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On the k-regularity of the k-adic valuation of
Lucas sequences

par Nadir MURRU et Carlo SANNA

Résumé. Pour tous entiers k ≥ 2 et n 6= 0, soit νk(n) le plus
grand entier positif e tel que ke divise n. De plus, soit (un)n≥0
une suite de Lucas non dégénérée telle que u0 = 0, u1 = 1 et
un+2 = aun+1 + bun, pour certains entiers a et b. Shu et Yao ont
montré que, pour tout nombre premier p, la suite νp(un+1)n≥0
est p-régulière. Medina et Rowland ont déterminé le rang de
νp(Fn+1)n≥0, où Fn est le n-ième nombre de Fibonacci.

Nous montrons que si k et b sont premiers entre eux, alors
νk(un+1)n≥0 est une suite k-régulière. Si de plus k est un nombre
premier, nous déterminons aussi le rang de cette suite. En outre,
nous donnons des formules explicites pour νk(un), généralisant un
théorème précédent de Sanna concernant les valuations p-adiques
des suites de Lucas.

Abstract. For integers k ≥ 2 and n 6= 0, let νk(n) denote the
greatest nonnegative integer e such that ke divides n. Moreover,
let (un)n≥0 be a nondegenerate Lucas sequence satisfying u0 = 0,
u1 = 1, and un+2 = aun+1 + bun, for some integers a and b.
Shu and Yao showed that for any prime number p the sequence
νp(un+1)n≥0 is p-regular, while Medina and Rowland found the
rank of νp(Fn+1)n≥0, where Fn is the n-th Fibonacci number.

We prove that if k and b are relatively prime then νk(un+1)n≥0
is a k-regular sequence, and for k a prime number we also de-
termine its rank. Furthermore, as an intermediate result, we give
explicit formulas for νk(un), generalizing a previous theorem of
Sanna concerning p-adic valuations of Lucas sequences.

1. Introduction
For integers k ≥ 2 and n 6= 0, let νk(n) denote the greatest nonnegative

integer e such that ke divides n. In particular, if k = p is a prime num-
ber then νp(·) is the usual p-adic valuation. We shall refer to νk(·) as the
k-adic valuation, although, strictly speaking, for composite k this is not
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a “valuation” in the algebraic sense of the term, since it is not true that
νk(mn) = νk(m) + νk(n) for all integers m,n 6= 0.

Valuations of sequences with combinatorial meanings have been studied
by several authors (see, e.g., [4, 6, 7, 8, 9, 10, 12, 14, 15, 18]). To this end, an
important role is played by the family of k-regular sequences, which were
first introduced and studied by Allouche and Shallit [1, 2, 3] with the aim
of generalizing the concept of automatic sequences.

Given a sequence of integers s(n)n≥0, its k-kernel is defined as the set of
subsequences

kerk(s(n)n≥0) := {s(ken+ i)n≥0 : e ≥ 0, 0 ≤ i < ke}.
Then s(n)n≥0 is said to be k-regular if the Z-module 〈kerk(s(n)n≥0)〉 gener-
ated by its k-kernel is finitely generated. In such a case, the rank of s(n)n≥0
is the rank of this Z-module.

Allouche and Shallit provided many examples of regular sequences. In
particular, they showed that the sequence of p-adic valuations of factori-
als νp(n!)n≥0 is p-regular [1, Example 9], and that the sequence of 3-adic
valuations of sums of central binomial coefficients

ν3

(
n∑

i= 0

(
2i
i

))
n≥0

is 3-regular [1, Example 23]. Furthermore, for any polynomial f(x) ∈ Q[x]
with no roots in the natural numbers, Bell [5] proved that the sequence
νp(f(n))n≥0 is p-regular if and only if f(x) factors as a product of linear
polynomials in Q[x] times a polynomial with no root in the p-adic integers.

Fix two integers a and b, and let (un)n≥0 be the Lucas sequence of
characteristic polynomial f(x) = x2 − ax − b, i.e., (un)n≥0 is the integral
sequence satisfying u0 = 0, u1 = 1, and un+2 = aun+1 + bun, for each
integer n ≥ 0. Assume also that (un)n≥0 is nondegenerate, i.e., b 6= 0 and
the ratio α/β of the two roots α, β ∈ C of f(x) is not a root of unity.

Using p-adic analysis, Shu and Yao [16, Corollary 1] proved the following
result.
Theorem 1.1. For each prime number p, the sequence νp(un+1)n≥0 is
p-regular.

In the special case a = b = 1, i.e., when (un)n≥0 is the sequence of
Fibonacci numbers (Fn)n≥0, Medina and Rowland [11] gave an algebraic
proof of Theorem 1.1 and also determined the rank of νp(Fn+1)n≥0. Their
result is the following.
Theorem 1.2. For each prime number p the sequence νp(Fn+1)n≥0 is
p-regular. Precisely, for p 6= 2, 5 the rank of νp(Fn+1)n≥0 is α(p) + 1, where
α(p) is the least positive integer such that p | Fα(p), while for p = 2 the rank
is 5, and for p = 5 the rank is 2.
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In this paper, we extend Theorem 1.1 to k-adic valuations with k rela-
tively prime to b; and we generalize Theorem 1.2 to nondegenerate Lucas
sequences. Let ∆ := a2 +4b be the discriminant of f(x). Also, for each pos-
itive integer m relatively prime to b let τ(m) denote the rank of apparition
of m in (un)n≥0, i.e., the least positive integer n such that m | un (which
is well-defined, see, e.g., [13]).

Our first two results are the following.

Theorem 1.3. If k ≥ 2 is an integer relatively prime to b, then the sequence
νk(un+1)n≥0 is k-regular.

Theorem 1.4. Let p be a prime number not dividing b, and let r be the
rank of νp(un+1)n≥0.

• If p | ∆ then:
• r = 2 if p ∈ {2, 3} and νp(up) = 1, or if p ≥ 5;
• r = 3 if p ∈ {2, 3} and νp(up) 6= 1.

• If p - ∆ then:
• r = 5 if p = 2 and ν2(u6) 6= ν2(u3) + 1;
• r = τ(p) + 1 if p > 2, or if p = 2 and ν2(u6) = ν2(u3) + 1.

Note that Theorem 1.2 follows easily from our Theorem 1.4, since in the
case of Fibonacci numbers b = 1, ∆ = 5, ν2(F3) = 1, ν2(F6) = 3, and
τ(p) = α(p).

As a preliminary step in the proof of Theorem 1.3, we obtain some for-
mulas for the k-adic valuation νk(un), which generalize a previous result of
the second author. Precisely, Sanna [15] proved the following formulas for
the p-adic valuation of un.

Theorem 1.5. If p is a prime number such that p - b, then

νp(un) =
{
νp(n) + %p(n) if τ(p) | n,
0 if τ(p) - n,

for each positive integer n, where

%2(n) :=


ν2(u3) if 2 - ∆, 2 - n,
ν2(u6)− 1 if 2 - ∆, 2 | n,
ν2(u2)− 1 if 2 | ∆,

and

%p(n) = %p :=


νp(uτ(p)) if p - ∆,
ν3(u3)− 1 if p | ∆, p = 3,
0 if p | ∆, p ≥ 5,

for p ≥ 3.
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Actually, Sanna’s result [15, Theorem 1.5] is slightly different but it
quickly turns out to be equivalent to Theorem 1.5 using [15, Lemma 2.1(v),
Lemma 3.1, and Lemma 3.2]. Furthermore, in Sanna’s paper it is assumed
gcd(a, b) = 1, but the proof of [15, Theorem 1.5] works exactly in the same
way also for gcd(a, b) 6= 1.

From now on, let k = pa1
1 · · · p

ah
h be the prime factorization of k, where

p1 < · · · < ph are prime numbers and a1, . . . , ah are positive integers.
We prove the following generalization of Theorem 1.5.

Theorem 1.6. If k ≥ 2 is an integer relatively prime to b, then

νk(un) =
{
νk(ck(n)n) if τ(p1 · · · ph) | n,
0 if τ(p1 · · · ph) - n,

for any positive integer n, where

ck(n) :=
h∏

i= 1
p
%pi(n)
i .

Note that Theorem 1.6 is indeed a generalization of Theorem 1.5. In fact,
if k = p is a prime number then obviously

νp(cp(n)n) = νp(p%p(n)n) = νp(n) + %p(n),
for each positive integer n.

2. Preliminaries
In this section we collect some preliminary facts needed to prove the

results of this paper. We begin with some lemmas on k-regular sequences.

Lemma 2.1. If s(n)n≥0 and t(n)n≥0 are two k-regular sequences, then
(s(n)+t(n))n≥0 and s(n)t(n)n≥0 are k-regular too. Precisely, if A is a finite
set of generators of 〈kerk(s(n)n≥0)〉 and B is a finite set of generators of
〈kerk(t(n)n≥0)〉, then A∪B is a set of generators of 〈kerk((s(n)+t(n))n≥0)〉.

Proof. See [1, Theorem 2.5]. �

Lemma 2.2. If s(n)n≥0 is a k-regular sequence, then for any integers c ≥ 1
and d ≥ 0 the subsequence s(cn+ d)n≥0 is k-regular.

Proof. See [1, Theorem 2.6]. �

Lemma 2.3. Any periodic sequence is k-regular.

Proof. An ultimately periodic sequence is k-automatic for all k ≥ 2,
see [2, Theorem 5.4.2]. A k-automatic sequence is k-regular, see [1, Theo-
rem 1.2]. �

The following lemma is essentially [1, Theorem 2.2(d) and remark (i)
just below].
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Lemma 2.4. Let s(n)n≥0 be a sequence of integers. If there exist some

(2.1) s1 = s, s2, . . . , sr ∈ 〈kerk(s(n)n≥0)〉

such that the sequences sj(kn + i)n≥0, with 0 ≤ i < k and 1 ≤ j ≤ r,
are Z-linear combinations of s1, . . . , sr, then s(n)n≥0 is k-regular and
〈kerk(s(n)n≥0)〉 is generated by s1, . . . , sr.

Proof. It is sufficient to prove that s(ken+ i)n≥0 ∈ 〈s1, . . . , sr〉 for all inte-
gers e ≥ 0 and 0 ≤ i < ke. In fact, this claim implies that 〈kerk(s(n)n≥0)〉 ⊆
〈s1, . . . , sr〉, while by (2.1) we have 〈s1, . . . , sr〉 ⊆ 〈kerk(s(n)n≥0)〉, hence
〈kerk(s(n)n≥0)〉 = 〈s1, . . . , sr〉 and so s(n)n≥0 is k-regular. We proceed by
induction on e. For e = 0 the claim is obvious since s = s1. Suppose e ≥ 1
and that the claim holds for e−1. We have i = ke−1j+ i′, for some integers
0 ≤ j < k and 0 ≤ i′ < ke−1. Therefore, by the induction hypothesis,

s(ken+ i)n≥0 = s(ke−1(kn+ j) + i′)n≥0

∈ 〈s1(kn+ j)n≥0, . . . , sr(kn+ j)n≥0〉
⊆ 〈s1, . . . , sr〉,

and the claim follows. �

The next lemma is well-known; we give the proof just for completeness.

Lemma 2.5. The sequence νk(n + 1)n≥0 is k-regular of rank 2. Indeed,
〈kerk(νk(n+1)n≥0)〉 is generated by νk(n+1)n≥0 and the constant sequence
(1)n≥0.

Proof. For all nonnegative integers n and i < k we have

νk(kn+ i+ 1) =
{

1 + νk(n+ 1) if i = k − 1,
0 if i < k − 1.

Therefore, putting s1 = νk(n + 1)n≥0 and s2 = (1 + νk(n + 1))n≥0 in
Lemma 2.4, we obtain that 〈kerk(νk(n+1)n≥0)〉 is generated by νk(n+1)n≥0
and (1+νk(n+1))n≥0, hence it is also generated by νk(n+1)n≥0 and (1)n≥0,
which are obviously linearly independent. Thus νk(n+ 1)n≥0 is k-regular of
rank 2. �

Now we state a lemma that relates the k-adic valuation of an integer
with its pi-adic valuations. The proof is quite straightforward and we leave
it to the reader.

Lemma 2.6. We have

νk(m) = min
i=1,...,h

⌊
νpi(m)
ai

⌋
,

for any integer m ≥ 2.
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We conclude this section with two lemmas on the rank of apparition
τ(n).

Lemma 2.7. For each prime number p not dividing b,

τ(p) | p− (−1)p−1
(∆
p

)
,

where
(
·
p

)
denotes the Legendre symbol. In particular, if p |∆ then τ(p) = p.

Proof. The case p = 2 is easy. For p > 2 see [17, Lemma 1]. �

Lemma 2.8. If m and n are two positive integers relatively prime to b,
then

τ(lcm(m,n)) = lcm(τ(m), τ(n)).

Proof. See [13, Theorem 1(a)]. �

3. Proof of Theorem 1.6
Thanks to Lemma 2.6, we know that

(3.1) νk(un) = min
i=1,...,h

⌊
νpi(un)
ai

⌋
.

Moreover, from Lemma 2.8 it follows that
τ(p1 · · · ph) = lcm{τ(p1), . . . , τ(ph)}.

Therefore, on the one hand, if τ(p1 · · · ph) - n then τ(pi) - n for some
i ∈ {1, . . . , h}, so that by Theorem 1.5 we have νpi(un) = 0, which together
with (3.1) implies νk(un) = 0, as claimed.

On the other hand, if τ(p1 · · · ph) | n then τ(pi) | n for i = 1, . . . , h.
Hence, from (3.1), Theorem 1.5, and Lemma 2.6, we obtain

νk(un) = min
i=1,...,h

⌊
νpi(n) + %pi(n)

ai

⌋
= min

i=1,...,h

⌊
νpi(ck(n)n)

ai

⌋
= νk(ck(n)n),

so that the proof is complete.

4. Proof of Theorem 1.3
Clearly, if ∆ and k are fixed, then ck(n) depends only on the parity of

n. Thus it follows easily from Theorem 1.6 that
(4.1) νk(un+1) = νk(ck(1)(n+ 1)) s(n) + νk(ck(2)(n+ 1)) t(n),
for each integer n ≥ 0, where the sequences s(n)n≥0 and t(n)n≥0 are defined
by

s(n) :=
{

1 if τ(p1 · · · p2) | n+ 1, 2 - n+ 1,
0 otherwise,



On the k-regularity of the k-adic valuation of Lucas sequences 7

and

t(n) :=
{

1 if τ(p1 · · · p2) | n+ 1, 2 | n+ 1,
0 otherwise.

On the one hand, by Lemma 2.5 and Lemma 2.2, we know that both
νk(ck(1)(n + 1))n≥0 and νk(ck(2)(n + 1))n≥0 are k-regular sequences. On
the other hand, by Lemma 2.3, also the sequences s(n)n≥0 and t(n)n≥0 are
k-regular, since obviously they are periodic.

In conclusion, using (4.1) and Lemma 2.1, we obtain that νk(un+1)n≥0
is a k-regular sequence.

5. Proof of Theorem 1.4
We generalize Medina and Rowland’s proof of Theorem 1.2. First, sup-

pose that p | ∆. By Lemma 2.7 we have τ(p) = p. Moreover, it is clear that
%p(n) = %p does not depend on n. As a consequence, from Theorem 1.5 it
follows easily that
(5.1) νp(un+1) = νp(n+ 1) + s(n),
for any integer n ≥ 0, where the sequence s(n)n≥0 is defined by

s(n) :=
{
%p if n+ 1 ≡ 0 mod p,
0 if n+ 1 6≡ 0 mod p.

On the one hand, if p ∈ {2, 3} and νp(up) = 1, or if p ≥ 5, then %p = 0.
Thus s(n)n≥0 is identically zero and it follows by (5.1) and Lemma 2.5
that r = 2. On the other hand, if p ∈ {2, 3} and νp(up) 6= 1, then %p 6= 0.
Moreover, for i = 0, . . . , p− 1 we have

s(pn+ i) =
{
%p if i = p− 1,
0 if i 6= p− 1,

hence from Lemma 2.4 it follows that s(n)n≥0 is p-regular and that the
module 〈kerp(s(n)n≥0)〉 is generated by s(n)n≥0 and (%p)n≥0. Therefore,
by (5.1), Lemma 2.5, and Lemma 2.1, we obtain that νp(un+1)n≥0 is a p-
regular sequence and that 〈kerp(νp(un+1)n≥0)〉 is generated by νp(n+1)n≥0,
s(n)n≥0, and (1)n≥0, which are clearly linearly independent, hence r = 3.

Now suppose p - ∆. By Lemma 2.7, we know that p ≡ ε mod τ(p),
for some ε ∈ {−1,+1}. Furthermore, if p = 2 then it follows easily that
τ(2) = 3. As a consequence, from Theorem 1.5 we obtain that
(5.2) νp(un+1) = s(n) + t(n),
for any integer n ≥ 0, where the sequences s(n)n≥0 and t(n)n≥0 are defined
by

s(n) :=
{
νp(n+ 1) + v if n+ 1 ≡ 0 mod τ(p)
0 if n+ 1 6≡ 0 mod τ(p),
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with v := νp(uτ(p)), and

t(n) :=
{
ν2(u6)− ν2(u3)− 1 if p = 2, n+ 1 ≡ 0 mod 6,
0 otherwise.

We shall show that s(n)n≥0 is a p-regular sequence of rank τ(p) + 1. Let
us define the sequences sj(n)n≥0, for j = 0, . . . , τ(p)− 1, by

sj(n) :=
{

1 if n+ j + 1 ≡ 0 mod τ(p),
0 if n+ j + 1 6≡ 0 mod τ(p).

On the one hand, for i = 0, . . . , p− 2 we have

s(pn+ i) =
{
νp(pn+ i+ 1) + v if pn+ i+ 1 ≡ 0 mod τ(p),
0 if pn+ i+ 1 6≡ 0 mod τ(p),

=
{
v if εn+ i+ 1 ≡ 0 mod τ(p),
0 if εn+ i+ 1 6≡ 0 mod τ(p),

=
{
v if n+ (ε(i+ 1)− 1) + 1 ≡ 0 mod τ(p),
0 if n+ (ε(i+ 1)− 1) + 1 6≡ 0 mod τ(p),

= v · s(ε(i+1)−1) mod τ(p)(n),

since p - i+ 1 and consequently νp(pn+ i+ 1) = 0.
On the other hand,

s(pn+ p− 1) =
{
νp(pn+ p) + v if p(n+ 1) ≡ 0 mod τ(p),
0 if p(n+ 1) 6≡ 0 mod τ(p),

(5.3)

=
{
νp(n+ 1) + v + 1 if n+ 1 ≡ 0 mod τ(p),
0 if n+ 1 6≡ 0 mod τ(p),

= s(n) + s0(n),

since νp(pn+ p) = νp(n+ 1) + 1 and gcd(p, τ(p)) = 1.
Furthermore, for i = 0, . . . , p− 1 and j = 0, . . . , τ(p)− 1,

sj(pn+ i) =
{

1 if pn+ i+ j + 1 ≡ 0 mod τ(p),
0 if pn+ i+ j + 1 6≡ 0 mod τ(p),

=
{

1 if n+ (ε(i+ j + 1)− 1) + 1 ≡ 0 mod τ(p),
0 if n+ (ε(i+ j + 1)− 1) + 1 6≡ 0 mod τ(p),

= s(ε(i+j+1)−1) mod τ(p)(n).

Summarizing, the sequences s(pn+ i)n≥0 and sj(pn+ i)n≥0, for 0 ≤ i < p
and 0 ≤ j < τ(p), are Z-linear combinations of s(n)n≥0 and sj(n)n≥0.
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Moreover, for i = 0, . . . , p2 − 1 we have

s0(p2n+ i) =
{

1 if p2n+ i+ 1 ≡ 0 mod τ(p),
0 if p2n+ i+ 1 6≡ 0 mod τ(p),

(5.4)

=
{

1 if n+ i+ 1 ≡ 0 mod τ(p),
0 if n+ i+ 1 6≡ 0 mod τ(p),

= si mod τ(p)(n),

hence, by (5.4) and (5.3), it follows that

si mod τ(p)(n)n≥0 = s0(p2n+ i)n≥0(5.5)
= s(p3n+ pi+ p− 1)n≥0 − s(p2n+ i)n≥0

∈ 〈kerp(s(n)n≥0)〉.

Since τ(p) | p− ε, we have

τ(p) ≤ p− ε ≤ p+ 1 < p2,

hence by (5.5) we get that sj(n)n≥0 ∈ 〈kerp(s(n)n≥0)〉, for 0 ≤ j < τ(p).
Therefore, in light of Lemma 2.4, we obtain that s(n)n≥0 is a p-regular

sequence and that 〈kerp(s(n)n≥0)〉 is generated by s(n)n≥0 and sj(n)n≥0,
with j = 0, . . . , τ(p)−1. It is straightforward to see that these last sequences
are linearly independent, hence s(n)n≥0 has rank τ(p) + 1.

If p > 2, or if p = 2 and ν2(u6) = ν2(u3) + 1, then t(n)n≥0 is identically
zero, thus from (5.2) and the previous result on s(n) we find that r =
τ(p) + 1.

So it remains only to consider the case p = 2 and ν2(u6) 6= ν2(u3) + 1.
Recall that in such a case τ(2) = 3, and put d := ν2(u6) − ν2(u3) − 1.
Obviously, the sequence t(2n)n≥0 is identically zero, while

t(2n+ 1) =
{
d if 2n+ 2 ≡ 0 mod 6,
0 if 2n+ 2 6≡ 0 mod 6,

=
{
d if n+ 1 ≡ 0 mod 3,
0 if n+ 1 6≡ 0 mod 3,

= d · s0(n).

Thus, again from Lemma 2.4, we have that t(n) is a 2-regular sequence and
that 〈kerp(t(n)n≥0)〉 is generated by t(n)n≥0 and d ·sj(n)n≥0, for j = 0, 1, 2.

In conclusion, by (5.2) and Lemma 2.1, we obtain that νp(un+1)n≥0 is a
2-regular sequence and that 〈kerp(νp(un+1)n≥0)〉 is generated by s(n), t(n),
and sj(n), for j = 0, 1, 2, which are linearly independent, hence r = 5. The
proof is complete.
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6. Concluding remarks
It might be interesting to understand if, actually, νk(un+1)n≥0 is k-regular

for every integer k ≥ 2, so that Theorem 1.3 holds even by dropping the
assumption that k and b are relatively prime. A trivial observation is that
if k and b have a common prime factor p such that p - a, then p - un for all
integers n ≥ 1, and consequently νk(un+1)n≥0 is k-regular simple because it
is identically zero. Thus the nontrivial case occurs when each of the prime
factors of gcd(b, k) divides a.

Another natural question is if it is possible to generalize Theorem 1.4 in
order to say something about the rank of νk(un+1)n≥0 when k is composite.
Probably, the easier cases are those when k is squarefree, or when k is a
power of a prime number.

We leave these as open questions to the reader.
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