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1 - Introduction

Our interest in Lorentzian conformal geometry is motivated by the con-
formally cyclic cosmological models proposed in the last decade by R. Pen-
rose [23,24,27]. In these models the universe undergoes to a cyclical evolution
which is smooth for what concern the conformal structure of the space-time
but develop singularities from the viewpoint of the Lorentzian structure. The
space-time is subdivided into ”eons”, i.e. adjacent portions of the space-time
provided with a smooth Lorentzian pseudo-metric belonging to the given con-
formal class. They are bounded by conformally flat space-like hypersurfaces at
which the pseudo-metric tensor becomes singular, the conformal boundaries of
the ”eon”. In the proximity of the conformal boundaries, the conformal struc-
ture remains smooth and is modeled on that of the static Einstein universe. It is
then reasonable to impose some kind of conformally invariant variational prin-
ciple to constrain the geometry of the conformal boundaries. A natural choice
is given by the Blaschke energy, originally investigated by Blaschke and Thom-
sen in the 3-dimensional Riemannian framework. In the current literature the
Blaschke energy is known as the Willmore functional and its critical points are
referred to as Willmore immersions (M-minimal in the classical terminology).
They have been the focus of intense research in the last thirty years mainly
in connection with the Willmore conjecture, recently solved by Fernando Codá
Marques and André Neves, [20].

The study of Willmore surfaces in the Lorentzian context is not as popular
as that in the Riemannian framework. However it is not completely unexplored
(see for instance [1,2,8,21,22,28]). From the perspective of this paper, the
more useful results are those obtained by Aĺıas and Palmer in [1] where, among
other properties, the authors generalize in the Lorentzian setting two facts that
have been originally proved by G. Thomsen [26] in the context of classical
Möbius geometry : they define the conformal Gauss map of a space-like im-
mersed surface, they prove that the conformal Gauss map is conformal and
that the immersion fulfills the variational equation of the Willmore functional
if and only if its conformal Gauss map is harmonic. We will use these facts
during our investigations.

Inspired by a paper of R. Bryant [6] about Willmore surfaces in the con-
formal 3-sphere, in the present paper we aim at implementing the method of
moving frames in the Lorentzian setting and at showing how this apparatus can
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be used to investigate the geometry of space-like Willmore (or M-maximal) im-
mersed surfaces in the 3-dimensional oriented, time-oriented conformal Einstein
universe. In particular, we will this method to recover, in a more geometrical
way, some results already known in literature.

Before stating the main results, we recall that the physical Einstein universe
is the cartesian product E∗ = R × S2 equipped with the Lorentzian metric
−dt2 + gS2 . It was proposed by Einstein himself as the first example of a
static space-time with a positive cosmological constant , [11]. The group Γ
generated by the translation (t, x) → (t + 2π, x) acts properly discontinuously
on E∗. The quotient E = E∗/Γ equipped with the induced Lorentzian structure
is referred to as the oriented, time-oriented compact model of the Einstein
universe [3,14,15]. As an application of the aforementioned method of moving
frames, we will obtain the following theorems (the first one originally due to
Aĺıas and Palmer [1]):

T h e o r em A. Let S be a connected, compact 2-dimensional manifold and
f : S → E be a space-like Willmore immersion. Then, S is diffeomorphic to
the 2-sphere and f(S) is a totally umbilical round 2-sphere embedded in E.

Th e o r em B. Let S be a connected, compact 2-dimensional manifold and
f : S → E∗ be a space-like Willmore immersion. Then, S is diffeomorphic to
the 2-sphere and f(S) is a totally umbilical round 2-sphere embedded in E∗.

The paper is organized into three Sections and one Appendix. In the first
Section we recall the basics about the conformal geometry of the oriented, time-
oriented conformal compactfication E of the Minkowski 3-space. In the second
Section we present the background material on the conformal geometry of a
space-like immersed surface f : S → E by using from the outset a conformally
invariant approach based on the method of moving frame [17]. We recall the
construction of the conformal Gauss map and we define the fundamental con-
formal invariants of a space-like surface: the Blaschke’s linear and area elements
and the Bryant’s quartic differential. Subsequently we introduce the notion of
second-order conformal frame and second-order frames adapted to a complex
chart. Adapted frames are used to build the Poynting field and the dual map of
a space-like Willmore immersion. The third Section is devoted to the proofs of
Theorem A and Theorem B. In the Appendix we verify a technical elementary
property, used in the third Section, about complex-valued functions of analytic
type. This result appears, without proof, in the existing literature (see for
instance [6,18]).
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2 - Conformal Lorentzian geometry

2.1 - The oriented, time-oriented compact model of the Einstein universe

Let R2,3 denote the vector space R5 equipped with the non-degenerate scalar
product of signature (2, 3) defined by

(2.1) ⟨V,W⟩ = −(v0w4 + v4w0)− v1w1 + v2w2 + v3w3 =t V · m ·W,

m = (mij), mij = mji, i, j = 0, ..., 4 and with the orientation induced by the
volume form V = dv0 ∧ ... ∧ dv4. Unlike the Lorentzian case, it is not possible
to attribute a causal character to null or time-like oriented lines. Instead, the
notion of time-orientation can be defined for causal planes.

D e f i n i t i o n 2.1. A causal plane is a 2-dimensional oriented1 vector sub-
space [V] ⊂ R2,3 such that ⟨Y,Y⟩ ≤ 0, for all Y ∈ V. If V and W are lin-
early independent vectors, the oriented plane spanned by (V,W) is denoted by
|[V∧W]|. To define the character of a causal plane we pick the negative-definite
oriented 2-plane [V∗] = |[(E0+E4)∧E1]|, where E = (E0, ...,E4) is the standard
basis of R2,3. Let π∗ : R2,3 → V∗ be the orthogonal projection onto V∗. For
each causal plane [V] the linear map π∗|V : V → V∗ is an isomorphism. We say
that [V] is future-oriented if π∗|V is orientation-preserving. The semi-analytic
set of all future-directed (resp. past-directed) causal planes is denoted by L↑

(L↓ resp.) .

D e f i n i t i o n 2.2. The (restricted) automorphism group of R2,3, denoted

by M↑
+, is the connected component of the identity of the pseudo-orthogonal

group of R2,3, that is, the Lie group of all linear isometries of R2,3 preserving the
orientation and the time-orientation of causal planes. Its Lie algebra m is the
vector space of all skew-adjoint endomorphisms of R2,3 with the commutator
as a Lie bracket.

N o t a t i o n 1. For every V ∈ R2,3, we write V = V′ + V′′, where V′ ∈ V∗
and V′′ ∈ V⊥

∗ . We denote by S1 ⊂ V∗ the circle of the unit time-like vectors
belonging to V∗ and by S2 ⊂ V⊥

∗ the unit-sphere of V⊥
∗ . Let J : V∗ → V∗

be the counterclockwise rotation by a straight angle in the oriented plane [V∗]
with respect to the negative-definite scalar product ⟨−,−⟩|V∗×V∗ . Given any
vector V , we denote by |[V]| the ray (i.e. the oriented line) spanned by V. The
manifold G+

1 of the rays of R2,3 is diffeomorphic to the 4-dimensional sphere.

1We use the notation [V] for a vector subspace V ⊂ R2,3 endowed with an orientation.
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De f i n i t i o n 2.3. The oriented, time-oriented, compact model of the 3-
dimensional Einstein universe is the codimension-two submanifold S1 × S2 of
R2,3, that is the set of all V ∈ R2,3 such that ⟨V′,V′⟩ = −1 and ⟨V′′,V′′⟩ = 1.
On S1 × S2 we fix the Lorentzian metric ℓE induced by the scalar product
⟨−,−⟩ and the orientation defined by the contraction of the volume form V
with the unit normal vector fields n′|V = V′ and n′′|V = V′′. We define a time-
orientation by requiring that the unit time-like tangent vector field T|V = J(V′)
is future-directed.

D e f i n i t i o n 2.4. The map jE : V ∈ S1 × S2 → |[V]| ∈ G+
1 is a smooth

embedding of S1×S2 into the manifold of the rays. Its image is the submanifold
E ⊂ G+

1 of all null (isotopic, ligth-like) rays of R2,3. This allow us to identify
S1 × S2 with E and we transfer to E the oriented, time-oriented conformal
Lorentzian structure of S1 × S2. We will make no distinction between the two
models and the context will make clear which one of them is being used.

Using the above identification, the automorphism group M↑
+ acts effectively

and transitively on the left of E by B · |[V]| = |[B(V)]|, for each B ∈ M↑
+

and |[V]| ∈ E . The action preserves the oriented, time-oriented conformal
structure of E . It is a classical result [9,13,14] that each restricted conformal

transformation of E is induced by a unique element of M↑
+.

D e f i n i t i o n 2.5. A Möbius basis B = (B0, ....,B4) of R2,3 is a positive-
oriented basis such that

⟨Bi,Bj⟩ = mij, 0 ≤ i, j ≤ 4, |[B0 ∧ B1]| ∈ L↑.

Rema r k 2.6. Given B ∈ M↑
+ let B(B) be the matrix representing B

with respect to the standard basis. The map B ∈ M↑
+ *→ B(B) ∈ SL(5,R)

is a faithful matrix representation through which we can identify M↑
+ with the

closed subgroup of all matrices B ∈ SL(5,R) whose column vectors B0, ...,B4

constitute a Möbius basis.

2.2 - Conformal embedding of the Minkowski 3-space

Let R1,2 be the affine Minkowski 3-space, ie. R3 with coordinates (x1, x2, x3),
oriented by the volume form dx1∧dx2∧dx3, equipped with the Lorentzian inner
product

(2.2) (X, Y) = −x1y1 + x2y2 + x3y3

and with the time-orientation defined by the positive light-cone

{X ∈ R1,2 : (X, X) = 0, x1 > 0}.
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Let P↑
+ be the (restricted) Poincaré group of R1,2, i.e. the semi-direct product

R1,2×ιO
↑
+(1, 2) of R1,2 with the connected component of the identity of O(1, 2).

We may think of P↑
+ as the closed subgroup of SL(4,R) consisting of all 4× 4

matrices of the form

B := B(b, X) =

[
1 0
b X

]

where X ∈ O↑
+(1, 2) and b ∈ R1,2. The Lie algebra p of the Poincaré group is

the semi-direct sum R1,2 ⊕ι o(1, 2) and it can be identified with the subalgebra
of sl(4,R) consisting of all 4× 4 matrices of the form

b(b, x) =

[
0 0
b x

]
,

where b ∈ R1,2 and x ∈ o(1, 2). For each p ∈ R1,2, we put

j(p) =

(
1, p1, p2, p3,

1

2
(p, p)

)
∈ R2,3.

Then, j(p) is non-zero and ligth-like and the map

j : p ∈ R1,2 → |[j(p)]| ∈ E

is a conformal embedding of the Minkowski 3-space in the Einstein universe.
The image of j is the open set

R̂1,2 = {|[V]| ∈ E : ⟨V,E4⟩ < 0} ⊂ E .

The embedding j can be lifted to the faithful representation

J : B(b, X) ∈ P↑
+ →

⎡

⎢⎣

1 0 0
b X 0

1

2
(b, b) b∗ · X 1

⎤

⎥⎦ ∈ M↑
+,

that intertwines the actions, i.e. j(B·p) = J(B)·j(p). Note that we are identifying
p with (1, p). The Lie algebra representation induced by J is given by

(2.3) J∗ : (b, x) ∈ p →

⎡

⎣
0 0 0
b x 0
0 ∗b 0

⎤

⎦ ∈ m,

where ∗p is the row vector (−p1, p2, p3). The images P̂↑
+ ⊂ M↑

+ and p̂ ⊂ m of the

representations J and J∗ are the closed subgroup P̂↑
+ = {B ∈ M↑

+ : B ·E4 = E4}
and the Lie subalgebra p̂ = {b ∈ m : b · E4) = 0}.
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Rema r k 2.7. Let µ = (µi
j) be the Maurer-Cartan form of M↑

+ and D be
the left-invariant completely integrable Pfaffian differential system generated
by the 1-forms µ0

0, µ
1
4, µ

2
4 and µ3

4. Its maximal integral submanifolds are the left

cosets B · P̂↑
+, B ∈ M↑

+. Then, if N is a connected manifold and Φ : N → M↑
+

is a smooth map such that

Φ∗(µ0
0) = Φ∗(µ1

4) = Φ∗(µ2
4) = Φ∗(µ3

4) = 0

there exist B ∈ M↑
+ and a smooth map Φ̃ : N → P↑

+ such that Φ = B · J ◦ Φ̃.

R ema r k 2.8. Note that also the anti-de Sitter, the de-Sitter and, more
generally, all 3-dimensional Robertson-Walker space-times can be conformally
embedded in E ; [16].

R ema r k 2.9. Unlike in the Riemannian case, there exists a countable
family of conformally flat Lorentzian manifold, not globally equivalent to each
other, that admit a transitive group of conformal transformations of maximal
dimension, [13]. For instance, beside the oriented, time-oriented conformal
compactification of the Einstein universe, there are other two basic models.
The first one is the un-oriented compactification E ′ which can be realized as the
manifold of non-oriented isotropic lines of R2,3. Its conformal transformation
group is the quotient of the pseudo-orthogonal group of ⟨−,−⟩ by its center
{±Id5×5}. However, E ′ is neither orientable or time-orientable. The other
basic model is ”the phisycal Einstein universe”, that is E∗ = R × S2, with the
conformal structure defined by the Lorentzian pseudo-metric −dt2 + gS2 . The
restricted conformal group of E∗ can be described as follows : the oriented, time-
oriented compact model E is diffeomorphic to the Grassmannian of the oriented
2-planes of R4 which are Lagrangian with respect to the standard symplectic
structure of R4 (see for instance [10]). The linear symplectic group2 Sp(4,R)
acts almost effectively as a group of restricted conformal transformations on E
via its standard action on the Grassmannian of the oriented Lagrangian planes.
Hence, by general facts on Lie transformation groups [5], the universal covering

Ŝp(4,R) of Sp(4,R) acts almost effectively via conformal transformations on
the left of E∗. Then, the restricted conformal group of E∗ is the the quotient
of Ŝp(4,R) by a subgroup isomorphic to Z2. We refer the reader to [25] for
a detailed analysis of the universal covering of the linear symplectic groups
and to [13] for an explicit description of all oriented, time-oriented Lorentzian
manifolds admitting a restricted conformal group of maximal dimension.

2Note that Sp(4,R) is the spin covering of M↑
+.
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3 - Conformal Geometry of a space-like immersed surface

3.1 - The conformal Gauss map and the quartic differential

Let S be a connected surface and f : S → E be a smooth space-like immer-
sion. Since E is oriented and time-oriented, the surface S can be canonically
oriented by the unique future-directed time-like unit normal along f . The ori-
entation and the conformal class of the Riemannian metric f∗(ℓE) give on S the
structure of a Riemann surface. We shall denote by ∗ the Hodge-star operator
on 1-forms of S.

R ema r k 3.1. Let π2 : E ∼= S1 × S2 → S2 be the projection of the Einstein
universe onto the unit sphere of V⊥

∗ . If f is space-like, then π2 ◦ f : S → S2
is a local diffeomorphism. Thus, if S is compact π2 ◦ f is a covering map and
hence S is bi-holomorphic to a 2-dimensional sphere.

D e f i n i t i o n 3.2. The tautological bundles of f are defined by
{
Tf = {(p,V) ∈ S × R2,3/|[V]| = f(p)},

Kf = {(p,V) ∈ S × R2,3/V ∈ f(p)}.

Tf is a principal fiber bundle with structure group R+. Its trivializations are
the lifts of f , that is smooth maps F : S → R2,3 into the ligth-cone of R2,3 such
that |[F(p)]| = f(p), for every p ∈ S. Kf is a real line bundle trivialized by lifts
of f which, in turns, determine an orientation on Kf .

R ema r k 3.3. Global lifts do exist for every f . This assertion can be
justified as follows : consider the diffeomorphims jE : V ∈ S1 × S2 ⊂ R2,3 →
|[V]| ∈ E . Then FE = j−1

E ◦f : S → R2,3 is a lift of f , referred to as the Einstein
lift. The lifts are defined up to a positive multiplicative factor, i.e., if F is a lift
of f then any other is given by F̃ = rF, where r : S → R is a strictly positive
smooth function.

D e f i n i t i o n 3.4. The 4-dimensional (cyclic model ) of the AdS space is
the quadric A ⊂ R2,3 of all unit time-like vectors of R2,3 equipped with the
Lorentzian pseudo-metric ℓA induced by the scalar product ⟨−,−⟩.

R ema r k 3.5. Let W be a point of A. The orthogonal complement W⊥

is is a 4-dimensional linear subspace of type (1,3), which coincides with the
tangent space TW(A) of A at W. The set of all null-rays lying in W⊥ has two
connected components

{
S↑V = {|[V]| ∈ E/⟨V,W⟩ = 0, |[V ∧W]| ∈ L↑},

S↓V = {|[V]| ∈ E/⟨V,W⟩ = 0, |[V ∧W]| ∈ L↓}.
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Each of them is a 2-dimensional ”round” sphere of the Einstein universe. S↑V
and S↓V are totally umbilical and space-like. Moreover, the image of any totally
umbilical space-like immersion is an open subset of exactly one round 2-sphere.
This gives a geometrical interpretation of the 4-dimensional AdS space as the
manifold of all round 2-spheres of E .

D e f i n i t i o n 3.6. A conformal unit normal along f is a time-like unit
vector field N : S → A such that

|[F|p ∧N|p]| ∈ L↑, ⟨F|p,N|p⟩ = 0, ⟨dF|p,N|p⟩ = 0, ∀p ∈ S.

If F is a lift and N is a unit normal then ⟨dF, dF⟩ and ⟨dF, dN ⟩ are symmetric
quadratic forms on S. Let

⟨dF, dN ⟩ = ⟨dF, dN ⟩(2,0) + ⟨dF, dN ⟩(1,1) + ⟨dF, dN ⟩(0,2)

be the decomposition of ⟨dF, dN ⟩ into bidegrees.

L emma 3.7. There exist a unique unit conformal normal along f , denoted
by Nf , such that

⟨dF, dNf ⟩(1,1) = 0.

P r o o f. First we prove that conformal unit normals do exist along any
space-like immersion. Let us consider the Einstein lift FE of f . In the present
context, we think of E as S1 × S2. Denote by F′

E and F′′
E the components

of FE with respect to the splitting V∗ ⊕ V⊥
∗ of R2,3. For each p ∈ S, the

normal bundle of E ⊂ R2,3 at FE(p) is spanned by F′
E |p and F′′

E |p. Choose a
local chart (u, v) : U → R2 on an open neighborhood U of the point p. Then,
F′
E |q,F′′

E |q, ∂uFE |q and ∂vFE |q are linearly independent and span a 4-dimensional
vector sub-space W|q ⊂ R2,3 of signature (1, 3), for every q ∈ U . Thus, there

exists a unique time-like unit vector field Ñ : U → R2,3 such that Ñ |q ∈ W|⊥q
and that |[FE |q ∧ Ñ |q]| is a future-directed causal plane of type (0,−1), for

every q ∈ U . By construction, Ñ is a conformal unit normal along f and its
definition is independent on the choice of the chart. Thus, there exist a unique
global conformal unit normal NE such that NE |U = Ñ .

Let F be a lift and N be a conformal unit normal. Since ⟨dF, dN ⟩ is
real, its (0, 2) component is the complex conjugate of the (2, 0) component and
⟨dF, dN ⟩(1,1) is a multiple of ⟨dF, dF⟩. Hence there exist a smooth real-valued
function σ : S → R such that ⟨dF, dN ⟩(1,1) = σ⟨dF, dF⟩. Let Ñ be another
unit normal. Then, Ñ = N + sF, where s is a smooth function. This implies

⟨dF̃, dÑ ⟩(1,1) = ⟨dF, dN ⟩(1,1) + s⟨dF, dF⟩.

Putting s = −σ, we have ⟨dF̃, dÑ ⟩(1,1) = 0. We have thus proved the result.!
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D e f i n i t i o n 3.8. The unique unit normal Nf such that ⟨dF, dNf ⟩(1,1) = 0
is said to be the conformal Gauss map of f . The symmetric differential form
Bf := ⟨dNf , dNf ⟩ and the exterior differential 2-form βf = dtNf · m ∧ ∗dNf

depend only on the immersion f . They are called the Blaschke line element
and the Blaschke area element of f respectively.

D e f i n i t i o n 3.9. Let f be a space-like immersion with conformal Gauss
map Nf and let z : U → C be a holomorphic chart. The quartic differential

Q̃ = ⟨∂2zzNf , ∂2zzNf ⟩dz4 doesn’t depend on the choice of the chart. Then, there
exists a global cross section Qf ∈ Ω(4,0)(S), the Bryant’s quartic differential,

such that Qf |U = Q̃.

R ema r k 3.10. The quartic differential Qf was introduced by R. Bryant
in [6, 7] as a basic tool in analyzing Willmore immersions in the conformal
3-sphere. His definition may seem different from ours. We have followed the
definition given by Eschenburg, [12], in a manuscript which, to our knowledge,
has never been published.

D e f i n i t i o n 3.11. Let f : S → E be a space-like immersion and βf ∈
Ω2(S) be the Blaschke area element of f . For every compact domain K ⊂ S,
the Blaschke energy of f on K is the integral

Bf,K =

∫

K

βf .

The critical point of the Blaschke energy functional with respect to compactly
supported variations are called Willmore or M -maximal immersions.

The following result is due to Aĺıas and Palmer [1] :

T h e o r em 3.12. f : S → E is a Willmore space-like immersion if and only
if its conformal Gauss map Nf : S → A is a conformal harmonic map.

Rema r k 3.13. The previous Theorem is the Lorentzian counterpart of
a classical result of W. Blaschke and G. Thomsen [4,26] which characterises
Willmore immersions in the 3-sphere via the conformality and harmonicity of
the conformal Gauss map (see also [6,7,17]).

R ema r k 3.14. The Blaschke area element and the Blaschke energy can be
easily generalized for space-like immersions into any 3-dimensional Lorentzian
conformal space : let [ℓ] be a conformal class of Lorentzian pseudo-metrics on
a 3-dimensional manifold M and let f : S → M be a space-like immersion of
a connected, oriented surface S into M . Fix and choose a Lorentzian metric ℓ
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in the conformal class, denote by Af : T(S) → T(S) the trace-free part of the
shape operator of f with respect to ℓ and by dA the area form of f∗(ℓ). Then,
the exterior-differential 2-form βf = det(Af )dA doesn’t depend on the choice
of ℓ in the conformal class. If the target is the Einstein universe, βf gives back
the Blaschke area element. We say that f is Willmore (or M-maximal) if f is
a critical point of the action functional defined by the integral of the 2-form βf
with respect to compactly supported variations. Note that if π : (M ′, [ℓ′]) →
(M, [ℓ]) is a conformal covering map, then f : S → M ′ is a Willmore immersion
if and only if π ◦ f : S → M is a Willmore immersion. However, in the
general case the space of totally umbilical space-like surfaces is not anymore a
manifold and one can’t characterize Willmore immersions via the harmonicity
of a suitable Gauss map.

3.2 - Second-order conformal frames

De f i n i t i o n 3.15. A second-order frame along f is a smooth map

A = (A0, ...,A4) : U → M↑
+

defined on an open neighborhood of S such that |[A0]| = f |U and A1 = Nf |U .

L emma 3.16. Second-order frames do exist near any point of S.

P r o o f. Let p∗ be a point of S. Choose C ∈ M↑
+ such that C ·f(p∗) ∈ R̂1,2.

Let U ⊂ S be a simply connected open coordinate neighborhood of p∗ such
that U ⊂ R̂1,2. Then, there exist a unique space-like immersion f : U → R1,2

such that j ◦ f = C · f . Let nf be the Lorentzian Gauss map of f, that is the
unique future-directed unit time-like normal along f. Since U is a coordinate
neighborhood, there exist two unit tangent vector fields B2, B3 along f such
that (n|p, B2|p, B3|p) is a pseudo-orthogonal basis of R1,2, for every p ∈ U . The
smooth map

B = (f,nf, B2, B3) : U → P↑
+

is a first-order Lorentzian frame along f, i.e. a lift of f to P↑
+ such that

B−1dB =

⎡

⎢⎢⎢⎢⎣

0 0 0 0

0 0 β21 β31

β20 β21 0 −β32
β30 β31 β32 0

⎤

⎥⎥⎥⎥⎦
,

where
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• ζB = β20 + iβ30 is a 1-form of type (1, 0), non-zero at every point of U ;

• β21 − iβ31 = hBζB +
i

2
HζB, where H is the mean curvature of f.

Next, consider the map Ã = C−1 · J ◦ B : U → M↑
+. Then, |[Ã0|] = f |U and

Ã−1dÃ = J∗(β). Let X : U → M↑
+ be defined by

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −H/2 0 0 0

0 1 0 0 H/2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

We put A = Ã ·X. Then, |[A0]| = f |U and

α = A−1dA = X−1(Ã−1dÃX+ dX).

From this we infer that

α1
0 = 0, α2

0 + iα3
0 = ζB, α2

1 − iα3
1 = hBζB.

This implies that A is a second-order frame field along f . !

Rema r k 3.17. From the proof of the previous Proposition it follows that
if f is a maximal space-like immersion in R1,2 then the conformal Gauss map
of f = j ◦ f can be written as

(3.1) Nf =t (0, nf, f
∗ · nf).

Given r > 0, x, y ∈ R and θ ∈ R/2πZ we put
(3.2)

B(r, θ, x, y) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r 0 x y
1

2r
(x2 + y2)

0 1 0 0 0

0 0 cos(θ) − sin(θ)
1

r
(cos(θ)x− sin(θ)y)

0 0 sin(θ) cos(θ)
1

r
(sin(θ)x+ cos(θ)y)

0 0 0 0 r−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ M↑
+.
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Let K2 the closed subgoup of M↑
+ defined by

K2 = {B(r, x, y, θ) : r > 0, x, y,∈ R, θ ∈ R/2πZ}.

If A and A′ are second order frames on U , then there exist a unique map
B : U → K2 such that A′ = A ·B. For each p ∈ S we denote by F2|p the set

of all X ∈ M↑
+ such that X = A|p, where A : U → M↑

+ is a second order frame
along f defined on an open neighborhood of p. Then

F2 = {(p,X) ∈ S ×M↑
+ : X ∈ F2|p}

is a principal fiber bundle over S with structural group K2. We let T2 : F2 →
M↑

+ be the map such that T2(p,X) = X, for every (p,X) ∈ F2. The second-

order frames are the local trivializations of F2. Let A : U → M↑
+ be a second-

order frame and α = A−1dA be the pull-back of the Maurer-Cartan form of
M↑

+. This is an m-valued exterior differential 1-form on U . Its entries are
denoted by αi

j , 0 ≤ i, j ≤ 4. The identities ⟨dA0,A1⟩ = ⟨dA0,A2⟩ = 0 imply
that

(3.3) α =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

α0
0 −α1

4 α2
4 α3

4 0

0 0 α2
1 α3

1 α1
4

α2
0 α2

1 0 −α3
2 α2

4

α3
0 α3

1 α3
2 0 α3

4

0 0 α2
0 α3

0 −α0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

where ζA := α2
0+iα3

0 is a complex 1-form of type (1, 0), non-zero at each point of
U . The first column vector of A is a lift of f and its second column vector is the
restriction on U of the conformal Gauss map of f , so that ⟨dA0, dN ⟩(1,1) = 0.
Hence, ηA = α2

1 − iα3
1 is a 1-form of type (1, 0). Consequently we may write

ηA = hAζA,

where hA is a complex valued function. If A′ is any other second order frame
on U , then A′ = A ·B, where B = B(r, θ, x, y) : U → K2 is a smooth map into
the structure group. The 1-forms α and α′ are related by

(3.4) α′ = B−1αB+B−1dB.

This implies

(3.5) ζA′ = re−iθζA, ηA′ = eiθηA,
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and

(3.6)

⎧
⎪⎨

⎪⎩

α′0
0 = α0

0 +
dr

r
− (x cos(θ)− y sin(θ))α2

0 − (x sin(θ) + y cos(θ))α3
0,

α′1
4 =

1

r
(α1

4 + (x cos(θ)− y sin(θ))α2
1 + (x sin(θ) + y cos(θ))α3

1).

De f i n i t i o n 3.18. Let (U, z) be a complex chart3. A second-order frame

A : U → M↑
+ is said to be adapted to (U, z) if ζA = dz and α0

0 = 0.

L emma 3.19. If (U, z) is a complex chart then there exists a unique second-
order frame adapted to (U, z).

P r o o f. The uniqueness is a straightforward consequence of the transfor-
mation laws (3.5) and (3.6). Arguing as in the proof of Lemma 3.16 we may
conclude that there exists a second-order frame A defined on the coordinate
neighborhood U . Then, α2

0+iα3
0 = reiθdz where r is a positive smooth function

and θ : U → R/2πZ is a smooth map. Putting A′ = A ·B(r−1, θ, 0, 0) we get
a second-order frame such that ηA′ = hA′dz. We write α′0

0 = adx+ bdy, where
a, b : U → R are smooth functions.Let A′′ be the second-order frame defined
by A′′ = A′B(0, 0, a, b). Then, A′′ is a second-order frame adapted to (U, z).!

Let O = {(Ua, za)}a∈J be the atlas of all holomorphic charts of S and
Aa = (Aa

0, ...,A
a
4) be the second-order frame adapted to (Ua, za). For each

a ∈ J there exist smooth functions ha, ℓa, ka : U → C such that

(3.7) α1
4 = ℓadza+ℓadza, α2

1− iα3
1 = hadza, α2

4+ iα3
4 =

1

2
|ha|2dza+kadza.

The last equation in (3.7) can be proved as follows : differentiating α0
0 = 0 and

using the structure equations dα + α ∧ α = 0 we get α2
4 ∧ dxa + α3

4 ∧ dya = 0.
This implies the existence of smooth functions ka : Ua → C and ca : U → R
such that α2

4 + iα3
4 = cadza + kadza. Differentiating α3

2 = 0 and using again
the structure equations we find dya ∧α2

4 +α3
1 ∧α2

1 +α3
4 ∧ dxa = 0. Taking into

account that α2
1− iα3

1 = hadza, the previous equation implies that ca = |ha|2/2.
The remaining equations originated from the Maurer-Cartan equations of the
group M↑

+ are ⎧
⎪⎪⎨

⎪⎪⎩

dα1
4 = α2

4 ∧ α2
1 + α3

4 ∧ α3
1,

d(α2
1 − iα3

1) = −α1
4 ∧ (α2

0 − iα3
0),

d(α2
4 + iα3

4) = α1
4 ∧ (α2

2 + iα3
1).

3We implicitely assume that the coordinate neighborhoods of complex charts are connected.
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Using (3.7) these equation can be rewritten as follows

(3.8) ∂zaha = ℓa, ∂zaka =
1

2
∂za(|ha|2) + haℓa, Im(∂zaℓa) =

1

2
Im(haka).

Vice versa, let (Ua, za) be a complex chart on a simply-connected coordi-
nate neighborhood and ha, ℓa, ka be complex-valued smooth functions satisfying
(3.8). If we put α2

0 + iα3
0 = dza, α0

0 = 0, if we define α1
4, α

2
1,α

3
1,α

2
4 and α3

4 as in
(3.7) and if α is as in (3.3) then α is an m-valued 1-form satisfying the Maurer-
Cartan equations dα = −α ∧ α. As a consequence of the Frobenius theorem
(see for instance [17, 28]) the 1-form α can be integrated to a smooth map

Aa : Ua → M↑
+ such that fa : p ∈ Ua → |[Aa

0]| ∈ E is a space-like immersion.
Furthermore, Aa is the second-order frame along fa adapted to (Ua, za).

3.3 - The Poynting field and the dual map of a space-like immersion

Put
δ(J) = {(a, b) ∈ J × J : Ua ∩ Ub ̸= ∅}.

For each (a, b) ∈ δ(J) we can write

(3.9) dzb = Ra
bdza = rab e

iφa
bdza,

where Ra
b ∈ O(Ua ∩ Ub), rab = |Ra

b |, and φab : Ua ∩ Ub → R/2πZ is a smooth
function. We then have

(3.10) Ab = Aa ·B(rab ,−φab , xab , yab ),

where vab = xab + iyab : Ua ∩ Ub → C is a complex-valued smooth function. We
can rewrite the transformation rule (3.10) as follows :

(3.11)⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ab
0 = rabA

a
0,

Ab
1 = Aa

1 = N|Ua∩Ub ,

Ab
2 − iAb

3 = vabA
a
0 + e−iφa

b (Aa
2 − iAa

3),

Ab
4 =

|vab |2

2rab
Aa

0 +
vab
2rab

e−iφa
b (Aa

2 − iAa
3) +

vab
2rab

eiφ
a
b (Aa

2 + iAa
3) +

1

rab
Aa

4.

From (3.5) and (3.6) we obtain

(3.12) hb =
1

rab
e−2iφa

bha, ℓb =
e−iφa

b

(rab )
2
ℓa +

e−2iφa
b vab

2(rab )
2

ha.
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For each a ∈ J we put

(3.13) Ya = 2|ℓa|2Aa
0 − ℓaha(A

a
2 − iAa

3)− ℓaha(A
a
2 + iAa

3) + |ha|2Aa
4.

This is a differentiable map from Ua to the light cone of R2,3. In addition, using
(3.11) and (3.12) it is a computational matter to check that

(3.14) Yb|Ua∩Ub = (rab )
−3Ya|Ua∩Ub ,

for every (a, b) ∈ δ(J).

D e f i n i t i o n 3.20. From (3.14) and (3.11) if follows that there exists a
global cross section Yf , of the vector bundle4 K3

f ⊗(S×R2,3) such that Yf |Ua =

(Aa
0)

3 ⊗Ya. We call Yf the Poynting field of f .

D e f i n i t i o n 3.21. Let Z be the zero locus of Yf and S∗ = S − Z. Then

there exist a unique smooth map f̂ : S∗ → E such that f̂ |Ua = |[Ya]|S∗ , for
every a ∈ J such that Ua ∩ Z = ∅. The map f̂ : S∗ → E is called the dual map
of the space-like immersion f .

R ema r k 3.22. Our construction is in analogy with the one given by R.
Bryant, [6], in the context of Möbius geometry.

4 - Proof of Theorem A and Theorem B

Th e o r em A. Let S be a compact 2-dimensional connected manifold and
f : S → E be a space-like Willmore immersion. Then f(S) is a totally umbilical
round 2-sphere.

P r o o f. The proof is organized into four Lemmas, two Corollaries and a
concluding reasoning. At some point we use a consequence of a well known
fact about complex vector bundles on a Riemann surface. The proof of the
Property is given in the Appendix.

L emma 4.1. Let f : S → E be a space-like Willmore immersion. Then for
every holomorphic chart (Ua, za) the following identity holds true

(4.1) ∂zaℓa =
1

2
haka.

4We use the notation En for the n-th tensor power of a vector bundle E → S and E−n for
the n-th tensor power of the dual bundle E∗.
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P r o o f. As a first step we compute the tension field of the conformal Gauss
map. We choose and fix a holomorphic chart (Ua, za). We put

ha = h22 − ih23, ℓa =
1

2
(ℓ2 − iℓ3), ka =

1

2
((k22 − k33) + 2ik23), k22 +k33 = |ha|2.

Then, the relevant entries of the 1-form α = A−1
a dAa can be written as

⎧
⎪⎪⎨

⎪⎪⎩

α2
0 + iα3

0 = dza, α4
1 = ℓ2dxa + ℓ3dya,

α2
1 = h22dxa + h23dya, α3

1 = h32dxa − h22dya,

α2
4 = k22dxa + k23dya, α3

4 = k23dxa + k33dya.

The normal space of the AdS space A at Nf |p is spanned by Aa
1|p, for every

p ∈ Ua. Hence, (Aa
0,A

a
2,A

a
3,A

a
4) is a local trivialization of the bundle N ∗

f (T(A))
and the pull-back of the Levi-Civita covariant derivative of A, denoted by D,
acts as follows :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DAa
0 = dxaAa

2 + dyaAa
3,

DAa
2 = α2

4A
a
0 + dxaAa

4 = (k22dxa + k23dya)A
a
0 + dxaAa

4,

DAa
3 = α3

4A
a
0 + dyaAa

4 = (k23dxa + k33dya)A
a
0 + dyaAa

4,

DAa
4 = α2

4A
a
2 + α3

4A
a
3 = (k22dxa + k23dya)A

a
2 + (k23dxa + k33dya)A

a
3.

On S we choose the Levi-Civita covariant derivative ∇ of the flat metric ga =
(dxa)2 + (dya)2 so that ∇dxa = ∇dya = 0. Let D̃ be the covariant derivative
∇⊗D on T∗(S)⊗N ∗

f (T(A)). Then,

D̃(dNf ))=D̃
(
−(ℓ2dxa + ℓ3dya)A

a
0 + (h22dxa + h23dya)A

a
2 +(h23dxa − h22dya)A

a
3

)

= Φ0Aa
0 + Φ2Aa

2 + Φ3Aa
3 + Φ4Aa

4,

where Φj , j + 0, 2, 3, 4 are the bilinar forms on Ua given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ0= − (dℓ2 ⊗ dxa + dℓ3 ⊗ dya) + (h22dxa + h23dya)⊗ (k22dxa + k23dya)

+ (h23dxa − h22dya)⊗ (k23dxa + k33dya),

Φ2 = dh22 ⊗ dxa + dh23 ⊗ dya − (ℓ2dxa + ℓ3dya)⊗ dxa,

Φ3 = dh23 ⊗ dxa − dh22 ⊗ dya − (ℓ2dxa + ℓ3dya)⊗ dya,

Φ4 = (h22dxa + h23dya)⊗ dxa + (h23dxa − h22dya)⊗ dya.



proofs debora impera and emilio musso [18]

Denote by Tr the trace of a bilnear form with respect to the flat metric ga.
Then, keeping in mind the formula (3.8), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Tr(Φ0) = −∂xaℓ2 − ∂yaℓ3 + h22(k
2
2 − k33) + 2h23k

2
3,

Tr(Φ1) = ∂xah
2
2 + ∂yah

2
3 − ℓ2 = 0,

Tr(Φ2) = ∂xah
2
3 − ∂yah

2
2 − ℓ3 = 0,

Tr(Φ4) = 0.

Hence, the tension field of the conformal Gauss map is given by

τ = −(∂xaℓ2 + ∂yaℓ3 − h22(k
2
2 − k33)− 2h23k

2
3)A

a
0 = −4Re(∂zaℓa −

1

2
haka)A

a
0.

Taking into account the last identity in (3.8), it follows that τ = 0 if and only
if ∂zaℓa − haka/2 = 0. Then, by Theorem 3.12, it follows that f is a space-like
Willmore immersion if and only if ∂zaℓa = haka/2. !

Since

α2
4 + iα3

4 = kadza +
1

2
|ha|2dza

we can reformulate Lemma 4.1 as follows :

C o r o l l a r y 4.2. f : S → E is a space-like Willmore immersion if and
only if

(4.2) dℓa =
1

2
hakadza + ∂zaℓadza =

1

2
ha(α

2
4 + iα3

4) + qadza,

where

(4.3) qa = ∂zaℓa −
1

4
|ha|2ha.

L emma 4.3. Let f : S ′ → E be a Willmore space-like immersion. Then,
two possibilities may occur : either the Poynting field Yf is identically zero
or else its zero set Z is discrete . The first possibility occours if and only if
f is totally umbilical. If f is not totally umbilical, then there exists a unique
oriented isotropic line sub-bundle Yf of K3

f ⊗ (S ×R2,3) such that Yf |p ∈ Yf |p,
for every p ∈ S and, in addition, Yf |S−Z is a positive-oriented trivialization
of Yf . If S is compact and f is not totally umbilical, then Z is finite and the
zeroes of Yf are of finite order.
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P r o o f. Recall that

Yf |Ua = (Aa
0)

3 ⊗ (2|ℓa|2Aa
0 − ℓaha(A

a
2 − iAa

3)− ℓaha(A
a
2 + iAa

3) + |ha|2Aa
4).

From the first identity in (3.8) and from (4.2) we have

(4.4) ∂zaha = ℓa, ∂zaℓa =
1

2
haka.

Then, Va =t (ha, ℓa) : Ua → C2 is a solution of the linear system

∂zaVa =

⎡

⎣
0 1

ka
2

0

⎤

⎦ ·Va.

By Proposition 1 of the Appendix, two cases may occur :

• Yf |Ua = 0;

• for every point p ∈ Ua there exist an open neighborhood Ũ ⊂ Ua of p, a
non-zero holomorphic function φ : Ũ → C and a cross section Ỹ : Ũ →
K3

f ⊗ (S × R2,3) such that

Yf |Ua = φỸ, Ỹ|p ̸= 0.

Let m(p) ∈ N be the order of vanishing of φ at p. Notice that m(p) doesn’t de-
pend on the holomorphic chart containing p. If p is contained in a holomorphic
chart such that Yf |Ua = 0, we put m(p) = ∞. Then, Z is the disjoint union of
two subsets

Z ′ = {p ∈ Z : 1 ≤ m(p) < ∞}, Z ′′ = {p ∈ Z : m(p) = ∞}.

It is easily seen that Z ′′ is both closed and open. Consequently, either Z ′′ = S
or else Z ′′ = ∅. The first case may occurs if and only if Nf is a constant unit
time-like vector of R2,3. If this is the case, f(S) is contained in the totally
umbilical round 2-sphere

S↑Nf
= {|[V]| ∈ E/⟨V,Nf ⟩ = 0, |[V ∧Nf ]| ∈ L↑}.

If Yf is non-zero, then Z is a discrete set. If S is compact, Z is finite and
it can be viewed as the support set of the divisor

∑
p∈Z m(p)p. Let p∗ be

one of the isolated zeroes of Yf and (Ua, za) be a holomorphic chart such that
Ua ∩ Z = {p∗}. If necessary, by shrinking Ua, we have

ℓa = φℓ̃a, ha = φh̃a,



proofs debora impera and emilio musso [20]

where φ : Ua → C is a holomorphic function, non-zero at each p ∈ Ua, p ̸= p∗
and (ℓ̃a, h̃a)|p ̸= 0, for every p ∈ Ua. We say that (Ua, za) is adapted to p∗ ∈ Z
and we denote by J(p∗) the set of all a ∈ J such that (Ua, za) is a holomorphic
chart adapted to p∗. Let p∗ be a zero of Yf and a ∈ J(p∗). Then we put

Ỹa = (Aa
0)

3 ⊗ (2|ℓ̃a|2Aa
0 − ℓ̃ah̃a(A

a
2 − iAa

3)− ℓ̃ah̃a(A
a
2 + iAa

3) + |h̃a|2Aa
4).

If a, b ∈ J(p∗), then Ỹb = rab Ỹa, where rab is a strictly positive real-valued

smooth function. Furthermore, Ỹa|Ua−{p∗} is a positive multiple of Yf |Ua−{p∗},
for every p∗ ∈ Z and every a ∈ J(p∗). If p /∈ Z, we denote by |[Yp]| the oriented
line of K3

f |p ⊗ R2,3 spanned by Yf |p and, if p ∈ Z, we denote by |[Yp]| the ray

spanned by Ỹa|p, a ∈ J(p). Then,

Y = {(p,V) ∈ S × (Kf |3p ⊗ R2,3) : V ∈ |[Y]|p}

is the oriented isotropic line bundle satisfying the required properties. !

Co r o l l a r y 4.4. Let f : S → E be a non totally umbilical space-like Will-
more immersion. Then its dual map can be extended smoothly across the zeroes
of the Poynting field.

P r o o f. Let (Ua, za) be a holomorphic chart such that Ua ∩ Z = ∅. Then
f̂ |Ua = |[Ya]|. If Ua ∩ Z = {p} we choose a ∈ J(p) and we extend f̂ |Ua−{p} by

f̂ |Ua = |[(Aa
0)

−3 ⊗ Ỹa]|.

!

L emma 4.5. If f : S → E is a space-like Willmore immersion, then Qf is
a holomorphic differential. In particular, if S is compact, then Qf = 0.

P r o o f. Recall that

(4.5)

⎧
⎨

⎩

dha = ζadza + ℓadza,

dℓa = 1
2hakadza + ∂zaℓadza =

1

2
ha(α2

4 + iα3
4) + qadza,

where

(4.6) ζa = ∂zaha, qa = ∂zaℓa −
1

4
|ha|2ha, α2

4 + iα3
4 = kadza +

1

2
|ha|2dza.
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Step I. We prove that

⟨∂2zazaNf , ∂
2
zazaN ⟩|Ua = (haqa − ℓaζa).

Differentiating Nf |Ua = Aa
1 we have

dNf |Ua = −α1
4A

a
0 + α2

1A
a
2 + α3

1A
a
3.

Since

(4.7) α1
4 = ℓadza + ℓadza, α2

1 − iα3
1 = hadza

we get

∂zaNf |Ua = −ℓaAa
0 +

1

2
ha(A

a
2 + iAa

3).

Recalling that ⎧
⎪⎪⎨

⎪⎪⎩

dAa
0 = dxaAa

2 + dyaAa
3,

dAa
2 = α2

4A
a
0 + α2

1A
a
1 + dxaAa

4,

dAa
3 = α3

4A
a
0 + α3

1A
a
1 + dyaAa

4,

and keeping in mind (4.5) and (4.7) we obtain5

d(∂zaNf )|Ua ≡
((

− ∂zaℓa +
1

4
ha|ha|2

)
Aa

0

−ℓa
2
(Aa

2 − iAa
3) +

ζa
2
(Aa

2 + iAa
3) +

1

2
haA

a
4

)
dza.

Hence,

∂2zazaNf |Ua = −qaA
a
0 −

ℓa
2
(Aa

2 − iAa
3) +

ζa
2
(Aa

2 + iAa
3) +

ha
2
Aa

4.

This implies that ⟨∂2zazaNf , ∂2zazaN ⟩|Ua = (haqa − ℓaζa).

Step II. We show that haqa − ℓaζa is a holomorphic function. To this end
we use (4.5) and

(4.8) d(α2
4 + iα3

4) = α1
4 ∧ (α2

1 + iα3
1) = haℓadza ∧ dza.

Taking the exterior derivative of the first identity in (4.5) we have (dζa −
∂zaℓadza) ∧ dza = 0. Hence we can write

(4.9) dζa = Ladza + ∂zaℓadza,

5≡ means equality mod dza.
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where La : Ua → C is a smooth function. Differentiating the second identity in
(4.5), using the first identity in (4.5) and (4.8) we find

0 =
1

2
dha ∧ (kadza +

|ha|2

2
dza) +

|ha|2ℓa
2

dza ∧ dza + dqa ∧ dza

=
1

2
(ℓadza + ζadza) ∧ (kadza +

|ha|2

2
dza) + (dqa −

|ha|2ℓa
2

dza) ∧ dza

= (dqa −
|ha|2ℓa

4
dza −

ζaka
2

dza) ∧ dza.

This implies

(4.10) dqa = Madza +
1

2
(ζaka +

1

2
ℓa|ha|2)dza,

where Ma : Ua → C is a smooth function. Combining (4.5), (4.9) and (4.10)
we obtain

∂za(qaha − ℓaζa) =
ha
2
(ζaka +

1

2
|ha|2ℓa) + qaℓa −

ζakaha
2

− ℓa∂zaℓa

= ℓa(qa +
1

4
ha|ha|2 − ∂zaℓa) = 0.

If S is compact, then by Remark 3.1, S is biholomorphically equivalent to the
Riemann sphere. But, the Riemann-Roch Thorem implies that every abelian
differential on S2 is identically zero. !

Rema r k 4.6. From the proof of the previous Lemma it follows that if S
is compact and (Ua, za) is a holomorphic chart, then

qaha − ℓaζa = 0.

L emma 4.7. If S is compact and f : S → E is a non-totally umbilical
space-like Willmore immersion then the dual map of f is constant.

P r o o f. It suffices to prove that the dual is constant on S−Z. If (Ua, za) is
a holomorphic chart such that Ua ∩Z = ∅ then f̂ |Ua = |[Ya]| where Ya is as in
(3.13). Then, we need to show that Ya ∧ dYa = 0, for every holomorphic chart
such that Ua ∩ Z = ∅. Using (4.5), (4.6) and taking into account the following
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formulas

dAa
0 =

1

2
dza(A

a
2 − iAa

3) +
1

2
dza(A

a
2 + iAa

3)

d(Aa
2 − iAa

2) = (α2
4 − iα3

4)A
a
0 + (α2

1 − iα3
1)A

a
1 + dzaA

a
4

= (kadza +
1

2
|ha|2dza)Aa

0 + hadzaA
a
1 + dzaA

a
4,

dAa
4 = α1

4A
a
1 + α2

4A
a
2 + α3

4A
a
3 = (ℓadza + ℓadza)A

a
1

+ (
ka
2
dza +

|ha|2

4
dza)(A

a
2 + iAa

3) + (
ka
2
dza +

|ha|2

4
dza)(A

a
2 − iAa

3)

we obtain
dYa = Sadza + Sadza,

where

(4.11) Sa = 2ℓaqaA
a
0 − haqa(A

a
2 − iAa

3)− ζaℓa(A
a
2 + iAa

3) + ζahaA
a
4.

We then have

Ya ∧ Sa = (2|ℓa|2Aa
0 − ℓaha(A

a
2 − iAa

3)− ℓaha(A
a
2 + iAa

3) + |ha|2Aa
4)∧

(2ℓaqaA
a
0 − haqa(A

a
2 − iAa

3)− ζaℓa(A
a
2 + iAa

3) + ζahaA
a
4)

= (haqa − ℓaζa)(−2ℓahaA
a
0 ∧Aa

4 + 2ℓ
2
aA

a
0 ∧ (Aa

2 + iAa
3)

+ ℓaha(A
a
2 + iAa

3) ∧ (Aa
2 − iAa

3)− h
2
aA

a
4 ∧ (Aa

2 − iAa
3)) = 0.

We have thus proved the result. !

End of the proof. Suppose, by contradiction, that f : S → E is a non-
totally umbilical Willmore immersion of a compact surface in E . Since f̂ is
constant, then f̂ = |[V]|, where V is a non-zero isotropic vector. If B ∈ M↑

+,

then B · f̂ is the dual map of B · f . Hence, possibly replacing f with B · f ,
for some B ∈ M↑

+, we may assume that V is the last column vector E4 of
the standard basis of R2,3. Let ∆ be the finite set f−1(|[E4]|) and S ′ be the
complement of ∆. Put J ′ = {a ∈ J : Ua ∩∆ = ∅}. For every a ∈ J ′ the first
column vector Aa

0 is a lift of f . Hence |[Aa
0]| ≠ |[Ea

4]|. Since |[Ea
4]| = |[Ya]|, then

|[Aa
0|p]| ̸= |[Ya|p]|, for every p ∈ Ua. This implies that |ha|2 > 0, i.e. the points

of S ′ are non-umbilical. For every a ∈ J ′ there exist a strictly positive function
ρa such that Ea

4 = ρaYa. We write

ρaYa = ra0A
a
0 + xa2A

a
2 + ya3A

a
3 + ra4A

a
4,
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where ra0, x
a
2, x

a
3 and ra4 = ρa|ha|2 > 0 are smooth functions. We consider the

smooth map Ba : Ua → M↑
+ defined by Ba = B(1/ra4 , 0, x

a
2/r

a
4 , y

a
3/r

a
4). Then

we put Âa = Aa ·Ba. This is a second-order frame along f such that Âa
4 = Ea

4.

Therefore, the m-valued 1-form α̂ = Â−1
a dÂa is as in (3.3) with

(4.12) α̂0
0 = α̂1

4 = α̂2
4 = α̂3

4 = 0.

In addition, ξa = α̂2
0 + iα̂3

0 is of type (1, 0), non-zero at every point p ∈ Ua and

α̂2
1 − iα̂3

1 = ĥaξa, where ĥa = ĥ2a,2 − iĥ2a,3 : Ua → C is a complex-valued smooth

function. For each p ∈ S ′ we put J ′(p) = {a ∈ J ′ : p ∈ Ua}. Let F̂ |p be the set

of all X ∈ M↑
+ such that X = Âa|p, for some a ∈ J ′(p). Then

F̂ = {(p,X) ∈ S ′ ×M↑
+ : X ∈ F̂ |p}

is a circle-bundle over S ′ and its cross-sections are the second-order frames Âa,
a ∈ J ′. Let T̂ : F̂ → M↑

+ be the tautological map defined by T̂ (p,X) = X and

τ̂ be the pull-back T̂ ∗(µ) of the Maurer-Cartan form of M↑
+. From (4.12) it

follows that τ̂ is a 1-form with value in the Lie subalgebra p̂ ⊂ m. Since F̂ is
connected then, possibly acting on the left of f by an element of M↑

+, we may

suppose that the image of T̂ is contained in the closed subgroup P̂↑
+. The map

P = J−1 ◦ T̂ : F̂ → P↑
+

is constant along the fibers of F̂ → S ′ and hence it induces a space-like immer-
sion f : S ′ → R1,2 such that j◦f = f |S′ . Notice that Pa := P ◦Âa : Ua → P↑

+ is

a Lorentzian first-order frame field along f such that J∗(P−1
a dPa) = Â−1

a dÂa.
This implies

P−1
a dPa =

⎡

⎢⎢⎢⎢⎣

0 0 0 0

0 0 α̂2
1 α̂3

1

α̂2
0 α̂2

1 0 −α̂3
2

α̂3
0 α̂3

1 α̂3
2 0

⎤

⎥⎥⎥⎥⎦
.

Let nf be the future-directed unit time-like normal vector field along f. Using
α̂2
1 − iα̂3

1 = ĥa(α̂2
0 + iα̂3

0), we have
⎧
⎨

⎩
(df, df)|Ua = (α̂2

0)
2 + (α̂3

0)
2,

(dnf, df)|Ua = ĥ2a,2(α̂
2
0)

2 + 2ĥ2a,2α̂
2
0α̂

3
0 − ĥ2a,2(α̂

3
0)

2.

Hence, f is a maximal space-like immersion in the Minkowski space. This im-
plies that nf is a holomorphic map from S ′ into the hyperbolic plane, identified
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with the quadric of all future-directed unit time-like vectors of R1,2). On the
other hand, the Lorentzian Gauss map nf and the conformal Gauss map Nf of
f = j ◦ f are related by (see Remark 3.17)

Nf =t (0, nf, f
∗ · nf).

Thus, nf can be smoothly extended to all of S. Consequently, nf gives rise to
a holomorphic map from S to the hyperbolic plane. Since S is compact, by
the Liouville theorem, nf is constant. Hence, f(S ′) lies in a space-like plane
and and f(S) would be a totally umbilical round 2-sphere of E . We have thus
reached a contradiction. !

Let’s think of E as as the codimension two submanifold S1×S2 of R2,3 (cfr.
Definition 2.3). The map

π : (t, x) ∈ E∗ = R×S2 → cos(t)√
2

(E0+E4)+sin(t)E1+x1E2+x2E3+
x3√
2
(E4−E0),

exhibits the physical Einstein universe E∗ = R×S2, equipped with the conformal
structure determined by the Lorentzian pseudo-metric ℓE∗ = −dt2+dx21+dx22+

dx23, as the Lorentzian universal covering space of E . The action of M↑
+ lifts to

an almost effective action of the universal covering group p
M↑

+
: M̂↑

+ → M↑
+ of

M↑
+ on the left of E∗ such that

π
(
B̃ · (t, x)

)
= p

M↑
+
(B̃) · π(t, x),

for every B̃ ∈ M̂↑
+ and every (t, x) ∈ E∗ (see [5]). Moreover, since M↑

+ acts on

E by conformal transformations, also the action of M̂↑
+ preserves the conformal

structure of E∗. Notice that the 2-sphere Ŝ2r = {(t, x) ∈ E∗ : t = r} is totally
umbilical and, in addition, every compact, connected space-like totally umbilical
surface of E∗ is given by B̂ · Ŝ2r , for some B̂ ∈ M̂↑

+.

As a straighforward consequence of Theorem A, we have

Th e o r em B. Let S be a compact 2-dimensional connected manifold and
f̃ : S → E∗ be a space-like Willmore immersion. Then f̃(S) is a totally umbilical
round 2-sphere of E∗.

P r o o f. The composite map f = π ◦ f̃ : S → E is a space-like Willmore
immersion. Then, by Theorem A, there exist B ∈ M↑

+ such that B · f(S) =

{π(0, x) : x ∈ S2} ∼= S2. Choose B̃ ∈ p−1

M↑
+

(B). Since π(B̃ · f̃) = B · f , then

B̃ · f̃(S) ⊂ π−1(S2) =
⋃

r∈2πZ
Ŝ2r .
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Hence, there exist r ∈ 2πZ such that f̃(S) = B̃−1 · Ŝ2r . This concludes the
proof. !

5 - Appendix

P r o p o s i t i o n 1. Let (U, z) be a holomorphic chart on a Riemann surface
S, Q : U → C(n, n) be a smooth map and V : U → Cn be a solution of the
linear system

∂zV = Q ·V.

Then, for each point p ∈ U there exist an open neighborhood Û ⊂ U containing
p, a smooth map M : Û → GL(n,C) and a holomorphic map W : Û → Cn such
that V|Û = M ·W. In particular, if V is not identically zero, then the zero locus
of V is discrete. Furthermore, if p is an isolated zero of V then, locally, we
can write V = ψ · W̃, where ψ is a holomorphic function with a zero of order
m(p) ∈ N at p and W̃|p ̸= 0.

P r o o f. First we recall a general fact on complex vector bundles [19] :

Fact. Let M be a complex manifold and E → M be a complex vector
bundle over M . Denote by Λ(E) the space of the complex, E-valued exterior
differential forms and by Λ(p,q)(E) the space of the E-valued forms of type
(p, q). Consider a linear connection D : Λ(E) → Λ(E). Using the complex
structure we can write D = D′ +D′′, where D′ : Λ(p,q)(E) → Λ(p+1,q)(E) and
D′′ : Λ(p,q)(E) → Λ(p,q+1)(E). If 6 D′′ ◦ D′′ = 0 then, using the Newlander-
Nirenberg Theorem [30], one can prove that E possesses a unique structure
of a holomorphic vector bundle such that a local cross section s : U → E is
holomorphic if and only if D′′s = 0.

Let V and Q be as in the statement. Consider the trivial vector bundle
E = U × Cn with its structure of a complex vector bundle but without any
holomorphic structure. For each j = 1, ..., n, denote by sj the constant section
of E with 1 in its j-th entry and zero elsewhere. On E we consider the covariant
derivative

D(ujsj) → (duj −Qj
ku

k)sj .

On E we put the unique holomorphic structure such that s is a holomorphic
section if and only if D′′s = 0. Consequently, if V is a solution of the linear
system, the cross section v = Vjsj is holomorphic. Given a point p ∈ U we
choose a holomorphic trivialization (s̃1, ...., s̃n) defined on an open neighborhood

6If M is a Riemann surface this condition is automatically fulfilled.
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Û ⊂ U of p. Then, v|Û = wj s̃j , where w1, ...,wn are holomorphic functions.

Denote by M : Û → GL(n,C) the unique map such that s̃j = Mk
j sk. Then

v|Û = vksk = wj s̃j = wjMk
j sk .

This implies that V =t (v1, ..., vn) = M ·t (w1, ...,wn) = M · W. Assume that
V is not identically zero. Suppose V|p = 0, then W is a holomorphic function
defined near p, not identically zero and vanishing at p. Thus, we can write
W = ψŴ, where ψ is a holomorphic function with a zero of order m(p) at p,

Ŵ is holomorphic and Ŵ|p ̸= 0. Then, W̃ = M · Ŵ is a smooth map such that

W̃|p ̸= 0 and that V = ψW̃ near p . !
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