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PROPERTIES OF SCREW DISLOCATION DYNAMICS: TIME
ESTIMATES ON BOUNDARY AND INTERIOR COLLISIONS∗

THOMAS HUDSON† AND MARCO MORANDOTTI‡

Abstract. In this paper, the dynamics of a system of a finite number of screw dislocations
is studied. Under the assumption of antiplane linear elasticity, the two-dimensional dynamics is
determined by the renormalized energy. The interaction of one dislocation with the boundary and
of two dislocations of opposite Burgers moduli are analyzed in detail, and estimates on the collision
times are obtained. Additionally, we obtain sufficient conditions that can be used to guarantee that
the first collision to occur will be between a specific dislocation and the boundary, or between a
specific pair of dislocations. Some exactly solvable cases and numerical simulations show agreement
with the estimates obtained.
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1. Introduction. Dislocations are topological line defects found in crystalline
solids, and their motion governs the plastic flow in such materials. As a consequence,
they are objects of great interest to materials scientists and engineers; despite having
been initially studied over a century ago [33], and having been proposed as the atomic
mechanism for plasticity [25, 27, 31], their collective behavior remains a topic of
ongoing research, both since they interact at long range via the stress fields they
induce in the crystal, and because of their inherent complexity as a network of curves.

A variety of works in the mathematical literature have begun to address questions
relating to dynamical models of dislocation motion [1, 2, 5, 6, 7, 9, 12, 14, 24, 32],
and this paper contributes to that ongoing thread of research by studying various
properties of a model for the dynamics, in particular collisions, of straight screw dis-
locations in a long straight cylinder. It is worth mentioning that the dynamics of
screw dislocations has significant similarities to that of Ginzburg–Landau vortices in
two dimensions [3, 29]. Properties of vortices up to collision time have been studied
extensively (see, e.g., [4, 20, 22, 30] and the references therein), but the results pre-
sented here are the first that, to the best of our knowledge, provide sharp estimates
on the collision times for dislocations.

The model we consider was first proposed in full generality in [10] and studied
extensively with specific choices of mobility in [5, 7]. In particular, the latter two
works prove existence of the evolution by differing methods, but acknowledge that
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blow-up of solutions appears to be a ubiquitous phenomenon. Generically, this blow-
up seems to occur either via a collision between two dislocations or via the collision of
a dislocation and the boundary. Here, we rigorously analyze three properties of the
model proposed in [10], namely, we analytically investigate

(i) the behavior of dislocations near a free boundary,
and the blow-up of solutions in detail when

(ii) one dislocation collides with the boundary;
(iii) two dislocations collide with one another.

In particular, we provide geometric conditions on the initial configuration of disloca-
tions to ensure that blow-up occurs due to (ii) or (iii). In so doing, we give estimates on
the blow-up time and establish a sufficient condition ensuring that no other collision
events occur before this blow-up time.

Following the standard mechanical setting of [10], we consider a finite number of
idealized screw dislocations in an infinite cylinder Ω×R undergoing an antiplane defor-
mation. Since the displacement only occurs in the vertical direction, this entails two
major simplifications, namely, that the problem can be studied in the two-dimensional
cross-section and that the Burgers vectors measuring the lattice mismatch are indeed
scalar quantities (the Burgers moduli being directed along the vertical axis).

We assume that the cylindrical domain has a constant cross-section, Ω ⊂ R2,
which is an open connected set with a C2 boundary. In particular, this regularity
assumption entails that the boundary satisfies uniform interior and exterior disk con-
ditions; that is, there exists ρ̄ > 0 such that for any point x ∈ ∂Ω, there exist unique
points xint and xext such that

(1) Bρ̄(xint) ⊆ Ω, Bρ̄(xext) ⊂ Ωc, and ∂Bρ̄(xint) ∩ ∂Ω ∩ ∂Bρ̄(xext) = {x},

where Br(x) ⊂ R2 is the open disk of radius r centered at x and the superscript c
denotes the complement of a set. We shall fix such ρ̄ > 0 once and for all. It also
follows that the curvature of the boundary, κ, lies in C(∂Ω) and that ‖κ‖∞ ≤ ρ̄−1.
An illustration of the interior and exterior disk conditions is contained in Figure 1.

Fig. 1. The uniform interior and exterior disk conditions, with the interior and exterior disks
illustrated for two points.
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1.1. Renormalized energy and Peach–Koehler forces. Since dislocations
are topological singularities, the conventional continuum elastic energy of the strain
field induced by a dislocation is infinite. This reflects the fact that a dislocation is fun-
damentally a discrete phenomenon, which is not adequately captured by continuum
elasticity. Instead, a process of renormalization can be used to provide a potential
energy for a collection of straight screw dislocations. This process involves the sub-
traction of an “infinite” constant from the potential energy, reflecting the fact that
continuum elasticity is simply an asymptotic description of matter in the case where
large variations occur on length scales much greater than that of the lattice spac-
ing. The resulting renormalized energy appears in numerous studies of topological
singularities; see, for example, [1, 3, 11, 28, 29].

One approach to justifying the use of the renormalized energy is to define it via
the core-radius approach as in [6, 11]. Here, we proceed directly to a definition of
the renormalized energy, given in terms of Green’s functions for the Laplacian on the
domain Ω.

Define the Green’s function of the Laplacian with Dirichlet boundary conditions
on ∂Ω as the (distributional) solution to

(2)

{
−∆xGΩ(x, y) = δy(x) in Ω,
GΩ(x, y) = 0 on ∂Ω.

Here δy is the usual Dirac delta distribution centered at a point y ∈ Ω. We emphasize
the domain Ω on which this function is defined, since we will later vary this domain in
order to obtain our estimates. It is a classical result that GΩ is smooth in the variable
x on the set Ω \ {y} for any given y ∈ Ω and is symmetric, i.e., GΩ(x, y) = GΩ(y, x);
and that

(3) GΩ(x, y) = − 1
2π

log |x− y|+ kΩ(x, y),

where kΩ(x, y) is smooth in both arguments on Ω, is symmetric, and satisfies the
elliptic boundary value problem

(4)

{
−∆xkΩ(x, y) = 0 in Ω,
kΩ(x, y) = 1

2π log |x− y| on ∂Ω;

proofs of all of the above assertions may be found in Chapter 4 of [17]. In addition,
we also define

(5) hΩ(x) := kΩ(x, x),

which will turn out to be a convenient function with which to express the renormalized
energy. By exploiting conformal transformations in R2, it can be shown that hΩ
satisfies the elliptic problem (see [8, Exercise 1], [13, p. 548], and [16])

(6) −∆xhΩ(x) = 2
π e−4πhΩ(x) for all x ∈ Ω.

Its properties will be studied in section 2.
Using the explicit expression for the Green’s function (3) and the functions defined

in (4) and (5), the renormalized energy of n dislocations with positions z1, . . . , zn ∈ Ω
and Burgers moduli b1, . . . , bn ∈ {−1,+1} (see, e.g., [1, 6, 10]) may be expressed as

(7) En(z1, . . . , zn) :=
∑
i<j

bibj

(
kΩ(zi, zj)−

1
2π

log |zi − zj |
)

+
1
2

n∑
i=1

b2ihΩ(zi),
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where the contributions of the two-body interaction terms and the one-body “self-
interaction” term are highlighted. To be more precise, each term hΩ(zi) is the contri-
bution to the energy given by a single dislocation sitting at zi; the logarithmic terms
log |zi− zj | account for the interaction energy of the two dislocations sitting at zi and
zj ; the term kΩ(zi, zj) accounts for the interaction of the dislocation sitting at zi with
the boundary response due to the dislocation sitting at zj . It is also worth mentioning
that the interaction terms also involve the product bibj of the Burgers moduli of the
dislocations in a fashion similar to that of electric charges: bi = bj = ±1 gives a
positive contribution to the energy and tends to push two dislocations with the same
sign far away from each other. This will become clearer in the expression of the force,
responsible for the motion, acting on the dislocations. Finally, notice that the terms
with the subscript Ω depend in a crucial way on the geometry of the domain and carry
information about the interaction with the boundary. To be thorough, the energy En
defined in (7) should also depend on the Burgers moduli b1, . . . , bn, but we assume
these are attached to the dislocations and do not vary in time, so we suppress this
dependence in the interest of conciseness.

The force acting on a dislocation is the so-called Peach–Koehler force [18], and
it is obtained by taking the negative of the gradient with respect to the dislocation
position

(8) fi(z1, . . . , zn) = −∇ziEn(z1, . . . , zn) for i = 1, . . . , n.

The subscript i refers to the force experienced by the dislocation at zi, and the de-
pendence on the whole configuration of dislocations z1, . . . , zn highlights the nonlocal
character of the Peach–Koehler force.

The law describing the dynamics of the dislocations is therefore expressed as

(9) żi(t) = −∇ziEn(z1(t), . . . , zn(t)) for i = 1, . . . , n,

complemented with suitable initial condition at time t = 0. Formula (9) usually
includes a mobility function, which here we have taken equal to the identity. Various
suggestions for possible mobility functions can be found in [10]; we refer the reader to
section 5 for a discussion on other possible choices that are relevant in our context.
For a specific choice of the mobility, (9) takes the form of a differential inclusion and
was studied both in [5] to obtain existence and uniqueness results and in [7] from the
point of view of gradient flows.

1.2. Aims. Our results below rigorously verify a variety of qualitative features
of (9) for the dynamics of dislocations. It is commonly observed in numerical sim-
ulations that dislocations are attracted to free boundaries and that dislocations of
opposite signs attract. In fact, as dislocations approach the boundary, or as disloca-
tions with Burgers moduli of opposite sign approach one another, the renormalized
energy diverges to −∞, and hence solutions of the evolution problem blow up and
cease to exist, at least in the senses considered in [5, 7].

In Lemma 2.4, we prove a gradient bound for the function hΩ for points in the
vicinity of the boundary; this allows us to treat case (i). We prove Theorem 3.1, which
states that the main component of the Peach–Koehler force on a dislocation close to
the boundary is directed along the outward unit normal at the boundary point closest
to the dislocation, thus demonstrating that free boundaries attract dislocations. The
result is obtained by characterizing the Peach–Koehler force acting on a dislocation
sufficiently close to the boundary up to an error which is uniformly bounded in various
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geometric parameters of the system, namely, the mutual distances of the dislocations
and the curvature of the boundary.

In Theorem 3.2, we address (ii): we consider the situation of a dislocation near
the boundary, well separated from all the others. The result that we obtain is an
upper bound for the collision time and an estimation of how close to the boundary
this dislocation must be in order to collide with it before any other collision event.

In Theorem 3.4, we turn to (iii), where two dislocations of opposite Burgers
moduli are close to each other and well separated from the others. In this case, we
again obtain an upper bound for the collision time and conditions on the geometry of
the initial configuration which guarantee that no other collision events occur before
the two dislocations hit one another.

In both Theorems 3.2 and 3.4, the geometric conditions obtained are invariant
under dilation of the coordinate system, but, whereas those needed for Theorem 3.2
explicitly involve the curvature of the domain, those needed for Theorem 3.4 only
depend on the domain through its diameter (therefore, the regularity of the boundary
is not relevant for the latter result).

While these behaviors are expected from a qualitative point of view, the novelty
of our results is that sharp estimates on the collision times are provided for the first
time. Moreover, the interaction with the boundary characterized in Theorem 3.1 and
the estimates of Theorems 3.2 and 3.4 are determined in a scale-invariant way in terms
of geometric parameters describing the shape of the domain (through its curvature)
and the configuration of the dislocations. It is worth mentioning that the geometry
of the domain and the arrangement of the dislocations are only responsible for the
higher order corrections to estimates on the collision times.

The paper is organized as follows: In section 2 we provide some estimates on the
functions GΩ and hΩ that will be crucial for the rest of the paper. In section 3, we
state and prove the main theorems about the attracting behavior of free boundaries,
and the estimates on the collision times of one dislocation with the boundary and of
two dislocations hitting each other. These results will be compared in section 4 to
some explicit cases also discussed in [5]. We also include numerical plots for domains
(namely, the square and the cardioid) which exhibit interesting symmetries. Finally,
in section 5 we draw some conclusions and discuss other models for the relationship
between the Peach–Koehler force and the velocity of dislocations. In Appendix A we
collect some explicit expressions for the Green’s functions for the disc and its exterior
used in our analysis.

2. Preliminaries and estimates of interaction kernels. In this section, we
collect the series of asymptotic bounds on Green’s functions and related interaction
kernels which we will require in our analysis. A particular focus will be asymptotics for
the gradients of these kernels, since these provide a description of the Peach–Koehler
forces acting on dislocations.

An important function in what follows will be dn : Ωn → [0,+∞), which is defined
as

(10) dn(x1, . . . , xn) :=

{
dist(x1, ∂Ω), n = 1,
mini dist(xi, ∂Ω) ∧mini 6=j |xi − xj | otherwise.

In the case n = 1, the function d1 measures the distance of the dislocation from
the boundary ∂Ω, whereas if n ≥ 2, dn describes the minimal separation among the
dislocations and their distance from the boundary. As will be clear in what follows,
this function arises as the distance between a configuration and some critical set in
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Ωn on which the evolution (9) ceases to exist.
We now use the descriptions of GΩ, kΩ, and hΩ as respective solutions of the

elliptic problems (2), (4), and (6) along with the comparison principle in order to
provide asymptotic gradient estimates for these functions in a variety of situations. A
key tool will be the following bound, taken from section 3.4 in [15]: let f ∈ C0(Br(0))
and let u ∈ C2(Br(0)) ∩ C0

(
Br(0)

)
satisfy −∆u = f in Br(0) ⊂ R2; then

(11) |∇u(0)| ≤ 2
r

sup
∂Br(0)

|u|+ r

2
sup
Br(0)

|f |.

2.1. Estimates on ∇GΩ. Our first results concern an estimate on the boundary
behavior of the gradient of GΩ and some asymptotic formulae which will be relevant
when two dislocations of opposite sign approach one another.

Lemma 2.1. Suppose that Ω ⊂ R2 is a C2 domain and that y ∈ Ω is fixed, and
let ρ̄ > 0 be as in (1); recall also the definition of d1(·) from (10) for n = 1. Then

1. for x satisfying d1(x) < ρ̄ and d1(x) < |x− y|, we have

(12) |∇xGΩ(x, y)| ≤
2
(
|y − xext|2 − ρ̄2

)(
ρ̄+ d1(x)

)
πρ̄2
(
|x− y| − d1(x)

)2 ,

where Bρ̄(xext) is the disk which touches ∂Ω at the point closest to x on the
boundary; and

2. for any x ∈ Ω, we have the bound

(13) |∇yGΩ(x, y)| ≤ 1
2π|x− y|

+
1

2πd1(y)
.

Proof. Let Ω ⊂ Ω′ and y ∈ Ω; then by the comparison principle, we have the
upper and lower estimates

GΩ′(x, y) ≥ GΩ(x, y) ≥ 0 for all x ∈ Ω.

To prove assertion 1, we note that if d1(x) < ρ̄, there exists a unique point s ∈ ∂Ω
such that |x − s| = d1(x), and d1(x) is a C2 function (see Lemma 14.16 of [15], or
[21]) on this neighborhood of ∂Ω. Moreover,

∇d1(x) = −ν(s),

where ν(s) is the outward-pointing unit normal to ∂Ω at s. Since Ω satisfies an
exterior disk condition, there exists xext ∈ Ωc such that Bρ̄(xext) ⊂ Ωc and s ∈
∂Bρ̄(xext) ∩ ∂Ω. Using the explicit expression for the Green’s function on Bρ̄(xext)c

derived in Appendix A, we therefore deduce that

0 ≤ GΩ(x, y) ≤ GBρ̄(xext)c(x, y) =
1

4π
log
(

1 +

[
|y − xext|2 − ρ̄2

][
2d1(x)ρ̄+ d1(x)2

]
ρ̄2|x− y|2

)
.

Now, since d1(x) ≤ |x − y| by assumption, GΩ is harmonic in Bd1(x)(x), and we use
(11) on Ω with f = 0 followed by the elementary inequality log(1 + r) ≤ r for any
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r ≥ 0 to deduce that∣∣∇xGΩ(x, y)
∣∣ ≤ 2

d1(x)
sup

z∈∂Bd1(x)(x)

∣∣GΩ(z, y)
∣∣

≤ 1
2πd1(x)

sup
z∈∂Bd1(x)(x)

log
(

1 +

[
|y − xext|2 − ρ̄2

][
2d1(z)ρ̄+ d1(z)2

]
ρ̄2|z − y|2

)
,

≤
2
(
|y − xext|2 − ρ̄2

)(
ρ̄+ d1(x)

)
πρ̄2
(
|x− y| − d1(x)

)2 .

To obtain the final line, we estimate d1(z) ≤ 2d1(x) in the numerator and |z − y| ≥
|x− y| − d1(x) in the denominator.

Turning to assertion 2, we note that for fixed y ∈ Ω, ∇yGΩ(·, y) satisfies

∇yGΩ(x, y) =
x− y

2π|x− y|2
+∇ykΩ(x, y),

where, with the Laplacian acting on each coordinate, we have

−∆x∇ykΩ(x, y) = 0 in Ω and ∇ykΩ(x, y) =
y − x

2π|y − x|2
on ∂Ω.

Applying the maximum principle, we therefore find that∣∣∇yGΩ(x, y)
∣∣ ≤ 1

2π|x− y|
+ sup
s∈∂Ω

∣∣∇ykΩ(s, y)
∣∣ ≤ 1

2π|x− y|
+

1
2πd1(y)

,

as required.

Remark 2.2. Notice that estimate (12) deteriorates if the points x and y become
too close. We stress here that we will use (12) only in the case d1(x)� |x− y|.

2.2. Estimates on ∇hΩ. We now provide estimates for the function ∇hΩ(x)
in the two cases when x is either close to or far from the boundary

Lemma 2.3. Let x ∈ Ω and define λΩ := | log(diam Ω/2)|. Then

(14) |∇hΩ(x)| ≤ 2 max{− log d1(x), λΩ}
πd1(x)

.

Proof. Observe that by the symmetry of kΩ, we can write

∇xhΩ(x) = ∇xkΩ(x, x) = 2∇xkΩ(x, y)|y=x .

Since kΩ solves (4), by using (11) with r = d1(x) and the maximum principle, we
obtain

|∇xkΩ(x, y)||y=x ≤
2

d1(x)
sup

s∈∂Br(x)
|kΩ(s, x)| ≤ 2

d1(x)
sup
s∈∂Ω

|kΩ(s, x)|

=
1

πd1(x)
sup
s∈∂Ω

∣∣ log |s− x|
∣∣ ≤ max{− log d1(x), | log(diam Ω/2)|}

πd1(x)
,

from which the thesis follows.



DISLOCATION DYNAMICS: TIME ESTIMATES ON COLLISIONS 1685

As we will see shortly, the interaction between a dislocation and the boundary
can be expressed using the function hΩ; we therefore prove the following asymptotic
description of ∇hΩ near the boundary, following the method of [8]. The result pre-
sented below is sharper than that obtained in this previous work, since we obtain a
uniform bound which depends on the geometry of the domain; this extra detail will
be important for our subsequent analysis of the dynamics of (9).

Lemma 2.4. Suppose that Ω is C2 and satisfies interior and exterior disk condi-
tions with radius ρ̄. Then, for any σ ∈ (0, 1), if d1(x) ≤ σρ̄, there exists a constant
Cσ > 0 (depending only on σ) such that

(15)
∣∣∣∣∇hΩ(x) +

ν(s)
2πd1(x)

∣∣∣∣ ≤ Cσ
πρ̄

,

where s ∈ ∂Ω is the point which realizes the distance to the boundary.

Proof. We recall that hΩ satisfies (6), and therefore a standard application of
elliptic regularity theory implies that hΩ is smooth in Ω. Moreover, by employing
the maximum principle and the fact that the right-hand side of (6) is positive and
decreasing, we find that

(16) Ω ⊆ Ω′ implies hΩ ≤ hΩ′ in Ω.

This fact will now allow us to construct estimates similar to those found in section 2
of [8] by using explicit expressions for hΩ when Ω is the interior or exterior of a ball.

Recalling that Ω satisfies (1), using the comparison principle (16) and the expres-
sions for hBρ̄(0) and hBρ̄(0)c derived in Appendix A, it follows that
(17)

1
2π

log
(

2d1(x)− d1(x)2

ρ̄

)
≤ hΩ(x) ≤ 1

2π
log
(

2d1(x) +
d1(x)2

ρ̄

)
in Bρ̄(xint).

Subtracting 1
2π log |2d1(x)|, we obtain

(18)
1

2π
log
(

1− d1(x)
2ρ̄

)
≤ hΩ(x)− 1

2π
log 2d1(x) ≤ 1

2π
log
(

1 +
d1(x)

2ρ̄

)
in Bρ̄(xint),

since Bρ̄(xint) ⊂ Ω ⊂ Bρ̄(xext)c. Notice that for any ` ∈ (0, 1), we can estimate
| log(1 + t)| ≤ | log(1− `)||t|/` if |t| ≤ `. By applying this to (18) with t = −d1(x)/2ρ̄
and ` = 1/2, it follows that

(19)
∣∣∣∣hΩ(x)− 1

2π
log 2d1(x)

∣∣∣∣ ≤ log 2
2π

d1(x)
ρ̄

.

Differentiating hΩ(x)− 1
2π log 2d1(x), applying (6) and the lower bound from (17),

we find that

−∆
[
hΩ(x)− 1

2π
log 2d1(x)

]
=

2
π

e−4πhΩ(x) +
1

2π
∆[log 2d1(x)]

≤ 1
2πd2

1(x)

(
1− d1(x)

2ρ̄

)−2

+
1

2π

(
∆d1(x)
d1(x)

− |∇d1(x)|2

d2
1(x)

)
=

1
2πd2

1(x)

[(
2ρ̄

2ρ̄− d1(x)

)2

+ d1(x)∆d1(x)− |∇d1(x)|2
]
.
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Recalling that, when d1(x) ≤ ρ̄, ∇d1(x) = −ν(s), where ν(s) is the outward-pointing
unit normal at the boundary point s which is closest to x, we have |∇d1(x)| = 1.
Therefore, the estimate above reads

(20) −∆
[
hΩ(x)− 1

2π
log 2d1(x)

]
≤ ∆d1(x)

2πd1(x)
+

1
2πd1(x)

4ρ̄− d1(x)
(2ρ̄− d1(x))2 .

We now estimate the two summands on the right-hand side above separately. By
recalling [15, Lemma 14.17], we have

∆d1(x) =
−κ(s)

1− κ(s)d1(x)
,

where κ(s) is the curvature at s ∈ ∂Ω which realizes |s − x| = d1(x); recalling that
d1(x) ≤ σρ̄, we can estimate∣∣∣∣ κ(s)

1− κ(s)d1(x)

∣∣∣∣ ≤ 1
(1− σ)ρ̄

.

Noting that the map [0, σρ̄] 3 t 7→ (4ρ̄ − t)/(2ρ̄ − t)2 is increasing and attains its
maximum when t = σρ̄, (20) reads

(21) −∆
[
hΩ(x)− 1

2π
log 2d1(x)

]
≤ 1

2πρ̄d1(x)
2σ2 − 9σ + 8

(1− σ)(2− σ)2 =:
cσ

2πρ̄d1(x)
.

Applying (11) on a ball centered at x of radius r = d1(x), taking (19) and (21) into
account, we obtain ∣∣∣∣∇ [hΩ(x)− 1

2π
log |2d1(x)|

]∣∣∣∣ ≤ log 2
πρ̄

+
cσ

4πρ̄
,

which is the thesis (15) with

(22) Cσ := log 2 +
cσ
4

= log 2 +
2σ2 − 9σ + 8

4(1− σ)(2− σ)2 .

The lemma is proved.

3. Main results. In this section, we prove our main results. We will apply
Lemma 2.4 first to study the Peach–Koehler force on a dislocation very close to the
boundary, and then to obtain criteria on the initial conditions of the evolution such
that dislocations hit the boundary or collide with each other within a given time
interval.

The situation we consider in the next two subsections is the following: we suppose
that we have n ∈ N dislocations in Ω, one of which, z1, is much closer to the boundary
∂Ω than the others; we also suppose that the other n− 1 dislocations, z2, . . . , zn, are
spaced sufficiently far apart from each other and from the boundary.

We introduce the notation z′ := (z2, . . . , zn) so that the configuration of the n
dislocations can be represented by the vector z := (z1, z

′) ∈ Ωn. Given 0 < δ < γ <
diam Ω/2, define the set

(23) Dn,δ,γ :=
{

(z1, z
′) ∈ Ωn

∣∣ d1(z1) < δ, dn−1(z′) > γ
}
.

The geometric meaning of the set Dn,δ,γ defined above is the following: if z ∈ Dn,δ,γ ,
it means that z1 lies at a distance of at most δ from the boundary, while all the other
dislocations, z2, . . . , zn, lie at a distance of at least γ away from the boundary and
their mutual distance is also at least γ. The condition δ < γ ensured that z1 is closer
to the boundary than any other dislocation.
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3.1. Free boundaries attract dislocations. In the following theorem we show
that the Peach–Koehler force acting on a dislocation which is very close to the bound-
ary is directed along the outward unit normal at the boundary point closest to the
dislocation.

Theorem 3.1. Let n ∈ N, let σ ∈ (0, 1), recall the definition of ρ̄ from (1), and
let δ ∈ (0, σρ̄) and γ ∈ (max{2δ, ρ̄},diam Ω/2). Let z = (z1, z

′) ∈ Dn,δ,γ . Then,
if s ∈ ∂Ω is the boundary point closest to z1, the Peach–Koehler force f1(z) on the
dislocation z1 (see (8)) satisfies

(24) f1(z) =
ν(s)

4πd1(z1)
+O(1),

where O(1), which is quantified in (31), denotes a term which is uniformly bounded
for all z ∈ Dn,δ,γ .

Proof. Since z ∈ Dn,δ,γ , d1(z1) < ρ̄, by the assumptions on ∂Ω, there exists a
unique point s ∈ ∂Ω such that d1(z1) = |z1 − s|.

Recalling (3), we express the renormalized energy (7) as

(25) En(z1, . . . , zn) = E1(z1) + En−1(z′) +
n∑
i=2

b1biGΩ(z1, zi),

where we separate the contribution of z1 and that of z′. The Peach–Koehler force (8)
on z1 can therefore be written as

f1(z) = −∇z1En(z) =−∇z1E1(z1)−
n∑
i=2

b1bi∇z1GΩ(z1, zi)

=− 1
2
∇z1hΩ(z1)−

n∑
i=2

b1bi∇z1GΩ(z1, zi).

(26)

To prove (24), we estimate the difference

(27)
∣∣∣∣f1(z)− ν(s)

4πd1(z1)

∣∣∣∣ ≤ ∣∣∣∣f1(z) +
1
2
∇z1hΩ(z1)

∣∣∣∣+
1
2

∣∣∣∣∇z1hΩ(z1) +
ν(s)

2πd1(z1)

∣∣∣∣ .
Invoking (26), we use (12) to estimate the first term on the right-hand side above by∣∣∣∣f1(z) +

1
2
∇z1hΩ(z1)

∣∣∣∣ ≤ n∑
i=2

2
(
|zi − xext|2 − ρ̄2

)(
ρ̄+ d1(z1)

)
πρ̄2
(
|z1 − zi| − d1(z1)

)2 .

Recalling (23) and setting ai := |z1−zi|−d1(z1) for i = 2, . . . , n, we apply the triangle
inequality to obtain |zi − z1| ≥ |zi − s| − |s− z1| > γ − δ, which entails that

ai ≥ γ − 2δ,(28a)
|zi − xext| ≤ |zi − z1|+ |z1 − xext| ≤ |zi − z1|+ d1(z1) + ρ̄ = ai + 2δ + ρ̄;(28b)

see Figure 2(b) for an illustration of the geometry. Using (28b) we estimate

|zi − xext|2 − ρ̄2 ≤ (ai + 2δ + ρ̄)2 − ρ̄2

≤ a2
i + 2ai(2δ + ρ̄) + 4δ(δ + ρ̄).

(29)
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Fig. 2. (a) Depiction of the geometric parameters γ0 and δ0, with the dislocations (z1, . . . ,
zi, . . .) belonging to the set Dn,δ0,γ0 defined in (23). (b) The elements involved in the estimate via
the triangle inequality for |zi − z1| and (28b).

Applying (29) to bound the numerator and the definition of ai in the denominator,
and then using (28a), now gives

n∑
i=2

2
(
|zi − xext|2 − ρ̄2

)(
ρ̄+ d1(z1)

)
πρ̄2
(
|z1 − zi| − d1(z1)

)2
≤

n∑
i=2

2(ρ̄+ δ)
πρ̄2

a2
i + 2ai(2δ + ρ̄) + 4δ(δ + ρ̄)

a2
i

≤ 2(ρ̄+ δ)(n− 1)
πρ̄2

(
1 + 2

ρ̄+ 2δ
γ − 2δ

+ 4
δ(ρ̄+ δ)
(γ − 2δ)2

)
.

(30)

Now, collecting terms in (30), then applying (15) and the hypothesis that δ < σρ̄,
estimate (27) becomes

(31)
∣∣∣∣f1(z)− ν(s)

4πd1(z1)

∣∣∣∣ ≤ 2(1 + σ)(n− 1)γ(γ + 2ρ̄)
πρ̄(γ − 2σρ̄)2 +

Cσ
2πρ̄

=:
Cn,σ(γ)

2πρ̄
,

where the constant Cn,σ(γ) := Cσ +4(1+σ)(n−1)γ(γ+2ρ̄)/(γ−2σρ̄)2 depends only
on the geometric parameter ρ̄, on σ ∈ (0, 1), and on how far all the other dislocations
are from z1 and from ∂Ω. This proves (24).

3.2. Collision with the boundary. We want to find conditions on the param-
eters δ and γ in (23), in order to strengthen the constraint δ < γ in such a way that
if the initial configuration of the system z(0) ∈ Dn,δ0,γ0 for some δ0 < γ0, then z1 will
collide with the boundary before any other collision event occurs.

Theorem 3.2. Let n ∈ N, let σ ∈ (0, 1), γ0 > 0, and consider ρ̄ from (1). There
exist δ0 > 0 such that if z(0) ∈ Dn,δ0,γ0 , then there exists T ∂Ω

coll > 0 such that the
evolution z(t) is defined for t ∈ [0, T ∂Ω

coll], z(t) ∈ Ωn for t ∈ [0, T ∂Ω
coll), and z1(T ∂Ω

coll) ∈ ∂Ω
and z′(T ∂Ω

coll) ∈ Ωn−1. Furthermore, as δ0 → 0, the following estimate holds:

(32) T ∂Ω
coll ≤ 2πδ2

0 +O(δ3
0).

The structure of the proof is the following: We first find an upper bound on the
collision time for dislocation z1 hitting the boundary, conditional on the configuration
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z remaining in Dn,δ,γ . In the second half of the proof, after fixing γ0 ∈ (0,diam Ω/2),
we establish a lower bound on the time at which the configuration z leaves the set
Dn,δ,γ0/2 due to dn−1(z′) becoming smaller than γ0/2. The proof is concluded by
finding conditions on δ under which the former collision time is smaller than the
latter; this is contained in inequality (40) below.

Proof. Writing the renormalized energy (7) as in (25), the equation of motion (9)
for z1 reads

ż1(t) = −∇z1En(z1(t), . . . , zn(t)) = −∇z1E1(z1(t))−
n∑
i=2

b1bi∇z1GΩ(z1(t), zi(t)).

We now compute the time derivative d
dt

[ 1
2d1(z1(t))2

]
and show that it is negative, so

that the dislocation z1(t) moves towards the boundary. Indeed, we have

(33)
d
dt

[
1
2
d1(z1(t))2

]
= A1(z(t)),

where

A1(z) := −d1(z1)ν(s) · ż1 = d1(z1)∇z1E1(z1) ·ν(s)+
n∑
i=2

b1bid1(z1)∇z1GΩ(z1, zi) ·ν(s).

Now, we apply the bounds (12) and (15) to estimate

A1(z) ≤ d1(z1)∇z1E1(zi) · ν(s) +
n∑
i=2

∣∣d1(z1)∇z1GΩ(z1, zj) · ν(s)
∣∣

≤ − 1
4π

+
[
Cσ
πρ̄

+
n∑
i=2

2
(
|zi − xext|2 − ρ̄2

)(
ρ̄+ d1(z1)

)
πρ̄2
(
|z1 − zi| − d1(z1)

)2 ]
d1(z1)

2
.

Fix γ0 > 0, and assume that z ∈ Dn,δ,γ0/2 for a certain δ ∈ (0, γ0/4) (see Figure 2(a));
we can estimate A1(z) and find conditions on δ in such a way that A1(z) < 0. The es-
timates in (28) hold with γ0/2 in place of γ (again, see Figure 2(b) for an illustration),
so that, using (29), estimate (30) reads

n∑
i=2

2
(
|zi − xext|2 − ρ̄2

)(
ρ̄+ d1(z1)

)
πρ̄2
(
|z1 − zi| − d1(z1)

)2
≤ 2(ρ̄+ δ)(n− 1)

πρ̄2

(
1 + 4

ρ̄+ 2δ
γ0 − 4δ

+ 16
δ(ρ̄+ δ)

(γ0 − 4δ)2

)
.

In turn, we obtain

A1(z) ≤− 1
4π

+
δ

4π

[
2Cσ
ρ̄

+
4(ρ̄+ δ)
ρ̄2 (n− 1)

(
1 + 4

ρ̄+ 2δ
γ0 − 4δ

+ 16
δ(ρ̄+ δ)

(γ0 − 4δ)2

)]
=− 1

4π
(1− c(δ)),

(34)

where

(35) c(δ) :=
2δ
ρ̄

[
Cσ +

2(ρ̄+ δ)
ρ̄

(n− 1)
(

1 + 4
ρ̄+ 2δ
γ0 − 4δ

+ 16
δ(ρ̄+ δ)

(γ0 − 4δ)2

)]
.
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Therefore, from (34) we obtain the following estimate for (33):

(36)
d
dt

[1
2
d1(z1)2

]
= A1(z) ≤ − 1

4π
(1− c(δ)).

Expanding in powers of δ near δ = 0, (35) can be expressed as

(37) c(δ) =
2δ
ρ̄

[
Cσ + 2(n− 1)

(
1 + 4

ρ̄

γ0

)]
+O(δ2) = Cρ̄,n,γ0,σδ +O(δ2),

which implies that there exists δ0 ∈ (0, γ0/4) small enough such that 1− c(δ) > 0 for
all δ ≤ δ0, so that there must be a time t = T ∂Ω

coll at which z1(T ∂Ω
coll) ∈ ∂Ω.

Integrating (36) between t = 0 and t = T ∂Ω
coll entails that

T ∂Ω
coll ≤

2πd1(z1(0))2

1− c(δ)
≤ 2πδ2

0

1− c(δ0)
= 2πδ2

0 +O(δ3
0),

where the second inequality holds true because the constant Cρ̄,n,γ0,σ in (37) is strictly
positive. Estimate (32) is proved.

Next, we note that

żi(t) = Bi(z(t)) := −∇ziEn(z(t)) for i = 2, . . . , n,

so using the expression of En in (25) and the bound (13),

|Bi(z)| ≤
1

2π|z1 − zi|
+

n∑
k=2
k 6=i

1
2π|zi − zk|

+
n

2πd1(zi)

≤ 1
2π(dn−1(z′)− d1(z1))

+
2n− 2

2πdn−1(z′)
≤ 2n− 1

2π(dn−1(z′)− δ0)
.

(38)

We want to use (38) to obtain bounds on the closest that any two dislocations in
the ensemble z′ can get either to each other or to the boundary ∂Ω. To do this, we
bound the rate at which the minimum distance among the dislocations z′ (and the
boundary) decreases. Indeed, by (38),

dn−1
(
z′(t)

)
− dn−1

(
z′(0)

)
≥ −2

∫ t

0
max

i=2,...,n
|żi(s)|ds ≥ −

∫ t

0

2n− 1
π(dn−1(z′(s))− δ0)

ds,

and, by writing the left-hand side as
∫ t

0 ḋn−1(z′(s)) ds, we are led to solving

ḋn−1(z′) ≥ − 2n− 1
π(dn−1(z′)− δ0)

with initial condition dn−1(z′(0)) = γ0. We find that

dn−1
(
z′(t)

)
≥ δ0 +

√
(γ0 − δ0)2 − 4n− 2

π
t.

This entails that, given γ ∈ (0, γ0), dn−1(z′(t)) ≥ γ for all t ≤ T (γ), with

(39) T (γ) :=
π

4n− 2

(
(γ0 − δ0)2 − (γ − δ0)2

)
.
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It is clear that T (γ) is the earliest time at which either any two dislocations in z′ are
γ far apart from each other or one of the dislocations in z′ gets to a distance γ from
the boundary ∂Ω. Therefore, a sufficient condition to observe z1 colliding with the
boundary before any other collision event is that T ∂Ω

coll < T (γ0/2), i.e.,

(40)
2δ2

0

1− c(δ0)
<
γ0(3γ0 − 4δ0)

8(2n− 1)
.

The choice of δ0 and the fact that 4δ0 < γ0 imply that both sides of (40) are positive
and, by possibly reducing δ0, it is easy to see that δ0 can be chosen such that (40) is
satisfied. The theorem is proved.

Remark 3.3. We note that the constant c(δ) in (35) is invariant under simulta-
neous scaling of geometric parameters ρ̄, δ, and γ, and is thus invariant under dilations
of the coordinate system.

Moreover, we single out two different limits for c(δ), which will be useful in what
follows: If Ω is the half space, then Ω satisfies the interior and exterior disk conditions
(1) with arbitrarily large ρ̄; so letting ρ̄→∞, we find c(δ)→ 8γ0δ(n− 1)/(γ0 − 2δ)2.
If the system consists only of one dislocation, then by plugging n−1 in (35) we obtain
c(δ) = 2δCσ/ρ̄; notice that c(δ) = 0 for one dislocation in the half plane.

It is then clear that, focusing attention on one particular dislocation, say z̄, c(δ)
tracks the influence on z̄ of the other dislocations and on the geometry of the domain,
in terms of the force exerted on z̄.

3.3. Collision between dislocations. We now turn to a scenario for collisions
of dislocations. We will find sufficient conditions for a collision between two dislo-
cations to occur before any other collision event. We suppose that we have n ∈ N
(n ≥ 2) dislocations in Ω, two of which—z1 and z2, with Burgers moduli b1 = +1 and
b2 = −1—are much closer to each other than the others; we also suppose that the
other n− 2 dislocations, z3, . . . , zn, are sufficiently distant from each other and from
the boundary. Our theorem states that z1 and z2 will collide in finite time, and that
this collision happens before any other collision event occurs.

Here we adapt our notation by defining z′′ := (z3, . . . , zn) so that a trajectory
of the evolution of the configuration of the n dislocations can be represented by the
vector z(t) := (z1(t), z2(t), z′′(t)) ∈ Ωn. In this case, the meaningful trajectories for
the statement of our theorem are those that lie within sets of the form

Cn,ζ,η :=
{

(z1, z2, z
′′) ∈ Ωn

∣∣∣ |z1 − z2| < ζ, dn−2(z′′) > η,

dist
(
{z1, z2}, {z3, . . . , zn} ∪ ∂Ω

)
> η

}
,

with ζ < η chosen in a way that we subsequently quantify properly.
The geometric meaning of the set Cn,ζ,η defined above is the following: If z ∈

Cn,ζ,η, it means that z1 and z2 lie at a distance of at most ζ from each other, while
all the other dislocations, z3, . . . , zn, lie at a distance of at least η away from the
boundary and their mutual distance is also at least η. Moreover, z1 and z2 are at
least η far away from any other dislocations and from the boundary.

Theorem 3.4. Let n ∈ N (n ≥ 2) and let η0 ∈ (0,diam Ω/2). There exists ζ0 > 0
such that if z(0) ∈ Cn,ζ0,η0 , then there exists T±coll > 0 such that the evolution z(t) is
defined for t ∈ [0, T±coll], z(t) ∈ Ωn for t ∈ [0, T±coll), and z1(T±coll) = z2(T±coll) ∈ Ω and
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z′′(T±coll) ∈ Ωn−2. Furthermore, as ζ0 → 0, the following estimate holds:

(41) T±coll ≤
πζ2

0η
2
0

2(η2
0 − ζ2

0 − 2(n− 2)ζ0η0)
.

Analogously to the proof of Theorem 3.2, we first find an upper bound on the
collision time for dislocations z1 and z2, conditional on the configuration z remaining
in Cn,ζ,η. In the second half of the proof, after fixing η0 ∈ (0,diam Ω/2), we establish
a lower bound on the time at which the configuration z leaves the set Cn,ζ,η0/2 due to
dn−2(z′′) becoming smaller than η0/2. The proof is concluded by finding conditions
on ζ under which the former collision time is smaller than the latter; this is contained
in inequality (60) below.

Proof. As in the proof of Theorem 3.2, recalling that b1 = +1 and b2 = −1, we
express the renormalized energy (7) as

(42) En(z1, . . . , zn) = E2(z1, z2) + En−2(z′′) +
n∑
i=3

bi
[
GΩ(z1, zi)−GΩ(z2, zi)

]
,

where, again recalling (7) with n = 2, b1 = +1, and b2 = −1,

(43) E2(z1, z2) =
1

2π
log |z1 − z2|+

1
2
hΩ(z1) +

1
2
hΩ(z2)− kΩ(z1, z2).

The equations of motion for z1 and z2 read

ż1(t) = −∇z1En(z(t)) = −∇z1E2(z1(t), z2(t))−
n∑
i=3

bi∇z1GΩ(z1(t), zi(t))

=
1

2π
z2(t)− z1(t)
|z1(t)− z2(t)|2

− 1
2
∇z1hΩ(z1(t)) +∇z1kΩ(z1(t), z2(t))

−
n∑
i=3

bi∇z1GΩ(z1(t), zi(t)),

(44)

ż2(t) = −∇z2En(z(t)) = −∇z2E2(z1(t), z2(t)) +
n∑
i=3

bi∇z2GΩ(z2(t), zi(t))

=
1

2π
z1(t)− z2(t)
|z1(t)− z2(t)|2

− 1
2
∇z2hΩ(z2(t)) +∇z2kΩ(z1(t), z2(t))

+
n∑
i=3

bi∇z2GΩ(z2(t), zi(t)).

(45)

We now fix η0 > 0, consider ζ ∈ (0, η0/2), and for z ∈ Cn,ζ,η0/2 compute the time
derivative

d
dt

[
1
2
|z1(t)− z2(t)|2

]
= A2(z(t)),

where A2(z) := (z1 − z2) · (ż1(t)− ż2(t)). We will determine conditions on ζ in such
a way that A2(z) < 0, and therefore the dislocations z1 and z2 attract.
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Using the explicit expressions from (44) and (45), the contribution to A2(z) com-
ing from E2(z1, z2) is

(z1 − z2) ·
(
− z1 − z2

π|z1 − z2|2
− 1

2
∇z1hΩ(z1) +∇z1kΩ(z1, z2)

+
1
2
∇z2hΩ(z2)−∇z2kΩ(z1, z2)

)
= − 1

π
+ (z1 − z2) ·

(
∇z1kΩ(z1, z2)− 1

2
∇z1hΩ(z1)

−∇z2kΩ(z1, z2) +
1
2
∇z2hΩ(z2)

)
.

(46)

Next, by Taylor expanding the function z2 7→ Fz1(z2) := ∇z1kΩ(z1, z2) about the
point z1 using the Lagrange form for the remainder, and recalling (5), we obtain
(47)∣∣∣∣(z1 − z2) ·

(
∇z1kΩ(z1, z2)− 1

2
∇z1hΩ(z1)

)∣∣∣∣ = |(z1 − z2) · ∇z2∇z1kΩ(z1, θ)(z2 − z1)|,

where θ is an intermediate point in the line segment joining z1 and z2. Notice now
that z2 7→ Fz1(z2) is a vector-valued harmonic function which, by (4), satisfies−∆Fz1(z2) = 0 in Ω,

Fz1(z2) =
z2 − z1

2π|z1 − z2|2
on ∂Ω.

Applying (11) to Fz1(z2) on the ball centered at θ of radius r = dist(θ, ∂Ω), and using
the maximum principle on the domains Br(θ) ⊂ Ω, we can estimate (47) by

|z1 − z2|2 · |∇z2∇z1kΩ(z1, θ)| ≤ |z1 − z2|2
2

dist(θ, ∂Ω)
sup

y∈∂Br(θ)
|Fz1(y)|

≤ 2|z1 − z2|2

dist(θ, ∂Ω)
sup
y∈∂Ω

|Fz1(y)| = |z1 − z2|2

dist(θ, ∂Ω)
sup
y∈∂Ω

1
π|z1 − y|

≤ |z1 − z2|2

πdist(θ, ∂Ω)dist(z1, ∂Ω)
≤ 4
|z1 − z2|2

πη2
0

.

(48)

From (47) and (48) we have obtained that

(49)
∣∣∣∣(z1 − z2) ·

(
∇z1kΩ(z1, z2)− 1

2
∇z1hΩ(z1)

)∣∣∣∣ ≤ 4
|z1 − z2|2

πη2
0

.

Applying the same argument to the function z1 7→ Fz2(z1) := ∇z2kΩ(z1, z2) and
recalling that z ∈ Cn,ζ,η0/2, we obtain

(50)
∣∣∣∣(z1 − z2) ·

(
∇z2kΩ(z1, z2)− 1

2
∇z2hΩ(z2)

)∣∣∣∣ ≤ 4
|z1 − z2|2

πη2
0

.

By using (49) and (50), and the fact that |z1 − z2| < ζ, we can bound (46) by

− 1
π

+ (z1 − z2) ·
(
∇z1kΩ(z1, z2)− 1

2
∇z1hΩ(z1)−∇z2kΩ(z1, z2) +

1
2
∇z2hΩ(z2)

)
≤ − 1

π
+

8ζ2

πη2
0
.

(51)
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We turn now to the remaining interaction terms in the estimate of A2(z); namely, we
are left with estimating∣∣∣∣(z1 − z2) ·

(
−

n∑
i=3

bi∇z1GΩ(z1(t), zi(t))−
n∑
i=3

bi∇z2GΩ(z2(t), zi(t))
)∣∣∣∣.

By using the estimate (13) on the gradient of the Green’s function GΩ, we obtain∣∣∣∣(z1 − z2) ·
(
−

n∑
i=3

bi∇z1GΩ(z1(t), zi(t))−
n∑
i=3

bi∇z2GΩ(z2(t), zi(t))
)∣∣∣∣

≤ |z1 − z2|
n∑
i=3

(
|∇z1GΩ(z1(t), zi(t))|+ |∇z2GΩ(z2(t), zi(t))|

)
≤ |z1 − z2|

n∑
i=3

(
1

2π|z1 − zi|
+

1
2πd1(z1)

+
1

2π|z2 − zi|
+

1
2πd1(z2)

)
≤ 4(n− 2)ζ

πη0
.

(52)

Combining now (51) and (52), we finally obtain

(53) A2(z) ≤ − 1
π

(
1− 8ζ2

η2
0
− 4(n− 2)ζ

η0

)
=: − 1

π
(1− c(ζ)).

It is easy to see that c(ζ) ≥ 0 and that it is smaller than 1 for

ζ < ζ0 := η0
(√

(n− 2)2 + 2− (n− 2)
)
/4,

so that A2(z) < 0 if z ∈ Cn,ζ,η0/2.
Integrating (53) between t = 0 and t = T±coll (for which z1(T±coll) = z2(T±coll)), we

obtain

T±coll ≤
π|z1(0)− z2(0)|2

2(1− c(ζ))
≤ πζ2

0

2(1− c(ζ0))
=

πζ2
0η

2
0

2(η2
0 − 8ζ2

0 − 4(n− 2)ζ0η0)
,

where we have used that z ∈ Cn,ζ0,η0/2 and the monotonicity of c(ζ) for ζ > 0.
Estimate (41) is proved.

For z ∈ Cn,ζ,η0/2 and i = 3, . . . , n, we have that

żi(t) = Bi(z(t)) := −∇ziEn(z(t)).

By using the expression of En in (42), we have to estimate

|Bi(z)| ≤
n∑
j=3
j 6=i

|∇ziGΩ(zi, zi)|+
1
2
|∇zihΩ(zi)|+ |∇ziGΩ(zi, z1)−∇ziGΩ(zi, z2)|

=: B1
i +B2

i +B3
i .

(54)

We notice that we separate the contributions of z1 and z2 because finer estimates are
available for them since |z1− z2| < ζ. We estimate the three contributions separately.
Using (13), the fact that i, j /∈ {1, 2}, we have

|∇ziGΩ(zi, zj)| ≤
1

2π|zi − zj |
+

1
2πd1(zi)

≤ 1
πdn−2(z′′)
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for each i, j ∈ {3, . . . , n}, and j 6= i, which implies that

(55) B1
i ≤

n− 3
πdn−2(z′′)

for i ∈ {3, . . . , n}.

We use Lemma 2.3 to estimate B2
i . By (14) we can bound

(56) B2
i ≤

max{− log d1(zi), λΩ}
πd1(zi)

for i ∈ {3, . . . , n}.

We are left with the estimate for B3
i . We will apply the mean value theorem to the

function x 7→ Hi(x) := ∇ziGΩ(x, zi). Let θ belong to the line segment joining z1 and
z2, and recall the definition (3) of GΩ. Then

B3
i = |Hi(z1)−Hi(z2)| = |∇xHi(θ)(z1 − x2)|

=
∣∣∣∣− 1

2π
(∇x∇zi log |θ − zi|)(z1 − z2) + (∇x∇zikΩ(θ, zi))(z1 − z2)

∣∣∣∣
≤
∣∣∣∣ 1
2π|θ − zi|2

(
I− 2

θ − zi
|θ − zi|

⊗ θ − zi
|θ − zi|

)
(z1 − z2)

∣∣∣∣+ |(∇x∇zikΩ(θ, zi))(z1 − z2)|;

here, I ∈ R2×2 denotes the identity matrix. We notice that matrices of the type
I − 2e ⊗ e, where e is a unit vector, are reflections, and their operator norm is 1, so
that, recalling the argument used in (48) and that z ∈ Cn,ζ,η0/2,

(57) B3
i ≤

ζ

2π|θ − zi|2
+

ζ

πdist(θ, ∂Ω)dn−2(z′′)
.

Putting (55), (56), and (57) together, and noting that dn−2(z′′) ≤ d1(zi), (54) finally
becomes

|Bi(z)| ≤
n− 3 + max{− log dn−2(z′′), λΩ}

πdn−2(z′′)
+

ζ

2π|θ − zi|2

+
ζ

πdist(θ, ∂Ω)dn−2(z′′)
.

Considering the ensemble zθ := (θ, z′′) = (θ, z3, . . . , zn) ∈ Ωn−1, by definition of dn−1
(see (10)), we have that dn−1(zθ) ≤ min{dn−2(z′′),dist(θ, ∂Ω), |θ − zi|}, so that

|Bi(z)| ≤
n− 3 + max{− log dn−1(zθ), λΩ}

πdn−1(zθ)
+

3ζ
2πd2

n−1(zθ)

≤
n− 3 + λΩ + d−1

n−1(zθ)
πdn−1(zθ)

+
3ζ

2πd2
n−1(zθ)

=
2(n− 3 + λΩ)dn−1(zθ) + 2 + 3ζ

2πd2
n−1(zθ)

=
ΛΩdn−1(zθ) + 2 + 3ζ

2πd2
n−1(zθ)

,

(58)

where we have used that max{− log dn−1(zθ), λΩ} ≤ λΩ + d−1
n−1(zθ) and we have

defined ΛΩ := 2(n− 3 + λΩ).
As in the proof of Theorem 3.2, we want to use (58) to obtain bounds on dn−1(zθ);

that is, we want to control how close any of the dislocations in z′′ approach one another
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or the boundary, and additionally prevent them from getting too close to z1 and z2.
To do this, we bound the rate at which dn−1(zθ) decreases. Indeed, by (58),

dn−1(zθ(t))− dn−1(zθ(0)) ≥ −2
∫ t

0
max

i=2,...,n
|żi(s)|ds ≥ −

∫ t

0

ΛΩdn−1(zθ) + 2 + 3ζ
πd2

n−1(zθ)
ds,

and, by writing the left-hand side as
∫ t

0 ḋn−1(zθ(s)) ds, we are led to solving

ḋn−1(zθ) ≥ −
ΛΩdn−1(zθ) + 2 + 3ζ

πd2
n−1(zθ)

with initial condition dn−1(zθ(0)) = η0. Noting that the corresponding equation is
separable, and defining χ = χ(ζ) := 2 + 3ζ, we find that the time evolution t 7→
dn−1(zθ(t)) satisfies

t ≤ π

Λ2
Ω

(
χ(dn−1(zθ(t))− η0)− ΛΩ

2
(d2
n−1(zθ(t))− η2

0)
)

+
πχ2

Λ3
Ω

log
(

ΛΩη0 + χ

ΛΩdn−1(zθ(t)) + χ

)
.

This entails that, given η ∈ (0, η0), dn−1(zθ(t)) ≥ η for all t ≤ T (η), with

(59) T (η) :=
π

Λ2
Ω

(
χ(η − η0)− ΛΩ

2
(η2 − η2

0) +
χ2

ΛΩ
log
(

ΛΩη0 + χ

ΛΩη + χ

))
.

As for the time T (γ) in (39), the time T (η) above is the earliest time at which any
two points in zθ are η apart from each other or from the boundary. Therefore, a
sufficient condition to observe z1 and z2 colliding before any other collision event is
that T±coll < T (η0/2), that is, recalling (41) and (59),

(60)
πζ2

0

2(1− c(ζ0))
<

π

Λ2
Ω

(
3ΛΩη

2
0

8
− χ(ζ0)η0

2
+
χ(ζ0)2

ΛΩ
log
(

2
ΛΩη0 + χ(ζ0)
ΛΩη0 + 2χ(ζ0)

))
.

Recalling that χ(ζ0) = 2 + 3ζ0, it is clear that the right-hand side above is of order
1 as ζ0 → 0, whereas the left-hand side is of order ζ2

0 . Since both sides in (60) are
positive, by possibly reducing it, ζ0 can be chosen such that (60) is satisfied. The
theorem is proved.

Remark 3.5. Contrary to Theorems 3.1 and 3.2, Theorem 3.4 does not require
any regularity on the boundary ∂Ω, since bounding the forces due to the boundary
and other dislocations relies only upon estimates (13) and (14), which are independent
of the assumption that ∂Ω is C2.

4. Comparison of collision bounds: Explicit examples and numerics.
In this section, we compare our analytical results with exactly solvable cases (see
also the discussion in section 3 of [5]) and numerical simulations. More precisely, we
consider domains that are the unit disk, the half plane, and the plane. Although the
theorems and lemmas from the previous sections apply only to bounded domains, a
careful inspection of the renormalized energy (7) shows that the evolution (9) is also
well defined in the case of unbounded domains. The exactly solvable cases that we
consider are as follows: (i) one dislocation z in the half plane, (ii) one dislocation z in
the unit disk, (iii) two dislocations z1, z2 of opposite Burgers modulus b1 = +1 = −b2
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in the unit disk, and (iv) two dislocations in the plane. In cases (i) and (ii) the
dislocation hits the boundary in finite time; case (iii) shows a variety of scenarios, i.e.,
collisions with the boundary, collision between dislocations, and unstable equilibria;
in case (iv) the dislocations will collide, or the evolution exists for all time. In cases
(i) and (ii), the renormalized energy (7) reads, recalling (5),

(61) E1(z) =
1
2
hΩ(z) =

1
2
kΩ(z, z).

In case (iii), the energy takes the form (43), whereas in case (iv) it reduces to

(62) E2(z1, z2) = −b1b2
2π

log |z1 − z2|.

To numerically validate our conclusions, we collected data on the time required
for dislocations with random initial conditions in the circle to hit the boundary. We
also plotted trajectories for a single dislocation in domains whose Green’s functions
is not known explicitly, namely, a square and a cardioid, which show agreement with
the conclusion of Theorem 3.1.

4.1. One dislocation in the half plane. Let n = 1 and let z = (x1, x2) ∈ Ω :=
R2

+, the upper half plane. Notice that ∂Ω = {(x1, 0) ∈ R2}. Since, given u, v ∈ Ω,
the Green’s function is GΩ(u, v) = − 1

2π log |u− v|+ 1
2π log |ū− v|, with ū = (u1,−u2),

and since from (3) kΩ(u, v) = 1
2π log |ū− v|, from (5) we have hΩ(u) = 1

2π log |ū− u|,
the renormalized energy (61) for one dislocation in the half plane reads

(63) E1(z) =
1
2
hΩ(z) =

1
8π

log(2x2
2),

from which it emerges that E1 is translation-invariant with respect to the coordinate
x1, so that we consider z = (0, x2). The equation of motion for z is now determined
by

(64) ż(t) =
(
ẋ1(t)
ẋ2(t)

)
= −1

2
∇zhΩ(z(t)) = − 1

4πx2(t)

(
0
1

)
,

with initial condition z(0) = (0, δ). Solving the dynamics (64) yields the existence of
T ∂Ω

coll = 2πδ2 such that x1(t) = 0 and x2(t) =
√
δ2 − t/2π for all t ∈ [0, T ∂Ω

coll]. The
collision time T ∂Ω

coll is characterized as that time for which x2(T ∂Ω
coll) = 0.

For n = 1 and letting ρ̄→ +∞, the dislocation z is in D1,δ0,∞ for every δ0 > δ. By
Theorem 3.2, the upper bound on the collision time (see (32)) becomes T ∂Ω

coll ≤ 2πδ2,
since in this situation the constant c(δ) in (35) vanishes. This agrees exactly with the
collision time obtained solving (64).

4.2. One dislocation in the unit disk. Let n = 1 and let z = (x1, x2) ∈ Ω :=
B1(0), the unit disk, be such that z 6= 0. Setting δ = d1(z) = 1− |z|, and evaluating
(75) for ρ̄ = 1, the energy (63) reads

E1(z) =
1
2
hΩ(z) =

1
4π

log(2δ − δ2).

The equation of motion ż(t) = −∇zE1(z(t)) takes the form

(65) ż(t) =
z

2π(1− |z|2)
,
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which, by taking the scalar product with z and setting R(t) := |z(t)|2, yields the
implicit equation

(66) log
R(t)

(1− δ)2 −R(t) + (1− δ)2 =
t

π
,

where we have used R(0) = |z(0)|2 = (1 − δ)2. Solving (66) for T ∂Ω
coll for which

R(T ∂Ω
coll) = 1 gives

(67) T ∂Ω
coll = π(δ2 − 2δ − 2 log(1− δ)) = 2πδ2 +O(δ3),

as δ → 0.
In this case, the dislocation z is in D1,δ0,1 for every δ0 ∈ (δ, 1) and c(δ) in (35)

becomes c(δ) = 2δCσ, where Cσ is given in (22). As we can choose σ = δ, we
have c(δ) = O(δ), so that the upper bound (32) on the collision time obtained in
Theorem 3.2 becomes T ∂Ω

coll ≤ 2πδ2 + O(δ3), which again agrees exactly with the
collision time obtained solving (65).

Notice that if the dislocation is located at the center of the disk, that is, z = 0,
then E1(z) = 0 and also the velocity ż(t) in (65) vanishes, so that the dislocation will
not move. Consistently, the exact form of the collision time T ∂Ω

coll in (67) tends to +∞
as δ → 1. Similarly, the upper bound obtained in Theorem 3.2 tends to +∞ (noting
how cσ in (21) depends on σ, it is clear that cσ → +∞ as σ → 1).

4.3. Two dislocations in the unit disk. Let n = 2, let z1, z2 ∈ Ω := B1(0),
and let the Burgers moduli be b1 = +1, b2 = −1. Taking into account (3) and (74),
the function kΩ(z1, z2) has the expression

kΩ(z1, z2) =
1

4π
log(1− 2z1 · z2 + |z1|2|z2|2),

so that, using (5), the renormalized energy (43) reads

E2(z1, z2) =
1

2π
log |z1 − z2|+

1
4π

log(1− |z1|2) +
1

4π
log(1− |z2|2)

− 1
4π

log(1− 2z1 · z2 + |z1|2|z2|2).
(68)

It is immediate to see that (68) is invariant under rotations in the plane, so that
solving the equations of motion (44) and (45) is equivalent to solving the equations
for the radial coordinates, r1(t) := |z1(t)| and r2(t) := |z2(t)|, and for the angle
ϕ(t) formed by z1(t) and z2(t) (satisfying z1(t) · z2(t) = r1(t)r2(t) cosϕ(t)). Plugging
the definitions of r1(t), r2(t), and ϕ(t) into (44) and (45) (and suppressing the time
dependence for the sake of readability), we obtain

ṙ1 =
1

2π

[
r2 cosϕ− r1

r2
1 + r2

2 − 2r1r2 cosϕ
+

r1

1− r2
1
− r2 cosϕ− r1r

2
2

1− 2r1r2 cosϕ+ r2
1r

2
2

]
,

ṙ2 =
1

2π

[
r1 cosϕ− r2

r2
1 + r2

2 − 2r1r2 cosϕ
+

r2

1− r2
2
− r1 cosϕ− r2

1r2

1− 2r1r2 cosϕ+ r2
1r

2
2

]
,

ϕ̇ =
1

2π

[
(r2

1 + r2
2)(r2

1 + r2
2 − r2

1r
2
2 − 1) sinϕ

r1r2(1− 2r1r2 cosϕ+ r2
1r

2
2)(r2

1 + r2
2 − 2r1r2 cosϕ)

]
.

(69)

We are going to discuss particular scenarios. Let us consider the initial condition with
z1(0) and z2(0) aligned on a diameter on opposite sides of the center, that is, when
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ϕ(0) = π. The equation for ϕ in (69) reduces to ϕ̇(t) = 0 for all t > 0; that is, the
dislocations keep the alignment. The first two equations in (69) then reduce to

ṙ1 =
1

2π

[
− 1
r1 + r2

+
r1

1− r2
1

+
r2

1 + r1r2

]
, ṙ2 =

1
2π

[
− 1
r1 + r2

+
r2

1− r2
2

+
r1

1 + r1r2

]
.

If z1(0) = −z2(0), since r1(0) = r2(0) =: r0, the right-hand sides of the equations
above are the same, so that r1(t) and r2(t) evolve with the same law, namely, calling
r(t) := r1(t) = r2(t),

(70) ṙ(t) =
r4(t) + 4r2(t)− 1
4πr(t)(1− r4(t))

, with r(0) = r0.

We can now study the sign of ṙ(0) to find if the dislocation will collide with each other
or with the boundary, or if they are in equilibrium. We obtain that if r0 =

√√
5− 2,

then the dislocations are in equilibrium and do not move, since for this value of
the initial condition all the right-hand sides of (69) vanish. If r0 <

√√
5− 2, the

dislocations will collide with each other at the center of the disk (by symmetry),
whereas if r0 >

√√
5− 2, the dislocations will collide with the boundary.

We can now compute the collision time in the last two scenarios by integrating
(70). It is convenient to set R(t) := r2(t), so that it solves

Ṙ(t) =
R2(t) + 4R(t)− 1

2π(1−R2(t))
, with R(0) = R0 = r2

0.

We obtain

R(t)−R0 +
(

4
√

5
5
− 2
)

log
R(t) + 2−

√
5

R0 + 2−
√

5
−
(

4
√

5
5

+ 2
)

log
R(t) + 2 +

√
5

R0 + 2 +
√

5
= − t

2π
,

from which we find the times of collision with the boundary, by imposing R(T ∂Ω
coll) = 1,

and of z1 with z2, by imposing R(T±coll) = 0. The computations give

T ∂Ω
coll = 2π

[
r2
0 − 1− 4

√
5

5
log

(7− 3
√

5)(r2
0 + 2 +

√
5)

2(r2
0 + 2−

√
5)

− 2 log
r4
0 + 4r2

0 − 1
4

]
,(71a)

T±coll = 2π
[
r2
0 +

4
√

5
5

log
(

(9 + 4
√

5)(r2
0 + 2−

√
5)

−(r2
0 + 2 +

√
5)

)
− 2 log(1− 4r2

0 − r4
0)
]
.(71b)

When r0 → 1 in (71a), setting δ = 1− r0, asymptotically T ∂Ω
coll behaves like 2πδ2,

which shows agreement with the upper bound found in (32).
When r0 → 0 in (71b), setting ζ = 2r0, asymptotically T±coll behaves like πζ2/2,

which shows agreement with the upper bound found in (41).

4.4. Two dislocations in the plane. Let n = 2, let z1, z2 ∈ Ω := R2, and let b1
and b2 be their Burgers moduli. Recalling (62), it is easy to see that the renormalized
energy is translation invariant, so that we can choose z2(0) = −z1(0). The equations
of motion read

(72) ż1(t) =
b1b2
2π

z1(t)− z2(t)
|z1(t)− z2(t)|2

= −ż2(t),
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so that the barycenter z(t) := 1
2 (z1(t) + z2(t)) satisfies ż(t) = 0 for all times. Since

z(0) = 0, the dislocations are always at a symmetric position across the center of the
coordinate system. Therefore, (72) becomes

(73) ż1(t) =
b1b2
4π

z1(t)
|z1(t)|2

= −ż2(t).

Integrating (73), one obtains

z1(t) = z1(0)

√
1 +

b1b2t

2π|z1(0)|2
= −z2(t),

from which it is clear that if the dislocations have equal Burgers moduli, that is, if
b1b1 = 1, then the evolution exists for all times t ≥ 0, and z1 and z2 grow arbitrarily
far apart. If, on the other hand, b1b1 = −1, then the dislocations attract and the
evolution exists up to the collision time 2π|z1(0)|2, which again is in agreement with
the estimates on T±coll in (41), again recalling that ζ = 2|z1(0)|.

4.5. Plots from numerical simulations. Here, we include plots from numer-
ical simulations of the dynamics in different scenarios. All calculations are performed
in MATLAB R2016b, and the trajectories were integrated using a built-in stiff solver.

Figure 3 shows the superposition of 5000 runs of the scenario described in subsec-
tion 4.3, where initial conditions have been randomly generated. In all of the runs in
the unit disk (ρ̄ = 1), we have chosen δ0 = 0.2 and γ0 = 0.5, so that the initial condi-
tion (z1(0), z2(0)) ∈ D1,0.2,0.5 (see (23)); we have also chosen Burgers moduli b1 = +1
(for the dislocation close to the boundary) and b2 randomly chosen between +1 and
−1 at each run. In the numerics, explicit formulae for the forces were implemented
directly. In this case, evaluating c(δ0) in (35) gives c(δ0) ≈ 116.7, which makes the
estimate (32) invalid. Nevertheless, at leading order, T ∂Ω

coll ≤ 2πδ2
0 ≈ 0.2513, which

bounds all times computed, as it can be verified in the histogram plot in Figure 3;
the peak is due to the fact that when b2 = +1, the dislocation z1 is both attracted
by the boundary and pushed towards it by z2.

0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100
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200
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300
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Fig. 3. 5000 runs and histogram of hitting times. Red corresponds to bi = +1, blue to bi = −1
(color available in the online version).

Figure 4 shows plots of 80 trajectories of one dislocation evolving in the square
and in the cardioid. To numerically resolve ∇hΩ in these cases, we used quadratic
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finite elements with a mesh generated by the package DistMesh, described in [26].
Both of these domains have an unstable equilibrium point at their center, and initial
conditions are chosen on a circle of radius 0.1 centered at the equilibrium point. Due
to the interaction with the boundary, the dislocation starts following a curved line
and then hits the boundary perpendicularly (up to numerical artifacts), as indicated
by (24) in Theorem 3.1 (see also estimate (31)). In the square, by symmetry, the
dislocations starting on the diagonals move along them towards the corners. We
remark that the assumptions of Lemma 2.4, which is crucial in proving Theorem 3.1,
explicitly exclude domains with corners, but to leading order the conclusion appears
to hold at smooth points of the boundary even in this case. We stress that the
curved trajectories are a consequence of the interaction with the boundary and of its
curvature.

-0.5 0 0.5 1 1.5 2 2.5

-1.5
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0
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Fig. 4. Superposition of 80 trajectories of one dislocation in the square and in the cardioid.

It would be of interest to study the behavior near nonsmooth boundary points
further, with a particular view to understanding the behavior of dislocations near
cracks.

5. Concluding comments. We have studied the qualitative behavior of the
dynamics of screw dislocations in two-dimensional domains under the assumption of
linear isotropic mobility. We dealt with unconstrained dynamics, which is the crucial
first step towards considering more realistic choices of mobility, such as enforcing glide
directions [5, 10] or other more general nonlinear mobilities [19]. In these cases, the
equations of motion (9) read

żi(t) =M[−∇ziEn(z1(t), . . . , zn(t))],

where the mobility function M prescribes a law relating the Peach–Koehler force
fi(z) := −∇ziEn(z) experienced by the dislocation sitting at zi to its velocity.

5.1. On more general mobility functions. In [10], a dissipative formulation
is proposed to describe the motion of screw dislocations: dislocations are constrained
to move along straight lines following the direction of maximal dissipation among
finitely many glide directions. These are a finite set of lattice (unit) vectors G ⊂
R2, such that span(G) = R2 (which means that G contains at least two linearly
independent vectors) and such that −G = G (which means that G is symmetric under
inversion).
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In this case, the velocity field is given by

M[fi(z)] = (fi(z) · gi)gi, where gi ∈ argmax
g∈G

{fi(z1, . . . , zn)·g},

from which it is clear that glide directions reduce the modulus of the velocity. From
elementary geometric considerations concerning scalar products in the plane, a dis-
location moves fastest when there exists a glide direction g aligned with the Peach–
Koehler force, whereas it moves slowest when the Peach–Koehler force is aligned with
the bisector of the largest angle among glide directions. Using these facts, it can be
checked that the qualitative behavior remains as described in Theorems 3.2 and 3.4.

More generally, we believe that the results contained in this paper are suitable to
treat more general mobility functions M satisfying appropriate growth conditions at
infinity; see [19] for an example of such a case.

5.2. Review of achievements. We focused on the interaction of one disloca-
tion with the boundary and on the collision of two dislocations. In the former case,
we have analytically shown that dislocations, if sufficiently close to the boundary,
experience a force directed along the outward normal to the boundary at the nearest
point, thus formalizing the fact that free boundaries attract dislocations (see [23] for
the behavior with different boundary conditions), and that a dislocation sufficiently
close to the boundary collides with it in finite time. In the latter, we have proved that
two dislocations of opposite Burgers moduli that are sufficiently close to each other
collide. In both cases, we have found an upper bound for the collision time in terms
of the geometry of the initial configuration, and we have given sufficient conditions
under which no other collisions happen. These sufficient conditions are encoded in
inequalities (40) and (60), where the different scaling of the left-hand sides in δ0 and
ζ0, respectively, compared to the right-hand sides may be heuristically viewed as a
time-scale separation. Indeed, in the dynamics described by (9), dislocations that are
close to a blow-up event acquire infinite speed.

Moreover, we validated our analytical results by devising numerical experiments
to show their consistency. The output of the numerics is contained in Figure 3, where
a plot of the dynamics for two dislocations in the disk is presented, together with a
histogram of hitting times, which is consistent with the bound (32) on T ∂Ω

coll provided
in Theorem 3.2. Finally, Figure 4 shows numerical experiments for different domains,
namely, a square and a cardioid, both having an unstable equilibrium at their centers.
We remark that the square domain does not satisfy the hypotheses of Theorem 3.2,
because of the corners; nonetheless, the dynamics can be solved numerically.

Appendix A. Interaction functions for the interior and exterior of a
disk. In this appendix, we recall the definitions of Green’s functions on the interior
and exterior of the disk Bρ̄(0) and compute kBρ̄(0) and hBρ̄(0) in these cases.

We start by recalling that if x, y ∈ Bρ̄(0), then, defining x∗ := ρ̄2x/|x|2,

(74) GBρ̄(0)(x, y) = − 1
2π

[
log |x− y| − log

(
|x||x∗ − y|

ρ̄

)]
.

Applying (3) and (5), we find that

kBρ̄(0)(x, y) =
1

2π
log
(
|x||x∗ − y|

ρ̄

)
and hBρ̄(0)(x) =

1
4π

log
(
ρ̄2 − |x|2

ρ̄

)
.
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The Green’s function on the exterior of the ball may be computed by a further
circular reflection. Let x, y ∈ Bρ̄(0)c. By considering the conformal change of coordi-
nates x∗ := ρ̄2x/|x|2 and y∗ := ρ̄2y/|y|2, it is straightforward to check that

GBρ̄(0)c(x, y) = GBρ̄(0)(x∗, y∗).

Applying (3), after some algebraic manipulation using the properties of the logarithm,
we find that

kBρ̄(0)c(x, y) = GBρ̄(0)(x∗, y∗) +
1

2π
log |x− y|

=
1

2π

[
log |x− y|+ log

(
|x∗||x− y∗|

ρ̄

)
− log |x∗ − y∗|

]
=

1
2π

log
(
|y||x− y∗|

ρ̄

)
.

Consequently, (5) implies

hBρ̄(0)c(x) =
1

2π
log
(
|x|2 − ρ̄2

ρ̄

)
.

By writing |x| = ρ̄± d1(x), we obtain

hBρ̄(0)(x) =
1

2π
log
∣∣∣∣2d1(x)− d2

1(x)
ρ̄

∣∣∣∣ for any x ∈ Bρ̄(0), and(75)

hBρ̄(0)c(x) =
1

2π
log
∣∣∣∣2d1(x) +

d2
1(x)
ρ̄

∣∣∣∣ for any x ∈ Bρ̄(0)c.

We remark that the former expression is a multiple of (2.3) in [8]. In both cases, hΩ
diverges logarithmically to −∞ as x approaches ∂Ω.
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