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On the Security of a Class of Diffusion
Mechanisms for Image Encryption

Leo Yu Zhang, Member, IEEE, Yuansheng Liu, Fabio Pareschi, Member, IEEE, Yushu Zhang,
Kwok-Wo Wong, Senior Member, IEEE, Riccardo Rovatti, Fellow, IEEE, and Gianluca Setti, Fellow, IEEE

Abstract—The need for fast and strong image cryptosystems
motivates researchers to develop new techniques to apply tradi-
tional cryptographic primitives in order to exploit the intrinsic
features of digital images. One of the most popular and mature
technique is the use of complex dynamic phenomena, including
chaotic orbits and quantum walks, to generate the required key
stream. In this paper, under the assumption of plaintext attacks
we investigate the security of a classic diffusion mechanism (and
of its variants) used as the core cryptographic primitive in
some image cryptosystems based on the aforementioned complex
dynamic phenomena. We have theoretically found that regardless
of the key schedule process, the data complexity for recovering
each element of the equivalent secret key from these diffusion
mechanisms is only O(1). The proposed analysis is validated by
means of numerical examples. Some additional cryptographic
applications of this paper are also discussed.

Index Terms—Cryptanalysis, diffusion, image encryption,
plaintext attack.

I. INTRODUCTION

THE RECENT years increase in the popularity of the
Internet and multimedia communication has resulted in

the fast development of information exchange and consumer
electronics applications. However, it has also led to an increase
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Fig. 1. Schematic of Fridrich’s permutation-diffusion architecture.

in the demand of secure and real-time transmission of these
data. The easiest way to cope with this is to consider the mul-
timedia stream as a standard bit stream and apply traditional
cryptographic approaches like 3DES [1] and AES [2] with
proper mode of operation. Yet, the desire for cryptosystems
more efficient and specifically designed for multimedia stream
has drawn increasing research attention in the past decade.
In this concern, some researchers suggested incorporating the
traditional ciphers into the multimedia coding procedure then
selectively encrypting part of the data volume [3]–[5] and
the rest advocated designing specialized ciphers by taking
advantage of the particular structure of multimedia data [6].
The image cryptosystems discussed below belong to the latter
category.

Two major approaches can be identified in the literature
for the design of image encryption algorithms. The first
one exploits some complex dynamic phenomena, such as
chaotic behavior and quantum walks, as the image encryp-
tion algorithm core. Among all the image ciphers belonging
to this class, the permutation-diffusion architecture, which
is originated from the substitution-permutation network [7]
and proposed by Fridrich in [8], is the most popular candi-
date. As depicted in Fig. 1, its encryption process is based
on the iteration of permutation (i.e., image element trans-
position) and diffusion (i.e., value modification) operations.
Almost all works proposing an extension of Fridrich’s work
can be categorized into the following two classes.

1) Developing novel permutation techniques. In Fridrich’s
original design, permutation is implemented by iterating
a 2-D discretized chaotic map like Baker or Cat map.
Chen et al. [9] and Mao et al. [10] suggested using 3-D
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chaotic map to de-correlate the relationship among pix-
els in a more efficient way. Wong et al. [11] proposed an
“add-and-then-shift” strategy to include certain amount
of diffusion effect into permutation, thus reducing the
overall number of iteration rounds, and improving the
efficiency. For the same purpose, Zhu et al. [12] and
Zhang et al. [13] suggested carrying out permutation
to bit-level instead of pixel-level. It is also worth men-
tioning that there are permutation techniques based on
general gray code [14], [15], which can be considered
as permutation carried out at an arbitrary bit length.

2) Developing novel diffusion techniques. As illustrated by
Fridrich [8], the diffusion operation aims to spread the
information of plaintext to the whole ciphertext. This
process can be formulated as

c(l) = p(l) � G(c(l− 1), k(l)) (1)

where � denotes the modulo addition, p(l), c(l), and
k(l) denote the l-th plaintext element, ciphertext element
and element derived from the secret key, respectively.
For security and efficiency considerations, the function
G should be both simple and nonlinear. In line with
this concern, Chen et al. [9] suggested mixing modulo
addition and bitwise exclusive or (XOR) operations in
an output feedback manner via

c(l) = (p(l) � k(l))⊕ k(l)⊕ c(l− 1) (2)

where ⊕ stands for XOR. Many other works adopt
similar (or even the same) diffusion mechanisms,
see [16]–[19] for examples. It is not surprising that
the computational efficient modulo multiplication can
also be incorporated into the diffusion stage [20], [21].
Moreover, recent works suggested using real number
arithmetic to enhance the security level of the diffusion
stage [22], [23] at the cost of a reduced computa-
tional efficiency due to the employment of complicated
arithmetic operations.

The second major approach in the design of image cryp-
tosystem is based on optical technology, which are supposed to
benefit from the intrinsic property of optic systems to process
high dimensional complex data in parallel. The most clas-
sic image cryptosystem based on optical technology is the
double random phase encoding (DRPE) method developed by
Refregier and Javidi [24]. Many other symmetric cryptosys-
tems are based on this design, such as [25] and [26]. A com-
prehensive review on this topic can be found in [27] and [28].
Though the DRPE technique has several advantages, like high
speed, multidimensional processing and robustness, the under-
lying arithmetic operation, which is matrix multiplication, is
linear. From the cryptanalysis point of view, linearity leads
to a low security level. Thus the DRPE method is vulnera-
ble under various kinds of attack [29]–[31] and the adoption
of image cryptosystem based on optical technology for real
application should be cautious.1

1Note that there also exist optical asymmetric cryptosytems, which are
deemed more secure than their symmetric counterparts (i.e., those based on
DRPE) since they are nonlinear by nature [28].

In this paper, we take into account the first approach only,
i.e., that exploiting complex dynamic phenomena. In par-
ticular, we investigate on some security-related aspects of
these systems. Note that in any image cryptosystem, secu-
rity is a critical issue. In fact, due to the particular structure
of digital image files, many statistical analysis-based meth-
ods should be conducted as a preliminary security evaluation
of the considered image cipher. For instances, employing
the horizontal/vertical relationship enables the attacker to
launch ciphertext-only attack to row/column permuted image
ciphers [32], and designing images with specific patterns
would bypass the effect of global entropy measure [33].

More in general, any deviation of the statistical properties
of the ciphertext stream from that of a random stream may be
exploited by an attacker to infer information on the plain text.
For this reason, any coding should pass statistical tests for
randomness developed so far in [34]. Other tests specifically
developed for image cryptosystems may include histogram
analysis, correlation analysis, and sensitivity analysis [10].

In recent years, a lot of image ciphers employing complex
dynamic phenomena and fulfilling all the aforementioned sta-
tistical tests requirements, have been proposed but afterwards
found to be insecure under various attack models [35]–[37].
For example, the equivalent key stream used for permutation of
Fridrich’s design can be retrieved in chosen-ciphertext attack
scenario [36] and a chaos-based image cipher with Feistel
structure is insecure with respect to differential attack when
the round number is smaller than 5 [37]. Note that in the
literature, the cryptanalysis of these image ciphers is usu-
ally performed case-by-case, since any cryptanalytic method is
usually effective only on a particular image cipher. Conversely,
despite being more useful from a theoretical point of view,
only a few works provide security evaluation of some general
cryptographic components. Li et al. [38] presented a general
quantitative study of permutation-only encryption algorithms
against plaintext attacks. Their result was further improved
in [39] with respect to data and computation complexity.
Chen et al. [40]–[42] studied the period distribution of the
generalized discrete Cat map, which is a fundamental building
block in many permutation schemes.

In this paper, we want to make a step further in the eval-
uation of generic cryptographic components for image cryp-
tosystem by studying the security of the differential equation
of modulo addition (DEA) in the form

(α � k)⊕ (β � k) = y. (3)

As of the high implementation speed and nonlinearity over
GF(2), mixing modulo addition and XOR becomes very
popular for designing traditional algorithms, such as stream
cipher [43], block cipher [44], [45], and the MD-family of
hash functions. As a result, there is also a boom in the crypt-
analyses about modulo addition, XOR and different forms of
their combination. The fact that the linear properties of modulo
addition reduce to the linear properties of the carry function
was reported in [46] and the biased probability distribution of
the carry function in modulo addition was explored by [47].
The fact that approximating the combination of modulo addi-
tion and XOR pseudo-linearly in small window enables a
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key recovery attack on 11 rounds of Threefish-256 [44] was
reported by McKay and Vora [48]. Utilizing the linearity of
the carry function, Paul et al. [49]–[51] reported that the num-
ber of queries (α, β) [or (0, β) for (5)] to obtain the unknown
(k1, k2) of the following two kinds of DEA:

(k1 � k2)⊕ ((k1 ⊕ α) � (k2 ⊕ β)) = y (4)

(k1 � k2)⊕ (k1 � (k2 ⊕ β)) = y (5)

are 6 and 2n−2, respectively, (n is the bit-length of
k1, k2, α, β, y). This finding can be used in a chosen-plaintext
(CP) attack to recover the secret key of Helix [43]. Despite
being extensively studied, these two operations and their dif-
ferent combinations are still continuously used in many fields
of information security, such as enabling signal processing
techniques in the encrypted domain [52] and hiding data in
multimedia signals [53].

Following the similar ideas used in [50], it was reported
in [54] and [55] that two pairs of chosen queries (α, β) are
sufficient to reveal the unknown k of our interested DEA (3).
As far as we know, these two works must be considered as
independent analyses of particular image ciphers [56], [57]
and cannot be directly applied in the analyses of other similar
image ciphers. Starting from the linearity of the carry function,
this paper reports that (a special form of) the biased output y
of (3) leaks information of the unknown parameter k, regard-
less of the value of the query (α, β) and the number of queries
required.

In more detail, we take into account the three image cryp-
tosystems proposed in [19], [22], and [23] as case studies, all
of them adopting Fridrich’s permutation-diffusion scheme, and
we study the resistance against plaintext attack of the adopted
diffusion mechanisms by exploiting security results achieved
by the aforementioned DEA equation analysis. Specifically, we
evaluate the data complexity [i.e., required number of pairs of
(α, β)] for solving (α � k)⊕ (β � k) = y and its extension in
a known-plaintext (KP) attack scenario. The main difference
between this paper and previous ones is that we assume that α

and β cannot be freely chosen, as for example in [54] and [55].
This allows us to apply obtained results to the security analy-
sis of the three aforementioned cryptosystem schemes. A full
analytic result is presented to derive a sufficient condition for
solving the equation (α � k)⊕ (β � k) = y; furthermore, some
design weaknesses of its variants are pointed out. Numerical
simulation results are then provided to support our analyses.
This paper is reproducible, and the corresponding codes are
openly accessible at https://sites.google.com/site/leoyuzhang/.

The major innovative contribution of this paper is to take
the three image cryptosystems proposed in [19], [22], and [23]
as case studies, all of them adopting Fridrich’s permutation-
diffusion structure, and to study the relationship between their
diffusion mechanisms and the DEA (α � k) ⊕ (β � k) = y
under KP attack as well as the sufficient condition to solve
this DEA. Since the similar or exact DEA can be found
in many other designs so the application of our analyses is
not limited to the three case studies. Besides, we experimen-
tally present a simple KP attack to a variant of this DEA.
As a proof of usefulness of the analyses, we demonstrate

a detailed security evaluation of the whole version of the
encryption schemes in [19], [22], and [23], which combine
the investigated diffusion mechanism and secret permutation.

The rest of this paper is organized as follows. Section II
introduces the notations that is used in this paper and the
assumptions we work on. Three case studies of image cryp-
tosystem are reviewed in Section III and the differential
equations of modulo addition are derived in Section IV.
Section V presents security analyses and numerical results of
the equations derived above against KP attack. The applica-
tions of our results are discussed in Section VI and conclusion
remarks are drawn in the last section.

II. NOTATIONS AND MAIN ASSUMPTIONS

In the following, we will use the matrix [p(i, j)]H,W to rep-
resent the 2-D format of a plain-image P of size H × W
(Height × Width). Scanning it in the raster order, the 1-D
format of the plain-image can be denoted as the vector
[p(1), p(2), . . . , p(L)] (L = H × W). The 2-D and 1-D rep-
resentations of the cipher-image C are [c(i, j)]H,W and [c(k)],
respectively. We use ai to denote the ith bit of an n-bit inte-
ger a (a ∈ Z

n
2) and (an−1 · · · a0)2 to denote the binary form

of a. The default value of n is 8 unless otherwise specified.
The symbols “�,” “ .−,” “⊕,” “∧,” and “‖” denote modulo 2n

addition, modulo 2n subtraction, bitwise exclusive or, bitwise
and, and bitwise or, respectively. We will use ab to represent
a ∧ b and �x� (	x
) to represent the largest (smallest) integer
not greater (less) than the real number x. The cardinality of a
set G is denoted by #G. With the term KSA we will refer to the
key-setup algorithm of a specific cipher, and use KSA(Seed)

to indicate the process generating all necessary key streams
given a secret Seed by the KSA.

In order to correctly evaluate the security level of a dif-
fusion mechanism either in known- or CP attack scenario,
we clarify here the power of the adversary. In the KP attack
model, the adversary has access to some plaintexts and their
corresponding ciphertexts. In the CP attack model, we assume
that the adversary can obtain ciphertexts from any plaintext of
his choice. In both scenarios, the attacker requires only one
encryption machine (computing oracle) and the goal of the
attack is either to collect information on the secret key Seed or,
equivalently, on the key stream(s) KSA(Seed) generated from
Seed. Note that security evaluation of the discussed diffusion
mechanisms under other cryptanalysis models, such as brute-
force attack, is as important as the evaluation of them under KP
attack, but they are not the focus of this paper. Also, the set-
ting here is slightly different from literature works [49]–[51],
where the computing oracle is defined as a machine that faith-
fully calculates the output of DEA (4) and (5) under given
parameters. Hereinafter, we will consider only the problem of
recovering KSA(Seed).

III. IMAGE CRYPTOSYSTEMS REVIEW

In this section, we briefly review the three cryptosystems for
image encryption proposed in [19], [22], and [23]. A detailed

https://sites.google.com/site/leoyuzhang/


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

description of the three schemes can be found in the origi-
nal works.2 Here, we want to highlight that, though the key
schedule processes of these schemes are different from the
each other, all of the schemes share a very similar diffusion
mechanism in the encryption process. In the next section, we
will exploit this to cast the three diffusion mechanisms into the
same general form and evaluate their cryptographic strength.

1) Parvin’s Cryptosystem: The key schedule operation of
the cipher proposed in [19] is based on two chaotic
functions and the encryption process is composed by a
row/column circular permutation and a sequential pixel
diffusion.

a) Initialization: Generate three key streams U =
[u(1), . . . , u(H)], V = [v(1), . . . , v(W)], and K =
[k(0), k(1), . . . , k(L)] from KSA(Seed), where U,
V, and K are composed of random integers in
interval [1, W], [1, H], and [0, 255], respectively.

b) Permutations: Carry out row circular permutation
to the plain-image P using

p′(i, (j+ u(i)) mod W) = p(i, j) (6)

and denote the result by P′. Then permute P′
further using the circular column permutation as
follows:

s((i+ v(j)) mod H, j) = p′(i, j). (7)

c) Diffusion: Stretch S to a vector
[s(1), s(2), . . . , s(L)] and calculate the pixel
values of the cipher-image by the following
diffusion equation:

c(l) = s(l)⊕ (c(l− 1) � k(l))⊕ k(l) (8)

where l ∈ [1, 2, . . . , L] and c(0) = k(0). Rearrange
the vector [c(l)] to a matrix of size H ×W to get
the cipher-image C.

2) Norouzi’s Cryptosystem: The key schedule suggested
in [22] is based on the hyper-chaotic system intro-
duced in [58]. The encryption process is composed by
a single diffusion process, which can be viewed as the
generalized version of the previous diffusion scheme.

a) Initialization: Produce a key stream
K = [k(0), k(1), . . . , k(L)] by running KSA(Seed),
where k(l) is 8-bit integer in [0, 255].

b) Diffusion: Calculate the pixel values of the cipher-
image sequentially by the following bidirectional
diffusion equation:

c(l) = p(l)⊕ (c(l− 1) � k(l))⊕ f (P, k(l)) (9)

where l ∈ [1, 2, . . . , L], c(0) = k(0), and

f (P, k(l))

=
⌊(∑L

i=l+1
p(i)

)
· k(l) · 108/2564

⌋
mod 256.

(10)

2For the sake of both clarity and uniformity, some notations and/or some
operations may have been changed without affecting the security level of the
schemes.

Rearrange [c(l)] to a matrix of size H × W and
denote it as C.

3) Yang’s Cryptosystem: The key schedule of the image
cryptosystem proposed in [23] is derived from the 1-D
two-particle discrete-time quantum random walks, which
is totally different from those suggested in [19] and [22].
However, the encryption process, which is composed of
a diffusion stage and a permutation stage, is an extension
of Norouzi’s work [22].

a) Initialization: Obtain the key streams K =
[k(0), k(1), . . . , k(L)], U = [u(1), . . . , u(W)], and
V = [v(1), . . . , v(H)] by running the key schedule
KSA(Seed), where K is composed of 8-bit integers
in the interval [0, 255] and U and V are permu-
tation of the set {1, 2, . . . , W} and {1, 2, . . . , H},
respectively.

b) Diffusion: Run the bidirectional diffusion tech-
nique characterized by (9) to the plain-image pixels
as follows:

p′(l) = p(l)⊕ (p′(l− 1) � k(l))⊕ f (P, k(l)) (11)

where l ∈ [1, 2, . . . , L], p′(0) = k(0) and f (P, k(l))
is defined by (10). Rearrange the obtained vector
[p′(l)] to a matrix of size H×W and denote it as P′.

c) Permutations: Permute the intermediate result P′
using the key streams U and V and get the cipher-
image C, that is

s(i, u(j)) = p′(i, j) (12)

c(v(i), j) = s(i, j) (13)

where i ∈ [1, H] and j ∈ [1, W].

IV. PROBLEM FORMULATION

The cryptosystems shown in the previous section are based
either on a single round permutation-diffusion architecture
(Parvin’s and Yang’s cipher) or on a bidirectional diffusion
stage (Norouzi’s cipher). In this paper, we focus our attention
on the security of the considered diffusion schemes in a plain-
text attack. To this aim, we will neglect at this moment all the
effects of the permutation schemes in [19], [22], and [23],
which will be considered in Section VI only, along with
the security of the whole cryptosystems. Mathematically, we
assume that all elements of the key streams U and V used
for permutation in Parvin’s cryptosystem are zeros, and that
U and V in Yang’s cryptosystem are both given by the identity
permutation. Note that a similar approach, with a general quan-
titative plaintext attack on permutation-only image ciphers can
be found in [38].

In the diffusion mechanism proposed by Parvin we will
show that the problem of finding the key stream K used in
the diffusion scheme with a KP attack is equivalent to solving
the DEA (α�k)⊕(β�k) = y, where α, β, y are known param-
eters and k is unknown. Note that the same DEA, under the
assumption that α and β can be freely chosen, has already been
analyzed by other works, that are also briefly reviewed. We
will also show that the problem of retrieving the key stream for
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diffusion in Norouzi and Yang’s design under CP attack sce-
nario is equivalent to solving this DEA. In addition, we will
also investigate the security level of the diffusion approach
proposed by Norouzi and Yang with respect to a KP attack.

A. Parvin’s Diffusion Scheme

In Parvin’s scheme, we assume that two plain-images, P1
and P2, and their corresponding cipher-images, C1 and C2, are
available. Referring to (8), we have the relation

{
c1(l) = p1(l)⊕ (c1(l− 1) � k(l))⊕ k(l)
c2(l) = p2(l)⊕ (c2(l− 1) � k(l))⊕ k(l)

where l ∈ [1, L]. Their difference can be calculated as

(c1(l− 1) � k(l))⊕ (c2(l− 1) � k(l))

= c1(l)⊕ c2(l)⊕ p1(l)⊕ p2(l). (14)

More generally, we can recast this expression by observing
that for any value of l we have

(α � k)⊕ (β � k) = y.

In the present context, the problem of finding (part of) the key
stream, i.e., {k(l)}Ll=1, of Parvin’s cryptosystem is turned into
solving (3) under some pairs of known parameters (α, β, y).
Note that k(0), and so the full strem K, can be easily calculated
according to (8) after {k(l)}Ll=1 are revealed.

It is already known that, under the assumption that α and β

can be chosen freely, k can be determined by only two groups
of chosen queries by referring to the following.

Theorem 1 [55, Proposition 3 and Corollary 3.1]: Suppose
α, β, k, y ∈ Z

n
2, and n > 2, two groups of chosen queries

(α, β) and their corresponding y are sufficient to determine k
of the following equation:

(α � k)⊕ (β � k) = y

in terms of modulo 2n−1. Specifically, the two chosen queries
can be (α̂, β̂) = (

∑	n/2
−1
j=0 (00)2 · 4j),

∑	n/2
−1
j=0 (10)2 · 4j) and

(ᾱ, β̄) = (
∑	n/2
−1

j=0 (10)2 · 4j,
∑	n/2
−1

j=0 (01)2 · 4j).
The proof of Theorem 1 can be found in [54] and [55],

and an interpretation from the computational point of view
about this theorem can be found in [35]. It is worth men-
tioning that the most significant bit (MSB) of k, i.e., kn−1,
cannot be determined even with additional queries of (α, β).
This is intrinsic in the fact that the carry bit generated by the
highest bit plane is discarded after the modulo operation [35].
Consequently, both k and k̂ = k ⊕ 2n−1 are two equivalent
solutions of the considered equation. For this reason, in the
following we consider only the problem of determining the
(n− 1) least significant bits (LSBs) of k in (3).

Note however that, by referring to (14), neither a KP nor
a CP attack scenario allows us to choose the value of α and
β since they represent ciphertext elements. In order to get
a result similar to that of Theorem 1 that can be applied to
the considered cryptosystems, we systematically analyze (3)
in Section V-A under the assumption that α and β are known
to the attacker but cannot be freely chosen.

B. Norouzi and Yang’s Diffusion Scheme

In Norouzi and Yang’s cryptosystems, the diffusion stage
is characterized by (9), where some computational-intensive
operations are added to the XOR and modulo addition.
Regardless of their computational efficiency, we are curious
whether this new diffusion mechanism will improve the secu-
rity of the resultant cryptosystem. Given a plain-image P1,
whose corresponding vector format is [p1(l), . . . , p1(L)], we
define the real number sequence T1 = [t1(l), . . . , t1(L)] as

t1(l) =
∑L

i=l+1
p1(i)/2564. (15)

Then, the diffusion scheme characterized by (9) can be
written as

c1(l) = p1(l)⊕ (c1(l− 1) � k(l))⊕ g(t1(l), k(l)) (16)

where g(t1(l), k(l)) = �t1(l)·(108 ·k(l))� mod 256. Under a CP
attack scenario, an adversary can choose another plain-image
P2, which differs from P1 by a single pixel at location l0.
In this way the real number sequence T2 = [t2(l), . . . , t2(L)]
associated to P2 satisfies

t2(l) = t1(l) if l ≥ l0.

Referring to (16), it is easy to observe that the difference
between C1 and C2 at location l0 will satisfy the relation

c1(l0)⊕ c2(l0)⊕ p1(l0)⊕ p2(l0)

= (c1(l0 − 1) � k(l0))⊕ g(t1(l0), k(l0))

⊕ (c2(l0 − 1) � k(l0))⊕ g(t2(l0), k(l0))

= (c1(l0 − 1) � k(l0))⊕ (c2(l0 − 1) � k(l0))

which coincides exactly with (3). In conclusion, under the CP
attack scenario, the problem of finding the equivalent secret
key stream for diffusion of Norouzi and Yang’s designs is con-
verted into solving (3) with some pairs of known parameters
(α, β, y).

Conversely, under the assumption of a KP attack scenario,
we can observe from (15) that the calculation of the real num-
ber sequence T is independent of the secret key (stream).
Then, limiting ourselves to consider the plain image P1, we
can recast (16) as

(α � k)⊕ g(β, k) = y (17)

where g(β, k) = �β ·(108 ·k)� mod 256 is a nonlinear function.
The problem of determining k for (17) from some groups of
known (α, β, y) is considered in Section V-B. Here, special
attention should be paid to the fact that β is no longer 8-bit
integer but a non-negative real number.

V. MAIN RESULTS

A. Cryptographic Strength of the Equation
(α � k)⊕ (β � k) = y

According to Section IV-A, both KP and CP attacks to
Parvins diffusion scheme are equivalent to solving (3) under
the assumption that the values of α, β, and y are known but
none of them can be chosen. In the ideal case, the data com-
plexity to determine k should be 22n because there are 22n
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possible combinations of α and β in total. However, we can
theoretically show (and we will confirm this with simulation
results) that the actual complexity substantially deviates from
the ideal one.

Let us assume that an adversary successfully collects a set
of known triples (α, β, y) and denote this set by

G = {(α, β, y) | y = (α � k)⊕ (β � k)}

with #G = g. The candidate solutions of k given G can
be computed by means of a brute-force search according to
the following algorithm whose computational complexity is
O(2n−1 · g).

Step 1: Let l = 1 and the solution set Kl = ∅.
Step 2: Select the lth element of G and exhaustively test

all the 2n−1 possible values of k (the MSB of k
is ignored here) to check whether it satisfies (3).
Collect all the possible values of k that meet the
requirement and denote them as Kl.

Step 3: Set l = l+ 1 if l < g. Go to step 2) and update the
solution set by Kl+1 = Kl+1 ∩Kl.

This algorithm ends up with a solution set Kg which con-
tains all the possible values of k that are consistent with the
known parameter set G. It is concluded that its computational
complexity is O(2n−1 · g) steps and two shortcomings can be
identified: 1) there is no hint on how to choose the correct k
from Kg if #Kg ≥ 2 and 2) the efficiency is not satisfactory
when n is large. In the case of Parvin’s cryptosystem, n is fixed
to 8, and this makes this algorithm work pretty well. However,
in the schemes proposed in [56] and [57], where n = 32, this
algorithm becomes inefficient. These two questions are solved
on the basis of Theorem 2, where the sufficient condition to
determine the bit plane of k is given.

Theorem 2: Suppose α, β, k, y ∈ Z
n
2, and n ≥ 2. Given

α, β, and y, the i LSBs (0 ≤ i < n− 1) of k of the following
equation:

(α � k)⊕ (β � k) = y

can be solely determined if y =∑i−1
j=0 2j =

MSB←LSB︷ ︸︸ ︷
(0 . . . 0 1 · · · 11︸ ︷︷ ︸

i

) 2.

Proof: The proof of this theorem can be found in the
Appendix.

For a given known parameter triple (α, β, y), Theorem 2
states that some LSBs of k can be confirmed when consecu-
tive ones are observed at the LSBs of y. A more surprising
inference drawn from Theorem 2 is that (3) can be solved
using only a single query (α, β) when the adversary obtains
the oracle machine outputs (2n − 1) or (2n−1 − 1).

Furthermore, it is also easy to conclude that the result given
by Theorem 1 is just a special case of that by Theorem 2. In
more detail, with the two chosen queries used in Theorem 1,
it can be observed that ŷi‖ȳi = 1 holds for all i = 0 ∼ n− 1.
So, one can compute that

ŷ‖ ȳ = (
α̂ � k

)⊕
(
β̂ � k

)
‖(ᾱ � k)⊕ (

β̄ � k
)

= 2n − 1.

And with the similar underlying rules, we can also indi-
cate other two groups of queries satisfying the require-
ments of Theorem 1, specifically, they could be (α̃, β̃) =
(
∑	n/2
−1

j=0 (10)2 · 4j),
∑	n/2
−1

j=0 (00)2 · 4j), and (α̌, β̌) =
(
∑	n/2
−1

j=0 (00)2 · 4j,
∑	n/2
−1

j=0 (01)2 · 4j).
As mentioned before, none of the value of α, β, y can be

chosen under KP attack for all our interested diffusion mecha-
nisms [see (14) for example]. So even when g groups of known
triples (α, β, y) are collected by the adversary, the probability3

that he can observe i consecutive ones in y is only (g/2i). The
larger i is, the smaller the probability will be. In other words,
if applying Theorem 2 directly to the set G, the significant
bits of k are undetermined with large probability. When using
the estimated value of k for the attack of the whole encryp-
tion schemes (see Section VI for detail), the more significant
bit planes, which carry more visual information than LSBs by
the nature of digital images, of the recovered image tend to
be wrong.

Conversely, the probability that there exists certain y ∈ G

whose ith bit (0 ≤ i < n − 1) is nonzero is very high. For
example, the probability that there exists at least a y such
that its LSB (i.e., i = 0) is nonzero is (1 − (1/2)g). From
Theorem 2, the LSB of k can be determined with this concrete
known triple (α, β, y) whose y0 = 1. Once k0 is determined,
we can discard the LSB of (3) and formulate a new version
of it with only (n− 1) bits4 and repeat the similar process to
determine k1. And so on and so forth, the value of k can be
finally recovered. Let ỹ = y⊕α⊕β and denote ci the carry bit
at the ith bit plane of (α � k), the following steps characterize
the above idea and determine the bits of k sequentially from
the known parameters set G.

Step 1: Generate parameter sets Gj ⊆ G using the follow-
ing rule:

Gj =
{
(α, β, y) | y = (α � k)⊕ (β � k), yj = 1

}

where j = 0 ∼ n− 2.
Step 2: Let i = 0, c0 = 0, and set the default value of k to

a random number in [0, 2n − 1].
Step 3: Refresh the ith bit ki by look up Table I if #Gi �= 0

and then compute ci+1 for the parameter in Gi+1
using (20).

Step 4: If i < n − 2, increase i by 1. Go to step 3) if
#Gi �= 0.

Step 5: Calculate k using the equation k =∑n−1
i=0 ki · 2i.

The complexity of the above steps is mainly introduced by
step 1), which involves the exploration of all the first (n− 1)

bit planes of y in G to obtain Gj. It can be inferred that
the computational complexity is only O((n− 1) · g), which is
much smaller than the complexity of the previous algorithm
O(2n−1 · g). Besides, this algorithm generates only a single
possible candidate k, thus avoiding the problem of selecting k
from its candidate set5 Kg. Without loss of generality, assume

3We implicitly assume y follows the uniform distribution.
4Note that carry bit of the new equation [with bit length (n − 1)] should

be updated correspondingly.
5In fact, every element in Kg contains the same number of correct bits of

k in average.
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TABLE I
VALUES OF ki CORRESPONDING TO THE VALUES OF αi, βi, ci, yi , AND ỹi+1

Fig. 2. Probability that the first i LSBs of k can be confirmed with respect
to different g.

that all the known parameters α, β, and y are uniformly dis-
tributed in the interval [0, 2n−1]. Finally, the probability that
the first i (0 ≤ i < n − 1) LSBs can be confirmed by G,
denoted as Prob(k0∼i | G), is given as

Prob(k0∼i | G) =
(

1−
(

1

2

)g)i+1

.

Assuming n = 8 as in the three image cryptosystems stud-
ied in Section III, we depict in Fig. 2 this probability with
respect to different values of g. As we can observe from
this figure, the probability is relative high for small i when g
equals 3. This result is further verified by carrying out experi-
ments to Parvin’s cryptosystem under the assumption that the
key stream K is generated using the key schedule described
in [19, Sec. 2] while we artificially set U and V to zeros to
fit our model proposed in Section IV-A. Then, we use two
and four known plain-images and their corresponding cipher-
images, i.e., g = 1 and g = 3, to recover the key stream K
using the algorithm described above. The recovered key stream
is used to decrypt the cipher-image of “Baboon,” as shown in
Fig. 3(b), and the deciphered results are shown, respectively,
in Fig. 3(c) and (d).

B. Cryptographic Strength of the Equation
(α � k)⊕ g(β, k) = y

According to the results obtained in the previous section, the
diffusion mechanism characterized by (3) is weak with respect
to both CP and KP attacks. Specifically, two groups of chosen
parameters are enough to uniquely determine k, while a few
groups of known parameters are sufficient to determine k with

(a) (b)

(c) (d)

Fig. 3. Numerical tests on simplified Parvin’s cryptosystem. (a) Plain-image
“Baboon” of size 512× 512. (b) Encryption result of (a) using the modified
Parvin’s cryptosystem. (c) Recovery result using two pairs of known plain-
images and their corresponding cipher-images. (d) Recovery result using four
pairs of known plain-images and their corresponding cipher-images.

overwhelming probability. The bidirectional diffusion schemes
introduced in [22] and [23], and defined by (9) and (10), are
suggested as a workaround. The idea of the new design is
that all the pixels located after the current one are used in
the diffusion process, with an avalanche effect (and so, an
improvement) in the encryption of plain-images.

In the context of a CP attack scenario, thanks to the results
shown in Section IV, the bidirectional diffusion scheme is
immediately proven to be weak, since (9) can be converted
to the form of (3). Considering that there are L pixels in an
image, the data complexity (i.e., required number of plain-
images and cipher-images) for breaking the cipher in [22] is
only O(L).

Furthermore, we can show that in the context of a KP attack
scenario, the data complexity for breaking the cipher in [22]
is the same as above. Let us consider the equation

(α � k)⊕ g(β, k) = y
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(a) (a)

(c)

Fig. 4. Three test images for recovering the equivalent key stream of
Norouzi’s cryptosystem. (a) Lena. (b) CT image. (c) Mosaic image.

where g(β, k) = �β · (108 · k)� mod 256, α, y, k ∈ [0, 255] and
β is a non-negative real number. Under the assumptions of a
KP attack, i.e., that α, β, and y are known to the adversary, we
can show that the data complexity for revealing k is only O(1).
In other words, the inefficient bidirectional diffusion scheme
actually does not improve the security level of (3) with respect
to KP attack.

We start the analysis from the trivial case β ≡ 0. Under this
assumption, (17) is simplified to

y = α � k (18)

since g(β, k) = �β · (108 · k)� mod 256 ≡ 0. Thus, k can be
calculated as k = y .− α. For the general case β > 0, it is
easy to observe that the value of g(β, k) is sensitive to the
changes of k. In other words, given α, β and y, the result of
(α � k)⊕ g(β, k) will be different from y with an overwhelm-
ing probability even if k slightly deviates from its true value.
For convenience, let G = {(α, β, y) | y = (α � k) ⊕ g(β, k)}
and assume #G = g = O(1). The following procedures
describe a method to determine k from G by using this
observation.

Step 1: Let l = 1 and the solution set Kl = ∅.
Step 2: Select the lth element of G and exhaustively

test all the 28 possible values of k to check
whether it satisfies (17). Collect all the possible
values of k that meet the requirement and denote
them as Kl.

Step 3: Go to step 5) if #Kl = 1.
Step 4: Set l = l+ 1 if l < g. Go to step 2) and update the

solution set by Kl+1 = Kl+1 ∩Kl.

TABLE II
AVERAGE RECOVERY RATE USING DIFFERENT

NUMBERS OF KNOWN PLAIN-IMAGES

Step 5: Print the value of the single element of Kl if
#Kl = 1. Otherwise, output #Kl.

We verify the validity of this algorithm by carrying out
experiments to Norouzi’s cryptosystem (that can be viewed
as the simplified version of Yang’s design). Three 512× 512
known plain-images with different statistical characteristics are
employed as our test images [Fig. 4(a)–(c)]. These images
are encrypted using Norouzi’s cryptosystem under the secret
key that was adopted in [22, Sec. 3]. Using the techniques
illustrated in Section IV, we cast the relationship between the
plaintext pixels and ciphertext pixels to the form of (17). Then,
we, respectively, use 1, 2, and 3 pairs of plain-images and their
corresponding cipher-images to retrieve the equivalent secret
key stream K by the above algorithm. The average recovery
rates of the proposed KP attack using different numbers of
known plain-images are listed in Table II. Here, the recovery
rate is defined as

recovery rate

= number of correctly recovered elements of K
total number of elements in K

× 100%.

It can be observed that the average recovery rate raises as the
number of known plain-images increases. Even the number
of known plain-images is only 1, the average recovery rate
is close to 67%. When the number of known plain-images
is 3, the recovery rate grows to 100%. Furthermore, we utilize
these recovered equivalent key streams to decrypt an inter-
cepted cipher-image and the result is shown in Fig. 5(a)–(c).
From Fig. 5, it is concluded that 100% recovery rate of
the key stream guarantees perfect reconstruction of the inter-
cepted cipher-image, while a high recovery rate of the key
stream does not lead to good or acceptable visual quality.
This phenomenon is attributable to the bidirectional diffu-
sion property of (16), where the error of a wrongly decrypted
pixel will spread to all successive decryption operations in a
pseudo-random manner.

VI. CRYPTOGRAPHIC APPLICATIONS

Exploiting the security analyses of (3) and (17) shown
above, this section presents chosen plaintext attacks to the
full cryptosystems proposed in [19], [22], and [23] and
briefly discusses other security implications related to our
analyses.

A. Cryptanalysis of Parvin’s Cryptosystem

As described in Section III, Parvin’s cryptosystem is com-
posed of circular permutations and a single diffusion stage.
To apply our analysis result presented in Section V-A, we
need first to recover the equivalent key streams used for
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(a) (b)

(c)

Fig. 5. Recovery results. Deciphered result using the key stream retrieved
from (a) Fig. 4(a), (b) Fig. 4(a) and (b), and (c) Fig. 4(a)–(c).

row and column circular permutation. The underlying strategy
is to study the relationship between cipher-images produced
by some bottom-line chosen plain-images whose elements
are invariant with respect to row and column permutations.
Similar ideas are also employed to analyze other chaos-
based cryptosystems [21], [35]. Here, we suppose that an
image having fixed gray value is available and denote it as
P1 = 0 = [p1(i, j) ≡ 0]H,W . Then, we set p1(1, 1) = 128
and keep all the other pixels unchanged and denote the mod-
ified image by P2 = [p2(i, j)]H,W . Fig. 6(a) and (b) depict the
cipher-images corresponding to P1 and P2, respectively. Here,
H = W = 512 is chosen. The difference of the two cipher-
images is shown in Fig. 6(c). Find the first pixel whose value
is 128 and denote its position by (i1, j1). Referring to (6)–
(8), it can be concluded that u(1) = ((j1 − 1) mod H) + 1
and v(1) = ((i1 − 1) mod W) + 1. Repeating this test for
all the diagonal pixels of P1, U, and V, the key streams for
row and column permutations, can be retrieved completely.
Combining with the analysis presented in Section V-A, the
data complexity of the CP attack is O(1) + max(H, W) with
an overwhelming probability.

B. Cryptanalysis of Norouzi and Yang’s Cryptosystems

Applying the analysis presented in Section V-B, it is readily
to conclude that Norouzi cryptosystem can be compromised
in KP attack scenario at data complexity O(1). For Yang’s
scheme, the remaining task is to recover the remaining key
streams used for permutation. By noting that Yang’s scheme
is different from Parvin’s only by the order of diffusion and
permutation in the present context, we use the similar strat-
egy to reveal the equivalent permutation key streams of Yang’s

(a) (b)

(c)

Fig. 6. Example test for recovering the equivalent permutation key streams
of Parvin’s cryptosystem. (a) Cipher-image of P1. (b) Cipher-image of P2.
(c) Difference between (a) and (b) using XOR operation.

cryptosystem. For example, to reveal v(H) and u(W − 2), we
employ three chosen-images P1, P2, and P3 whose 1D formats
have the form [0, 0, 0, . . . , 0, 0, 0, 1], [0, 0, 0, . . . , 0, 0, 1, 0]
and [0, 0, 0, . . . , 0, 1, 0, 0]. According to (11)–(13), their cor-
responding cipher-images C1, C2, and C3 satisfy the following
two conditions: 1) there are two distinct ciphertext elements
between C1 and C2 and 2) there are three distinct ciphertext
elements between C3 and C1 (or C2). Comparing C1, C2, and
C3, the location of c1(H, W − 2) can be identified. Fig. 7
sketches the rules involved in this procedure. Repeating this
test to the last row and column of P1, the equivalent permu-
tation key streams U and V can be fully recovered at the data
complexity6 O(H +W) under CP attack.

C. Other Cryptographic Implications

Observing that the analysis with respect to the equation (α�
k) ⊕ g(β, k) = y involves exhaustive searching the possible
key space, an intuitive workaround for Norouzi and Yang’s
cryptosystems is to group several pixels as a single element to
enlarge the real key space. For example, combining 15 pixels
together will make the key space grows to 2120 and frustrate
the KP attack presented in Section V-B. However, Norouzi
and Yang’s cryptosystems can be cast to the form of (α�k)⊕
(β � k) = y in CP attack scenario and cryptanalysis of this
equation is regardless of the bit length of the plaintext. It can
be concluded that using composite pixel representation as a
remedy is futile.

6The permutation for the last two pixels can be retrieved by brute force
search.
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Fig. 7. Illustration of the CP attack on Yang’s cryptosystem to recover the equivalent secret key used for permutation.

TABLE III
VALUES OF ỹi+1 CORRESPONDING TO THE VALUES OF αi, βi, ỹi, ki , AND ci

Regarding the widely usage of the diffusion equation (8),
our analysis on the equation (α�k)⊕(β�k) = y seems useful
in evaluating security of other ciphers also based on this kind
of diffusion mechanism. The fact that the search space of the
unknown k could be reduced from 22n to O(1) indicates that a
loophole exists in the corresponding crytosystems, and that it
can be used to retrieve information about the key. Even worse,
this loophole cannot be fixed by choosing a larger n. With this
concern, we recommend using some relative strong diffusion
schemes with respect to KP and CP attacks, such as (5).

VII. CONCLUSION

Considering the three cryptosystems proposed
in [19], [22], and [23] as case studies, we have studied
the security properties of equations: 1) (α � k)⊕ (β � k) = y
and 2) (α � k) ⊕ g(β, k) = y. The underlying theory of
the key scheduling process employed in these example
cryptosystems ranges from chaotic/hyper-chaotic function to
quantum computation, which are regarded as having different
characteristics. However, our analyses reveal that all the three
ciphers are very weak upon plaintext attacks. Specifically, the
equivalent key streams used in these designs can be retrieved
using a small number of plain-images. We provide a sufficient
condition to determine the unknown k of equation 1) under
the KP attack scenario. The relationship of our result and the
existing ones under CP attack assumption [21], [54], [55] is
also investigated. The algorithms provided and the extensive
numerical experiments confirm that both equations 1) and
2) can be solved using only O(1) known plaintexts. In this
concern, it is readily to conclude that most image ciphers
based on a single round permutation-diffusion architecture
are insecure with respect to plaintext attacks. This paper can
be extended to investigate diffusion equations which involve
more complex cryptographic primitives, such as modulo
multiplication [35].

APPENDIX

PROOF OF THEOREM 2

Let us consider the equivalent form of (3), that is

ỹ = (α � k)⊕ (β � k)⊕ α ⊕ β. (19)

Observing that the (i+1)th bit of ỹ, i.e., ỹi+1, can be calculated
using only the previous bits αi, βi, ki, ci, c̃i, (i ∈ [0, n − 2])
by the following three equations:

⎧
⎨
⎩

ỹi+1 = ci+1 ⊕ c̃i+1
ci+1 = kiαi ⊕ kici ⊕ αici

c̃i+1 = kiβi ⊕ kic̃i ⊕ βic̃i

(20)

where ci is the carry bit at the ith bit plane of (α � k) and
c̃i = ỹi ⊕ ci. Table III lists the values of ỹi+1 that computed
from (20) under all the possible values of αi, βi, ỹi, ki, and ci.

Table III indicates that ki can be determined if (αi, βi, ỹi)

falls in {Col(2), Col(3), Col(5), Col(8)}, i.e., yi = ỹi ⊕ αi⊕
βi = 1, and ci is known. Based on this observation, the theo-
rem can be proved by mathematical induction on i (0 ≤ i ≤
n−2). We first consider the case for i = 0. Since c0 ≡ c̃0 ≡ 0,
the condition

y0 = ỹ0 ⊕ α0 ⊕ β0

= c0 ⊕ c̃0 ⊕ α0 ⊕ β0

= α0 ⊕ β0

= 1

implies the fact

ỹ1 = c1 ⊕ c̃1

= k0α0 ⊕ k0β0

= k0(α0 ⊕ β0)

= k0.

Hence, the theorem is proved for the case i = 0. Assume that
it is valid for i = m (m ≤ n− 3), i.e., all the m LSBs of k are
confirmed when y =∑m−1

j=0 2m and thus all the ci and c̃i can
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be derived by (20) for all i ∈ [0, m + 1]. Then, for the case
i = m+ 1, the condition ym+1 = 1 implies that

ym+1 = cm+1 ⊕ c̃m+1 ⊕ αm+1 ⊕ βm+1 = 1

holds when referring to (19) and (20). When computing ym+2
by (20), we have

ỹm+2 = cm+2 ⊕ c̃m+2

= km+1αm+1 ⊕ km+1βm+1 ⊕ km+1cm+1 ⊕ km+1c̃m+1

⊕ αm+1cm+1 ⊕ βm+1c̃m+1

= km+1(αm+1 ⊕ βm+1 ⊕ cm+1 ⊕ c̃m+1)⊕ αm+1cm+1

⊕ βm+1c̃m+1

= km+1 ⊕ αm+1cm+1 ⊕ βm+1c̃m+1.

Observing that αm+1, βm+1, and ỹm+2 are known parameters
in our KP attack scenario, and cm+1 and c̃m+1 are the results
from the previous induction step, we conclude that

km+1 = ỹm+2 ⊕ αm+1cm+1 ⊕ βm+1c̃m+1

thus completing the mathematical induction and hence proving
the theorem.
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