial
way as φ(α(−24n)). Hence, the properties of the polynomials ϕn(x) can be applied, in
particular, to the Ramanujan tau function.

Remark 2. Ramanujan conjectured the multiplicative property of the tau function that was
proved by Mordell [12] by using modular functions. However, an elementary proof of this
property still misses. Here, we would like to emphasize that an elementary proof of this
property could be reached by proving that the polynomial ϕmn(x)− ϕm(x)ϕn(x) has -24 as
root when m,n are coprime.

In the following proposition, we summarize some interesting relations involving the Bell
polynomials, the sum of divisors function and the polynomials ϕn(x).

Proposition 6. Let us consider the sum of divisors function σ(m) =
∑

d|m d. Then for
all n ≥ 1

• ϕn+1(x) =
1

n!

n∑
h=1

Bn,h (0!σ (1) , 1!σ (2) , . . . , (n− h)!σ (n− h+ 1))xh

• ϕn+1(x) =
n∑

h=1

1
h!B

0
n,h

(
σ (1) , σ(2)2 , . . . , σ(n−h+1)

n−h+1

)
xh

•
∑∞

h=0 ϕh+1(x)t
h = ex

∑∞
k=1

σ(k)
k

tk

Proof. Let us consider the sequence a = (−x)∞n=1. In this case the sequence (ān)
∞
n=1 defined

in equation (3) is

ān = xn!
∑

1 ≤ k ≤ n
k|n

k

n
= x (n− 1)!σ (n) .

Thus, from equation (3) we have

ϕn+1(x) =
1

n!

n∑
h=1

Bn,h (0!σ (1) , 1!σ (2) , . . . , (n− h)!σ (n− h+ 1))xh

7



for any n ≥ 1, where we have also used the homogeneity property of the Bell polynomials.
In terms of partial Bell polynomials we can write

ϕn+1(x) =
n∑

h=1

1

h!
B0

n,h

(
σ (1) ,

σ (2)

2
, . . . ,

σ (n− h+ 1)

n− h+ 1

)
xh. (4)

Since

exp

∑
n≥1

xmzm

 =
∑
n≥0

(
n∑

k=0

1

k!
B0

n,k (x1, x2, . . . , xn−k+1)

)
zn,

by equation (4) we can also observe that

∞∑
h=0

ϕh+1 (x) t
h = e

x
∞∑

k=1

σ(k)
k

tk

.

4 A connection between Cauchy and Dirichlet products

The Dirichlet convolution ⊙ is a well known product between arithmetic functions that can
be also defined between two sequences a and b as follows:

a⊙ b = c, cn :=
∑
d|n

adbn/d, ∀n ≥ 1

In the following, we deal with the set of sequences starting with 1, i.e., the set H̃R and we
define a transform F : (H̃R, ∗) → (H̃R,⊙). Given the sequence of prime numbers (p1, p2, ...),
we define νi(n) the pi–adic evaluation of the positive integer n, i.e., νi(n) = ei, where ei
is the greatest nonnegative integer such that peii divides n. We define the transform F as
follows:

F (a) = b, bn :=
∞∏
i=1

aνi(n)+1, ∀n ≥ 1. (5)

In the following, for the sake of simplicity, we also use the following notation:

F (an) = bn,

where bn is given by (5). By definition, given gcd(m,n) = 1, we have

F (amn) = F (am)F (an).

Hence, if n =
∏∞

i=1 p
ei
i (where, some ei can possibly be equal to zero), then

F (an) =

∞∏
i=1

F (apeii
).

Now, we would like to prove that given a, b ∈ H̃R, we have F (a ∗ b) = F (a)⊙ F (b). It is
sufficient to prove that for any i ≥ 1 and m ≥ 0, we have

F (rpmi ) = spmi ,

where r = a ∗ b and s = F (a)⊙ F (b). Considering that F (apti) = at+1, we have

spmi =
∑
d|pmi

F (ad)F (bpmi |d) =
m∑
t=0

F (apti)F (bpm−t
i

) =
m∑
t=0

at+1bm−t+1 = rm+1 = F (rpmi ).

If F (an) = 0 for any n > 0, then F (ap) = F (a2p) = ... = F (amp ) = ... = 0, which implies
a2 = ... = am = ... = 0. Thus, ker(F ) only contains the identity and F is a monomorphism.
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