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TOPOLOGICALLY EMBEDDED HELICOIDAL

PSEUDOSPHERICAL CYLINDERS

EMILIO MUSSO AND LORENZO NICOLODI

Abstract. The class of traveling wave solutions of the sine-Gordon equation
is known to be in 1-1 correspondence with the class of (necessarily singular)
pseudospherical surfaces in Euclidean space with screw-motion symmetry: the
pseudospherical helicoids. We explicitly describe all pseudospherical helicoids
in terms of elliptic functions. This solves a problem posed by Popov [34]. As
an application, countably many continuous families of topologically embedded
pseudospherical helicoids are constructed. A (singular) pseudospherical heli-
coid is proved to be either a dense subset of a region bounded by two coaxial
cylinders, a topologically immersed cylinder with helical self-intersections, or
a topologically embedded cylinder with helical singularities, called for short a
pseudospherical twisted column. Pseudospherical twisted columns are charac-
terized by four phenomenological invariants: the helicity ⌘ 2 Z2, the parity
✏ 2 Z2, the wave number n 2 N, and the aspect ratio d > 0, up to translations
along the screw axis. A systematic procedure for explicitly determining all
pseudospherical twisted columns from the invariants is provided.

1. Introduction

The study of pseudospherical surfaces, i.e., surfaces in R3 with constant Gauss
curvature K = �1, is a classical subject in di↵erential geometry dating back to
the second half of the 19th century [1, 10]. The renewed interest in the subject is
principally due to the fact that pseudospherical surfaces constitute an integrable
system governed by the sine-Gordon equation

(1.1) �ss � �tt = sin�

[5, 7, 28, 32, 36, 41, 42, 43]. Equation (1.1) amounts to the integrability conditions
(Gauss–Codazzi equations) for the linear system of Gauss–Weingarten obeyed by
the tangent frame to a pseudospherical surface with respect to curvature line coor-
dinates. It is well-known that there is a one-to-one correspondence between local
solutions � of the sine-Gordon equation with 0 < � < ⇡ and local pseudospherical
surfaces up to rigid motion. Although the sine-Gordon equation has many global
solutions defined on the whole R2, the corresponding surfaces always have singular-
ities. In fact, according to the proof of Hilbert’s theorem asserting that there is no
complete immersed pseudospherical surface in R3, any smooth solution � : R2 ! R
of the sine-Gordon equation attains values that are multiples of ⇡ [15, 33]. This
implies that the map f� : R2 ! R3 corresponding to � is smooth but fails to be an
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immersion at points p where sin�(p) = 0, i.e., when � = k⇡, for some integer k.
At these points the map f� has rank 1. It then follows that there is a one-to-one
correspondence between smooth solutions � : R2 ! R of the sine-Gordon equation
and smooth maps f� : R2 ! R3 such that (1) rankf� � 1 everywhere; and (2) if
rankf� = 2 on an open set U of R2, then f�|U is a pseudospherical immersion (see

[31, 34, 36, 43] and the references therein).

In his 2014 monograph [34, Chapter 3], Andrey Popov posed the problem of the
explicit description and computation of the (necessarily singular) pseudospherical
surfaces corresponding to the stationary traveling wave solutions (single-phase so-
lutions) of the sine-Gordon equation [1, 18, 29, 34, 36]. Such surfaces are known to
be the pseudospherical surfaces with screw-motion symmetry: the pseudospherical

helicoids [1, 10]. Examples of pseudospherical helicoids include the well-known Dini
helicoids which contain the pseudosphere and correspond to the 1-soliton solutions
of the sine-Gordon equation. In this paper, we explicitly determine all pseudo-
spherical helicoids and investigate their global geometry. This leads, in particular,
to the discovery of countably many continuous families of topologically embed-
ded examples of singular pseudospherical helicoids, namely topologically embedded
pseudospherical cylinders. Our study is related to recent work on pseudospheri-
cal surfaces with singularities [4, 34] and modern applications of the geometry of
pseudospherical helicoids to the study of modulated wave solutions of certain math-
ematical models in nonlinear elasticity [37, 38, 39]. At this stage, it is interesting
to mention that, besides the single-phase solutions considered here, more general
solutions to the sine-Gordon equation have been applied to study the geometry
of pseudospherical surfaces. These multi-phase solutions, known as “finite gap”
of “algebro-geometric” solutions, are given in terms of Riemann theta functions
and are obtained by applying to the sine-Gordon equation the recently developed
algebro-geometric approach to integrable systems. For more detail on this theory,
the reader is referred to [2, 3, 14, 19] and the literature therein.

While the local geometry of pseudospherical helicoids was well understood al-
ready by the end of the 19th century [1], little is known about their global ge-
ometry (see [34] for an updated overview). It is our purpose to address natural
global questions such as (1) find explicit expression for the (necessarily singular)
map f� corresponding to a stationary traveling wave solution � of the sine-Gordon
equation; and (2) construct examples of singular pseudospherical helicoids which
are topologically embedded cylinders, other than the pseudosphere and the rotation
pseudospherical surfaces of cylindrical type. Starting from a single-phase solution
� to the sine-Gordon equation, we will explicitly compute, in terms of elliptic func-
tions, the map f� that provides a global parametrization of the pseudospherical
helicoid corresponding to �. With this in hand, we will prove the existence and
construct continuous families of pseudospherical helicoids which are topologically
embedded cylinders and have helical singularities. Although rather simple from
a conceptual point of view, the above geometric problems present a certain com-
putational di�culty due to the presence of the singularities and the fact that the
single-phase solutions of the sine-Gordon equation are given in general by elliptic
functions. This requires an additional detailed study of the properties of Jaco-
bian functions which is an interesting topic on its own [34, §3.3.3]. The theoretical
approach to the problem is based on the method of moving frames [11, 12, 16].
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As for constant mean curvature (CMC) surfaces, we mention that helicoidal
CMC surfaces were studied by do Carmo and Dajczer [8] and further by Roussos [40]
and Perdomo [30], among others. Such surfaces, and in particular helicoidal CMC
cylinders, were also studied by Burstall and Kilian [6] using methods from the theory
of equivariant harmonic maps and integrable systems. Notice that non-rotational
helicoidal CMC surfaces are always nonsingular and have self-intersections along
helices, which implies they can never be embedded.

1.1. Description of results. We will now briefly describe our main results. A
helicoid, or a helicoidal surface, is a surface S in R3, possibly with singularities,
swept out by an appropriately chosen planar curve � animated by a helicoidal
motion around an oriented line. The orbits of this motion (helices) through the
initial profile curve foliate the helicoid. A helicoid S is of translational kind if its
profile curve � is simple, has a symmetry group consisting of a nontrivial group of
translations along the axis of the helicoidal motion, and has only ordinary cusps
as possible singular points (cf. Figures 3 and 5). Associated with a translational
helicoid there are four main phenomenological invariants: the helicity ⌘ 2 Z2; the
parity ✏ 2 Z2; the wave number n 2 R+; and the aspect ratio d 2 R+ (cf. Section
2 for the precise definitions).1 Depending on whether the wave number n is an
irrational, a rational, or a natural number, a translational helicoid S is a dense
subset of a region of R3 bounded by two coaxial cylinders, a topologically immersed
cylinder with helical self-intersections, or a topologically embedded cylinder, that
is, a closed subset of R3 homeomorphic to S

1 ⇥ R. The helicoids of the last class
are called twisted columns. The first main result of the paper will be the following.

Theorem 1. All pseudospherical helicoids are of translational kind.

Our second main result characterizes pseudospherical twisted columns in terms of
the four phenomenological invariants and provides an e↵ective method for explicitly
constructing all of them. We will prove the following.

Theorem 2. For given (⌘, ✏, n, d) 2 Z2 ⇥ Z2 ⇥ N ⇥ R+
, there exists a unique

congruence class of pseudospherical twisted columns with helicity ⌘, parity ✏, wave
number n, and aspect ratio d.

The proof of Theorem 2 is constructive and can be used to actually compute
explicit parametrizations of pseudospherical twisted columns in terms of the phe-
nomenological invariants with the help of any symbolic manipulation program sup-
porting elliptic functions and integrals. The explicit construction also requires some
numerics for the determination of the zeros of an analytic function (cf. Section 4).2

The paper is organized as follows. Section 2 recalls the one-to-one correspon-
dence between local solutions of the sine-Gordon equation and local pseudospherical
surfaces in R3 and the implicit characterization of pseudospherical helicoids in terms
of stationary traveling wave solutions of the sine-Gordon equation [1, 31, 34, 37].
As a consequence, it follows that the congruence classes of pseudospherical helicoids
only depend on two real parameters (µ, r) and the helicity ⌘. For µ = 1, we have

1Here Z2 = {±1} and R+ stands for the set of positive reals.
2The proof of the theorem can also be used to find all linear Weingarten twisted columns of

hyperbolic type, that is, the twisted columns such that ↵K+�H = 1, where � 6= 0 and ↵ are two
constants satisfying ↵+ �2/4 < 0 and K and H are the Gauss and mean curvature, respectively.
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the pseudospherical helicoids of Dini, while for r = 0 the helicoid reduces to a sur-
face of revolution. The geometry of such surfaces being well known [1, 10, 34], we
assume that µ 6= 1 and r 6= 0. As a first result, we prove that two pseudospherical
helicoids with parameters (µ, r) and (µ,�r), as well as with parameters (µ, r) and
(µ/(µ � 1), r), are mirror images of each other (cf. Proposition 5). Thus, with no
loss of generality, we may and do restrict our analysis to pseudospherical helicoids
with parameters µ > 0, µ 6= 1, and r > 0.

Section 3 computes explicit global parametrizations for pseudospherical heli-
coids with parameters µ > 0, µ 6= 1, and r > 0. Following [34, §3.3.3], this is
achieved by dividing pseudospherical helicoids in two classes: that of magnetic-type

pseudospherical helicoids, for which µ > 1; and that of electric-type pseudospher-
ical helicoids, for which µ 2 (0, 1). For either class we compute explicit global
parametrizations in terms of Jacobian elliptic functions and integrals (cf. Theo-
rems 6 and 7). Operatively, such parametrizations are obtained by applying the
method of moving frames for constructing appropriate lifts to the group of Eu-
clidean motions. For the general theory of the method of moving frames and some
applications we refer to [11, 12, 16].

Section 4 proves Theorems 1 and 2. First, we show that any pseudospherical
helicoid is of translational kind. This is achieved by Lemmas 8 and 9, where we
determine plane profiles for the two classes of pseudospherical helicoids and compute
their phenomenological invariants in terms of the parameters (µ, r). An important
consequence of Lemmas 8 and 9 is that any congruence class of pseudospherical
twisted columns has a model pseudospherical twisted column. This is a typical
feature of the application of the method of moving frames to geometric problems
governed by integrable systems (for similar situations in other geometric contexts,
see e.g. [9, 18–24]). Next, we prove the existence of pseudospherical twisted columns
with prescribed invariants by showing that certain suitable modular curves intersect
each other transversally at a single point (cf. Lemmas 10 and 11). Finally, we
show that two pseudospherical twisted columns with di↵erent invariants cannot be
congruent (cf. Lemma 12).

As a basic reference for elliptic functions and integrals we refer to [17]. We warn
the reader that we use the Jacobi parameter m = k

2 instead of the Jacobi elliptic
modulus k. Symbolic and numerical computations, as well as graphics, are made
with the help of the software package Mathematica 11.

Acknowledgments. The authors would like to thank the anonymous referees for
their useful comments and suggestions.

2. Pseudospherical helicoids: definitions and preliminary results

In this section, after recalling the basic definitions, we prove some preliminary
results about pseudospherical helicoids.

2.1. Helicoids and twisted columns. Let ` be an oriented line in R3 oriented
by the unit vector ~`. For p > 0 and ⌘ 2 Z2 = {±1}, let E`,p,⌘

v : R3 ! R3 be the
1-parameter subgroup of rigid motions of R3 given by

E`,p,⌘
v (x) = R`

2⇡v(x) + ⌘vp~`, v 2 R,
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where R`
2⇡v denotes the oriented rotation of an angle 2⇡v around `. The elements

of E`,p,⌘
v are helicoidal transformations around the screw axis ` with pitch p and

helicity ⌘.

Definition 1. Let e� ⇢ R3 be a connected curve, possibly with isolated singularities.
The subset S ⇢ R3 defined by

S =
[

v2R
E`,p,⌘
v (e�)

is said to be a helicoid (or a helicoidal surface) with screw axis `, pitch p, helicity
⌘, and profile

e�. The profile curve e� generating S is not unique. The helicoid S is
right-handed or left-handed according as the helicity ⌘ = 1, or ⌘ = �1.

Definition 2. Let S ⇢ R3 be a helicoid and let H` be one of the upper half-planes
bounded by the screw axis `. The helicoid S is said to be of translational kind if
there exists a planar profile � ⇢ H` for S satisfying the following conditions:

(1) the full symmetry group of � is a discrete nontrivial subgroup T ⇢ E(3) of
pure translations along the screw axis ` (this excludes the possibility of a
rectilinear profile);

(2) the curve � is a simple curve of H` with only ordinary cusps as possible
singular points;

(3) � \ ` = ;.
If Tw~̀ : R3 ! R3, x 7! x + w~`, w > 0, is the generator of the subgroup T , we

call w the wavelength and n = p/w the wave number of S.

Remark 1. If the wave number n is an irrational number, then S is dense in a
region bounded by two coaxial cylinders. If n is a rational number but not an
integer, then S is the image of a topological immersion of a cylinder with self-
intersections along a finite number of helices. If n is an integer, then S is a closed
subset of R3 homeomorphic to S

1 ⇥ R.

Definition 3. A translational helicoid with n 2 N is said to be a twisted column.

Definition 4. For a helicoid S of translational type, let �⇤ denote the fundamental

domain of � with respect to the action of the subgroup T . Let h be the number of
singular points in the fundamental domain �⇤. We call ✏ = (�1)h 2 Z2 the parity

of S. Let r� and r+ be the inner and outer radii, defined respectively by

r� = min
x2�

d(x, `), r+ = max
x2�

d(x, `).

The quotients d� = w/r� and d+ = w/r+ are called, respectively, the inner and
outer aspect ratio.

The set S⇤ of regular points of a helicoid S is open and dense. We say that S is
pseudospherical if S⇤ has constant Gaussian curvature K = �1.

2.2. Pseudospherical helicoids and the sine-Gordon equation. We start by
recalling some well-known facts about pseudospherical surfaces of Gauss curvature
K = �1 and in particular about pseudospherical helicoids (see e.g. Bianchi [1,
Chapter XV, §§245, 250], Popov [34, Chapters 2 and 3]).

Let f : ⌦ ⇢ R2 ! R3 is an immersion with constant Gaussian curvatureK = �1.
Then, for every p 2 ⌦, there exists an open neighborhood U ⇢ ⌦ of p and local
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(curvature line) coordinates s, t on U , so that the first and second fundamental
forms of f read

g = cos2
⇣
�

2

⌘
ds

2 + sin2
⇣
�

2

⌘
dt

2
, h = cos

⇣
�

2

⌘
sin
⇣
�

2

⌘
(ds2 � dt

2),

where � : U ! R (the angular function) is a solution of the sine-Gordon partial
di↵erential equation,

(2.1) �ss � �tt = sin�,

satisfying �(U) ⇢ (0,⇡).
Conversely, if ⌦ ⇢ R2 is simply connected and � = �(s, t) : ⌦ ! R is a non-

constant solution of the sine-Gordon equation (2.1) such that �(⌦) ⇢ (0,⇡), then
there exists an immersion f : ⌦ ! R3 of constant Gaussian curvature K = �1 with
fundamental forms

g� = cos2
⇣
�

2

⌘
ds

2 + sin2
⇣
�

2

⌘
dt

2
, h� = cos

⇣
�

2

⌘
sin
⇣
�

2

⌘
(ds2 � dt

2).

The immersion f is implicitly defined by gf and hf and is unique up to rigid
motions of R3.

This latter result have been generalized by Poznyak [35] (see also [34, Theorem
2.7.1] and [31, p. 55]) to the case where the solution � is not subject to the condition
that its image is contained in (0,⇡) and has low di↵erentiability.

Theorem 3. Let � = �(s, t) : R2 ! R be a nonconstant C

4
-solution of the sine-

Gordon equation (2.1). Then there exists a C

2
-map f� : R2 ! R3

whose restriction

to the open set {p 2 R2 : �(p) 6= k⇡, k 2 Z} is a pseudospherical immersion with

first and second fundamental forms given by

g� = cos2
⇣
�

2

⌘
ds

2 + sin2
⇣
�

2

⌘
dt

2
and h� = cos

⇣
�

2

⌘
sin
⇣
�

2

⌘
(ds2 � dt

2).

Remark 2. The map f� : R2 ! R3 corresponding to a smooth solution � : R2 ! R
of the sine-Gordon equation (2.1) is smooth but fails to be an immersion at points
p where �(p) = k⇡, for some integer k. At these points the map f� has rank
1. It follows that there is a one-to-one correspondence between smooth solutions
� : R2 ! R of the sine-Gordon equation and smooth maps f� : R2 ! R3 such that
(1) rankf� � 1 everywhere; and (2) if rankf� = 2 on an open set U of R2, then
f�|U is a pseudospherical immersion (see e.g. [31, 34, 36, 43]).

In particular, we have the following (see [34]).

Corollary 4. The map f� parametrizes a pseudospherical helicoid or a pseudo-

spherical surface of revolution if and only if the angular function � is a stationary
traveling wave solution of (2.1), that is, a solution of the form

� = �(s, t) = �(⇠), ⇠ = as+ bt,

where � is a function of one variable and a, b are real constants with a 6= 0, a2 6= b

2
.

We call � the potential of the map f�.

Remark 3. The map f� exists globally. However, its explicit expression seems not
to have been computed in the literature (see [34]).
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If we let a = cosh r/L and b = sinh r/L, the function � satisfies the simple
pendulum equation �

00 � L

2 sin� = 0. Consequently, a stationary traveling wave
solution of the sine-Gordon equation depend on two real parameters µ and r. For
given µ and r, the corresponding traveling wave solution �µ,r of the sine-Gordon
equation can be written, up to an a�ne change of variables, as

�µ,r(s, t) = �2 am
�cosh rp|µ| s+

sinh rp|µ| t, µ
�
, µ < 0

�1,r(s, t) = �4 arctan
⇣
e

rs+
p
1+r2t

⌘
+ ⇡,

�µ,r(s, t) = �2 am
⇣ sinh rp|µ| s+

cosh rp|µ| t, µ
⌘
, µ > 0, µ 6= 1,

where am(�, µ) is the Jacobian amplitude with parameter µ.

Remark 4 (Jacobian elliptic functions and integrals [17]). To fix notation, we recall
some basic definitions about the Jacobian elliptic functions and integrals. If

u = F (', µ) =

Z '

0

d✓

(1� µ sin2 ✓)
1
2

,

then am(u, µ) = F

�1(u, µ) = ' is the Jacobian amplitude with parameter µ. The
Jacobian elliptic functions sn(�, µ), cn(�, µ) and dn(�, µ) with parameter µ are
defined by

sn(u, µ) = sin', cn(u, µ) = cos', dn(u, µ) = (1� µ sin2 ')
1
2
.

The integral F (', µ) given by the formula above is called the incomplete elliptic

integral of the first kind. The complete elliptic integral of the first kind is defined
by K(µ) = F (⇡2 , µ). The integral defined by

E(', µ) =

Z '

0

(1� µ sin2 ✓)
1
2
d✓

is called the incomplete elliptic integral of the second kind. The complete elliptic
integral of the second kind is defined by E(µ) = E(⇡2 , µ). The integral defined by

⇧(n,', µ) =

Z '

0

d✓

(1� n sin2 ✓)(1� µ sin2 ✓)
1
2

is called the incomplete elliptic integral of the third kind. The complete elliptic
integral of the third kind is defined by ⇧(n, µ) = ⇧(n, ⇡

2 , µ).

In the following, we will denote by Sµ,r the pseudospherical helicoid associated
with the potential �µ,r and parametrized by the map fµ,r. We will briefly refer to
Sµ,r as the pseudospherical helicoid with parameters (µ, r).

Remark 5. If r = 0, the pseudospherical helicoid reduces to a pseudospherical
surface of revolution, while if µ = 1 we obtain the well-known pseudospherical
helicoids of Dini [1, 13, 18]. If µ = 1 and r = 0, we obtain the Beltrami pseudosphere
[1, 10]. In the following, we will assume that µ 6= 1 and r 6= 0.

Let Sµ,r be a pseudospherical helicoid with parameters (µ, r) and let �µ,r be the
linear change of variables (s, t) = �µ,r(u, v), where

�µ,r(u, v) =
⇣
�
p
|µ| sinh(r)u+

p
|µ| cosh(r)v,

p
|µ| cosh(r)u�

p
|µ| sinh(r)v

⌘
.
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It follows that the fundamental forms of the reparametrization Lµ,r = fµ,r � �µ,r

are

gµ,r = |µ|�sn2(u, µ) + sinh2(r)
�
du

2 � |µ| sinh(2r)
2

dudv

+ |µ|�cn2(u, µ) + sinh2(r)
�
dv

2
,

hµ,r = µ sn(u, µ)cn(u, µ)(du2 � dv

2).

(2.2)

We can now prove the following.

Proposition 5. (1) A pseudospherical helicoid Sµ,r with parameters (µ, r), µ < 0,
and a pseudospherical helicoid Sµ0,r with parameters (µ0

, r), µ

0 = µ/(µ � 1) 2
(0, 1), are mirror images of each other. (2) A pseudospherical helicoid Sµ,r with

parameters (µ, r) and a pseudospherical helicoid Sµ,�r with parameters (µ,�r) are
mirror images of each other.

Proof. (1) LetK(µ) be the complete elliptic integral of the first kind with parameter
µ. Using the basic modular transformations of the Jacobian elliptic functions (cf.
[17, p. 38 and p. 77]), we obtain

cn(u, µ) = sn(
p
1� µu+K(µ0), µ0),

sn(u, µ) = �cn(
p
1� µu+K(µ0), µ0),

(2.3)

and

(2.4) K(µ0) =
p
1� µK(µ).

Consider the linear change of variables

�0 : (u, v) 7! 1p
1� µ

⇣
K(µ0)� v,�u

⌘
.

Then, using (2.3) and (2.4), we deduce that the fundamental forms of �Lµ,r � �0

coincide with those of Lµ0,r.
(2) We conclude the proof observing that the fundamental forms of �Lµ,r(u,�v)

coincide with those of Lµ,�r. ⇤

Remark 6. Henceforth, without loss of generality, we shall restrict to pseudospher-
ical helicoids with parameters µ > 0, µ 6= 1, and r > 0.

3. Explicit integration of pseudospherical helicoids

In this section we will find explicit parametrizations of pseudospherical helicoids
in terms of elliptic functions and elliptic integrals. To this end, following Popov
[34, Chapter 3], pseudospherical helicoids are divided in two classes.

Definition 5. A pseudospherical helicoid with parameters (µ, r) is said to be of
magnetic type (resp., electric type) if µ > 1 (resp., µ 2 (0, 1)).
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3.1. Pseudospherical helicoids of magnetic type. For µ > 1 and r > 0, let

m := µ

�1 2 (0, 1),

 µ,r(u) =
q
m+ sinh2(r) coth(r)⇧(�m csch2(r),m)

�
q
m+ sinh2(r) coth(r)⇧(�m csch2(r), am(u,m),m),

⇠µ,r(u) = dn(u,m) sn2(u,m)
q
m sn2(u,m) + sinh2(r),

⇣µ,r(u) =
1q

m+ sinh2(r)

⇣
E(m) + cosh2(r)(u�K(m))

� E(am(u,m),m)
⌘
,

(3.1)

and

q

1
µ,r(u) =

�p
mq

m+ sinh2(r) sn(u,m)
�
m sn2(u,m) + sinh2(r)

� ,

q

2
µ,r(u) =

p
m cosh(r) sinh(r) cn(u,m)�

m+ sinh2(r)
�
sn2(u,m) dn(u,m)

�
m sn2(u,m) + sinh2(r)

�
,

⇢µ,r =� 2⇡
cosh(r) sinh(r)

m+ sinh2(r)
.

(3.2)

Let e�µ,r ⇢ R3 be the trajectory of the parametrized curve

e�µ,r = (exµ,r, eyµ,r, ezµ,r) : R ! R3

defined by

exµ,r = ⇠µ,r

�
cos( µ,r)q

1
µ,r � sin( µ,r)q

2
µ,r

�
,

eyµ,r = ⇠µ,r

�
sin( µ,r)q

1
µ,r + cos( µ,r)q

2
µ,r

�
,

ezµ,r = ⇣µ,r.

(3.3)

We can now state the following.

Theorem 6. Let Sµ,r be a pseudospherical helicoid of magnetic type, that is, a

pseudospherical helicoid with parameters µ > 1 and r > 0. Then, the real analytic

map

e
fµ,r = ( ef1

µ,r,
e
f

2
µ,r,

e
f

3
µ,r) : R2 ! R3

with components

e
f

1
µ,r(u, v) = cos(2⇡v)exµ,r(u)� sin(2⇡v)eyµ,r(u),
e
f

2
µ,r(u, v) = sin(2⇡v)exµ,r(u) + cos(2⇡v)eyµ,r(u),
e
f

3
µ,r(u, v) = ezµ,r(u) + ⇢µ,rv

is a global parametrization of �Sµ,r.
3

Proof. Using any software of symbolic computation implementing elliptic functions
such as Mathematica, one can see that the coe�cients of the fundamental forms of

3Here �S
µ,r

stands for �idR3 (S
µ,r

), where idR3 denotes the identity map of R3.
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e
fµ,r are

egµ,r11 = m sn2(u,m) + sinh2(r),

egµ,r22 =
4⇡2
�
1 + cosh(2r)� 2msn2(u,m)

�

�1 + 2m+ cosh(2r)
,

egµ,r12 =
�p

2⇡ sinh(2r)p�1 + 2m+ cosh(2r)
,

e
h

µ,r
11 = �p

m dn(u,m)sn(u,m),

e
h

µ,r
22 =

8⇡2
p
m dn(u,m)sn(u,m)

�1 + 2m+ cosh(2r)
,

e
h

µ,r
12 = 0.

(3.4)

Using the parameter transformations of Jacobian functions (see [17, p. 77])

sn(u, h) =
1p
h

sn(u
p
h, h

�1), cn(u, h) = dn(u
p
h, h

�1)

and taking into account the expressions (2.2), the coe�cients g

µ,r
ij and h

µ,r
ij of the

fundamental forms of Lµ,r can be written as

g

µ,r
11 = sn2(u/

p
m,m) +

1

m

sinh2(r),

g

µ,r
22 =

1

m

�
dn2(u/

p
m,m) + sinh2(r)

�
,

g

µ,r
12 = � 1

m

sinh(r) cosh(r),

h

µ,r
11 = �h

µ,r
22 =

1p
m

dn(u/
p
m,m) sn(u/

p
m,m),

h

µ,r
12 = 0.

(3.5)

Next, consider the linear change of variables

�00 : R2 3 (u, v) 7! p
m

 
u,

2
p
2⇡p

2m� 1 + cosh(2r)
v

!
2 R2

.

From (3.5) it follows that the first quadratic form of the reparametrization Lµ,r ��00

coincide with the first quadratic form of efµ,r and that the second quadratic form

of Lµ,r � �00 is the opposite of the second quadratic form of efµ,r. This proves the
result. ⇤

3.2. Pseudospherical helicoids of electric type. For given µ 2 (0, 1) and r > 0,
let

m := µ

�1
> 1,

 µ,r(u) = �
q
m+ sinh2(r) coth(r)

p
m

⇧(�csch2(r), am(
p
mu,

1

m

),
1

m

),

⇣µ,r(u) =
(cosh2(r) +m� 1)u�p

mE(am(
p
mu,

1
m ), 1

m )
q
m+ sinh2(r)

,

(3.6)
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Note that  µ,r is quasi-periodic, with quasi-period 2K(1/m)/
p
m. Next, define the

real-analytic functions

⇠µ,r(u) =
r

m

m sn2(u,m) + sinh2(r)
,

q

1
µ,r(u) =

cosh(r) sinh(r)

m+ sinh2(r)
cn(u,m),

q

2
µ,r(u) =

dn(u,m) sn(u,m)q
m+ sinh2(r)

,

(3.7)

and the constant

⇢µ,r = �2⇡
cosh(r) sinh(r)

m+ sinh2(r)
.

Let e�µ,r ⇢ R3 be the trajectory of the parametrized curve

e�µ,r = (exµ,r, eyµ,r, ezµ,r) : R ! R3
,

defined by

exµ,r = ⇠µ,r

�
cos( µ,r)q

1
µ,r � sin( µ,r)q

2
µ,r

�
,

eyµ,r = ⇠µ,r

�
sin( µ,r)q

1
µ,r + cos( µ,r)q

2
µ,r

�
,

ezµ,r = ⇣µ,r.

(3.8)

We are in a position to prove the following.

Theorem 7. Let Sµ,r be a pseudospherical helicoid of electric type, that is, a pseu-

dospherical helicoid with parameters µ 2 (0, 1) and r > 0. Then, the real-analytic

map

e
fµ,r = ( ef1

µ,r,
e
f

2
µ,r,

e
f

3
µ,r) : R2 ! R3

with components

e
f

1
µ,r(u, v) = cos(2⇡v)exµ,r(u)� sin(2⇡v)eyµ,r(u),
e
f

2
µ,r(u, v) = sin(2⇡v)exµ,r(u) + cos(2⇡v)eyµ,r(u),
e
f

3
µ,r(u, v) = ezµ,r(u) + ⇢µ,rv

is a global parametrization of �Sµ,r.

Proof. Since the fundamental forms of efµ,r are as in (3.4), we can argue as in the
proof of Theorem 6. ⇤
Remark 7. Observe, however, that the profile curves computed in the two theorems
above are not planar (see Figure 1).

4. The proof of the main theorems

This section proves Theorems 1 and 2. The proof is divided into five lemmas.
Lemmas 8 and 9 (cf. Section 4.1) prove that pseudospherical helicoids of magnetic
and electric type are of translational kind (hence Theorem 1) by determining in
both cases the planar profiles of the pseudospherical helicoids and by computing
the corresponding phenomenological invariants in terms of the parameters. Lemmas
10 and 11 (cf. Section 4.2) prove the existence of pseudospherical twisted columns of
magnetic and electric type with prescribed wave number and aspect ratio. Finally,
Lemma 12 (cf. Section 4.3) proves that pseudospherical twisted columns with
di↵erent invariants cannot be congruent.
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Figure 1. The fundamental domains of pseudospherical twisted
columns of magnetic (on the left) and electric (on the right) types
and their non-planar profiles.

4.1. Planar profiles and geometric invariants of pseudospherical helicoids.
We start our analysis with pseudospherical helicoids of magnetic type.

Lemma 8. Any pseudospherical helicoid of magnetic type with parameters µ > 1
and r > 0 is of translational kind. Moreover, it has parity ✏ = �1 and its pitch,

wavelength and aspect ratio are given, respectively, by

pµ,r = 2⇡
cosh(r) sinh(r)

m+ sinh2(r)
,

wµ,r = 2
cosh2(r)⇧(� sinh2(r),m)� E(m)q

m+ sinh2(r)
,

dµ,r =
2
q
m+ sinh2(r)

�
cosh2(r)⇧(� sinh2 r,m)� E(m)

�
p
m(1�m)

,

where m = µ

�1 2 (0, 1)

Proof. The profile b�µ,r, although not a plane curve, does not intersect the screw
axis. Therefore, for each u 2 R, we may consider the oriented upper half-plane
Hµ,r(u) bounded by the screw axis and passing through the point e�µ,r(u). Let
2⇡✓µ,r : R ! R be an analytic determination of the amplitude of the angle between
the oriented upper half-plane {(x, y, z) 2 R3 | y = 0, x > 0} and the oriented half-
plane Hµ,r(u). Denote by [a] the integer part of a real number and by �� : R ! R
the unit step function

��(u) = 1, u � 0,

��(u) = 0, u < 0.
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We can take as ✓µ,r the unique smooth function defined on the whole real line, such
that, for each u 2 R \ {2hK(m), h 2 Z},

✓µ,r(u) =
1

2⇡

 
 µ,r(u) + arctan

 
q

2
µ,r(u)

q

1
µ,r(u)

!
+ ⇡([u/2K(m)] + ��(u))

!
.

-5 5

-4

-2

2

4

6

8

Figure 2. The graph of the angular function ✓µ,r, µ ⇡ 1.50742
and r ⇡ 0.208.

Consequently, the plane profile of the helicoid is the real-analytic curve �µ,r in
the upper half-plane {(x, y, z) 2 R3 | y = 0, x > 0}, parametrized by the map

�µ,r = (qµ,r, 0, ⇣µ,r � ⇢µ,r✓µ,r) ,

where

qµ,r = ⇠µ,r

q
(q1µ,r)

2 + (q2µ,r)
2
.

Correspondingly, we obtain the following parametrization of the helicoid in terms
of the plane profile �µ,r,

(4.1) f
µ,r

(u, v) =
⇣
q
µ,r

(u) cos(2⇡v), q
µ,r

(u) sin(2⇡v), ⇣
µ,r

(u)� ⇢
µ,r

✓
µ,r

(u) + ⇢
µ,r

v
⌘
.

It then follows that the pitch of the helicoid is

pµ,r = �⇢µ,r = 2⇡
cosh(r) sinh(r)

m+ sinh2(r)
.

The first component of �µ,r is periodic with minimal period !µ = 2K(m) and the
third component is a strictly decreasing quasi-periodic function with quasi-period
!µ. Consequently, �µ,r is invariant under the translational group along the z-axis
and its wavelength is

wµ,r = d[�µ,r(2K(m)), �µ,r(0)] = 2
cosh2(r)⇧(� sinh2(r),m)� E(m)q

m+ sinh2(r)
.

The profile has countably many cusps of order 1 (ordinary cusps) located at the
points

�µ,r(2nK(m)) = �µ,r(0) + nwµ,r
~

k, n 2 Z,
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-0.5 0.0 0.5 1.0

-3

-2

-1

1

2

3

-0.5 0.0 0.5 1.0 1.5

-2

-1

1

2

Figure 3. The planar profiles of two twisted columns of magnetic
type with wave numbers 1 and 2, respectively.

where ~k denotes the unit z-coordinate vector. All the other points are regular. This
implies that the helicoid is of translational type with parity ✏ = �1. The profile
reaches the minimum distance from the screw axis at the points

�µ(K(m) + 2nK(m)) = �µ,r(K(m)) + nwµ,r
~

k.

The inner radius is thus

r�µ,r =

s
m(1�m)

m+ sinh2(r)
.

This implies that the aspect ratio4 is

dµ,r =
2
q
m+ sinh2(r)

�
cosh2(r)⇧(� sinh2(r),m)� E(m)

�
p
m(1�m)

,

which completes the proof. ⇤

As for the pseudospherical helicoids of electric type, we have the following.

Lemma 9. A pseudospherical helicoid of electric type with parameters µ 2 (0, 1)
and r > 0 is of translational kind. Moreover, It has parity ✏ = 1 and its pitch,

4Since ✏ = �1, the aspect ratio is w/r�.



15

wavelength and aspect ratio are given, respectively, by

pµ,r = 2⇡
cosh(r) sinh(r)

m+ sinh2(r)
,

wµ,r = 2
(m+ cosh2(r)� 1)K( 1

m )�mE( 1
m )� cosh2(r)⇧(�csch2(r), 1

m )
q
m(m+ sinh2(r))

,

dµ,r =
2
q
m+ sinh2(r)

m cosh(r)

⇣
(m+ cosh2(r)� 1)K(

1

m

)�mE(
1

m

)

� cosh2(r)⇧(�csch2(r),
1

m

)
⌘
,

where m = µ

�1
> 1

Proof. The reasoning is quite similar to the one in the previous lemma. The profile
e�µ,r does not intersect the screw axis and the function

2⇡✓µ,r(u) =

 
 µ,r(u) + arctan

 
q

2
µ,r(u)

q

1
µ,r(u)

!!

is an analytic determination of the amplitude of the angle formed by the upper
half-plane {(x, y, z) 2 R3 | y = 0, x > 0} and the upper half-plane bounded by the
screw axis and passing through the point e�µ,r(u). Therefore, the plane profile is
the real-analytic curve �µ,r in the upper half-plane {(x, y, z) 2 R3 | y = 0, x > 0},
parametrized by

�µ,r = (qµ,r, 0, ⇣µ,r � ⇢µ,r✓µ,r) ,

where

qµ,r = ⇠µ,r

q
(q1µ,r)

2 + (q2µ,r)
2
.

Therefore, the parametrization of the helicoid in terms of the plane profile is

(4.2) f
µ,r

(u, v) =
⇣
q
µ,r

(u) cos(2⇡v), q
µ,r

(u) sin(2⇡v), ⇣
µ,r

(u)� ⇢
µ,r

✓
µ,r

(u) + ⇢
µ,r

v
⌘
.

From this it follows that the pitch of the helicoid is

pµ,r = �⇢µ,r = 2⇡
cosh(r) sinh(r)

m+ sinh2(r)
.

The first component of �µ,r is periodic with minimal period !µ = 2K(1/m)/
p
m

while the third component is a strictly decreasing quasi-periodic function with
quasi-period !µ. Consequently, �µ,r is invariant by the translational group along
the z-axis and its wavelength is

wµ,r = d[�µ,r(!µ), �µ,r(0)]

= 2
(m+ cosh2(r)� 1)K( 1

m )�mE( 1
m )� cosh2(r)⇧(�csch2(r), 1

m )
q
m(m+ sinh2(r))

.

The profile possesses countably many cusps of order 1 (ordinary cusps) located at
the points

�µ,r(n!µ) = �µ,r(0) + nwm,r
~

k, n 2 Z
and

�µ,r

�
!µ

2
+ n!mu

�
= �µ,r

�
!µ

2

�
+ nwm,r

~

k, n 2 Z
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-5 5

-5

5

Figure 4. The graph of the angular function ✓µ,r, µ ⇡ 0.7707 and
r ⇡ 0.20892.

All the other points are regular. This shows that pseudospherical helicoids of electric
type are of translational kind and have parity ✏ = 1. The profile reaches the
maximal distance from the screw axis at the points

�µ(n!µ) = �µ,r(0) + nwµ,r
~

k.

The outer radius is then

r+µ,r =

p
m cosh(r)

m+ sinh2(r)
.

This implies that the aspect ratio5 is

dµ,r =
2
q
m+ sinh2(r)

m cosh(r)

⇣
(m+ cosh2(r)� 1)K(

1

m

)�mE(
1

m

)

� cosh2(r)⇧(�csch2(r),
1

m

)
⌘
,

which proves the claim. ⇤

4.2. Existence of pseudospherical twisted columns with prescribed in-
variants. We start by giving the following.

Definition 6. Let

M� = R+ ⇥ (0, 1), M+ = R+ ⇥ (1,+1).

For a positive integer n 2 N and a positive real number d 2 R+, let

C±
n = {(r,m) 2 M± | pµ,r = nwµ,r},

D±
d = {(r,m) 2 M± | dµ,r = d},

where, depending on whether C�
n , D�

d or C+
n , D+

d are considered, pµ,r, wµ,r and
dµ,r are as in Lemma 8 or Lemma 9 above. Accordingly, we call C�

n , D�
d and C+

n ,
D+

d the modular curves of magnetic type and of electric type, respectively.

5Since ✏ = 1, the aspect ratio is w/r+.
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Figure 5. The planar profiles of two twisted columns of electric
type with wave numbers 1 and 4, respectively.

Remark 8. From Lemmas 8 and 9, it follows that a pseudospherical helicoid with
parity ✏ = �1 (resp., ✏ = 1) is a twisted column if and only if (r,m) 2 C�

n (resp.,
(r,m) 2 C+

n ), where n 2 N is its wave number.6 Consequently, a pseudospherical
helicoid with parameters (µ, r) is a twisted column with parity ✏ = �1 (resp.,
✏ = 1), wave number n, and aspect ratio d if and only if (r,m) 2 C�

n \ D�
d (resp.,

(r,m) 2 C+
n \D+

d ).

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. The modular curves C�
n (dashed lines) and D�

d (solid
lines) for n = 1 (left), n = 3 (right) and d equal to the golden
ratio. The parameters of the corresponding twisted columns are
µ ⇡ 1.90951, µ ⇡ 2.27181 and r = 0.127237, r = 0.353348, respec-
tively.

6Recall that in Lemmas 8 and 9, m stands for µ�1.
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Lemma 10. For given n 2 N and d > 0, there exists a pseudospherical twisted

column of magnetic type with wave number n and aspect ratio d.

Proof. It su�ces to prove that C�
n \D�

d consists of a single point. From the previous
Lemmas it follows that the points of C�

n \D�
d are the solutions of the system

cosh2(r)⇧(� sinh2(r),m) = E(m) +
⇡ cosh(r) sinh(r)

n

q
m+ sinh2(r)

,

cosh2(r)⇧(� sinh2(r),m) = E(m) + d

p
m(1�m)

2
q
m+ sinh2(r)

.

(4.3)

This implies that r = %n,d(m), where %n,d : (0, 1) ! R is defined by

(4.4) %n,d(y) =
1

2
arcsinh

 
d · npy(1� y)

⇡

!
.

Substituting (4.4) into the second equation of (4.3), we find that m 2 (0, 1) is a
zero of the function

hn,d(y) = �2E(y) + 2 cosh2(%n,d(y))⇧(� sinh2(%n,d(y)), y)

� d

s
y(1� y)

y + sinh2(%n,d(y))
,

which is defined on (0, 1). The latter is a strictly increasing real-analytic function,
such that

lim
y!1�

hn,d(y) = +1, lim
y!0+

hn,d(y) = � 2d⇡p
n

2
d

2 + 4⇡2
< 0.

Therefore, for given n 2 N and d > 0, there exists a unique mn,d 2 (0, 1), such that
hn,d(mn,d) = 0. We have thus proved that

C�
n \D�

d = (%n,d(mn,d),mn,d),

which yields the required result. ⇤

Lemma 11. For given n 2 N and d > 0, there exists a pseudospherical twisted

column of electric type with wave number n and aspect ratio d.

Proof. We argue as in Lemma 10. The points of C+
n \ D+

d are the solutions of the
system

⇡

p
m sinh(2r)q

m+ sinh2(r)
+ 2n

h
mE

⇣ 1

m

⌘
� (cosh2(r) +m� 1)K

⇣ 1

m

⌘

+ cosh2(r)⇧(�csch2(r),
1

m

)
i
= 0,

dm cosh(r)q
m+ sinh2(r)

+ 2
h
mE

⇣ 1

m

⌘
� (cosh2(r) +m� 1)K

⇣ 1

m

⌘

+ cosh2(r)⇧(�csch2(r),
1

m

)
i
= 0.

(4.5)
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Figure 7. The modular curves C+
n (dashed lines) and D+

d (solid
lines) for n = 1 (left), n = 3 (right) and d equal to the golden
ratio. The parameters of the corresponding twisted columns are
µ ⇡ 0.7708, µ ⇡ 0, 8844 and r = 0.289, r = 0.749, respectively.

The first equation implies that ⇧(�csch2(r), 1/m) is equal to

n sech2(r)
�
cosh(2r) + 2m� 1

��� 2mE( 1
m ) + (cosh(2r) + 2m� 1)K( 1

m )
�

4n(m+ sinh2(r))

�
⇡

q
m(m+ sinh2(r)) tanh(r)

n(m+ sinh2(r))
.

Substituting this expression in the second equation of (4.5), we deduce that r =
%n,d(m), where %n,d : R+ ! R is defined by

(4.6) %n,d(y) = arcsinh

✓
n

p
yd

2⇡

◆
.

Substituting (4.6) into the first equation of (4.5), we find that m 2 (1,+1) is a
zero of the function

hn,d(y) =
2d⇡2

p
d

2
n

2
y

2 + 4⇡2
yp

d

2
n

2 + 4⇡2
+
⇣
4y⇡2

E

⇣1
y

⌘
� y(d2n2 + 4⇡2)K

⇣1
y

⌘

+ (d2n2
y + 4⇡2)⇧(� 4⇡2

d

2
n

2
y

,

1

y

)
⌘
,

which is defined on (0,+1). This is a strictly increasing real-analytic function such
that

lim
y!0+

hn,d(y) = �1, lim
y!+1

hn,d(y) = +1.

Therefore, for given n 2 N and d > 0, there exists a unique mn,d 2 (1,+1) such
that hn,d(mn,d) = 0. We have thus proved that

C+
n \D+

d = (%n,d(mn,d),mn,d),

which yields the required result. ⇤
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Figure 8. Magnetic (left) and electric (right) pseudospherical
twisted columns with n = 1 and d = �, � = golden ratio.

Remark 9 (Number of singular helices). In the magnetic-type case, the wave number
tells how many singular helices are contained in the pseudospherical helicoid. In
the electric-type case, instead, the number of singular helices in the pseudospherical
helicoid is two times the wave number (see Example 1). This result should be
compared with the local analysis of Brander [4] about the pseudospherical fronts
containing circular helices as singular points.

4.3. End of the proof. To conclude the proof of Theorem 2 we are left with the
following.

Lemma 12. Let S and S

0
be two right-handed (or left-handed) pseudospherical

twisted columns with invariants (✏, n, d) and (✏0, n0, d0). If (✏, n, d) 6= (✏0, n0, d0) then

S and S

0
cannot be congruent to each other.

Proof. First, we show that if ✏ 6= ✏

0, then S and S

0 cannot be congruent to each
other. Suppose, on the contrary, that S and S

0 are congruent. By possibly acting
with a rigid motion, we may assume S = S

0. Thus, if �⇤ is a fundamental domain
of the planar profile of S, then �⇤ must be a fundamental domain of the planar
profile of S0. On the other hand, if ✏ 6= ✏

0, the number of cusps of the fundamental
domains are di↵erent, which is a contradiction. Next, suppose ✏ = ✏

0. If n 6= n0 and
✏ = ✏

0, then the number of connected components of the singular loci of S and S

0

are di↵erent. Thus S and S

0 cannot be congruent. We now prove that if ✏ = ✏

0 and
n = n0, but d 6= d0, then S and S

0 are not congruent. Suppose not, then they must
have the same pitch and the same inner and outer radii. If p = p0 and n = n0, then
w = w0. Since they have the same wave numbers, parities, inner and outer radii,
they must have also the same aspect ratios, which is a contradiction. ⇤
Example 1. We now examine the pseudospherical twisted columns of the golden-
mean series (that is, d is equal to the golden ratio). The numerical evaluation of
the parameters (µ, r) and the visualization have been done with the software Math-
ematica. The following is the table of the approximate values of the parameters
(µ, r) of the twisted columns (magnetic type) with phenomenological invariants
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Figure 9. Magnetic (left) and electric (right) pseudospherical
twisted columns with n = 2 and d = �, � = golden ratio.

(✏, n, d) = (�1, n,�), n = 1, . . . , 6,

n 1 2 3 4 5 6
µ 1.90951 2.03576 2.27181 2.65802 3.25281 4.13094
r 0.127237 0.247275 0.353348 0.439982 0.504218 0.546398

The following is the table of the approximate values of the parameters (µ, r) of
the twisted columns (electric type) with phenomenological invariants (✏, n, d) =
(1, n,�), n = 1, . . . , 6,

n 1 2 3 4 5 6
µ 0.770862 0.849115 0.884453 0.902344 0.912336 0.918378
r 0.289255 0.533287 0.749346 0.939799 1.1074 1.25549

Figure 8 reproduces pseudospherical twisted columns with invariants (�1, 1,�)
and (1, 1,�), respectively. The magnetic-type one has one singular helix while
the electric-type one has two singular helices. Figure 9 reproduces pseudospherical
twisted columns with invariants (�1, 2,�) and (1, 2,�), respectively. The magnetic-
type one has two singular helices while the electric-type one has four singular helices.
Figure 10 depicts pseudospherical twisted columns with invariants (�1, 3,�) and
(1, 3,�), respectively. The magnetic-type one has three singular helices, while the
electric-type one has six singular helices. For the magnetic-type twisted columns
we have chosen the right-handed orientation, while for the electric-type ones we
have chosen the left-handed orientation.
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[7] A. Calini and T. Ivey, Bäcklund transformations and knots of constant torsion, J. Knot
Theory Ramifications 7 (1998), no. 6, 719–746.

[8] M. P. do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature,
Tohoku Math. J. (2) 34 (1982), no. 3, 425–435.

[9] A. Dzhalilov, E. Musso, and L. Nicolodi, Conformal geometry of timelike curves in the
(1+2)-Einstein universe, Nonlinear Anal. 143 (2016), 224–255.

[10] L. P. Eisenhart, A Treatise on the Di↵erential Geometry of Curves and Surfaces, Dover
Publications, Inc., New York, 1960.

[11] M. Fels and P. Olver, Moving coframes. I. A practical algorithm, Acta Appl. Math. 51
(1998), no. 2, 161–213.

[12] M. Fels and P. Olver, Moving coframes. II. Regularization and theoretical foundations,
Acta Appl. Math. 55 (1999), no. 2, 127–208.

[13] G. Fischer, Mathematical Models: Photograph Volume and Commentary, Vieweg, Braun-
schweig and Wiesbaden, 1986.

[14] F. Gesztesy and R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS
hierarchies-an analytic approach, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 4, 271–317.

[15] D. Hilbert, Grundlagen der Geometrie, B. G. Teubner, Stuttgart, 1999.
[16] G. R. Jensen, E. Musso, and L. Nicolodi, Surfaces in Classical Geometries. A Treatment

by Moving Frames, Universitext, Springer, Cham, 2016.
[17] D. F. Lawden, Elliptic Functions and Applications, Series in Applied Mathematical Science,

80, Springer-Verlag, New York, 1989.
[18] R. McLachlan, A gallery of constant-negative-curvature surfaces, Math. Intelligencer 16

(1994), no. 4, 31–37.
[19] M. Melko and I. Sterling, Application of soliton theory to the construction of pseudo-

spherical surfaces in R3, Ann. Global Anal. Geom. 11 (1993), no. 1, 65–107.
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