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We prove an existence, uniqueness, and regularity result for the motion of a self-propelled micro-swimmer
in a particulate viscous medium, modelled as a Brinkman fluid. A suitable functional setting is introduced
to solve the Brinkman system for the velocity field and the pressure of the fluid by variational techniques.
The equations of motion are written by imposing a self-propulsion constraint, thus allowing the viscous
forces and torques to be the only ones acting on the swimmer. From an infinite-dimensional control on
the shape of the swimmer, a system of six ordinary differential equations for the spatial position and the
orientation of the swimmer is obtained. This is dealt with standard techniques for ordinary differential
equations, once the coefficients are proved to be measurable and bounded. The main result turns out to
extend an analogous result previously obtained for the Stokes system.

Keywords: Brinkman equation; self-propelled motion; swimming; particulate media

1. Introduction

Modelling the motion of living beings has stimulated scientists for many decades.The first attempts
to study motion inside fluids date back to the pioneering works by Taylor [22] and Lighthill [17].
These papers and the 1977 paper by Purcell [19] point out that the description of motion in viscous
fluids at low Reynolds number can involve some counterintuitive facts. The low Reynolds number
flow approximation is particularly efficient for micro-organisms, while larger bodies or animals
exploit more inertial forces rather than the viscous ones. The recent literature has been populated
by new and more refined results, both theoretical and experimental, in the two limit regimes.
Concerning the viscous one, on which we concentrate in this paper, we recall that approximated
theories, such as slender body approximation [4,14], resistive force theory [11], and also others
[16,20], have been developed, and a number of biological experiments has been run to understand
swimming strategies.

In a recent paper by Jung [12], the motion of Caenorhabditis elegans is observed in different
environments: this nematode usually swims in saturated soil, and its behaviour was studied in
different saturation conditions as well as in a viscous fluid without solid particles. It must be noticed
that the locomotion strategy of C. elegans is not completely understood, as it is shown by many
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2 M. Morandotti

studies on this nematode in different conditions; nevertheless, it has been taken as a model system
to approach the study of many biological problems [25]. A satisfactory attempt to understand its
locomotion dates back to [24], where the experiment was conducted in an environment close to
the one in which C. elegans usually lives, yet the wet phase in which the particles are usually
immersed was neglected. Other and more recent experiments have been run on agar composites
[13,15], and they could give a hint on the swimming strategies of C. elegans, showing that it moves
more efficiently in a particulate medium rather than in a viscous fluid without particles [12].

The aim of this paper is to provide a theoretical framework for the motion of a body in a
particulate medium. Following the approach proposed in [12, Section III.C], we model the par-
ticulate medium surrounding the swimmer as a Brinkman fluid. We show that the framework
we proposed in [6] also applies to the case of a Brinkman problem in an exterior domain. We
prove the existence, uniqueness, and regularity of the solution to the equations of motion for a
body swimming in such an environment, thus generalizing the result previously obtained for the
Stokes system. The novelty in this work is that we are able to show that the hypotheses needed
to solve the equations of motion for a swimmer in a Brinkman fluid are satisfied. These are the
measurability and boundedness of the coefficients of the ordinary differential equations which
govern the spatial position of the swimmer. Techniques from calculus of variations and results in
the theory of ordinary differential equations are used to achieve these results.

We shall define swimming the ability of an organism to propel itself in a fluid by changing its
shape. The self-propulsion constraint is assumed: there are no other forces acting on the swimmer
but the viscous interaction between the fluid and the swimmer itself. Also, we call shape function
the map which describes the shape of the swimmer at any given time; the position function will
describe its spatial position.

With these definitions in mind, the main result of this work, Theorem 4.6, proves that under
reasonable assumptions presented in Section 3 on the shape function a swimmer is able to advance
in a particulate viscous fluid. It also shows that the significative shape functions that can provide
net displacement are not simple rigid motions. Indeed, should the shape function, which is the
one that the swimmer can control, be a rigid motion, then the resulting position function will
turn out to be the inverse rigid motion, therefore implying no overall movement. As pointed
out by Shapere and Wilczek [20], there must be a symmetry breaking for effective swimming
to occur, thus avoiding the case of Purcell’s scallop theorem [19]. In our case, this is achieved
by letting the shape vary in a rather non-trivial way, i.e. by allowing the control function to be
infinite-dimensional.

The paper is organized as follows. In Section 2, the functional setting for solving the Brinkman
system in an exterior domain is presented. Consistent and general definition for the viscous force
and torque and for the power expended during the swimming is given. In Section 3, the kinematics
setting is described and the equations of motion are obtained from the self-propulsion constraint
on the swimmer. Moreover, regularity property for some of the coefficients of the equations of
motion are proved. Eventually, in Section 4, the main theorem is stated and proved, once some
technical results about the extension of boundary velocity fields are obtained. Finally, Section 5
provides some comments and hints on possible future directions.

2. Brinkman equation: functional setting

In this section, we present some results about the Brinkman equation. It was originally proposed
in [5] to model a fluid flowing through a porous medium as a correction to Darcy’s law by the
addition of a diffusive term. A rigorous mathematical derivation from the Navier–Stokes equation
via homogenization can be found in [1,2].
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Journal of Biological Dynamics 3

In a Lipschitz domain � ⊂ R
3, the Brinkman system reads

ν�u − α2u = ∇p in �,

divu = 0 in �,

u = U on ∂�,

u = 0 at infinity.

(2.1)

The positive constant α takes into account the permeability properties of the porous matrix and the
viscosity of the fluid, the constant ν is an effective viscosity of the fluid, while the third equation
in the system is the no-slip boundary condition. The condition u = 0 at infinity is significant, and
necessary, only when the domain � is unbounded. From now on, we will get rid of the effective
viscosity, upon a redefinition of α, by setting ν = 1. A brief discussion on the constant ν can be
found in Brinkman’s paper [5].

In order to cast Equation (2.1) in the weak form, we introduce the function spaces in which we
will look for the weak solution. Define

X (�) := {u ∈ H 1(�; R
3) : divu = 0 in �}, X0(�) := {u ∈ H 1

0 (�; R
3) : divu = 0 in �}.

Both X (�) and X0(�) are equipped with the standard H1 norm but we introduce this equivalent
one

‖u‖2
X (�) := α2‖u‖2

L2(�;R3) + 2‖Eu‖2
L2(�;M3×3

sym )
,

the equivalence being a consequence of Korn’s inequality.
The weak formulation of Equation (2.1) is now given by

find u ∈ X (�) such that u = U on ∂�,

2
∫

�

Eu : Ew dx + α2
∫

�

u · w dx = 0, for every w ∈ X0(�),
(2.2)

where the boundary velocity is a given function U ∈ H 1/2(∂�; R
3), the solution being the unique

minimum in X (�) of the strictly convex energy functional

E(u) := 2
∫

�

|Eu|2 dx + α2
∫

�

|u|2 dx = ‖u‖2
X (�).

Here and henceforth the symbol Eu denotes the symmetric gradient of u, namely Eu := 1
2 (∇u +

(∇u)T).
We call � an exterior domain with a Lipschitz boundary if � is an unbounded, connected open

set whose boundary ∂� is bounded and Lipschitz [6, Section 2]. If we consider the term α2u as
a forcing term f in system (2.1), we can invoke a classical existence and uniqueness result, see
[7,21] or [23].

Theorem 2.1 Let U ∈ H 1/2(∂�; R
3). Then, the following results hold.

(a) Let � be a bounded connected open subset of R
3 with the Lipschitz boundary. If∫

∂�

U · n dS = 0, (2.3)

there exists a unique solution u to problem (2.2). Moreover, there exists p ∈ L2(�), such that
�u −∇p = f in D′(�; R

3).
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4 M. Morandotti

(b) Let � ⊂ R
3 be an exterior domain with Lipschitz boundary. Then, problem (2.2) has a solu-

tion. Moreover, there exists p ∈ L2
loc(�), with p ∈ L2(� ∩ �ρ) for every ρ > 0, such that

�u −∇p = f in D′(�; R
3).

The following density result is particularly useful when dealing with exterior domains.

Theorem 2.2 (Density [10]) Let � ⊂ R
3 be an exterior domain with Lipschitz boundary. Then,

the space {u ∈ C∞
c (�; R

3) : divu = 0 in �} is dense in X (�) for the H1 norm.

We now define some physically relevant quantities. The stress tensor associated with the
velocity field u and the pressure p is given by

σ := −pI + 2Eu. (2.4)

The viscous force and torque are the resultant of the viscous forces and torques acting on the
boundary ∂�, respectively, and are given by

F :=
∫

∂�

σ (x)n(x) dS(x), M :=
∫

∂�

x × σ(x)n(x) dS(x).

These definitions are valid under the condition that σn has a trace in L1(∂�; R
3). Since, in general,

this assumption is not fulfilled, we have to define the viscous force and torque in a different way,
namely by introducing σn as an element of H−1/2(∂�; R

3). This will lead to a consistent definition
of the power of the viscous force and torque. In order to do this, we introduce M

3×3
sym , the space

of 3 × 3 symmetric matrices and recall that every σ ∈ M
3×3
sym can be orthogonally decomposed as

σ = (1/3)trσ I +σ D where the deviatoric part σ D is traceless.
We are now ready to give the following definition.

Definition 2.3 Let � ⊂ R
3 be an exterior domain with a Lipschitz boundary and let σ ∈

L1
loc(�; R

3) be such that σD ∈ L2(�; M
3×3
sym ) and divσ ∈ L2(�; R

3). The trace of σn, still denoted
by σn, is defined as the unique element of H−1/2(∂�; R

3) satisfying the equality

〈σn, V 〉� :=
∫

�

(divσ) · v dx +
∫

�

σ : Ev dx, (2.5)

where 〈 · , · 〉� denotes the duality pairing between H−1/2(∂�; R
3) and H 1/2(∂�; R

3) and v is
any function in X (�) such that v =V on ∂�.

If there is no risk of misunderstanding, the subscript � will be dropped whenever the domain
of integration is clear. Notice that if σ is sufficiently smooth then integrating Equation (2.5) by
parts leads to the equality

〈σn, V 〉� =
∫

∂�

σn · V dS, for every V ∈ H 1/2(∂�; R
3).

In the general case, the right-hand side of Equation (2.5) is easily proved to be well defined,
given the assumptions on σ . In fact, divσ ∈ L2(�; R

3) and v ∈ L2(�; R
3) make the first integral

well defined, while the second one is also good since σ : Ev =σ D : Ev, because of the symmetry
of Ev, and both σ D and Ev belong to L2(�; M

3×3
sym ). Lastly, the definition is independent of the

choice of v ∈ X (�), since the right-hand side vanishes for every v ∈ X0(�): this follows from the
very same computation for the more regular case, by the density Theorem 2.2. It is easy to see that
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Journal of Biological Dynamics 5

Equation (2.5) defines a continuous linear functional on H 1/2(∂�; R
3) by choosing v ∈ X (�) an

extension of V .
We now proceed in showing other useful properties of the duality pairing introduced in

Definition 2.3. Let U ∈ H 1/2(∂�; R
3) and let u be the solution to the Brinkman problem (2.2)

with boundary datum U and let σ be the corresponding stress tensor. Since all the assumptions
of Definition 2.3 are fulfilled, for any given V ∈ H 1/2(∂�; R

3), we have

〈σn, V 〉 =
∫

�

(divσ) · v dx +
∫

�

σ : Ev dx = α2
∫

�

u · v dx +
∫

�

[−pI : Ev + 2Eu : Ev] dx

= α2
∫

�

u · v dx −
∫

�

pdivv dx + 2
∫

�

Eu : Ev dx

= α2
∫

�

u · v dx + 2
∫

�

Eu : Ev dx, (2.6)

where v is an arbitrary element in X (�) such that v =V on ∂�. If we take, in particular, v to
be the solution to problem (2.2) with boundary datum V , we recover the well-known reciprocity
condition [9, Sections 3–5]

〈σn, V 〉 = 〈τn, U〉,
with τ being the stress tensor associated with v. Moreover, by taking U =V in Equation (2.6), we
obtain

〈σn, U〉 = α2‖u‖2
L2(�;R3) + 2‖Eu‖2

L2(�;M3×3
sym )

= ‖u‖2
X (�) .

This equality allows us to show that the quadratic form 〈σn, U〉 is positive definite: if 〈σn, U〉= 0,
then it follows that u = 0, and therefore U = 0.

We are now in a position to define the viscous force and torque in a rigorous way, by means of
the duality product introduced in Definition 2.3.

Definition 2.4 Let � ⊂ R
3 be an exterior domain with Lipschitz boundary, let u ∈ X (�) be

the solution to the Brinkman problem (2.2) with boundary datum U ∈ H 1/2(∂�; R
3), let σ be

the corresponding stress tensor defined by Equation (2.4), and let σn ∈ H−1/2(∂�; R
3) be the

trace on ∂� defined according to Equation (2.5). The viscous force exerted by the fluid on the
boundary ∂� is defined as the unique vector F ∈ R

3, such that

F · V = 〈σn, V 〉 for every V ∈ R
3. (2.7)

The torque exerted by the fluid on the boundary ∂� is defined as the unique vector M ∈ R
3, such

that

M · ω = 〈σn, Wω〉 for every ω ∈ R
3, (2.8)

where Wω(x): =ω × x is the velocity field generated by the angular velocity ω.

Notice that this definition allows us to define two different physical quantities by means of the
same mathematical object, namely the duality pairing defined in Equation (2.5).

3. Kinematics and the equations of motion

In this section, we describe the kinematics of the swimmer. The motion of a swimmer is described
by a map t �→ ϕt , where, for every fixed t, the state ϕt is an orientation preserving bijective C2
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6 M. Morandotti

map from the reference configuration A ⊂ R
3 into the current configuration At ⊂ R

3. Given a
distinguished point x0 ∈A, for every fixed t, we consider the following factorization:

ϕt = rt ◦ st , (3.1)

where the position function rt is a rigid deformation and the shape function st is such that

st (x0) = x0 and ∇st (x0) is symmetric. (3.2)

We allow the map t �→ st to be chosen in a suitable class of admissible shape changes and use it as
a control to achieve propulsion as a consequence of the viscous reaction of the fluid. In contrast,
t �→ rt is a priori unknown and it must be determined by imposing that the resulting ϕt = rt ◦ st

satisfies the equations of motion.
Since, as it is clear, the kinematics of the swimmer does not depend on the fluid the swimmer is

surrounded by, we can adopt the same setting as in [6]. For the reader’s convenience, we recall the
results proved there and refer the reader to the above-mentioned paper and the references therein
for a more detailed exposition.

The reference configuration of the swimmer A ⊂ R
3 is a bounded, connected open set of

class C2. The time-dependent deformation of A from the point of view of an external observer is
described by a function ϕt : Ā → R

3 with the following properties:

ϕt ∈ C2(Ā; R
3), ϕt is injective, det ∇ϕt (x) > 0 for all x ∈ Ā, (3.3)

for every t; here and henceforth ∇ denotes the gradient with respect to the space variable. Under
these hypotheses, At : =ϕt(A) is a bounded, connected open set of class C2 and

the inverse ϕ−1
t : Āt → Ā belongs to C2(Āt ; R

3).

We also assume that

the sets R
3 \ Āt are connected for all t ∈ [0, T ]. (3.4)

This assumption is technical and is made in order to prevent the change of topology in the swimmer
and in the surrounding fluid.

Concerning the regularity in time, we require that

the map t �→ ϕt belongs to Lip([0, T ]; C1(Ā; R
3)) ∩ L∞([0, T ]; C2(Ā; R

3)).

This condition implies that for almost every t, there exists ϕ̇t ∈ Lip(Ā; R
3), such that

ϕt+h − ϕt

h
→ ϕ̇t , uniformly on Ā as h → 0.

From this, the Eulerian velocity on the boundary ∂At , defined by

Ut := ϕ̇t ◦ ϕ−1
t

belongs to Lip(∂At ; R
3) with the Lipschitz constant independent of t.

We now introduce the description of the kinematics from the point of view of the swimmer.
Let x0 ∈A be a distinguished point and let us look for a factorization of ϕt of the form (3.1).
The function st : A → R

3 satisfies properties (3.2), in view of which it can be interpreted as a
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Journal of Biological Dynamics 7

pure shape change from the point of view of an observer inertial with x0, and the rigid motion
rt : R

3 → R
3 is written in the form

rt (z) = yt + Rtz, (3.5)

with yt ∈ R
3 and Rt ∈ SO(3), the set of orthogonal matrices with a positive determinant. This

allows us to say that the deformation ϕt , from the point of view of an external observer, is
decomposed into a shape change followed by a rigid motion.

From Equations (3.1), (3.3), and (3.5), the following properties of st can be inferred: for every t,

st ∈ C2(Ā; R
3), st is injective, det ∇st (x) > 0 for all x ∈ Ā, (3.6a)

the inverse s−1
t : B̄t → Ā belongs to C2(B̄t ; R

3), (3.6b)

where Bt : = st(A) (Figure 1). Note that Equation (3.6b) is a consequence of Equation (3.6a). Note
also that Bt is a bounded connected open set of class C2 and that st(Bt) =At and st(∂Bt) = ∂At .
Moreover, since A is bounded and st is continuous, there exists a ball �ρ centred at 0 with radius
ρ, such that

A ⊂⊂ �ρ−1 and Bt ⊂⊂ �ρ−1.

Lastly, Equation (3.4) implies that

the sets �ρ \ B̄t are connected for all t ∈ [0, T ]. (3.7)

By means of the polar decomposition theorem and factorization (3.1), it is possible to give
explicit formulae for Rt and yt that clearly show that the maps t �→ Rt and t �→ yt are Lipschitz
continuous. Since st = r−1

t ◦ ϕt ,

the map t �−→ st belongs to Lip ([0, T ]; C1(Ā; R
3)) ∩ L∞([0, T ]; C2(Ā; R

3)). (3.8)

The third property in Equations (3.6a) and (3.8) implies that ‖s−1
t ‖C2(B̄t ;R3) � C < +∞, with C

independent of t. Moreover, condition (3.8) yields the existence of ṡt ∈ Lip(Ā; R
3), such that

st+h − st

h
−→ ṡt , uniformly on Ā, as h −→ 0.

x yA At

Bt

st

rt

φt

z

Figure 1. Notation for the kinematics.
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8 M. Morandotti

Other properties of st that are worth mentioning and whose full derivation can be found in [6,
Section 3] are

the map t �−→ ṡt belongs to L∞([0, T ]; H 1/2(∂A; R
3)),

Lip(ṡt ) � L, with L independent of t,

for any fixed x ∈ Ā, the map t �−→ ṡt (x) is measurable .

To conclude the description of the kinematics of the swimmer, we give the form of the boundary
velocity on the intermediate configuration Bt . It turns out that, if we define Vt(z) := RT

t Ut (rt (z))

and Wt(z) := ṡt (s
−1
t (z)), for every z ∈ ∂Bt , an elementary computation shows that for almost

every t ∈ [0, T ]

Vt(z) = RT
t ẏt + RT

t Ṙt z + Wt(z) for every z ∈ ∂Bt .

We proceed now to the description of the motion of the swimmer. The motion t �→ ϕt determines
for almost every t ∈ [0, T ] the Eulerian velocity Ut through the formula

Ut(y) := ϕ̇t (ϕ
−1
t (y)) for almost every y ∈ ∂At .

Notice that Ut ∈ H 1/2(∂At ; R
3) for almost every t ∈ [0, T ]. By applying Theorem 2.1(b) with

� = Aext
t := R

3 \ Āt and, for almost every t ∈ [0, T ], we obtain a unique solution ut to the problem

find ut ∈ X (Aext
t ) such that ut = Ut on ∂At ,

2
∫

Aext
t

Eut : Ew dy + α2
∫

Aext
t

ut · w dy = 0 for every w ∈ X0(A
ext
t ).

(3.9)

Let FAt , Ut and MAt , Ut be the viscous force and torque determined by the velocity field Ut

according to Equations (2.7) and (2.8). By neglecting inertia and imposing the self-propulsion
constraint, the equations of motion reduce to the vanishing of the viscous force and torque, i.e.

FAt ,Ut
= 0 and MAt,Ut

= 0 for almost every t ∈ [0, T ]. (3.10)

By assuming that ϕt is factorized as ϕt = rt ◦ st , where rt is a rigid motion as in Equation (3.5)
and t �→ st is a prescribed shape function, our aim is to find t �→ rt so that the equations
of motion (3.10) are satisfied. To this extent, we present Theorem 3.1, whose result is that
Equation (3.10) is equivalent to a system of ordinary differential equations where the unknown
functions are the translation t �→ yt and the rotation t �→ Rt of the map t �→ rt .

The coefficients of these differential equations are defined starting from the intermediate con-
figuration described by the sets Bt = st(A) introduced before and the 3 × 3 matrices Kt , Ct , Jt ,
depending only on the geometry of Bt , whose entries are defined by

(Kt)ij := 〈σ [ej ]n, ei〉Bext
t

, (3.11a)

(Ct )ij := 〈σ [ej ]n, ei × z〉Bext
t

, (3.11b)

(Jt )ij := 〈σ [ej × z]n, ei × z〉Bext
t

, (3.11c)

where Bext
t := R

3 \ B̄t , the duality product is given in Definition 2.3 by formula (2.5) and σ [W ]
denotes the stress tensor associated with the outer Brinkman problem in Bext

t with boundary datum
W. The notation σ [W ] is chosen to emphasize the linear dependence of σ on W. Formula (2.6)
shows that Kt and Jt are symmetric. The matrix[

Kt CT
t

Ct Jt

]
is often called in the literature as the grand resistance matrix and is symmetric and invertible. It
originally arises in the case of a Stokes system [9], but the adaptation to the Brinkman system is
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Journal of Biological Dynamics 9

straightforward: it only shares the structure with the original one, while the values of the entries
are computed with a different formula, namely Equation (2.6). Let[

Ht DT
t

Dt Lt

]
:=

[
Kt CT

t

Ct Jt

]−1

(3.12)

be its inverse. For almost every t ∈ [0, T ], we defined Wt = ṡt ◦ s−1
t and let F sh

t and Msh
t be the

viscous force and torque on ∂Bt determined by the boundary velocity field Wt . The components
of F sh

t and Msh
t are given, according to Equations (2.7) and (2.8), by

(F sh
t )i = 〈σ [Wt ]n, ei〉Bext

t
, (3.13a)

(Msh
t )i = 〈σ [Wt ]n, ei × z〉Bext

t
. (3.13b)

Consider now the linear operator A : R
3 → M

3×3 that associates with every ω ∈ R
3 the only

skew-symmetric matrix A(ω) such that A(ω)z = ω × z; therefore, ω is the axial vector of A(ω).
Finally, we define a vector bt and a matrix �t according to

bt := HtF
sh
t + DT

t Msh
t , �t := A(DtF

sh
t + LtM

sh
t ), (3.14)

which depend on st and, most importantly on ṡt , via Equation (3.13) and the definition of Wt .

Theorem 3.1 Assume that the shape function t �→ st satisfies Equations (3.6) and (3.8) and that
the position function t �→ rt satisfies Equation (3.5) and is Lipschitz continuous with respect to
time. Then, the following conditions are equivalent:

(i) the deformation function t �→ ϕt : = rt°st satisfies the equations of motion (3.10);
(ii) the functions t �→ yt and t �→ Rt satisfy the system

ẏt = Rtbt , Ṙt = Rt�t , for almost every t ∈ [0, T ], (3.15)

where bt and �t are defined in Equation (3.14).

The proof was given in [6] and need not be modified, so we skip it. It is developed by setting the
problem in the intermediate configuration Bt , assuming the point of view of the coordinate system
of the shape functions. Changing the variables according to y = rt(z), z ∈ Bext

t , the velocity field
vt (z) := RT

t ut (rt (z)) is the solution to the problem

find vt ∈ X (Bext
t ) such that vt = Vt on ∂Bt ,

2
∫

Bext
t

Evt : Ew dz + α2
∫

Bext
t

vt · w dz = 0, for every w ∈ X0(B
ext
t ),

(3.16)

where Vt(z) = RT
t Ut (rt (z)) (Figure 2).

Denote by FBt , Vt and MBt , Vt the viscous force and torque on ∂Bt determined by the velocity
field vt according to Equations (2.7) and (2.8), with � = Bext

t . A straightforward computation
yields FBt ,Vt

= RT
t FAt ,Ut

and MBt,Vt
= RT

t MAt ,Ut
, so that the equations of motion (3.10) reduce to

FBt ,Vt
= 0 and MBt,Vt

= 0 for almost every t ∈ [0, T ].
Again by a simple manipulation, we obtain the following form of the equations of motion:[

ẏt

ωt

]
=

[
Rt 0
0 Rt

] [
Ht DT

t

Dt Lt

] [
F sh

t

Msh
t

]
for almost every t ∈ [0, T ],

which read, by means of Equation (3.14), as Equation (3.15).
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10 M. Morandotti

Figure 2. Notation for the boundary velocities (we neglect here the surrounding particulate medium).

Now, the standard theory of ordinary differential equations with possibly discontinuous coef-
ficients [8] ensures that the Cauchy problem for Equation (3.15) has one and only one Lipschitz
solution t �→ Rt , t �→ yt , provided that the functions t �→ �t and t �→ bt are measurable and
bounded. By Equations (3.12) and (3.14), this happens when the functions

t �−→ Kt, t �−→ Ct, t �−→ Jt , t �−→ F sh
t , t �−→ Msh

t (3.17)

are measurable and bounded. The continuity of the first three functions will be proved in the last
part of this section. The proof of the measurability and boundedness of the last two functions in
Equation (3.17) requires some technical tools that will be developed in Section 4.

We need the following notion of set convergence: given a sequence of sets (Sk)k , we say that
Sk converge to S∞, Sk → S∞, if for every ε > 0 there exists m such that for every k � m

S−ε
∞ ⊂ Sk ⊂ S+ε

∞ , (3.18)

where S−ε∞ = {y ∈ R
3 : dist(y, R

3 \ S∞) � ε} and S+ε∞ = {y ∈ R
3 : dist(y, S∞) � ε}. The next

lemma states a continuity property of the set-valued function t �→ Bt .

Lemma 3.2 [6] Let st satisfy Equation (3.8). Then, if t → t∞, the sets Bt converge to the set Bt∞
in the sense of Equation (3.18).

Theorem 3.3 Letwt be the solution to the exterior Brinkman problem (2.2) onBext
t with boundary

datum W on ∂Bt, where W can be either a constant vector a ∈ R
3 or the rotation Wω: =ω × z,

with ω ∈ R
3. Define w̃t to be the extension

w̃t :=
{

W on Bt ,

wt on Bext
t ,

(3.19)

Assume that t �→ st satisfies Equation (3.8). Then, the map t �→ w̃t is continuous from [0, T ] into
X (R3).

Proof Let (tk)k ⊂ [0, T ] be a sequence that converges to t∞ ∈ [0, T ]. Lemma 3.2 ensures the
convergence of the sets Btk to Bt∞ in the sense of Equation (3.18).
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Since wtk are solutions to Brinkman problems, we have the bound 2
∫
Bext

tk

|Ewtk |2 dz +
α2

∫
Bext

tk

|wtk |2 dz � C, which, in turn, implies that

2
∫

R3
|Ew̃tk |2 dz + α2

∫
R3

|w̃tk |2 dz � C.

Therefore, w̃t admits a subsequence that converges weakly to a function w∗ ∈ X (R3). By the
convergence of the Btk , it is easy to see that w∗ =W on Bt∞ . We now prove that w∗|Bext

t∞ solves the
exterior Brinkman problem on Bt∞ . To see that, consider a test function ϕ ∈ C∞

c (Bext
t∞ ; R

3). For k
large enough, ϕ ∈ C∞

c (Bext
tk

; R
3), so that

2
∫

sptϕ
Ewtk :Eϕ dz + α2

∫
sptϕ

wtk · ϕ dz = 0.

This equality passes to the limit as k → ∞, showing that w∗|Bext
t∞ is a solution to the Brinkman

problem at t∞. Therefore, w∗ = w̃t∞ , and we have proved that t �→ wt is strongly continuous
from [0, T ] into X (R3). �

We can now prove the following continuity result for the elements of the grand resistance matrix
by means of Theorem 3.3.

Proposition 3.4 Assume that st satisfies Equations (3.6) and (3.8). Then, the functions

t �→ Kt, t �→ Ct, t �→ Jt , (3.20)

and consequently t �→ Ht, t �→ Dt, t �→ Lt, are continuous.

Proof Formulae (3.11) and (2.6) provide us with an explicit form for the elements of the grand
resistance matrix

(Kt)ij = 2
∫

Bext
t

Ev
j
t :Evi

t dz + α2
∫

Bext
t

v
j
t · vi

t dz, (3.21a)

(Ct )ij = 2
∫

Bext
t

Ev
j
t :Ev̂i

t dz + α2
∫

Bext
t

v
j
t · v̂i

t dz, (3.21b)

(Jt )ij = 2
∫

Bext
t

Ev̂
j
t :Ev̂i

t dz + α2
∫

Bext
t

v̂
j
t · v̂i

t dz, (3.21c)

where vi
t and v̂i

t are the functions defined in Equation (3.19) with W = ei and W = ei × z,
respectively. We prove the result for Kt only, since the others are similar. We write

(Kt)ij = 2
∫

R3
Eṽ

j
t :Eṽi

t dz + α2
∫

R3
ṽ

j
t · ṽi

t dz − α2
∫

Bt

ej · ei dz,

where ṽi
t and ṽ

j
t are the extensions considered in Equation (3.19). By Theorem 3.3, the first two

integrals are continuous with respect to t. The continuity of the last integral is guaranteed by
Lemma 3.2. �
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12 M. Morandotti

The proof of the measurability and boundedness of t �→ F sh
t and t �→ Msh

t is a delicate issue.
The difficulty arises from the fact that both the domains Bt and the boundary data Wt = ṡt ◦ s−1

t

depend on time. Moreover, since it is meaningful and interesting to consider boundary values
Wt that might be discontinuous with respect to t, we cannot expect the functions t �→ F sh

t and
t �→ Msh

t to be continuous.
To prove the measurability, we start from an integral representation of F sh

t and Msh
t , similar to

Equation (3.21). As
∫
∂Bt

Wt · n dS is not necessarily zero, we will not be able to compute integrals
over the whole space R

3, so we will have to work in the complement of an open ball �0
ε ⊂⊂ Bt .

Since, in general, this inclusion holds only locally in time, we first fix t0 ∈ [0, T ] and z0 ∈ Bt0 and
select δ > 0 and ε > 0 so that the open ball �0

ε := �ε(z
0) of radius ε centred at z0 satisfies

�0
ε ⊂⊂ Bt, for all t ∈ Iδ(t0) := [0, T ] ∩ (t0 − δ, t0 + δ). (3.22)

This is possible thanks to the continuity properties of t �→ st listed in the first part of this section.
Next, we consider the solution wt to the problem

min

{
‖w‖2

X (�
0,ext
ε )

: w ∈ X (�0,ext
ε ), w = Wt on ∂Bt and w = λt (z − z0)

ε3
on ∂�0

ε

}
In order for the flux condition (2.3) to be fulfilled by wt on ∂Bt ∪ ∂�0

ε , we choose

λt := − 1

4π

∫
∂Bt

Wt · n dS.

Finally, putting together Equations (3.13) and (2.6), we obtain the following explicit integral
representation of F sh

t and Msh
t :

(F sh
t )i = 2

∫
�

0,ext
ε

Ewt :Evi
t dz + α2

∫
�

0,ext
ε

wt · vi
t dz − α2

∫
Qε,t

wt · vi
t dz,

(Msh
t )i = 2

∫
�

0,ext
ε

Ewt :Ev̂i
t dz + α2

∫
�

0,ext
ε

wt · v̂i
t dz − α2

∫
Qε,t

wt · v̂i
t dz,

where vi
t and v̂i

t have been defined in the proof of Proposition 3.4 and Qε,t := Bt \ �̄0
ε . We deduce

from Theorem 3.3 and Lemma 3.2 that the functions t �→ vi
t and t �→ v̂i

t are continuous from Iδ(t0)
into X (�0,ext

ε ). Therefore, the measurability and boundedness of t �→ F sh
t and t �→ Msh

t will be
proved once t �→ wt is proved to be measurable. We first show that t �→ wt is measurable and
bounded from Iδ(t0) into X (�0,ext

ε ) and eventually we will prove that the function t �→ ∫
Qε,t

wt dz

is continuous with respect to time. These two results are proved in the next section.

4. Extensions of boundary data and main result

In order to prove the main result, some work is still to be done to prove the regularity property of
the coefficients of the equations of motion (3.15). To this aim, results concerning the extension of
boundary data are needed to be able to use standard variational techniques to solve the relevant
minimum problem of Theorem 4.4. The following result has been proved in [6].

Proposition 4.1 (Solenoidal extension operators) Assume that st satisfies Equations (3.6)
and (3.8), and let t0 ∈ [0, T ] and z0 ∈ Bt0 . Let δ > 0 and ε > 0 be such that Equation (3.22)
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holds true. Then, there exists a uniformly bounded family (Tt )t∈Iδ(t0) of continuous linear
operators

Tt : H 1/2(∂A; R
3) → X (�ρ \ �̄0

ε )

such that

(i) for all t ∈ Iδ(t0) and for all � ∈ H 1/2(∂A; R
3),

Tt (�) = � ◦ s−1
t on ∂Bt ,

Tt (�) = λt

z

|z|3 on ∂�ρ,

(ii) for every � ∈ H 1/2(∂A; R
3), the map t �→ Tt (�) is continuous from Iδ(t0) into X (�ρ \ �̄0

ε ).

In particular, the following estimate holds

‖Tt (�)‖H 1(�ρ\�̄0
ε ;R3) � C‖�‖H 1/2(∂A;R3), (4.1)

where the constant C is independent of t and �.

Proposition 4.2 Assume that st satisfies Equations (3.6), (3.7), and (3.8). Let t0 ∈ [0, T ]
and z0 ∈ Bt0 , and let �0

ε and Iδ(t0) be as in Equation (3.22). Suppose, in addition, that
for every t ∈ Iδ(t0), there exists a C2 diffeomorphism �

t0
t : �ρ → �ρ coinciding with the

identity on �ρ\�ρ−1, such that �
t0
t = st0 ◦ s−1

t on Bt. Let the map t �→ �t belongs to
C0(Iδ(t0); H 1/2(∂A; R

3)) ∩ L∞(Iδ(t0); Lip(∂A; R
3)). Let wt be the solution to the problem

min

{
‖w‖2

X (�
0,ext
ε )

: X (�0,ext
ε ), w = �t ◦ s−1

t on ∂Bt and w = λt (z − z0)

ε3
on ∂�0

ε

}
, (4.2)

where λt := −(1/4π)
∫
∂Bt

(�t ◦ s−1
t ) · n dS. Then, t �→ wt belongs to C0(Iδ(t0); X (�0,ext

ε )).

Proof The proof can be easily adapted from that of [6, Proposition 6.1]; the following important
estimate provides a uniform bound for the norms of the wt’s in X (�0,ext

ε ) that will also be useful
in the proof of Proposition 4.3

2
∫

�
0,ext
ε

∣∣Ewtk

∣∣2
dz + α2

∫
�

0,ext
ε

∣∣wtk

∣∣2
dz � 2

∫
�

0,ext
ε

∣∣Eψtk

∣∣2
dz + α2

∫
�

0,ext
ε

∣∣ψtk

∣∣2
dz

�
∥∥ψtk

∥∥2
H 1(�ρ\�̄0

ε ;R3)
� C2(Lip(�tk ) + max

∣∣�tk

∣∣)2 � (CM)2, (4.3)

where ψt ∈ X (�0,ext
ε ) is defined by

ψt :=
⎧⎨⎩Tt (�t ) in �ρ \ �̄0

ε ,

λt

z

|z|3 in �ext
ρ

and is the function provided by Proposition 4.1 and extended on �ext
ρ , C is the constant in

Equation (4.1), and M > 0 is a uniform upper bound of Lip(�tk ) + max
∣∣�tk

∣∣, whose existence is
guaranteed by the fact that t �→ �t belongs to L∞(Iδ(t0); Lip(∂A; R

3)). �
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14 M. Morandotti

Proposition 4.3 Under the hypotheses of Proposition 4.2, recalling that Qε,t = Bt \ �̄0
ε , the

maps

t �→
∫

Qε,t

wt dz, t �→
∫

Qε,t

z × wt dz, (4.4)

where t �→ wt ∈ X (�0,ext
ε ) is the solution to the minimum problem (4.2) as in Proposition 4.2,

are continuous with respect to time in Iδ(t0).

Proof We check the continuity with the definition∣∣∣∣∫
Qt+h

wt+h dz −
∫

Qt

wt dz

∣∣∣∣
=

∣∣∣∣∫
Qt+h

(wt+h − wt) dz +
∫

�
0,ext
ε

wt (χQt+h
(z) − χQt

(z)) dz

∣∣∣∣
�

(∫
�

0,ext
ε

|wt+h − wt |2 dz

)1/2

|Qt+h|1/2 +
(∫

�
0,ext
ε

|wt |2 dz

)1/2

|Qt+h�Qt |1/2

� ‖wt+h − wt‖X (�
0,ext
ε )

|Qt+h|1/2 + ‖wt‖X (�
0,ext
ε )

|Qt+h�Qt |1/2

�
∣∣�ρ

∣∣1/2 ‖wt+h − wt‖X (�
0,ext
ε )

+ CM |Qt+h�Qt |1/2 h→0−−→ 0.

Here, χQ denotes the characteristic function of the set Q, � is the symmetric difference operator,
and CM is the uniform (with respect to t) upper bound coming from Equation (4.3). The continuity
for the second map is achieved in the same way. �

Propositions 4.2 and 4.3 combined together give the continuity of t �→ F sh
t and t �→ Msh

t with
respect to time, in the case of regular boundary data �t ◦ s−1

t on ∂Bt , where the map t �→ �t

belongs to C0(Iδ(t0); H 1/2(∂A; R
3)) ∩ L∞(Iδ(t0); Lip(∂A; R

3)). The next results will prove that
when the boundary data on ∂Bt are given by ṡt ◦ s−1

t , then the maps t �→ F sh
t and t �→ Msh

t are
measurable and bounded.

Theorem 4.4 Assume that st satisfies Equations (3.6)–(3.8). Let t0 ∈ [0, T ] and z0 ∈ Bt0 , and
let �0

ε and Iδ(t0) be as in Equation (3.22). Suppose, in addition, that for every t ∈ Iδ(t0), there
exists a C2 diffeomorphism �

t0
t : �ρ → �ρ coinciding with the identity on �ρ\�ρ−1, such that

�
t0
t = st0 ◦ s−1

t on Bt. Let wt be the solution to the problem

min

{
‖w‖2

X (�
0,ext
ε )

: w ∈ X (�0,ext
ε ), w = ṡt ◦ s−1

t on ∂Bt , and w = λt (z − z0)

ε3
on ∂�0

ε

}
.

Then, the function t �→ wt is measurable and bounded from Iδ(t0) into X (�0,ext
ε ). Moreover, also

the functions (4.4) considered in Proposition 4.3 are measurable and bounded in Iδ(t0).

Proof It suffices to convolve the boundary datum with a suitable regularizing kernel and to apply
Propositions 4.2 and 4.3. By passing to the limit, the continuity is lost but the functions turn out
to be measurable and bounded. �

Proposition 3.4 and Theorem 4.4 give the regularity result for bt and �t in Equation (3.14), as
stated in the following result.
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Theorem 4.5 Assume that t �→ st satisfies Equations (3.6)–(3.8). Then, the vector bt and the
matrix �t in Equation (3.14) are bounded and measurable with respect to t. If, in addition, the
function t �→ st belongs to C1([0, T ]; C1(Ā; R

3)), then t �→ (bt, �t) belongs to C0([0, T ]; R
3 ×

M
3×3).

We are now in a position to state the existence, uniqueness, and regularity result for the equations
of motion (3.15).

Theorem 4.6 Assume that t �→ st satisfies Equations (3.6)–(3.8). Let y∗ ∈ R
3 and R∗ ∈ SO(3).

Then, Equation (3.15) has a unique absolutely continuous solution t �→ (yt, Rt) defined in [0, T ]
with values in R

3 × SO(3) such that y0 = y∗ and R0 = R∗. In other words, there exists a unique
rigid motion t �→ rt(z) = yt + Rtz such that the deformation function t �→ ϕt = rt◦st satisfies the
equations of motion (3.10).

Moreover, this solution is Lipschitz continuous with respect to t. If, in addition, the
function t �→ st belongs to C1([0, T ]; C1(Ā; R

3)), then the solution t �→ (yt, Rt) belongs to
C1([0, T ]; R

3 × SO(3)).

Proof The existence and uniqueness of the solution of the Cauchy problem for Equation (3.15)
follow immediately from Theorem 4.5, by standard results on ordinary differential equations with
bounded measurable coefficients [8, Theorem I.5.1]. The assertion concerning the deformation
function t �→ ϕt and the equation of motion (3.10) follows from the equivalence Theorem 3.1.
The Lipschitz continuity of the solution follows from the boundedness of the right-hand sides of
Equation (3.15).

If, in addition, the function t �→ st belongs to C1([0, T ]; C1(Ā; R
3)), then Theorem 4.5 ensures

that the coefficients of the equations in Equation (3.15) are continuous with respect to t, and
therefore the solutions are of class C1. �

5. Conclusions and future work

We have shown that the framework for modelling the motion of a deformable body in a viscous
fluid that we presented in [6] also fits in the case of a particulate system for which the Brinkman
equation is assumed to model the fluid phase of the surrounding medium. A suitable functional
setting has been developed and the solution to the Brinkman system has been found by solving
a minimum problem for the associated functional. Some extra terms appeared, with respect to
the Stokes case, due to the presence of the −α2u term in the Brinkman system. Nonetheless, the
corresponding integrals, depending on time both in the integrand function and in the domain of
integration, have been proved to be continuous with respect to time, thus allowing the coefficients
of the equations of motion to be regular enough.

Another noteworthy feature of our work is that the infinite-dimensional control t �→ st is cou-
pled with and determines a finite-dimensional function to describe the position of the swimmer.
In previous works [3,18,19], only swimmers with a finite number of shape parameters were dealt
with. Here, we have been able to extend the study to the case of a more complex deformation.

In our model, we neglected the interactions between the solid particles and the swimmer, con-
sidering only the body–fluid phase viscous interaction. We think this is a reasonable approximation
for using a simple model such as the Brinkman equation.Also, the mathematical model to describe
the experiments in [12] is the same, and in that case, the elastic and adhesive interactions between
the nematode and the surrounding particles are neglected as well. Nevertheless, we think it can be
interesting to develop more complex models to take into account also that kind of contact forces,
and this could be the objective of a future study.

D
ow

nl
oa

de
d 

by
 [

M
r 

M
ar

co
 M

or
an

do
tti

] 
at

 0
2:

15
 3

1 
A

ug
us

t 2
01

1 



16 M. Morandotti

Even though it has not been addressed in this work, we also expect our model to be able to
predict, on the basis of an energy comparison, whether swimming in a particulate medium is more
efficient than swimming in a plain viscous fluid; this would be an interesting theoretical check of
the thesis advanced by Jung on the basis of his experimental results that C. elegans swims more
efficiently in a particulate medium.
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