
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Approximate-Computing Architectures for Motion Estimation in HEVC / Paltrinieri, Alberto; Peloso, Riccardo; Masera,
Guido; Shafique, Muhammad; Martina, Maurizio. - ELETTRONICO. - 1:(2018), pp. 190-193. (Intervento presentato al
convegno New Generation of CAS (NGCAS) tenutosi a Valletta (Malta) nel 13 dicembre 2019)
[10.1109/NGCAS.2018.8572080].

Original

Approximate-Computing Architectures for Motion Estimation in HEVC

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NGCAS.2018.8572080

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2722061 since: 2019-01-07T13:08:09Z

IEEE

Approximate-Computing Architectures for Motion
Estimation in HEVC

Alberto Paltrinieri∗, Riccardo Peloso∗, Guido Masera∗, Muhammad Shafique† and Maurizio Martina∗
∗Department of Electronics and Telecommunications, Politecnico di Torino, Italy

†Institute of Computer Engineering, Vienna University of Technology (TU Wien), Austria
Email: alberto.paltrinieri@studenti.polito.it, riccardo.peloso@polito.it,

guido.masera@polito.it, maurizio.martina@polito.it, muhammad.shafique@tuwien.ac.at

Abstract—Video compression deeply relies on motion estima-
tion but this crucial step requires power-hungry computational
resources. Starting from an existing architecture capable of
calculating a high number of Sum of Absolute Differences
(SADs), three possible locations for approximate adders are
chosen. At each location, different types of approximate adders
are implemented and the results are analyzed in terms of error
and power saving.

I. INTRODUCTION

The High Efficiency Video Coding (HEVC, also called
H.265) is the latest standard in video compression developed
by the Moving Picture Experts Group (MPEG). This new com-
pression scheme is able to double the compression efficiency
with respect to its predecessor, the Advanced Video Coding
(AVC or H.264). The HEVC heavily exploits the inter-frame
(time-based) and intra-frame (spatial-based) redundancies to
reduce the amount of data to be stored or transferred. The
techniques used are the Motion Estimation (ME) and the
Motion Compensation (MC), which try to estimate a suitable
Motion Vector (MV) that minimizes the prediction error. This
is done by computing the error, usually through the Sum of
Absolute Differences (SAD) operation, between the current
block to be encoded and the surrounding pixels in already
encoded frames. If a match is found, only the MV and the
corrections to perform the prediction are encoded. This process
effectively reduces the total amount of compressed data but it
requires a very high performance ME engine. The best match
is defined as the one producing the minimum SAD value
found. As a consequence, it is important to build an hardware
accelerator of the SAD function, able to process several data
concurrently. The ideal architecture should be able to sustain
a high throughput while consuming a reduced amount of
power: the ME is one of the most computation intensive
tasks to be performed by the video encoder, indeed. In [1]
an efficient VLSI architecture for the computation of the SAD
in HEVC has been proposed. Such an architecture used the
partial distortion elimination (PDE) technique to speed up the
processing by avoiding useless computations. Stemming from
[1], this current work aims to study the effect of approximate
adders with the objective of saving power consumption while
keeping the error as small as possible.

PE

+

+

128

128

PE128

128

12

12

PE

+

128

128

PE128

128

12

12

13

13

PE

+

+

128

128

PE128

128

12

12

PE

+

128

128

PE128

128

12

12

13

13

+

14

14

PE

+

+

128

128

PE128

128

12

12

PE

+

128

128

PE128

128

12

12

13

13

PE

+

+

128

128

PE128

128

12

12

PE

+

128

128

PE128

128

12

12

13

13

+

14

14

+

15

15

+16

20

20

20

Third
Substitution

First
Substitution

Zoom in of a PE

Second
Substitution

Fig. 1: SAD architecture where the three substitution regions are highlighted.

II. SAD ARCHITECTURE

This section aims to briefly review the basic SAD architec-
ture in [1] in order to define where it is possible to employ
approximate adders to save power. The SAD operation for an
N ×M block of pixels is defined as

SAD =

N∑
i=1

M∑
j=1

|C(i, j)−R(i, j)| (1)

where C is the current block and R is the reference block.
In the worst case (N = M = 64), the SAD computation
requires to read 4096 samples of the current Prediction Unit
(PU) and 4096 samples of the reference PU. Then, according
with (1), it carries out the difference between 4096 samples,
4096 absolute values and the 4095 additions. Such a structure
can be strongly parallelized to speed up the execution. This
is usually obtained by processing several pairs of samples
concurrently and resorting to a tree-adder. One of the prob-
lems that arises from a parallel architecture is the memory
bandwidth limit. The memory bandwidth is responsible for
throughput reduction in motion estimation, in particular when
dealing with high resolution/quality video sequences [2]. The
starting architecture considered in this work is the hardware
structure proposed in [1], which computes the SADs on all
the input Prediction Blocks (PBs) for every input dimension

up to 64x64. This result is obtained by properly storing current
PU and reference PU samples into a DRAM. The DRAM is
clocked at eight times the main clock frequency to provide
the required number of pixels per clock cycle. A control
unit dynamically reorders the input blocks as a vector to
maximize the throughput. Then, 16 Processing Elements (PEs)
are exploited to compute up to 256 differences and absolute
values concurrently. Finally, the tree-adder combines partial
results (see Fig. 1). Depending on the PU size a variable
number of clock cycles (ranging from 1 to 16) is required o
complete the computation of one SAD value. To speed up the
computation, the PDE algorithm is employed: during the best
match computation, if an adder returns a result greater than
the current best SAD value there is no reason to keep going
in the tree-adder computing as the final result will surely be
discarded. This scheme needs some additional comparators in
order to work properly, as detailed in [1].

III. APPROXIMATE COMPUTING

Among the video compression algorithms, approximate
computing has become an emerging paradigm to reduce the
power/energy consumption of the system and to reduce the
computational load of a compressing procedure [3]–[5]. It
exploits the resilience of the applications to speed up the
data processing of the system and trading rate-distortion
performance for power consumption. The main task of ap-
proximate computing is to relax signal processing tasks at
different levels. Indeed, exploiting the tolerance of computing
imprecision of the human eye imperceptibility [6], highly
power-efficient implementations can be realized [7]. If the
amount of computing imprecision is limited, the result is a
negligible amount of perceptible visual change of the output
sequence. Of course, the error introduced by the approximate
arithmetic must not exceed a certain threshold, or the reduction
in resolution can ruin the visual experience. The ME shows a
certain level of resilience or elasticity for small computational
errors [8]. Even if the MV found by approximate computing
is not the best one, the result could be still acceptable in
terms of compression ratio. For this reason, this current work
embraces the approximate computing paradigm by substituting
correct adders with approximate ones inside the SAD archi-
tecture proposed in [1] and depicted in Fig. 1. To deeply
study the accelerator behavior, a crossed study was carried
out, analyzing both precise and approximate adders in order
to verify not just the approximation level (with consequent
improvements introduced by the approximate adders) but also
to test the adaptability of any kind of adder to the design.
Furthermore, the position where the adders were substituted
can not be neglected: three substitutions were analyzed to find
a good blend of correct and approximate adders in the SAD
architecture.

A. Approximate adders

The choice of the approximate adders has been carried
out through literature analysis by investigating most of the

possibilities. In brief, approximate adders can be classified in
different classes [9]:
• Speculative adders
• Segmented adders
• Carry-Select adders
• Approximate full adders
The speculative adders exploit the longest sequence of 1

inside the propagate signal p for the parallel computing of
long binary sequences. The segmented adders divide the bit
sequence in several slices, addition is performed for each
slice independently and, finally, slice results are combined,
giving precedence to the most significant bits (MSBs). The
carry select adders consist of several sub-adders which execute
the the addition with both carry-in equal to 0 and equal to
1 concurrently, then the correct result is selected. Finally,
approximate full adders divide the n-bit inputs into 2 parts,
the MSB computation is correct, whereas the least significant
bits (LSBs) are approximated and generate no carry.

Correct
Motion

Estimation

Approximate
Motion

Estimation

Precise
SAD

Approx.
SAD

X

Motion
Vector

+

- ε

Correct
Motion

Estimation

X SAD + ε
ε

SAD

SAD

SAD

Motion
Vector
Error

Evaluation

Motion
Vector

Motion
Vector

Legend:
 Matlab

 C++

Fig. 2: Software model of the architecture, in blue the C++ part and in
yellow the MATLAB part

IV. APPROXIMATE ARCHITECTURE

In this work the following correct and approximate adders
have been considered and analyzed. For further details the
reader can refer to [10] and [6].
• RCA: Ripple Carry Adder
• CLA: Carry Look-ahead Adder

The considered five approximate adders are:
• ACA: Almost Correct Adder (Speculative adders class)
• ACAA: Accuracy Configurable Approximate Adder (Seg-

mented adders class)
• ETA-I (ETAI): Error-Tolerant Adder I (Approximate full

adders class)
• LOA: Lower-OR Part Adder (Approximate full adders

class)
• SCSA: Speculative Carry Select Adder (Carry-select

adders class)
In order to analyze the effect of each type of adder in

different positions inside the SAD architecture, the following
three regions have been identified (as highlighted in Fig. 1):

1) Following the approach described in [4], all correct
adders in the architecture, including the ones in the
PEs and in the tree-adder have been replaced by the
approximate ones. Only subtracters are kept correct. This
configuration is highlighted by a gray box in Fig. 1. The

Data Maker
(Control)

DUT
Data Sink

Report

Writer

Check File Clk 1
Gen.

Clk 2
Gen.

End_Sim

Clk 1
Clk 2

Cur
Port1_CSB
Port1_WEB
Port1_ADDR
Toggle1

Ref

Done

SAD

Toggle
Count_Enable

Ack_Count_End
Cout_End

Toggle_Done End_Stimuli

Va
lid

_I
n

R
ow

s

To
gg

le
2

C
ol

um
ns

St
ar

t_
C

he
ck

Error Evaluation
(Output)

SAD
SADmin

PDE

Fig. 3: Testbench used to verify the correct behavior of the implemented
architecture

error introduced by this solution is rather high, being the
highest among the tested substitutions, but it is the one
providing the smallest delay.

2) Adders are substituted only outside the PEs, namely in
the tree-adder. Indeed, experiments have shown that ap-
proximate adders inside PEs affect ME result more than
approximate adders in the tree-adder. Simulations have
shown that partial results along the tree-adder frequently
fit in 12 bits, despite up to 20 bits are needed for correct
computation. As a consequence, adders handling bits
from 0 to 11 are kept correct, whereas the ones related
to bits from 12 to 19 have been approximated. This
configuration, shown as a green box in Fig. 1, reduces
the error with some improvements in terms of delay.

3) Stemming from the idea presented in [11], correct
subtracters inside each PE are replaced by approximate
ones. This substitution generates an error that propagates
through the the whole architecture. However, since there
are up to 4096 differences, it produces a relevant speed-
up. This substitution relies on low-error approximate
adders to reduce error propagation and and it is shown
as a blue box in Fig. 1.

V. IMPLEMENTATION

Then, the model has been embedded in a MATLAB envi-
ronment as shown in Fig. 2. This strategy allows to extract the
statistic of the error introduced by the approximate architecture
(ε) and to analyze the effect on MVs for a large amount of
data.

-2 -1 0 1 2 3 4 5 6 7 8

Power Saving (Power Reduction)

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
E

rr
or

Mean Error to Power Saving (Average)

Error/Power Result
Interpolated Result

Fig. 4: MRED vs. power saving (mW)

MRED Energy =
∑
| |2

Correct SAD 0% 1283544 ' 1.28 · 106

Approximate SAD 6.7% 1282726 ' 1.28 · 106

TABLE I: Results of the motion vector error estimation with the
substitutions applied

RCA,
CLA LOA ACA ACAA ETAI SCSA

1st sub. 0 0.265 0.198 0.203 0.226 0.181
2nd sub. 0 0.164 0.114 0.108 0.145 0.097
3rd sub. 0 0.139 0.087 0.084 0.137 0.050

TABLE II: MRED error for each substitution

A. Software implementation

Firstly, a C++ model has been developed, which describes
the architecture of the SAD accelerator described in [1]. This
model reproduces the bit-accurate behavior of the architecture.
It reads an input video sequence in .yuv format and performs
a full search of all the possible PUs in the preceding frame
for all the frames of the video.

The error on MVs has been analyzed through the following
metrics:
• Error Distance: ED = |S′−S|, where S′ is the sum of

the approximate adder and S is the sum of the accurate
adder;

• Mean Error Distance: MED =
∑

i EDi

NPU ·Nframes
, where

NPU is the number of PUs and Nframes is the total
number of frames;

• Relative Error Distance: RED = |S′−S|
S ;

• Mean Relative Error Distance: MRED =∑
i REDi

NPU ·Nframes
;

• Percentage Error: EMRED(%) =MRED · 100
• Total Percentage Error: TPE(%) is the most common

error metric: it represents the number of errors calculated
for every SAD case divided by the total number of events,
as a percentage. In other words, it highlights how many
times the output SAD values differ in the case of correct
or approximate adders;

• Energy difference: En =
∑N

i=1 |PUcurrent −
PUMCreference|2, this is a different type of error metric
because it works on the difference of energy between the
reference PU and the motion compensated PU.

1st sub. 2nd sub. 3rd sub.
[1] 127.94 mW

ACA 123.56 mW 128.14 mW 128.93 mW
ACAA 121.13 mW 123.90 mW 125.45 mW
CLA 129.67 mW 129.67 mW 128.18 mW
RCA 128.07 mW 128.02 mW 128.14 mW
ETAI 120.77 mW 121.87 mW 121.88 mW
LOA 120.76 mW 121.79 mW 121.74 mW
SCSA 124.07 mW 127.99 mW 128.78 mW

TABLE III: Extracted power consumption for all the possible
implementations

As the MRED and the En turned to be the most significant
tools for measuring the error, the preliminary results obtained

[12] [13] [14] [2] [8] [1] Proposed
Technology 65 nm Virtex-5 Virtex-5 65 nm 45 nm 65 nm 65 nm
Max Block Size 64x64 64x64 64x64 32x32 64x64 64x64 64x64
Gate Count 434K 26.8K 63.2K 617K 30.9K 90K ∼ 90K
Frequency [MHz] 720 190.785 348 350 497.66 160 * 160 *
Delay for each
64x64 Block 22.24 ns 167.73 ns 45.96 ns 156.25 ns 156.25 ns

Search Window (±27,±27) (±32,±32) (±64,±64) (±64,±64)

TABLE IV: Performance comparison of the proposed architecture with other works from the literature.

with the proposed environment are reported in Table I. More-
over, Fig. 4 shows MRED as a function of the achieved power
saving. As it can be observed the first part of the graph is non-
monotonic, showing that one can save 5 to 7 mW with a very
small error.

B. Hardware implementation

After evaluating via software the various possibilities, the
modified adders have been described in VHDL, placed in
the SAD architecture and tested (see Fig. 3). The complete
architecture has been synthesized on a 65 nm standard cell
technology. Table II highlights the MRED values obtained by
the various adders for the three substitutions. As it can be
observed, LOA is always the solution leading to the highest
MRED values, whereas SCSA features low MRED for all the
considered cases.

VI. RESULTS

After the logic synthesis the switching activity has been
extracted for all the described implementations in order to
measure power consumption. In terms of power saving, the
ACAA, the ETAI and the LOA are the approximate adders that
are most efficient. It is useful to see how, in average, the power
relates to the approximation error, as in Figure 4. The curve
is nonlinear and presents a plateau at mean error of about 0.1,
which means that it is possible to mantain approximately con-
stant this error while employing more aggressive approximate
adders. Table III shows the power saving obtained with respect
to the baseline structure. The approximate adders lead to up to
about 7 mW of power saving. It is worth noting that the results
differ from the ones in [1] as the approximate architecture is
here dealing with a true video stream, i.e. handling a sequence
of PU with different sizes, without forcing a specific block
size.

Table IV shows a comparison with other implementations.
The ’*’ states that the frequency of the two works are limited
by the SRAM IP core speed. As it can be observed, the
proposed architecture compares favorably with the other ones,
featuring low complexity. Given that the 160 MHz clock
frequency is a constraint of the architecture in [1], the proposed
approximate architecture can be exploited to reduce the power
consumption, as shown in Table III.

VII. CONCLUSION

This work showed that approximate adders reduce the
overall power consumption of a SAD architecture for ME.

In particular, choosing the proper blend of exact and approx-
imated adders leads to a power efficient architecture, with
limited quality loss.

REFERENCES

[1] P. Selvo, M. Masera, R. Peloso, G. Masera, M. Shafique, and
M. Martina, “An optimized partial-distortion-elimination based sum-
of-absolute-differences architecture for high-efficiency-video-coding,” in
APPLEPIES, 2018.

[2] S. Park, B. G. Choi, I. G. Lim, H. il Park, and S. W. Kang, “An efficient
motion estimation hardware architecture using modified reference data
access(MRDAS) skip algorithm for high efficiency video coding(HEVC)
encoder,” in 2016 IEEE 6th International Conference on Consumer
Electronics - Berlin (ICCE-Berlin). IEEE, sep 2016.

[3] E. Nogues, D. Menard, and M. Pelcat, “Algorithmic-level approximate
computing applied to energy efficient hevc decoding,” IEEE Transac-
tions on Emerging Topics in Computing, pp. 1–1, 2018.

[4] W. El-Harouni, S. Rehman, B. S. Prabakaran, A. Kumar, R. Hafiz, and
M. Shafique, “Embracing approximate computing for energy-efficient
motion estimation in high efficiency video coding,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2017, March 2017,
pp. 1384–1389.

[5] M. Masera, M. Martina, and G. Masera, “Adaptive approximated dct
architectures for hevc,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 27, no. 12, pp. 2714–2725, Dec 2017.

[6] Y. Jia, W. Lin, and A. A. Kassim, “Estimating just-noticeable distortion
for video,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 7, pp. 820–829, July 2006.

[7] A. Raha, H. Jayakumar, and V. Raghunathan, “Input-based dynamic
reconfiguration of approximate arithmetic units for video encoding,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 3, pp. 846–857, mar 2016.

[8] R. Porto, L. Agostini, B. Zatt, M. Porto, N. Roma, and L. Sousa,
“Energy-efficient motion estimation with approximate arithmetic,” in
2017 IEEE 19th International Workshop on Multimedia Signal Process-
ing (MMSP). IEEE, oct 2017.

[9] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation
of approximate adders,” in Proceedings of the 25th Edition on Great
Lakes Symposium on VLSI, ser. GLSVLSI ’15. ACM, 2015.

[10] T. Land and M. D. Ercegovac, Digital Arithmetic. Elsevier, 2004.
[Online]. Available: 10.1016/b978-1-55860-798-9.x5000-3

[11] R. Porto, L. Agostini, B. Zatt, M. Porto, N. Roma, and L. Sousa,
“Energy-efficient motion estimation with approximate arithmetic,” in
2017 IEEE 19th International Workshop on Multimedia Signal Process-
ing (MMSP), Oct 2017, pp. 1–6.

[12] A. Medhat, A. Shalaby, and M. S. Sayed, “High-throughput hardware
implementation for motion estimation in hevc encoder,” in 2015 IEEE
58th International Midwest Symposium on Circuits and Systems (MWS-
CAS), Aug 2015, pp. 1–4.

[13] V. N. Dinh, H. A. Phuong, D. V. Duc, P. T. K. Ha, P. V. Tien, and
N. V. Thang, “High speed SAD architecture for variable block size
motion estimation in HEVC encoder,” in 2016 IEEE Sixth International
Conference on Communications and Electronics (ICCE). IEEE, jul
2016.

[14] A. Medhat, A. Shalaby, M. S. Sayed, M. Elsabrouty, and F. Mehdipour,
“A highly parallel SAD architecture for motion estimation in HEVC
encoder,” in 2014 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS). IEEE, nov 2014.

