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      In this work, we evaluate different classification 

algorithms used for multi-target detection in hyperspectral 

imaging. We took into consideration the scenario of 

landmine detection in which we compared the performance 

of each method in various cases. In addition, we introduced 

the detection of targets using artificial intelligence-based 

methods in order to obtain better detection performance 

together with target identification and estimation of its 

abundance. These algorithms were tested on various types 

of hyperspectral images where the spectra of the landmines 

were planted in different proportions in the hyperspectral 

scenes. The results show the advantage of using our training 

strategy for radial basis function neural networks (RBFNN) 

in order to detect, identify and estimate the abundance of 

the targets in hyperspectral images at the same time. 

Moreover, the proposed technique requires a comparable 

computational cost with respect to state of art target 

detection techniques. 

 
Keywords— Hyperspectral Imaging, RBF Neural Network, 

landmine detection, remote sensing. 

I. INTRODUCTION  

  Hyperspectral imaging or imaging spectroscopy is a trending 

technique in remote sensing. It is widely used in different fields 

like agriculture [1], food quality monitoring [2], surveillance [3], 

target detection [4,5], and many others. Thanks to this 

technology, we are able to detect at each pixel, the portion of 

light reflected in hundreds of wavelengths. By this, we obtain a 

three-dimensional data structure that contains both spatial and 

spectral information: the first and second dimensions contain 

spatial information and the third one includes the spectral 

information. Knowing the portion of light reflected at each 

wavelength, we get what we call the reflectance spectrum. This 

spectrum can be used as a fingerprint to identify the material at 

each pixel.  

  Due to the great impact of the problem of landmines on 

modern societies [6], we are focusing in our studies on the 

detection of landmines using hyperspectral imaging. This 

technique has the potential to reduce the time needed to detect 

landmines and at the same time to make the detection safer. 

  In this paper, we propose a supervised landmine detection 

algorithm based on a radial basis function neural network 

(RBFNN) built using a customized training strategy. In addition, 

we test different algorithms and image processing tools usually 

used for target or anomaly detection using hyperspectral 

imagery. The goal of this test is to evaluate and compare the 

performance of the proposed technique with state of art 

techniques in the detection of different types of landmines at the 

same time.  

 

  Several algorithms have been proposed for target detection in 

hyperspectral imagery [7,8]. Most of them do not support 

multitarget detection unless we run them several times each run 

for a specific target, like Spectral Angular Mapper (SAM), 

Adaptive Coherence Estimator (ACE), Matched Filter (MF) [9]. 

However, this will be a time-consuming process especially if 

the number of targets is high. Some algorithms were extended 

for multitarget case e.g. the Constrained Energy minimization 

(CEM) algorithm, originally made to give an estimation of the 

abundance of the target, has several extensions to fit the multi 

target detection scenario: multiCEM, SumCEM, Winner-take-

all CEM (WTACEM) and others [10]. Other unsupervised 
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algorithms may be used to detect targets without referring to 

their reflectance spectrum [11]. 

  In this paper, we propose a customized training strategy to 

train an RBFNN for the goal of multitarget detection using 

hyperspectral imagery. We will compare the performance of the 

proposed method in different types of images.   

  The paper is organized as follows: in Section 2 we introduce 

the RBFNN. In Sections 3 we describe our experimental setting 

while in Section 4, we evaluate the performance of the proposed 

method by comparison with existing methods when applied on 

images with planted targets simulating the landmine detection 

scenario. Discussion and conclusions are drawn in Section 5 and 

Section 6, respectively. 

 

II. NEURAL NETWORKS BASED TARGET DETECTION 

  In this section, we will introduce the use of artificial 

intelligence in order to detect targets in hyperspectral imagery. 

Specifically, we will work on neural networks (NN).  

Artificial Neural Network (ANN) is a computational 

model used for various machine learning and computer vision 

tasks. It is designed to work in the same way as the neural 

networks of the human brain [12]. It is composed of network of 

connected units called “neurons” where each connection has a 

weight. The neurons are grouped into layers. In addition to the 

weights, each layer has a bias that plays a crucial role in the 

detection [13]. A basic NN is composed of two layers: input 

layer and output layer. This type of NN is called Single layer 

NN. Other type of NN may have additional hidden layers 

between the input and output layers. In this category, we can 

find the Multi-Layer Perceptron (MLP). This kind of ANN has 

the ability to solve nonlinear complex problems that the single 

layer NN will not be able to solve [13]. 

 Another type of neural networks is the Radial basis functions 

neural network. It has the same structure of layers as the MLP. 

However, in the hidden layer, the activation function is a kernel 

function (usually Gaussian) [14]. Usually, MLP NN are faster 

than RBF NN as their computation do not necessitate the use of 

kernels and is therefore simpler. However, in case of high 

dimensional data, as in our case where the pixel is of 189 bands 

dimensions, the RBF performs better. RBF showed better 

performance in our case and thus we will adopt this method in 

the comparison. 

  Here, we used a two-layers RBF neural network (Fig.1). The 

activation function of the first layer (hidden layer) is a Gaussian 

kernel defined as 

𝑍(𝑥) =  
𝑒𝑥𝑝(||𝑥 − µ||2)

𝜎2  

where µ is an n-dimensional vector called the center of the 

radial basis function and 𝜎  is a width parameter related to 

the spread of the function around its center.  

  In our hyperspectral image case, the training set is composed 

of group of signatures classified between landmines and 

background material. Each input is a signature of a material 

introduced as a vector. So the number of neurons in the input 

layer is equal to the number of bands used in the test. The 

number of neurons in the output layer is equal to the number of 

targets plus one to represent each target class plus the 

background class. In the hidden layer, the number of neurons, 

which equal the number of centers µ, is empirically estimated 

to minimize the global problem. The centers are randomly 

chosen from a subset of the training dataset. The spread 

parameter is calculated in such a way as to achieve a certain 

amount of overlapping between neighbor radial basis functions 

to form a smooth and contiguous interpolation of the input space 

[26].  

The weights are first randomly set and then they are updated 

during the training phase using the gradient decent rule [27]. 

The activation function of the output layer is linear. 

 

Fig 2: Reflectance spectrum of the pmn mine (target) inserted in the image Fig.3: Reflectance spectrum of the vs-2.2 mine (target) inserted in the image 



 
Fig. 1: Architecture of the RBFNN used in this test 

III. COMPARATIVE STUDY 

  We tested the target detection algorithms on 17 hyperspectral 

images taken using Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) of JPL NASA Laboratory. These 

scenes are available online on the site [15]. This airborne sensor 

detects hyperspectral images between 394nm and 2500nm with 

spectral resolution of 10nm in 224 bands. The spatial resolution 

of the images depends on the altitude of the airplane during 

image acquisition. We can find different scenes of different 

spatial resolutions. To limit the effect of noise, we discarded 

some bands characterized by low Signal to Noise Ratio (SNR) 

due to water vapor absorption effect. For this reason, we are 

going to use 189 out of 224 bands. In the chosen scenes, we 

introduced in different locations the spectrum of two types of 

landmines: the PMN anti-personnel landmine (Fig.2) and VS-

2.2 anti-tank mine (Fig.3). The reflectance spectra of the 

landmines were taken in our Lab using Field Spec 4 Hi-Res 

spectroradiometer. This device is able to acquire the reflectance 

spectrum between 350 and 2500 nm with spectral resolution of 

1nm. We took the spectral signature in different conditions: in 

a laboratory using a specific source of light, and by deploying 

the landmine cases in either a grass field or bare soil during a 

sunny day. In our experiments, we implant in the AVIRIS 

scenes the spectral reflectance taken when thin layers of grass 

covered the landmine, as grass is the dominant background 

material in the used scenes. We admitted the target implant 

method in this case because we are simulating the landmine 

detection scenario where it is very hard and dangerous to 

acquire hyperspectral data of real minefields and such images 

are not available on public datasets. In addition, it has been 

proven in [28] that the target implant method does provide 

accurate relative predictions in terms of both target difficulty 

and detector performance. 

  The insertion was done after several image-preprocessing 

steps: firstly, atmospheric correction is done to convert the 

image from radiance domain that depends on the illumination 

and weather conditions into unified reflectance domain scaled 

between 0 and 1. Then the image is upsampled in order to 

increase the spatial resolution of the image to arrive to pixel size 

equivalent to the size of the mine. Some bands characterized by 

low SNR due to vapor absorption are discarded. As the spectra 

spectrum of the mine is very high, we took the reflectance of 

the mines in the bands that match the bands of the image. 

  In order to test the full pixel and subpixel cases, the targets 

were planted in different proportions in the images. The 

signatures of the landmines were mixed with the neighboring 

pixel signature in different fill fractions using the following 

formula:  

 PS = α*T + (1-α)*B 

where PS represents the planted spectrum in the image, T is a 

vector containing the target reflectance spectrum, B is the 

reflectance spectrum of the background material and α is the 

target fill fraction which is in other terms the abundance of the 

target in the planted pixel. In our experiments, we considered 

values of α varying between 0.6 and 0.9. Different values of 

abundance factor α are used to minimize the contrast between 

the implanted pixel and its surrounding making the detection 

harder. In the 17 images, the total number of pixels with 

landmine abundance factor of 𝛼 = 0.6 (PMN& VS-2.2) is 136, 

170 have landmine abundance factor 𝛼 = 0.7 , 102 have 

landmine abundance factor 𝛼 = 0.8   and 110 pixels have 

landmine abundance factor 𝛼 = 0.9 . 

IV. RESULTS 

  In this section, we show a comparative study between several 

target detection algorithms in order to evaluate performance 

based on three metrics:  

• Probability of detection (Pd) which is the number of detected 
targets over the number of actual targets in the scene. 

• False Alarm rate (FAR), which represents the number of 
false positives (i.e., pixels marked as targets while they are 
not). To normalize between different images, the false alarm 
is computed per unit area (e.g per square meter.)  

• Computation Time (CT) which represent the CPU time in 
seconds needed to compute the algorithms. 

  The tested algorithms used in this paper are: Spectral Angular 

Mapper (SAM) [20], Orthogonal Subspace Projection (OSP) 

[21], Adaptive Coherence Estimation (ACE) [22], Constrained 

Energy Minimization (CEM) [23], Multiple target CEM 

(MTCEM) [23], Winner take all CEM (WTACEM), Sum CEM 

(SCEM)[23], Spectral Information Divergence (SID) [23], 

Matched Filter(MF) [23] and the proposed radial basis function 

neural network (RBFNN). 

  

 

  

   To compare the results, we may use the Receiver Operating 

Curve (ROC), which is the plot of Probability of Detection 

versus the FAR. However, in our case, ROC is not very useful 

due to the rarity of targets. For this reason, we adopted the 

following comparison strategy: 

  Each time we apply a target detection algorithm, we get a value 

between zero and one that represents the degree of similarity 

Fig. 4: Average computational time /algorithm 



between the pixel and the target. The presence or the absence of 

the target is decided according to a threshold affecting the Pd 

and FAR registered by each method. For this reason, to be able 

to compare between different algorithms, the decision threshold 

used to discriminate between target and background material is 

set to be the lowest value such that all targets are detected (Pd=1) 

and then the FAR is registered. Therefore, a technique is said to 

be more efficient if it has lower FAR when all targets have been 

detected.  

  In the case of neural networks, the best NN that gives a Pd=1 

with minimum FAR was individuated after several tests where 

we took into consideration different training samples and spread 

values. First, we randomly divided the 17 images between 

training and testing data where we used some images in order 

to train the NN and the other images to evaluate the 

performance. Using this strategy, the training was very 

intensive process, took a long time, necessitating a large number 

of neurons to consider all possible cases and we did not arrive 

to zero FAR. In order to make the training process less intensive 

and to avoid the problem of overfitting the network, we found 

that training the network using only few pixels that represent 

the image endmembers is sufficient to obtain a NN able to 

estimate the abundance of targets and background in each pixel. 

Therefore, in the training phase, an estimation of the 

endmembers of the images (an estimation of basic materials that 

are composing the scenes) in addition to the spectra of the 

landmines are used. The spectra of the endmembers are 

estimated using Automatic Target Generation Process (ATGP) 

algorithm [16] which gives estimation signatures for each 

endmember. It is not necessary that these signatures exist 

literally in the image, because each pixel of the image may be 

made of a linear combination of different endmembers. 

The input training dataset is formed of 377 background spectra, 

5 spectra of PMN mine and 5 spectra of VS-2.2 mine.  The 

corresponding outputs are respectively [0,0,1],[1,0,0], and 

[0,1,0]. Since the network is trained with the pure reflectance 

spectrum of the target, by using this training strategy the output 

for each pixel will be a vector estimating the abundance fraction 

of PMN, VS-2.2, or general background. As the minimum fill 

fraction of the landmines is 0.6, we set a fixed threshold =0.5 

for the first two entries of the output vector. If the first entry of 

the output is higher than 0.5, the pixel is considered a PMN 

mine. If the second entry is higher than 0.5, the pixel is marked 

as VS-2.2 landmine. Otherwise, the pixel is marked as 

background. An example of the output of the proposed network 

is shown in Fig. 6. The key strength of our approach is that with 

relatively small training set composed of 387 spectra, we were 

able to detect, classify and estimate the abundance of the 

landmines in 17 images, where each image has more than 

600000 pixels. 

  In Figure 4, we show the average time needed per each 

algorithm to detect all the targets in the 17 images. As we see in 

the figure, ACE, CEM, MF MTCEM, SCEM, WTACEM and 

RBF-NN take high computational time to detect the two types 

of mines by comparison with SAM OSP and SID that have a 

lower computation time. 

  Regarding the FAR (Figure 5), we see that almost all 

algorithms could detect the targets with very low FAR except 

for SID and SAM that have high FAR.  

   The other algorithms show very good performance even                 

in case of small abundance factor where few FA shows up when 

trying to detect low abundance targets using MF and CEM.  

ACE algorithm gives the ability to detect all targets with 0 FAR. 

This confirms the previous tests used for target detection [8,17]. 

  On the other hand, MTCEM has better performance as all 

targets are detected without any false alarms with lower 

computation time. It should be pointed out that, using ACE MF 

CEM SID SAM and OSP; we have an additional advantage 

when identifying the targets since using these algorithms we are 

able to distinguish between PMN and VS-2.2 targets. While 

using the other algorithms, we can know the presence of a target 

without knowing its type. An additional similarity test is needed 

in case of MTCEM, WTACEM and SCEM to be able to 

estimate the type of the landmine that exist in this position. 

However, the abundance of the landmine is still unknown by 

using the similarity test. 

  As we see in the charts, using the adopted training strategy, we 

got an RBF NN able to detect the landmines without any false 

alarm. By setting a large value of spread (𝝈) while training the 

NN, the output was less sensitive to the spectral variability of 

the input pixel and able to distinguish the presence of target 

even with low abundance factor.  

 
Fig.5:  average FAR/ algorithm 

V. DISCUSSION 

  In this experiment, we tested some supervised multitarget 

detection algorithms using hyperspectral imagery. We tested 

simulated data where the reflectance spectrum of the target was 

planted in the scene in different places. Some of the tested 

algorithms (ACE, MF, CEM, OSP, SAM, SID) are designed for 

the detection of one target. They were applied several times 

each run for each target. This may be a time-consuming process, 

especially if the number of targets is high. This is why we 

addressed the multitarget detection in this paper. When using 

some of the multitarget detection process, we lose the privilege 

of identifying the type of the target. However, this can be 

recovered by an additional similarity test to classify each target. 



  SAM and SID are similarity measures between pixel 

signatures and target reflectance spectrum. The former 

calculates the angle between the target spectrum and the pixel 

spectrum, while the latter calculates the entropy between them. 

When the pixel spectrum is a linear mixture of target and other 

background material, the similarity measure will differ 

according to the abundance fraction of the target making the 

detection process harder. This is the reason of the high false 

alarm rate that appeared in the tests. 

  Using RBF-NN, we are able to detect, identify the targets and 

to estimate the abundance fraction without any problem. The 

proposed strategy for training an RBF NN has reduced the size 

of the used NN making also possible to estimate the abundance 

fraction of the targets. In the test shown in this paper, we got a 

full detection rate without any false alarm rate. This may be due 

to the following reasons: by using a kernel function in the 

hidden layer, we are projecting the data into higher dimensional 

space where the classification of the target is simpler. In 

addition, by using a high spread value, we are adapting the NN 

to detect the signature of the target even if the implanted 

signature was modified when mixed with background pixels. 

Therefore, we were able to detect targets at the subpixel level. 

The results proves the advantage of using NN for target 

detection in the proposed landmine detection scenario.  

 

Fig.6 : A sample of the output of the RBF when applied on one image. White 

circles represents the location of the inserted PMN mines in the image, yellow 

circles are the placement of the VS-2.2 mine. 

VI. CONCLUSION 

  In this paper, we addressed the problem of multitarget 

detection using hyperspectral imaging technique. Several 

methods already exist in the literature, like MTCEM SCEM and 

WTACEM, that have been designed to achieve this purpose. 

However, when using these techniques, we lose a key 

information about the type of the target. This information is 

crucial in many target detection fields especially in mine 

detection where the knowledge of the type of the mine is 

necessary to manage the demining process accordingly.  

When using RBFNN, not only we are able to detect targets 

without any false alarm, but we are also able to identify the type 

of the target and, at the same time, estimate its abundance. This 

is a great improvement in this domain since the abundance 

fraction data may give an idea about how deep the mine is 

buried in the soil and help to better recognize it. 

 In future work, the computational time of this method may be 

optimized by addressing the dimensionality reduction [19] and 

data preservation methods [18] before target detection, in order 

to achieve real time detection during image acquisition.       
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