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A saturation property for the

spectral-Galerkin approximation of a

Dirichlet problem in a square

C. Canuto∗, R.H. Nochetto†, R. Stevenson‡, and M. Verani§

December 14, 2018

Abstract

Both practice and analysis of p-FEMs and adaptive hp-FEMs raise
the question what increment in the current polynomial degree p guar-
antees a p-independent reduction of the Galerkin error. We answer
this question for the p-FEM in the simplified context of homogeneous
Dirichlet problems for the Poisson equation in the two dimensional
unit square with polynomial data of degree p. We show that an incre-
ment proportional to p yields a p-robust error reduction and provide
computational evidence that a constant increment does not.

1 Motivation and statement of the result

High order finite element methods (FEMs) can exhibit exponential con-
vergence for elliptic problems with piecewise analytic data, and thus have
become the methods of choice in computational science and engineering for
such problems. The seminal work of Babuška and collaborators [1, 15, 16]
has established the mathematical foundations for the a priori design of
meshes and distribution of polynomial degrees, and proved exponential con-
vergence for corner and edge singularities. In contrast, adaptive hp-FEMs
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hinge on a posteriori error estimators, which help determine whether it is
more convenient to locally refine the mesh or increase the polynomial de-
gree to improve the resolution. Although exponential convergence is observe
experimentally, it has never been proved rigorously with the exception of [9].

Our adaptive hp-FEM of [9] hinges on a quasi-best hp-approximation
module due to Binev [6], which in turn guarantees instance optimality and
thus exponential convergence. As any other adaptive hp-FEM, ours also
has a module to reduce the PDE error by a fixed fraction for piecewise
polynomial data thereby avoiding data oscillation. In fact, denoting by
v ∈ V (a Hilbert space) the solution of the PDE, given an hp-partition D,

this module needs to find a refined hp-partition D̃ such that the Galerkin
approximations vD and v

D̃
from the corresponding finite element spaces VD

and V
D̃

satisfy, for a universal constant 0 < α < 1,

‖v − vD‖V ≤ α ‖vD̃ − vD‖V . (1.1)

Thanks to Galerkin orthogonality w.r.t. to the energy scalar product, this
is indeed equivalent to the global saturation property

‖v − vD‖V . ‖v
D̃
− vD‖V . (1.2)

The module to reduce the PDE error in [9] was based on h-refinements
driven by the a posteriori estimator of Melenk and Wohlmuth [17]. Since
this estimator is not p-robust, saturation uniformly in p could not be guar-
anteed. In [10] we turned to the more efficient p-refinements driven by the
equilibrated flux residual estimator of Braess, Pillwein and Schöberl [7],
and Ern and Vorahĺık [13, 14], which lead to a p-robust constant α. We
showed that the global norm of the residual r(vD) ∈ V ′ of vD, satisfying
‖r(vD)‖V ′ h ‖v− vD‖V , can be localized to stars around the nodes a ∈ A of
D, i.e.,

‖r(vD)‖2V ′ h
∑
a∈A
‖r(vD)‖2V ′a ,

where Va is a local space on the star. We further exploited that the data is
piecewise polynomial in VD to infer (1.2) from the local saturation property

‖r(vD)‖V ′a . ‖r(vD)‖(Va∩VD̃)′ , ∀a ∈ A. (1.3)

We finally reduced the validity of this property to the validity of a similar
one for three auxiliary functionals defined on the reference triangle, involving
interior or boundary polynomial data depending on VD (see [10, Theorem
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6.3]). We presented overwhelming computational evidence in [10] support-
ing the fact that in order to obtain a p-robust constant in (1.3), the local
polynomial degree p of VD should be increased by an amount proportional
to p.

In this paper we take up this question again in a further simplified setting
and give a rigorous answer. We denote by Ω the reference element, which we
assume to be the square Ω = I2 for d = 2, where I = (−1, 1). For p ≥ 0, let
Pp(Ω) denote the space of polynomials of total degree ≤ p restricted to Ω,
and let Vp := Pp(Ω) ∩H1

0 (Ω). Given f ∈ Pp(Ω) we consider the functional
` = `(f) ∈ H−1(Ω) given by v 7→

∫
Ω fv for all v ∈ H1

0 (Ω). The local
saturation property (1.3) formulated in Ω for the functional ` thus reads

‖`‖H−1(Ω) . ‖`‖V′q (1.4)

for some q > p. We point out that ` is similar to one of the three functionals
derived in [10]; we expect that our argument below extends to the remaining
two functionals, but omit the details.

If we equipH1
0 (Ω) with the energy inner product (·, ·)H1

0 (Ω) := (∇·,∇·)L2(Ω)

and resulting norm ‖ · ‖H1
0 (Ω), the Riesz representation u = u(f) ∈ H1

0 (Ω) of
` is the solution of the variational problem

(u, v)H1
0 (Ω) = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω); (1.5)

in turn, this is the weak form of the classical Poisson equation

−∆u = f in Ω, u = 0 on ∂Ω. (1.6)

On the other hand, the Riesz representation of the functional ` restricted to
Vq is the Galerkin projection of u onto Vq, i.e., uq = uq(f) ∈ Vq satisfying

(uq, vq)H1
0 (Ω) = (f, vq)L2(Ω) ∀v ∈ Vq (1.7)

(note that Vq reduces to {0} unless q ≥ 4, which we assume in the following).
With the notation just introduced, the desired inequality (1.4) is therefore
equivalent to

‖u‖H1
0 (Ω) . ‖uq‖H1

0 (Ω), (1.8)

which is another expression of the saturation property. We aim at estab-
lishing the following rigorous result.

Theorem 1.1 (saturation property). There exists a constant C > 0 such
that for all λ > 1, any mapping p 7→ q = q(p) satisfying q(p) > max(λp, p+4)
yields

‖u‖H1
0 (Ω) ≤ C

λ

λ− 1
‖uq‖H1

0 (Ω) for all p ≥ 0 and f ∈ Pp(Ω). (1.9)
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Since most hp-FEMs in the literature perform p-enrichment upon adding
a constant increment to p, typically 1 or 2, one may wonder whether the
preceding sufficient condition on q is also necessary. We now investigate this
question computationally upon defining

Cp,q,r := max
f∈Pp(Ω)

‖ur‖H1
0 (Ω)

‖uq‖H1
0 (Ω)

where r � q is chosen computationally so that ur is sufficiently close to u
in H1

0 (Ω); note that this is not a hidden saturation assumption because the
value of r is not predetermined but found once the number Cp,q,r stabilizes.
This calculation reduces to an eigenvalue problem, already used in [10], and
leads to Figure 1 for q = p + k with k = 2, 4, 6, 10. We thus realize that
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Figure 1: Constants Cp,q,r vs q = p + k for: k = 2 (solid), k = 4 (dashed),
k = 6 (dashdot), k = 10 (dotted). The dependence is clearly linear rather
than constant but the growth is moderate.

Cp,q,r exhibits a modest but linear growth on q = p+k for k constant, which
confirms that this choice is not p-robust. For moderate values of p this might
still be acceptable computationally, but it could compromise computational
complexity for extreme values of p as in spectral algorithms [8].

Even though the saturation property is quite delicate, it has been often
used in a posteriori error analysis of low order AFEMs until now. It orig-
inates in the work of Bank and Weiser [2], and Bornemann, Erdmann and
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Kornhuber [3]; see Nochetto [18] for related work. Dörfler and Nochetto [12]
proved the saturation property for p = 1, q = 2 and d = 2 provided data
oscillation is small relative to ‖u−up‖H1

0 (Ω) but showed counterexamples for
piecewise constant forcing f .

We stress that (1.9) is not asymptotic: it is valid for any p ≥ 0 and any
f ∈ Pp(Ω). Since uq → u in H1

0 (Ω) as q →∞ it is obvious that Cp,q,∞ → 1
as q →∞. It is for this reason that Theorem 1.1 has some intrinsic value in
the theory of FEMs and might have implications beyond a posteriori error
analysis.

The proof of Theorem 1.1 proceeds as follows. We perform a multilevel
decomposition of Vq

Vq =

q⊕
j=1

Wj , (1.10)

where Wj are polynomial subspaces of total degree j. Since this decompo-
sition is quasi-orthogonal in the sense that

Wj ⊥W` for all ` 6= j − 2, j, j + 2,

we need to account for interactions between neighboring spaces Wj . We
study the angle between subspaces Wj and show it is larger than π/3; this
is the content of Proposition 2.2. This in turn allows us to find the precise
decay of high frequency modes of uq, which leads to (1.9).

Such a rather technical derivation exploits the cartesian structure of
the square Ω, which allows the use of a tensor-product modal basis in Vq.
Similar arguments work for the hypercube Ω for d > 2, at the expense of
an increased complexity. If Ω is the reference simplex for d = 2, the Duffy
transform maps the Koorwinder-Dubiner warped tensor-product basis in Ω
to a subset of the tensor-product basis on the reference square examined in
this paper. Therefore, the analysis below might also be relevant to derive the
saturation property in the triangle. Overwhelming computational evidence
reported in [10] indicates that such property is true, but a rigorous proof
remains open.

The paper is organized as follows. In section 2 we introduce the multi-
level decomposition (1.10) and discuss a few properties including Proposi-
tion 2.2. In section 3 we analyze the decay of high order components of uq,
whereas in section 5 we prove Theorem 1.1. We conclude in section 6 with
the proof of the rather technical Proposition 2.2.
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2 Multi-level decompositions of polynomial spaces

Hereafter, we recall the definition of classical polynomial bases in L2(Ω)
and in H1

0 (Ω), obtained by tensorization from corresponding bases in L2(I)
and in H1

0 (I), where I = (−1, 1) is the reference interval. The elements of
theses bases enjoy certain orthogonality properties, by which a multi-level,
quasi-orthogonal decomposition of H1

0 (Ω) is obtained. This will be useful in
deriving the main result of this paper.

On the interval I, we consider the orthonormal Legendre basis in L2(I)

ϑk(x) =
√
k + 1

2 Lk(x), k ≥ 0, (2.1)

(where Lk stands for the k-th Legendre orthogonal polynomial in I, which
satisfies degLk = k and Lk(1) = 1), as well as the orthonormal Babuška-
Shen (BS) basis in H1

0 (I):

ϕk(x) =
√
k − 1

2

∫ 1

x
Lk−1(s) ds

=
1√

4k − 2

(
Lk−2(x)− Lk(x)

)
, k ≥ 2 .

(2.2)

The BS basis enjoys the following orthogonality properties in L2(I) for m ≥
k:

(ϕk, ϕm)L2(I) =


2

(2k−3)(2k+1) if m = k ,

− 1

(2k+1)
√

(2k−1)(2k+3)
if m = k + 2 ,

0 otherwise.

(2.3)

On the square Ω = I×I, the previous bases induce, resp., the tensorized
orthonormal Legendre basis in L2(Ω):

Θk(x) = ϑk1(x1)ϑk2(x2), k ∈ K̂, (2.4)

where k = (k1, k2), x = (x1, x2) and K̂ = N2, and the tensorized Babuška-
Shen basis in H1

0 (Ω):

Φk(x) = ϕk1(x1)ϕk2(x2), k ∈ K , (2.5)

where K = {k ∈ N2 : ki ≥ 2 for i = 1, 2}.
The tensorized BS basis is not orthogonal in H1

0 (Ω). Indeed, from the
expression

(Φk,Φm)H1
0 (Ω) = (ϕk1 , ϕm1)H1

0 (I)(ϕk2 , ϕm2)L2(I)

+ (ϕk1 , ϕm1)L2(I)(ϕk2 , ϕm2)H1
0 (I) ,
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and (2.3) we immediately obtain

(Φk,Φm)H1
0 (Ω) 6= 0 iff

{
k1 = m1 and k2 −m2 ∈ {−2, 0, 2}, or

k2 = m2 and k1 −m1 ∈ {−2, 0, 2}.
(2.6)

As a consequence, denoting by |k| = |k1|+ |k2| the `1-norm in Z2, we have

(Φk,Φm)H1
0 (Ω) = 0 if |k| − |m| 6∈ {−2, 0, 2}. (2.7)

At last, concerning the interaction between the Legendre basis and the
BS one, we have

(Θk,Φm)L2(Ω) 6= 0 iff k1 ∈ {m1 − 2,m1} and k2 ∈ {m2 − 2,m2}, (2.8)

which implies
(Θk,Φm)L2(Ω) = 0 if |k −m| > 4. (2.9)

Remark 2.1 (orthogonality by parity). Any function v ∈ L2(Ω) can be split
uniquely into four components

v =
∑

α∈{0,1}2
vα, (2.10)

where vα for α = (α1, α2) is even (odd, resp.) with respect to the vari-
able xi (i = 1, 2) iff αi = 0 (αi = 1, resp.). For instance, v(0,1) satisfies
v(0,1)(−x1, x2) = v(0,1)(x1, x2) and v(0,1)(x1,−x2) = −v(0,1)(x1, x2) for all
(x1, x2) ∈ Ω.

Components with different parity indices are always L2(Ω)-orthogonal,
and H1

0 (Ω)-orthogonal whenever v ∈ H1
0 (Ω). In particular, as a consequence

of (2.6) and (2.8), we observe that (Φk,Φm)H1
0 (Ω) = 0 and (Θk,Φm)L2(Ω) = 0

whenever k and m have at least one entry of different parity.

2.1 Detail spaces and their projectors

For j ≥ 4, let us define the finite dimensional subspace of H1
0 (Ω)

Wj := span{Φk : |k| = j} . (2.11)

Note that, thanks to (2.6), the functions Φk that generate Wj are mutually
orthogonal in H1

0 (Ω). We immediately have the multi-level decompositions

Vq =

q⊕
j=4

Wj for all q ≥ 4 and H1
0 (Ω) =

∞⊕
j=4

Wj . (2.12)
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Such decompositions are ‘quasi-orthogonal’, in the sense that by (2.7) we
have

Wj ⊥H1
0 (Ω) W` for all ` 6= j − 2, j, j + 2. (2.13)

Furthermore, the ‘angle’ between two non-orthogonal subspaces is uniformly
bounded away from 0, as implied by the following technical result, that will
be crucial in the sequel. We postpone its proof to section 6.

Proposition 2.2 (angle between Wj−2 and Wj). Let Pj : Wj−2 → Wj

(j ≥ 6) be the orthogonal projection with respect to the H1
0 (Ω)-inner product.

Then,

‖Pj‖L(Wj−2,Wj) <
1

2
.

Actually, there exists a constant c > 0 independent of j such that

‖Pj‖L(Wj−2,Wj) ≤
1

2

(
1− c

j2

)
.

Note that the orthogonal projection P ∗j : Wj → Wj−2, given by the
adjoint of Pj , satisfies the same estimate.

3 Decay of the higher-order components of the
Galerkin solution

Given f ∈ Pp(Ω), let uq ∈ Vq be the Galerkin solution defined in (1.7), and
let uq =

∑q
j=4 Uj , with Uj = Uj(q) ∈ Wj , be its multilevel decomposition

according to (2.12). The purpose of this section is to prove that for any q
sufficiently larger than p, the H1

0 (Ω)-norm of Uq and Uq−1 decay at least
proportionally to the quantity (q − p)−1. The precise result is as follows.

Proposition 3.1 (decay of Uj). For any p ≥ 0 and q > p̂ := p+ 4, one has

‖Uj‖H1
0 (Ω) ≤

6

q − p
‖uq‖H1

0 (Ω) , j = q, q − 1. (3.1)

Proof. We first observe that the parity splitting (2.10) of the forcing f in-
duces by linearity a corresponding splitting of the Galerkin solution uq as
well as of each of its multi-level details Uj , which is nothing but the parity
splitting of uq as well as of Uj . Therefore, thanks to the orthogonality of the
components with different parity (cf. Remark 2.1), it is enough to establish
(3.1) for each component separately, and then sum-up the squares of both
sides invoking Parseval’s identity.
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For the sake of definiteness, we will focus on the components of (even,
even) type, the other types being amenable to a similar treatment. Thus,

referring to (2.10) for the notation, we consider the component u
(0,0)
q of

uq (which solves (1.7) for the forcing f (0,0)), as well as its details U
(0,0)
j ∈

W
(0,0)
j := span{Φk : |k| = j and k1, k2 are even}. We aim at proving that

for q ≥ p̂+ 1 and j ∈ {q − 1, q}

‖U (0,0)
j ‖H1

0 (Ω) ≤
6

q − p
‖u(0,0)

q ‖H1
0 (Ω).

However, it is easily seen that U
(0,0)
q−1 = 0 if q is even, and similarly U

(0,0)
q = 0

if q is odd. Hence, we will prove

‖U (0,0)
q ‖H1

0 (Ω) ≤
6

q − p
‖u(0,0)

q ‖H1
0 (Ω) (3.2)

under the assumption that q is even, the other situation being similar.
To avoid cumbersome notation, for the rest of the proof we will drop the

superscript (0,0) from all entities. So, we will write

uq =

q∑′

j=4

Uj with Uj ∈Wj ,

where here and in the sequel the symbol
′

indicates that the summation runs
over even indices only.

From the Galerkin equations, we have for any even j ∈ [4, q]

(uq,Wj)H1
0 (Ω) = (f,Wj)L2(Ω) for all Wj ∈Wj . (3.3)

Since q ≥ p̂+ 1, exploiting (2.7) and (2.8), (3.3) yields

(Uq,Wq)H1
0 (Ω) + (Uq−2,Wq)H1

0 (Ω) = 0 for all Wq ∈Wq , (3.4)

which can be rewritten equivalently as

Uq = −T−1
q PqUq−2 (3.5)

where Tq = I and Pq is defined in Proposition 2.2.
For any even j satisfying p̂+ 2 < j ≤ q − 2, (3.3) yields

(Uj+2,Wj)H1
0 (Ω) + (Uj ,Wj)H1

0 (Ω) + (Uj−2,Wj)H1
0 (Ω) = 0 (3.6)
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for all Wj ∈Wj ; this is equivalent to P ∗j+2Uj+2+Uj+PjUj−2 = 0. Assuming

by induction that Uj+2 = −T−1
j+2Pj+2Uj with ‖T−1

j+2‖ ≤ 2 (which is trivially
true for j = q − 2 according to (3.5)), gives

(I − P ∗j+2T
−1
j+2Pj+2)Uj = −PjUj−2.

Using Proposition 2.2, the operator

Tj := I − P ∗j+2T
−1
j+2Pj+2 (3.7)

is invertible and satisfies

‖T−1
j ‖ ≤

1

1− 1
4‖T

−1
j+2‖

. (3.8)

We conclude that
Uj = −T−1

j PjUj−2. (3.9)

with ‖T−1
j ‖ ≤ 2, which proves the induction argument for all even j satis-

fying p̂+ 2 < j ≤ q − 2.
Next, we have to bound the norm of Uj−2 for j = p̂+ 4 when p, hence p̂,

is even, or for j = p̂ + 3 when p is odd. It is therefore convenient to define
the even integer

r :=

{
p̂ = p+ 4 if p is even,

p̂− 1 = p+ 3 if p is odd,

so that in both cases, we have to bound ‖Ur+2‖H1
0 (Ω). To this end, let us

introduce

V(0,0)
r :=

r⊕′

j=4

Wj , ūr :=

r∑′

j=4

Uj ∈ V(0,0)
r ;

note that ūr 6= ur because Uj = Uj(q). Then, in view of (3.3), we deduce

(ūr +

q∑′

j=r+2

Uj , vr)H1
0 (Ω) = (f, vr)L2(Ω) for all vr ∈ V(0,0)

r , (3.10)

which, thanks to (

q∑′

j=r+2

Uj , vr)H1
0 (Ω) = (P ∗r Ur+2, vr)H1

0 (Ω) for all vr ∈ V
(0,0)
r ,

implies that
ūr + P ∗r Ur+2 = ur.
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We observe that (3.6) is also valid for j = r+2. Since (Ur,Wr+2)H1
0 (Ω) =

(ūr,Wr+2)H1
0 (Ω) we obtain

(Ur+4,Wr+2)H1
0 (Ω) + (Ur+2,Wr+2)H1

0 (Ω) + (ūr,Wr+2)H1
0 (Ω) = 0 (3.11)

and
Tr+2Ur+2 = −Pr+2ūr

as it happened with (3.9). This implies

(Tr+2 − Pr+2P
∗
r )Ur+2 = −Pr+2ur (3.12)

which in view of (3.7) yields

(I − P ∗r+4T
−1
r+4Pr+4 − Pr+2P

∗
r )Ur+2 = −Pr+2ur. (3.13)

Since ‖P ∗r+4T
−1
r+4Pr+4 + Pr+2P

∗
r ‖ ≤ 21

4 + 1
4 = 3

4 , thanks to Proposition 2.2

and ‖T−1
r+4‖ ≤ 2, we conclude that

‖Ur+2‖H1
0 (Ω) ≤

1

1− 3
4

1

2
‖ur‖H1

0 (Ω) = 2‖ur‖H1
0 (Ω) ≤ 2‖uq‖H1

0 (Ω),

where last inequality follows from the inclusion V
0,0)
r ⊂ V

(0,0)
q and the mini-

mization property of the Galerkin solution.
Collecting the above results we arrive at

Uj = −T−1
j PjUj−2 r + 4 ≤ j ≤ q (j even),

‖Ur+2‖H1
0 (Ω) ≤ 2‖uq‖H1

0 (Ω).
(3.14)

For q ≥ p̂+ 4, this implies

‖Uq‖H1
0 (Ω) ≤

q∏′

j=r+4

‖T−1
j Pj‖‖Ur+2‖H1

0 (Ω) ≤ 2‖uq‖H1
0 (Ω)

q∏′

j=r+4

‖T−1
j Pj‖.

In order to bound the product on the right-hand side, let us write j = q−2m
with m = 0, 1, . . . , s and s := 1

2(q − r) − 2. Then, by Proposition 2.2, we
have ‖T−1

j Pj‖ ≤ 1
2‖T

−1
j ‖ =: αm. Recalling (3.8), it holds

αm ≤
1
2

1− 1
2αm−1

=
1

2− αm−1
, with α0 ≤ 1

2 .
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By recurrence, it is immediate to check that αm ≤ m+1
m+2 , whence

q∏′

j=r+4

‖T−1
j Pj‖ ≤

s∏
m=0

αm ≤
s∏

m=0

m+ 1

m+ 2
=

1

s+ 2
=

2

q − r
.

Since q ≥ p+ 6 if p is even and q ≥ p+ 5 if p is odd, it is easily checked that

2

q − r
=

{
2

(q−p)−4 ≤
6
q−p if p is even,

2
(q−p)−3 ≤

5
q−p if p is odd.

This gives the desired estimate (3.2).

4 A subspace decomposition in H1
0(Ω)

Consider the complementary space of Vq in H1
0 (Ω) given by

Vcq := closH1
0 (Ω) span {Φm : |m| > q}. (4.1)

Therefore, H1
0 (Ω) = Vq ⊕ Vcq and any v ∈ H1

0 (Ω) can be split as

v = vq + zq, vq ∈ Vq, zq ∈ Vcq.

The purpose of this section is to apply once more Proposition 2.2 and derive
a bound on the norm of vq and zq in terms of the norm of v.

We start with the following auxiliary result for any w =
∑q

j=4Wj ∈ Vq.

Lemma 4.1 (bound of ‖Wq‖H1
0 (Ω)). For any q ≥ 4 and any w =

∑q
j=4Wj ∈

Vq, one has

‖Wq‖H1
0 (Ω) ≤

√
2‖w‖H1

0 (Ω) .

Proof. As in the previous section, splitting w and Wq in their orthogonal
components according to the parity of the basis functions, it is enough to
establish the result for each component separately. Hereafter, we detail the
analysis for the ‘(even, even)’ case, in which case we may assume q even,

since otherwise W
(0,0)
q = 0 and the result is trivial.

Dropping as above the superscript (0,0) in functions and subspaces, we
write w = W +Wq with

W =

q−2∑′

j=4

Wj ∈ Vq−2.
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Keeping Wq fixed, let us first minimize the norm of w, i.e., let us look for
the minimizer W̄ ∈ Vq−2 of the quantity Ψ(W ) := ‖W +Wq‖2H1

0 (Ω)
. Such a

function satisfies

(W̄ , Y )H1
0 (Ω) = −(Wq, Y )H1

0 (Ω) for all Y ∈ Vq−2 (4.2)

and
Ψ(W̄ ) = ‖Wq‖2H1

0 (Ω) + (Wq, W̄ )H1
0 (Ω) . (4.3)

Using the orthogonality conditions (2.7), we obtain the sequence of equations

(W̄4, Y4)H1
0 (Ω) + (W̄6, Y4)H1

0 (Ω) = 0 for all Y4 ∈W4 ,

and

(W̄j−2, Yj)H1
0 (Ω) + (W̄j , Yj)H1

0 (Ω) + (W̄j+2, Yj)H1
0 (Ω) = 0 for all Yj ∈Wj

for any even j such that 4 < j < q − 2, and finally

(W̄q−4, Yq−2)H1
0 (Ω) + (W̄q−2, Yq−2)H1

0 (Ω) = −(Wq, Yq−2)H1
0 (Ω)

for all Yq−2 ∈Wq−2. Setting recursively T4 = I and Tj = (I−PjT−1
j−2P

∗
j ), we

derive W̄j = −T−1
j P ∗j+2W̄j+2 for j = 4, 6, . . . , q−4, and W̄q−2 = −T−1

q−2P
∗
qWq.

Note that, thanks to Proposition 2.2, one can prove as in Sect. 3 that
‖T−1

j ‖ ≤ 2 for all j. Since

(Wq, W̄ )H1
0 (Ω) = (Wq, W̄q−2)H1

0 (Ω)

= (P ∗qWq, W̄q−2)H1
0 (Ω) = −(P ∗qWq, T

−1
q−2P

∗
qWq)H1

0 (Ω),

using once more Proposition 2.2, we deduce

(P ∗qWq, T
−1
q−2P

∗
qWq)H1

0 (Ω) ≤ ‖T−1
q−2‖ ‖P

∗
q ‖2‖Wq‖2H1

0 (Ω)

≤ 2

(
1

2

)2

‖Wq‖2H1
0 (Ω) =

1

2
‖Wq‖2H1

0 (Ω) .

In view of (4.3) and the preceding estimate, we conclude that

‖w‖2H1
0 (Ω) = Ψ(W ) ≥ Ψ(W̄ ) ≥ ‖Wq‖2H1

0 (Ω) −
1

2
‖Wq‖2H1

0 (Ω) =
1

2
‖Wq‖2H1

0 (Ω)

for any w ∈ V
(0,0)
q , whence the asserted estimate follows.

We now establish the main result of this section.
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Proposition 4.2 (control of ‖zq‖H1
0 (Ω)). There exists a constant C2 > 0

such that for any q ≥ 4 and any v = vq + zq ∈ Vq ⊕ Vcq, one has

‖zq‖H1
0 (Ω) ≤ C2 q ‖v‖H1

0 (Ω). (4.4)

Proof. Using ‖zq‖H1
0 (Ω) ≤ ‖v‖H1

0 (Ω) + ‖vq‖H1
0 (Ω), it is enough to prove the

existence of a constant C ′2 > 0 independent of q such that for all v ∈ H1
0 (Ω)

‖vq‖H1
0 (Ω) ≤ C ′2q‖v‖H1

0 (Ω) . (4.5)

To this end, let us focus as above on the ‘(even, even)’ components of v
and vq, in which case it is not restrictive to assume q even, and drop the
superscript (0,0) in functions and subspaces. Let us fix any even integer
r > q and assume first that v ∈ Vr is written as v = vq + V , with

V =

r∑′

j=q+2

Vj ∈
r⊕′

j=q+2

Wj .

By applying the same technique as above, i.e., minimizing the (squared)
norm Ψ(V ) := ‖vq + V ‖2

H1
0 (Ω)

, we find that

‖v‖2H1
0 (Ω) = Ψ(V ) ≥ Ψ(V̄ ) = ‖vq‖2H1

0 (Ω) + (vq, V̄ )H1
0 (Ω) , (4.6)

where the minimizer V̄ =

r∑′

j=q+2

V̄j is such that V̄q+2 = −T−1
q+2P̃q+2vq, for

Tq+2 defined recursively by (3.7) with Tr = I, and P̃q+2 : H1
0 (Ω) → Wq+2

defined as the orthogonal projection in the H1
0 (Ω) inner product. Now,

(vq, V̄ )H1
0 (Ω) = (vq, V̄q+2)H1

0 (Ω) = (P̃q+2vq, V̄q+2)H1
0 (Ω)

= −(P̃q+2vq, T
−1
q+2P̃q+2vq)H1

0 (Ω)

with∣∣(P̃q+2vq, T
−1
q+2P̃q+2vq)H1

0 (Ω)

∣∣ ≤ ‖T−1
q+2‖ ‖P̃q+2vq‖2H1

0 (Ω) ≤ 2‖P̃q+2vq‖2H1
0 (Ω) .

Writing vq =

q∑′

j=4

Vj , one has P̃q+2vq = P̃q+2Vq = Pq+2Vq, whence by Propo-

sition 2.2 with εj = cj−2 and Lemma 4.1 we get

‖P̃q+2vq‖H1
0 (Ω) = ‖Pq+2Vq‖H1

0 (Ω) ≤
1

2
(1− εq+2) ‖Vq‖H1

0 (Ω)

≤ 1√
2

(1− εq+2) ‖vq‖H1
0 (Ω) ,
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which gives∣∣(P̃q+2vq, T
−1
q+2P̃q+2vq)H1

0 (Ω)

∣∣ ≤ (1− εq+2)2 ‖vq‖2H1
0 (Ω) .

Then, from (4.6) we obtain

‖v‖2H1
0 (Ω) ≥ εq+2(2− εq+2)‖vq‖2H1

0 (Ω) ,

which immediately yields (4.5) for all v ∈ Vr = V
(0,0)
r and all r > q.

The same result holds for all other combinations of parity indices; hence,
it holds for any v ∈ Vr. Since polynomials vanishing on ∂Ω form a dense
subset of H1

0 (Ω), we conclude that (4.5) holds for all v ∈ H1
0 (Ω).

5 Proof of Theorem 1.1

We actually prove the equivalent condition

‖u− uq‖H1
0 (Ω) . ‖uq‖H1

0 (Ω),

and for that we write

‖u− uq‖H1
0 (Ω) = sup

v∈H1
0 (Ω), v 6=0

(u− uq, v)H1
0 (Ω)

‖v‖H1
0 (Ω)

.

As in the previous section, let us split any v ∈ H1
0 (Ω) as v = vq+zq ∈ Vq⊕Vcq,

where Vcq is given by (4.1). By the Galerkin orthogonality and the definition
of u, we have

(u− uq, v)H1
0 (Ω) = (u− uq, zq)H1

0 (Ω) = (f, zq)L2(Ω) − (uq, zq)H1
0 (Ω).

Recalling (2.8) and the condition q > p̂, we have (f, zq)L2(Ω) = 0, hence

(u− uq, v)H1
0 (Ω) = −(uq, zq)H1

0 (Ω).

Now, recalling (2.12), we expand the Galerkin solution uq as uq =
∑q

j=4 Uj .
Invoking (2.7), we get

(uq, zq)H1
0 (Ω) = (Uq−1 + Uq, zq)H1

0 (Ω).

Applying Propositions 3.1 and 4.2, we get the following bound

(u− uq, v)H1
0 (Ω) ≤ C1C2

q

q − p
‖uq‖H1

0 (Ω)‖v‖H1
0 (Ω).

Since for q > λp, the relation q
q−p <

λ
λ−1 holds, and the proof is complete.



16

6 Proof of Proposition 2.2

We establish the bound ‖Pj+2‖L(Wj ,Wj+2) ≤ 1
2

(
1
2 −

c
j2

)
for any j ≥ 4. This

will be achieved through various steps: we bound ‖Pj+2‖L(Wj ,Wj+2) in sec-
tion 6.1 by the `∞-norm of a suitable matrix; in sections 6.2 and 6.3 we
characterize such an `∞-norm and show that the desired bound reduces to
certain properties of a suitable function; we finally analyze such function in
section 6.4. This analysis is computer assisted.

6.1 Bounding the operator norm by a matrix norm

Recalling the definition (2.11) of the subspaces Wj as well as Remark 2.1, we
can split each Wj into its two nontrivial orthogonal components according

to parity; precisely, if j is even we have Wj = W
(0,0)
j ⊕W

(1,1)
j , whereas if j

is odd we have Wj = W
(1,0)
j ⊕W

(0,1)
j . Furthermore, again by orthogonality

it holds Pj+2 ∈ L(Wα
j ,W

α
j+2) for any α ∈ {0, 1}2; hence, our target result

can be achieved by considering each parity component separately. Here-
after, we will analyze the case j even and α = (0, 0), i.e., we will bound
‖Pj+2‖L(W

(0,0)
j ,W

(0,0)
j+2 )

; the other three cases can be treated similarly.

Let us set dj := dimW
(0,0)
j , note that dj = j

2−1 because j = |h| = h1+h2

with h1, h2 ≥ 2 even, and let us introduce the normalized basis functions
Φ̂h := Φh/‖Φh‖H1

0 (Ω). For the sake of definiteness, let us order the basis

functions in each W
(0,0)
j by increasing the first index h1. Any v ∈ W

(0,0)
j is

represented as

v =
∑′

|h|=j

v̂hΦ̂h with v := (v̂h) ∈ Rdj ;

the summation symbol means that only indices h = (h1, h2) with even com-

ponents are considered. Similarly, any w ∈W
(0,0)
j+2 is represented as

w =
∑′

|k|=j+2

ŵkΦ̂k with w := (ŵk) ∈ Rdj+2 .

Therefore, if w = Pj+2v, then w = AT
j v, where Aj ∈ Rdj×dj+2 is the matrix

whose entries are

ahk := (Φ̂h, Φ̂k)H1
0 (Ω) for |h| = j, |k| = j + 2,
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and h1, h2, k1, k2 even (recall that the Φh’s that span W
(0,0)
j form an orthog-

onal basis for this space). Note that Aj is a sub-block of the (even, even)
block A0,0 of the stiffness matrix A for the normalized Babuška-Shen basis
in H1

0 (Ω). More precisely, denoting by Ij ∈ Rdj×dj the identity matrix of
order dj , we have A0,0 = tridiag (AT

j−2, Ij , Aj) (with j ≥ 4).
Now, one immediately has

‖Pj+2‖L(W
(0,0)
j ,W

(0,0)
j+2 )

= ‖AT
j ‖2 = ‖Aj‖2 = ‖P ∗j+2‖L(W

(0,0)
j+2 ,W

(0,0)
j )

(where ‖ · ‖p denotes the p-norm of a matrix), which together with the

inequality ‖Aj‖2 = ρ(AjA
T
j )1/2 ≤ ‖AjA

T
j ‖

1/2
∞ , yields the bound

‖Pj+2‖L(W
(0,0)
j ,W

(0,0)
j+2 )

≤ ‖AjA
T
j ‖1/2∞ . (6.1)

6.2 A first expression for the matrix entries

In order to compute the norm on the right-hand side of (6.1), we observe
that Aj is a bi-diagonal matrix by condition (2.6). In fact, for any index h
with |h| = j the only indexes h′, h′′ with |h′| = |h′′| = j + 2 that give rise to
entries ah,h′ and ah,h′′ different from 0 are h′ = h+(0, 2) and h′′ = h+(2, 0).
The explicit value of these entries is computable via the following formulas
(in which all inner-products and norms are those of H1

0 (Ω)):

ah,h′ = (Φ̂h, Φ̂h′) =
(Φh,Φh′)

‖Φh‖ ‖Φh′‖
ah,h′′ = (Φ̂h, Φ̂h′′) =

(Φh,Φh′′)

‖Φh‖ ‖Φh′′‖

with

(Φh,Φh′) = − 1

(2h2 + 1)
√

(2h2 − 1)(2h2 + 3)
,

(Φh,Φh′′) = − 1

(2h1 + 1)
√

(2h1 − 1)(2h1 + 3)
,

and

‖Φh‖2 =
2

(2h1 − 3)(2h1 + 1)
+

2

(2h2 − 3)(2h2 + 1)
,

whence

‖Φh′‖2 =
2

(2h1 − 3)(2h1 + 1)
+

2

(2h2 + 1)(2h2 + 5)
,

‖Φh′′‖2 =
2

(2h1 + 1)(2h1 + 5)
+

2

(2h2 − 3)(2h2 + 1)
.



18

Since 2 ≤ h1 ≤ j−2 (h1 even), it is convenient to set n := j
2 and h1 := 2i,

with 1 ≤ i ≤ n−1; consequently, h2 := j−h1 = 2(n− i). Substituting these
expressions in the previous formulas, we obtain

(Φh,Φh′) = − 1

(4(n− i) + 1)
√

(4(n− i)− 1)(4(n− i) + 3)
=: ai

(Φh,Φh′′) = − 1

(4i+ 1)
√

(4i− 1)(4i+ 3)
=: bi,

and

‖Φh‖2 =
2

(4i− 3)(4i+ 1)
+

2

(4(n− i)− 3)(4(n− i) + 1)
=: φi,

‖Φh′‖2 =
2

(4i− 3)(4i+ 1)
+

2

(4(n− i) + 1)(4(n− i) + 5)
=: ψi,

‖Φh′′‖2 =
2

(4i+ 1)(4i+ 5)
+

2

(4(n− i)− 3)(4(n− i) + 1)
=: ηi.

Note that bi = an−i and φi = φn−i, ηi = ψn−i. Hence, for 1 ≤ i ≤ n− 1,

(Aj)ii =
ai√
φiψi

=: δi, (Aj)i,i+1 =
bi√
φiηi

=
an−i√
φn−iψn−i

= δn−i,

i.e., Aj = bidiag (δi, δn−i). Consequently, the nonzero entries of the matrix
AjA

T
j ∈ Rdj×dj are

(AjA
T
j )i,i−1 = δiδn−i+1, (AjA

T
j )ii = δ2

i + δ2
n−i, (AjA

T
j )i,i+1 = δi+1δn−i,

i.e., AjA
T
j = tridiag (δiδn−i+1, δ

2
i + δ2

n−i, δi+1δn−i). Let us denote by s
(j)
i

the sum of the entries in the i-th row of the matrix AjA
T
j , which are all

non-negative. Setting for convenience δn = 0, we thus have

s
(j)
i = δiδn−i+1 + δ2

i + δ2
n−i + δi+1δn−i, 1 ≤ i ≤ n− 1. (6.2)

It is easily seen that s
(j)
i = s

(j)
n−i for 1 ≤ i ≤ n

2 . Since

‖AjA
T
j ‖∞ = max

1≤i≤n−1
s
(j)
i , (6.3)

in view of (6.1) we are left with the problem of proving the existence of a
constant C > 0 such that

max
1≤i≤n−1

s
(j)
i ≤

1

4
− C

j2
for all j ≥ 4; (6.4)
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indeed, thanks to
√

1
4 − x ≤

1
2−x for x ≤ 1

4 , we obtain Proposition 2.2 with

c = C.
A direct computation shows that s

(j)
1 and s

(j)
n−1 satisfy the bound in (6.4)

for a suitable C, because s
(j)
1 = s

(j)
n−1 <

1
4 for all j ≥ 4 and s

(j)
1 → 3

28 as
j →∞. Thus, in the sequel we focus on the rows indexed from 2 to n− 2,
for j ≥ 8 (i.e., n ≥ 4).

6.3 A second expression for the matrix entries

We now apply a change of variables. Observing that all quantities ai, φi,
ψi, ηi, δi defined above depend upon 4i or 4(n − i) for 2 ≤ i ≤ n − 2, we
first set I := 4i and N := 4n ≥ 16. To introduce the new variables (t, r),
we first go back to the original range 1 ≤ i ≤ n− 1, i.e. 4 ≤ I ≤ N − 4, and
parametrized I as follows

I = 4(1− t) + (N − 4)t = 4 +Rt, 0 ≤ t ≤ 1,

with R := N − 8 ≥ 8. Similarly, we write

N − I = 4 +Rτ, τ = τ(t) := 1− t.

At last, we introduce the second parameter r := 1
R ≤

1
8 . With these notation

at hand, we easily obtain the following expressions for ai, φi and ψi:

a2
i =

1

R4

1

(τ + 3r)(τ + 5r)2(τ + 7r)
=:

1

R4
A(t, r),

φi =
1

R2

(
2

(t+ r)(t+ 5r)
+

2

(τ + r)(τ + 5r)

)
=:

1

R2
B(t, r),

ψi =
1

R2

(
2

(t+ r)(t+ 5r)
+

2

(τ + 5r)(τ + 9r)

)
=:

1

R2
C(t, r).

Hence, we arrive at

δ2
i =

a2
i

φiψi
=

A(t, r)

B(t, r)C(t, r)
=: D(t, r).

Straightforward computations show that

δ2
i+1 = D(t+ 4r, r), δ2

n−i = D(τ, r), δ2
n−i+1 = D(τ + 4r, r).
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We conclude that the sum of the entries in the i-th row of AjA
T
j , given by

(6.2), can be expressed as follows:

s
(j)
i =

√
D(t, r)D(τ + 4r, r) +D(t, r)

+
√
D(t+ 4r, r)D(τ, r) +D(τ, r) =: S(t, r)

(6.5)

for 2 ≤ i ≤ n− 2, which is equivalent to 4r ≤ t ≤ 1− 4r.

6.4 Bounding the matrix norm

Since the function S(t, r) is symmetric with respect to t = 1
2 for any r, we

may restrict it to the triangle 0 ≤ t ≤ 1
2 , 0 ≤ r ≤ 1

4 t. Fig. 2 displays
two plots of the function 1

4 − S(t, r), and suggests clearly that S(t, r) < 1
4

whenever r > 0, with a quadratic behavior in r at the origin. However,
establishing such results rigorously is somehow complicated by the fact that
S(t, r) is singular at (t, r) = (0, 0), where it becomes multi-valued.

To remove this singularity, we apply the Duffy transform (t, a) 7→ (t, r) =
(t, at), which maps the rectangle 0 ≤ t ≤ 1

2 , 0 ≤ a ≤ 1
4 onto the triangle

0 ≤ t ≤ 1
2 , 0 ≤ r ≤ 1

4 t. Correspondingly, we are led to consider the
function σ(t, a) := S(t, at), which turns out to be smooth everywhere in this
rectangle; a plot of the function 1

4 − σ(t, a) is depicted in Fig. 3.

Figure 2: Two views of the graph of the function 1
4 −S(t, r) on the triangle

0 ≤ t ≤ 1
2 , 0 ≤ r ≤ 1

4 t. Note that S(t, r) is multi-valued at t = r = 0.

With the help of a symbolic manipulator, we obtain, for all t ∈ [0, 1
2 ],

σ(t, 0) =
1

4
,

∂σ

∂a
(t, 0) = 0,

∂2σ

∂a2
(t, 0) = −G(t)

τ2
,
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Figure 3: A view of the graph of the function 1
4 − σ(t, a) in the rectangle

0 ≤ t ≤ 1
2 , 0 ≤ a ≤

1
4 .

where

G(t) := 3t10 +9t8τ2−8t7τ3 +16t6τ4 +24t5τ5 +16t4τ6−8t3τ7 +9t2τ8 +3τ10.

We note that the polynomial G(t) is strictly decreasing in [0, 1
2 ] between

G(0) = 3 andG(1
2) = 1. We thus easily see that ∂2σ

∂a2
(t, 0) ≤ −1 for 0 ≤ t ≤ 1

2 ;
hence, by continuity we get the existence of two constants C∗ > 0 and
a∗ ∈ (0, 1

4 ] such that ∂2σ
∂a2

(t, a) ≤ −C∗ for 0 ≤ t ≤ 1
2 and 0 ≤ a ≤ a∗. With

these constants at hand, by Taylor’s expansion with Lagrange’s reminder,
we are entitled to write

σ(t, a) =
1

4
+
∂2σ

∂a2
(t, ā)a2 ≤ 1

4
− C∗a2 for 0 ≤ t ≤ 1

2 , 0 < a ≤ a∗,

with some ā = ā(t, a) ∈ (0, a).

By computing the symbolic expression of the function ∂2σ
∂a2

(t, a) and by
examining its level sets (via a numerical procedure), one finds that a∗ safely
satisfies a∗ >

1
10 (see Figure 4). Therefore, going back to our function

S(t, r) = σ(t, rt ), we deduce that

S(t, r) ≤ 1

4
− C∗
t2
r2 ≤ 1

4
− 4C∗r

2 for 0 < r ≤ 1
10 t, t ≤ 1

2 .

Recalling (6.5) and using the expressions t = 4r(i− 1) and r = 1
2

1
j−4 >

1
2j ,
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Figure 4: Contour plot of ∂
2σ
∂a2

(t, a): the function is negative on [0, 1
2 ]× [0, a∗]

with a∗ > 1
10 . The thicker curve represents the zero level set

we immediately obtain

s
(j)
i ≤

1

4
− C∗
j2

for 4 ≤ i ≤ n
2 . (6.6)

Note that we require the restriction i ≥ 4 to satisfy the constraint

r ≤ 1

10
t =

2

5
r(i− 1) ⇒ i ≥ 7

2
.

Therefore, we are left with the task of establishing a similar bound for s
(j)
2

and s
(j)
3 by different means. It is easily checked that for j → ∞ it holds

s
(j)
2 → 65

308 <
1
4 and s

(j)
3 → 55

220 <
1
4 , while both s

(j)
2 and s

(j)
2 are < 1

4 for all
j ≥ 8. This implies the desired bound for a suitable constant C∗∗ > 0.

The proof of (6.4) is thus complete, whence Proposition 2.2 is estab-
lished.
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