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ABSTRACT 

Low and oscillatory wall shear stress (WSS) has long been hypothesized as a risk factor for 

atherosclerosis; however, evidence has been inferred primarily from model and post-mortem 

studies, or clinical studies of patients with already-developed plaques. This study aimed to 

identify associations between local hemodynamic and imaging markers of early atherosclerosis. 

Comprehensive magnetic resonance imaging allowed quantification of contrast enhancement (a 

marker of endothelial dysfunction) and vessel wall thickness at two distinct segments: the 

internal carotid artery bulb and the common carotid artery. Strict criteria were applied to a large 

dataset to exclude inward remodeling, resulting in 41 cases for which personalized 

computational fluid dynamic simulations were performed. After controlling for cardiovascular 

risk factors, bulb wall thickening was found to be weakly, but not significantly, associated with 

oscillatory WSS. Contrast enhancement at the bulb was significantly associated with low WSS 

(p<0.001) and low flow helicity (p<0.05). No significant associations were found for the 

common carotid artery segment. Local hemodynamics at the bulb was significantly correlated 

with blood flow rates and heart rates, but not carotid bifurcation geometry (flare and curvature). 

Therefore low, but not oscillatory, WSS is an early independent marker of atherosclerotic 

changes preceding intimal thickening at the carotid bulb. 

 

Keywords— Atherosclerosis, risk factors, magnetic resonance imaging, computational fluid 

dynamics, wall shear stress 
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ABBREVIATIONS  

AvgHel = average helicity 

BB-MRI = black blood magnetic resonance imaging 

BMI = body mass index 

CCA = common carotid artery 

CE = contrast enhancement 

CE-MRA = contrast enhanced magnetic resonance angiography 

CFD = computational fluid dynamics 

CV = cardiovascular  

EC = endothelial cell 

ECA = external carotid artery 

FD = flow divider 

HDL = high density lipoprotein 

ICA = internal carotid artery 

LDL = low density lipoprotein 

LSA = low shear area 

MRI = magnetic resonance imaging 

OSA = oscillatory shear area 

OSI = oscillatory shear index 

PC-MRI = phase contrast magnetic resonance imaging 

RRT = relative residence time 

RTA = residence time area 

TAWSS = time averaged wall shear stress magnitude 

transWSS = transverse wall shear stress 

TSA = transverse shear area 

WSS = wall shear stress 

WT = wall thickness 

VolRec = volume of recirculating flow  
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INTRODUCTION 

There is ample evidence suggesting that disturbed blood flow plays a central role in the focal 

development of plaques at major arterial branches, supporting the so-called “hemodynamic 

hypothesis” of atherosclerosis [1]. In particular, wall shear stress (WSS) having low average 

magnitude and large oscillatory (directional) changes during the cardiac cycle is recognized as an 

atheroprone hemodynamic phenotype [2]. The first direct evidence was provided by Ku and 

colleagues [3], who observed a positive correlation between locations of oscillatory shear in a 

model carotid artery and intimal thickening in post-mortem human carotid arteries. 

Biological mechanism studies have since detailed how low and oscillatory WSS creates a pro-

atherogenic environment through the activation of multiple signaling pathways and transcription 

factors promoting endothelial cell (EC) inflammatory activation, altered gene expression and 

function, conditions which we refer to as endothelial dysfunction. To further elucidate the 

precise hemodynamic cues leading to endothelial dysfunction, some studies noted differences in 

low vs. oscillatory WSS on the impairment of endothelial nitric oxide production [4] and EC 

proliferation [5]. In a murine model of atherosclerosis obtained by placement of a perivascular 

cast around the carotid artery to induce disturbed hemodynamics, atherogenesis was observed 

both in the low WSS region upstream of the device and in the low and oscillatory WSS region 

downstream of it, but with differences between the regions in terms of expression of pro-

atherogenic factors [6]. However, several caveats have been raised about the use of devices or 

surgical modifications to induce hemodynamic disturbances, because they may trigger 

mechanisms unrelated to atherogenesis [7]. 

Large clinical imaging studies using high-resolution magnetic resonance imaging (MR) have 

provided indirect evidence in vivo of a hemodynamic influence on early wall thickening at the 
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carotid bifurcation, a preferred site of plaque development. The CARDIA study showed weaker 

associations with cardiovascular (CV) risk factors for the internal carotid artery (ICA) and bulb 

compared to the common carotid artery (CCA) segment, and speculated that the difference was 

“likely linked to bifurcation geometry and differences in hemodynamics” [8]. The ARIC study 

showed that inward remodeling at the ICA occurs at a lower wall thickness threshold than the 

CCA [9], and that carotid bifurcation geometry (a surrogate marker of local hemodynamics) is an 

independent predictor of early wall thickening at the carotid bulb [10]. The latter study also 

highlighted the confounding effect of inward remodeling on identifying relationships between 

local hemodynamics and wall thickening. Most recently, the BioImage study confirmed distinct 

patterns of inward vs. outward remodeling at ICA, bifurcation and CCA segments [11]. A pooled 

analysis of ultrasound carotid intima-media thickness (IMT) from four large clinical trials found 

a consistent pattern in the circumferential distribution of early wall thickening from the CCA to 

the ICA [12], suggestive of helical flow and WSS distribution along the carotid bifurcation. 

More direct investigations of hemodynamics and atherosclerosis in humans have typically 

focused on patients with already-developed coronary or carotid plaques [13-15], and so are 

difficult to extrapolate to early atherosclerosis. Even studies of early atherosclerosis must take 

special care to avoid secondary effects of wall thickening on the lumen geometry and its induced 

hemodynamics (i.e., due to the lumen reduction and consequent WSS increase) [10]. Moreover, 

the earliest preclinical manifestations of atherosclerosis, namely EC dysfunction and 

inflammation, appear prior to wall thickening and apparent structural changes of the vessel wall 

[16, 17]. 

Such limitations can be overcome by using contrast-enhanced MRI, since the uptake of the 

gadolinium contrast agent into the wall is mediated mainly by the increased EC permeability 
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associated with EC dysfunction [18, 19]. Moreover, as already noted, MRI can be used to 

measure wall thickness in vivo [20], and it provides the anatomical and functional information 

required for subject-specific computational modeling and classification of local hemodynamic 

conditions [21]. In the present study, we deploy these non-invasive techniques, for the first time 

together, in order to test the hypothesis that, for the carotid bifurcation, markers of disturbed 

WSS and intravascular hemodynamics (or their geometric surrogates) are associated with early 

atherosclerotic changes (i.e., wall thickness and/or contrast enhancement) at the carotid bulb vs. 

the common carotid artery. 

METHODS  

Study Participants 

Data for this study were acquired as part of the broader VALIDATE (Vascular Aging – The Link 

that Bridges Age to Atherosclerosis) study, which included coronary and carotid imaging, as 

well as other cardiovascular risk factor measurements. Institutional review board approval was 

obtained and participants provided informed consent. Approval for the present sub-study and use 

of anonymized data was given by the VALIDATE study center. An overview of the methods is 

provided in Figure 1. Risk factors and imaging data were acquired contemporaneously, and so 

the present analysis is cross-sectional in nature. 

Magnetic Resonance Imaging (MRI) 

MRI scans were performed on a 3T scanner (Achieva, Philips Healthcare; Best, The 

Netherlands) using a bilateral four-channel phased-array carotid coil (Pathway MRI; Seattle 

WA). All scans were performed on the right carotid artery. The protocol included 3D time-of-
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flight, 3D contrast-enhanced magnetic resonance angiography (CE-MRA), phase contrast MRI 

(PC-MRI), and black blood MRI (BB-MRI). 

A CE-MRA was acquired following intravenous injection of the contrast agent, using an elliptic-

centric 3D coronal protocol with 1.20.80.8 mm
3
 resolution zero-padded to 0.6 mm isotropic. 

A representative CE-MRA is shown in  

Figure 2. Retrospectively-gated, 2D cine PC-MRI images were acquired prior to contrast 

injection at the common carotid artery (CCA), internal and external carotid arteries (ICA and 

ECA, respectively), with 5 mm slice thickness and 0.51.0 mm
2
 resolution zero-padded to 0.5 

mm isotropic. Further details of the CE-MRA and PC-MRI protocols are provided elsewhere 

[22]. 

T1-weighted BB-MRI images were acquired both before and after the CE-MRA using an ECG-

triggered, 2D double inversion-recovery protocol with repetition time of 1 RR interval, echo time 

of 0.008 s, and echo train length of 10. A single 2 mm slice was placed at the CCA at a distance 

1.5 cm proximal to the flow divider, with 0.510.6 mm
2
 in-plane resolution zero-padded to 0.27 

mm isotropic. A separate series of 2-mm slices was acquired at the same resolution, centered at 

the carotid bifurcation and placed transverse to the nominal CCA-ICA tract. Representative BB-

MRI images are shown in  

Figure 2, and further details are provided elsewhere [20]. 

Vessel Wall Measurements 

Wall thickness (WT) was measured as previously described [20], and shown in  

Figure 2. Briefly, the inner and outer wall boundaries were segmented semi-automatically from 

edge-enhanced pre- and post-contrast BB-MRI images. This was done for the CCA slice, and for 
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the ICA at the first slice distal to the flow divider, a standard location hereafter referred to as 

FD+1 where atherosclerotic lesions are usually observed [1, 3]. The contours were used to 

compute WT at 12 equally-spaced sectors. Contrast enhancement (CE) was computed as the 

relative change in sector intensities from the pre- to post-contrast BB-MRI images. Signal 

intensities were standardized using spinal cord signal intensity if included in the image, or noise 

contour mean. For each participant, CCA-WT and CCA-CE were defined as the respective 

maximum values from the 12 sectors. For ICA-WT and ICA-CE, the maxima from the FD+1 

slice data were determined, excluding the four sectors adjacent to the flow divider to avoid 

possible artefactual thickening, or focal enhancement due to the carotid body. 

Exclusion criteria were applied, as summarized in Table 1. In detail, of the initial cohort of 129 

VALIDATE cases, 22 were excluded because either WT or CE could not be measured reliably, 

or because the FD+1 slice was >25 oblique to the vessel axis, which could artificially inflate 

ICA-WT values [23]. Additionally, as we have previously demonstrated [10], it was critical to 

identify cases with inward remodeling, since this would result in a WSS increase through the 

narrowing of the lumen, potentially obscuring the relationship between hemodynamics and WT. 

A further 36 cases were therefore excluded for having WT exceeding outward remodeling 

criteria defined previously from the ARIC study [9]. 

Computational Fluid Dynamics (CFD) 

As shown for a representative case in Figure 3A, lumens were segmented from CE-MRA volume 

using a level set method [10], including the proximal CCA to at least five diameters upstream of 

the bifurcation to minimize the impact of inlet truncation on computed bifurcation flow patterns 

[24]. As detailed in Table 1, 19 cases were excluded to avoid unreliable or insufficiently long 
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CFD models. Of the segmented cases, a further 7 were excluded owing to evident lumen 

indentation near the bifurcation, suggesting inward remodeling. 

Subject-specific flow rate waveforms were extracted from the cine PC-MRI series. Inlet flow 

rate waveforms were measured from the PC-MRI slice at the proximal CCA, placed transverse to 

the nominal long axis of the CCA at a distance 1.5 cm proximal to the flow divider. For the 

outlets, ICA and ECA flow rates were obtained from a PC-MRI slice acquired 5 mm distal to the 

flow divider in a separate acquisition. Individual heart rates were prescribed (6411 bpm, range 

46-85). To ensure instantaneous mass conservation in the CFD model, ICA and ECA flow rates 

were rescaled to add up to the CCA flow rate at each point in time along the cardiac cycle. 

Pulsatile flow rates were prescribed as fully-developed (Womersley) velocity profiles at the CCA 

inlet and ICA outlet; the ECA outlet was traction free, as detailed in previous studies [24]. 

Owing to poor-quality PC-MRI, 4 cases were excluded.  

Computational hemodynamics simulations were carried out using a validated in-house finite 

element solver [21]. Finite element meshes were comprised of ~250,000 quadratic tetrahedral 

elements on average, with 0.5 mm side length, roughly equivalent to ~2 million linear tetrahedra 

and 0.25 mm node spacing, previously shown to sufficiently converge WSS [21]. Temporal 

resolution was 4800 time-steps per cardiac cycle, and at least three cardiac cycles were used to 

ensure convergence of the pulsatile flow fields. Further details on CFD settings are reported 

elsewhere [21, 24]. 

Hemodynamic and Geometric Variables 

Following Gallo et al. [25], we computed three established WSS-based descriptors, i.e. the time-

averaged WSS magnitude (TAWSS), oscillatory shear index (OSI), and relative residence time 

(RRT, a combination of TAWSS and OSI quantifying low and/or oscillatory shear). Additionally, 
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we computed an emerging descriptor of multidirectional shear, transverse WSS (transWSS) [26]. 

All models were clipped at CCA, ICA and ECA planes corresponding to 3, 5 and 2 radii along 

their respective lengths, denoted CCA3, ICA5 and ECA2 (Figure 3A). To determine objective 

thresholds for “disturbed” flow, data from all cases were pooled to identify the lower 20
th

 

percentile value of TAWSS (being that low WSS was of interest), and upper 20
th

 percentile 

values of OSI, RRT, and transWSS. The resulting thresholds were TAWSS=0.455 Pa, 

OSI=0.145, RRT=3.10 Pa
-1

, transWSS=0.345 Pa. Branches were split into CCA and ICA 

segments (Figure 3B) using an automated approach [27]. For each segment, the surface area 

exposed to OSI, RRT and transWSS above, or TAWSS below, its respective threshold value was 

calculated, and normalized by the respective segment’s surface area. These normalized variables 

are denoted as LSA (low shear area), OSA (oscillatory shear area), RTA (residence time area), 

and TSA (transverse shear area). 

In addition, the volume of recirculating flow, an intravascular marker of disturbed flow shown to 

correlate with atherosclerotic biomarkers [28], was computed by projecting the CFD-computed 

vector velocity field along the local vessel centerlines (i.e., axial direction), and then integrating 

all finite elements containing a mean negative axial velocity component (Figure 3C). This 

volume of recirculating flow was then normalized by the respective segment volume, and 

denoted VolRec [28]. Intravascular flow structures were also characterized in terms of helical 

flow (Figure 3D), a spiraling motion recognized as an important factor in suppressing flow 

disturbances, and hence potentially atheroprotective [29]. For each carotid segment, the time- 

and volume-average of the norm of the internal product of velocity and vorticity vectors was 

computed and denoted as AvgHel [29]. Local normalized helicity (LNH), the normalized internal 

product between local velocity and vorticity vectors [30], was used to visualize helical blood 
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flow patterns inside the bifurcation. The formulation of the investigated hemodynamic 

descriptors is reported in Table 2. Finally, bifurcation flare and CCA curvature, previously 

shown to be significantly associated with ICA-WT [10], were calculated as described previously 

[31], in order to test the so-called “geometric risk” hypothesis of atherosclerosis [1, 32]. 

Statistical Analysis 

Bivariate correlations among cardiovascular (CV) risk factors, wall variables, hemodynamic 

variables and geometric variables were determined using Pearson product-moments when both 

variables were continuous, otherwise Spearman rank ordering was used. Linear regressions were 

used to identify relationships between each hemodynamic variable and either WT or CE as the 

dependent variable. Multiple regressions were used to control for CV risk factors that were 

independently correlated with WT or CE variables (as given by a stepwise multiple regression 

analysis), or for evaluating associations between the combination of bifurcation flare and CCA 

curvature vs. WT or CE. Regressions are reported as the individual standardized correlation 

coefficient (). For all analyses, significance was assumed for p<0.05.  

RESULTS  

Descriptive statistics for CV risk factors are summarized in Table 3. Stepwise multiple 

regressions revealed that ICA-WT was significantly associated with sex (=0.518, p=0.0021) 

and inversely with HDL (=-0.378, p=0.019), and so both were used to adjust ICA-WT in 

subsequent (multiple) linear regressions with geometric or hemodynamic variables. CCA-WT 

was significantly associated with BMI (=0.428, p=0.033) and was similarly adjusted. Neither 

ICA-CE nor CCA-CE was found to be significantly associated with any CV risk factors, so no 
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adjustment was performed. CE and WT were not correlated with each other for either segment, 

and so independent linear regressions could be carried out. 

Linear regressions (Table 4) revealed significant associations between hemodynamic and wall 

variables for the ICA segment. Notably, CE was strongly and positively associated with LSA 

(β=0.533, p=0.0003) and RTA (β=0.493, p=0.001), whereas a negative regression coefficient 

(β=-0.337, p=0.031) indicates that elevated AvgHel served to suppress CE. WT was weakly 

associated with OSA (β=0.338, p=0.031) and AvgHel (β=-0.310, p=0.049), but not after 

adjusting for sex and HDL (although OSA was near-significant, at p=0.057). For the CCA 

segment, no hemodynamic associations were found for CE, or for WT either before or after 

adjustment for BMI. 

The segment-specific nature of these hemodynamic associations is further illustrated in Figure 4, 

focusing on LSA, OSA and AvgHel (RTA was found to be highly correlated with LSA (r=0.91, 

p<1e-16) and so was considered redundant). Associations between the segment-specific 

hemodynamic variables and their respective segmental CE were consistently (albeit not 

necessarily significantly) stronger for the ICA vs. CCA segments, whereas for (unadjusted) WT, 

associations appeared similar for the ICA vs. CCA segments. 

Regarding purported geometric risk factors for atherosclerosis, Table 4 also shows that neither 

CE nor WT were associated with bifurcation flare and CCA curvature. Per Table 5, neither of 

these geometric variables was correlated with low or oscillatory shear, although flare was 

correlated with helicity (r=0.489, p=0.001). On the other hand, peak systolic flow rate was 

correlated with OSA (r=0.584, p=6e-5), whereas inflow and heart rates were more weakly (and 

negatively) correlated with higher LSA (p<0.05). 
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DISCUSSION  

Our study aimed to fill the gap between clinical imaging studies that have shown segment-

specific associations between cardiovascular risk factors and early wall thickening, providing 

circumstantial evidence for a hemodynamic influence at the carotid bulb, and those that have 

shown direct hemodynamic associations with the presence of or changes in already-developed 

plaques. For the carotid bifurcation, the segment-specific approach design takes advantage of the 

known propensity for carotid plaques to form at the ICA bulb, while the CCA, typically spared 

of plaques, serves as an intraindividual control. 

Thus, despite our relatively small sample size (owing to the complexity of the data acquisition 

and analysis and need to avoid the confounding effects of inward remodeling), the segment-

specific study design allowed us to reveal a strong and significant association between low WSS 

(i.e., LSA) and CE at the carotid bulb. On the other hand, our sample size may have been too 

small to confirm a possible association between oscillatory shear and bulb WT. Since endothelial 

dysfunction and the related processes leading to an increased contrast uptake precede wall 

thickening and frank atheroma formation [16, 17], and we found no significant correlation 

between CE and WT, our findings suggest that low WSS is an earlier driver of atherosclerotic 

changes than oscillatory WSS. Below, in separate sections, we discuss how the present findings 

(1) impact the popular “low and oscillatory shear theory” of atherogenesis; (2) might explain (or, 

at least, be consistent with) the current understanding of mechanobiological mechanisms 

underlying atherogenesis; (3) may square with the many hemodynamic variables that have been 

proposed over the years. Moreover, we discuss whether lumen geometry alone may still be 

considered a local risk marker for atherogenesis. A visual summary of the main findings is given 

in Figure 5. 
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Low vs. oscillatory WSS in early atherosclerosis 

As highlighted by Peiffer et al. [7], the current consensus on atheroprone WSS as “low and 

oscillatory” derives from the early work by Ku et al. [3], which showed a correlation between 

oscillatory shear index (a then-novel marker of WSS directional changes) derived from an 

anthropomorphic carotid bifurcation flow model and measurements of focal intimal thickening 

from post-mortem human carotid arteries. As Peiffer et al. point, however, hemodynamic 

variables quantifying low and oscillatory WSS have since been applied at different stages in the 

disease process, and then extrapolated to studies of early atherosclerosis [7]. This extrapolation is 

crucial in light of the high sensitivity of WSS to variations of lumen geometry due to inward 

remodeling, potentially obscuring the relationship between low WSS and early atherosclerosis. 

For example, in a large community cohort, Bijari et al. [10] showed that carotid bifurcation flare 

(a proven surrogate marker of disturbed WSS) appeared, counter-intuitively, to be predictive of 

bulb wall thinning, and only after excluding cases with inward remodeling (N.B., using the same 

WT criteria as the present study) was the expected association with wall thickening uncovered. 

We are therefore confident that our findings reflect, as much as possible in a clinical cohort study, 

the impact of hemodynamic factors on early atherosclerosis. 

As also highlighted by Peiffer et al. [7], confusion arises also from the common conflation of the 

terms ‘low’ and ‘oscillatory’ shear, especially because the formula for OSI includes TAWSS in 

its denominator. Fluid mechanically, TAWSS implies a region of stagnant or sluggish flow, 

irrespective of its direction, whereas OSI indicates a dynamic recirculation region where the flow 

direction reverses during the cardiac cycle, resulting in oscillatory (but not necessarily low) 

TAWSS. We reasonably expected some correlation between TAWSS and OSI, as previously 

shown by Lee et al. [33] and more recently Gallo et al. [25], although those studies were based 
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on the whole bifurcation vs. the present segment-specific approach. In fact, for the present study 

we found that LSA and OSA at the ICA segment were not correlated (r=0.243, p=0.126), which 

reinforces that low and oscillatory shear are distinct hemodynamic stimuli. This is consistent 

with animal studies suggesting distinct vascular responses to low vs. low and oscillatory WSS [6, 

17], leading to different atherosclerotic lesion phenotypes and vulnerability [6], and a clinical 

study demonstrating a modulating effect of oscillatory WSS in atherosclerotic lesion progression 

in coronary arteries [15]. 

Biological mechanisms linking low WSS to endothelial dysfunction 

The presented association between LSA and CE at the carotid bulb is consistent with the idea of 

CE being an early marker of endothelial dysfunction caused by flow stagnation [18]. In fact, low 

WSS has been reported to increase EC permeability by increasing the presence of leaky junctions 

and EC apoptosis [34]. Moreover, Feng et al. [5] recently reported on the ability of low WSS to 

upregulate ECs hypoxia-inducible factor 1, leading to enhanced glycolysis, excessive rates of 

EC proliferation and associated vascular leakiness and inflammation. Such WSS-mediated 

processes on ECs would tend to increase contrast agent uptake from the luminal side into the 

vessel wall. 

The presence of adventitial vasa vasorum may also be postulated as a reason for increased CE. 

Such presence is expected in regions characterized by relative hypoxia and associated local 

oxidative stress and inflammation [35], conditions known to occur in correspondence of flow 

stagnation and low WSS like the carotid bulb [36]. Computational and animal studies on carotid 

bifurcations have reported a decreased oxygen tension at the carotid bulb compared to CCA as a 

consequence of low WSS [36, 37], proving that oxygen transport to the wall is regulated by the 
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blood phase. Thus, the slowly recirculating flow at the LSA provides a fluid mechanical barrier 

to oxygen transport. 

Although our study design does not allow us to separate the luminal vs. adventitial source of 

augmented CE uptake, the present relation between LSA and increased CE ultimately suggests a 

connection between both mechanisms. In fact, LSA implies a slow or stagnant flow, providing, 

concurrently: i) the cue for inflammatory changes underlying EC permeability increase; and ii) a 

fluid mechanical barrier to oxygen transport, exposing ECs and in general the vessel wall to 

hypoxic conditions, substantiating the presence of adventitial vasa vasorum [35]. This is 

corroborated by the above-noted experiments showing low shear-induced EC glycolysis [5], 

which plays an essential role in promoting vasa vasorum formation [38].   

Making sense of the alphabet soup of hemodynamic parameters 

Evidence underlining how ECs are exposed to a complex hemodynamic milieu that can be only 

partially described by “low and oscillatory” WSS has stimulated a proliferation of hemodynamic 

parameters to incorporate the description of WSS “multidirectionality” [26] and intravascular 

flow features [29]. By testing directly associations with early atherosclerosis for a number of 

these recently-proposed parameters, our study represents the most comprehensive to date of 

hemodynamic associations with early atherosclerotic changes in humans. 

Unlike previous observations in rabbit aortic branch ostia [26] or murine carotid artery [39], here 

transWSS was not associated with any of our measured wall variables. This can be presumably 

ascribed to the peculiar local hemodynamics at the human carotid bulb, where, as previously 

observed [25], highest transWSS concentrates at uncommon locations for atherosclerosis, i.e. the 

bifurcation apex. Similarly, while Martorell et al. [28] previously showed that atherosclerotic and 

thrombotic biological markers like oxidized LDL uptake and monocyte adhesion were positively 
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correlated with various hemodynamic parameters quantifying the volume of recirculating flow, 

VolRec among them, in the present study VolRec was not associated with either WT or CE. This 

may be due to its inclusion of intravascular slow flow (see inset of Figure 3C), whereas LSA is 

specific to the wall. Indeed, at the ICA segment, VolRec was not significantly correlated with 

LSA, although it was with OSA (r=0.402, p=0.009). This gives a mixed message about the 

specificity of intravascular volume of recirculation as an easier-to-measure surrogate of disturbed 

WSS. 

Conversely, intravascular helicity intensity (i.e., AvgHel) was found to be inversely associated 

with CE at the carotid bulb, recapitulating the known beneficial influence of helical flow in 

suppressing flow disturbances [24], and supporting its use as an in vivo imaging marker [40]. 

Indeed, a significant negative correlation was found between AvgHel and LSA at the ICA (r=-

0.429, p=0.005), explaining the significant association of both LSA and AvgHel with CE at the 

ICA segment. Since helical flow at the bifurcation is promoted by curvature of the CCA [24], the 

present results also reinforce the need for computational and physical model studies to 

reconstruct a sufficient length of CCA in order to accurately determine bifurcation 

hemodynamics.  

Whither geometric risk of atherosclerosis 

The notion that an individual’s artery geometry might connote some risk of developing 

atherosclerosis dates back at least to the early 1980s [32]. Such ‘geometric risk’ markers have 

been proposed considering specific geometric attributes of the carotid bifurcation, by virtue of 

their influence on local flow patterns [31]. However, because lumen geometry is, ultimately, just 

a surrogate for the local hemodynamics, Bijari et al. [10] found only a weak association between 

geometry vs. WT despite a sample of nearly 300 cases, and conceded that it might mask a 
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stronger relationship between hemodynamics vs. WT. This is consistent with the present study, 

which found stronger, albeit not significant, associations between WT and hemodynamic 

variables, but not between WT and geometric variables. An obvious explanation is our smaller 

sample size, nearly an order of magnitude lower than Bijari et al.’s. 

We also did not find any significant correlation between WSS and geometric variables as Bijari 

et al. had reported [31]; however, their study was based on models with truncated CCA inlets, 

and all with the same flow waveform, whereas other studies have shown an influence of both 

inlet length and subject-specific flow rates on carotid bifurcation hemodynamics [24, 41]. As 

further evidence of the latter, we found a strong positive correlation between OSA and peak 

systolic inflow rates. Physically, this reflects that higher peak systolic flows are inevitably 

followed by steeper post-systolic deceleration, which precipitates flow separation, enhanced 

recirculation and WSS oscillations. In addition, LSA negatively correlated with both heart rate 

and cycle-averaged flow rate, the former because slower heart rate implies elongation of the late 

diastolic phase, when flow velocities are low and sluggish flow is typically observed, and the 

latter because lower average inflow rate implies lower inflow TAWSS to begin with. A 

significant positive correlation found between flare and ICA helicity intensity seems 

contradictory given their nominal roles in suppressing and promoting flow disturbances, 

respectively; however, it is consistent with the fluid mechanics of flow separation at an 

expansion (i.e., flare), which is known to promote flow helicity [30]. 

Taken together, these findings emphasize the need to include subject-specific flow data in 

computational and experimental studies of carotid bifurcation hemodynamics, and serve as a 

reminder that the relationship between geometry and hemodynamics is difficult to encapsulate in 

simple geometric variables alone. Under conditions where local hemodynamics are difficult to 
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measure and surrogate markers are sought, our findings would suggest equal attention be given 

to geometry and flow variables. 

Limitations 

Several potential limitations may have affected the present study. The strict exclusion criteria 

limited the sample size available, which, as we noted, may have impacted the significance of 

hemodynamic associations with WT. This was not unexpected: in their study of segment-specific 

CV risk factors for more than 3000 individuals, Polak et al. [8] reported associations of IMT with 

conventional CV risk factors with total model R
2
 values of 0.27 for the CCA and 0.11 for the 

carotid bulb, a difference that was attributed to local hemodynamic factors and presumably 

provides a bound to the influence of hemodynamic vs. conventional CV risk factors. Moreover, 

in relation to the significant association between CE vs. LSA at the ICA, leverage analysis [42], 

suggested by visual inspection of the scatterplot in Figure 4, revealed the presence of high 

leverage points (the three rightmost points, Figure 4). Removal of more than one of these points 

resulted in a non-significant association of CE vs. LSA. Such leverage dependence possibly 

suggests that the relationship CE vs. LSA might not be a simple linear one, but a segmented 

relationship with breakpoint at around LSA=0.3. In either case, further adequately powered 

investigations are warranted to detail the nature of the relationship between CE vs. LSA. 

Considering the CE vs. AvgHel correlation at ICA, leverage analysis showed that statistical 

significance is preserved even with high leverage points (three rightmost, Figure 4) removed, and 

in no cases did the exclusion of high leverage points alter the significance of the relation CE vs. 

AvgHel. 

At current resolutions, MRI is unable to discriminate the three vessel layers [43], and so our WT 

wall variable was only surrogate for intimal thickening. Similarly our CE wall variable was a 
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surrogate for endothelial dysfunction, albeit a biologically plausible one, as previously outlined. 

This is also supported by recent reports in coronary artery segments that showed CFD-derived 

low WSS was independently associated with epicardial and microvasculature endothelial 

dysfunction after acetylcholine infusion [44]. 

Slow blood flow near the wall could in principle cause artefactual WT or CE in regions of lowest 

WSS, i.e. at the ICA. We therefore took extreme care to minimize this by adjusting inner wall 

contours using information from both pre- and post-contrast BB-MRI, and from multi-planar 

reconstructions of the CE-MRA source images. Such artifacts would have had the effect of 

overestimating WT, thus reducing bulb diameter and hence bifurcation flare, which in turn 

would lead to higher WSS (i.e., lower LSA values). Thus, if these artifacts were present we 

would have expected to find negative correlations between WT and LSA, which was not the case 

here. 

As a result of this intensive analysis, our measurements of WT and CE were based on individual 

axial slices through the CCA and the ICA, and thus no information about the longitudinal extent 

of the region subject to early wall thickening or its maximum thickness was available. In their 

segment-specific study of carotid WT, Watase et al. [11] measured WT over 5 slices at each 

segment, and reported maximum WT at the CCA and ICA of 1.1±0.2mm (mean±standard 

deviation in 557 arteries) and 1.1±0.4mm (899 arteries), respectively. These values and their 

relative standard deviations compare favorably with our measurements of maximum WT (CCA: 

1.10±0.16mm, ICA: 1.10±0.08mm), thus we consider them representative of the respective 

segments. Also like that study, we did not perform any p-value adjustments (e.g., Bonferroni 

correction) for multiple tests, thus associations with p-values close to 0.05 should be considered 

exploratory and hypothesis generating, and need to be confirmed in subsequent studies. 
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We used an objective, automated approach to split the bifurcation into ICA and CCA segments 

[27]; however, as Figure 3 shows, there could be overlap in the extension of disturbed WSS from 

ICA to CCA. Indeed, between these segments there were significant correlations for LSA 

(r=0.516, p=0.001), OSA (r=0.367, p=0.018) and AvgHel (r=0.779, p=2e-9). Similarly WT at the 

ICA and CCA segments was strongly correlated (r=0.535, p=5e-4), as was CE, albeit more 

weakly (r=0.360, p=0.027). Such “cross-talk” may have impaired the segment-specific 

associations for WT; however, as Figure 4 showed, segmental associations for CE were clearly 

evident. 

In order to quantify the hemodynamics of each carotid bifurcation, we ultimately had to reduce a 

complex, 3D, time-varying WSS field to single numbers, albeit as objectively as possible. 

Encouragingly, the objective threshold for low WSS ended up being 0.455 Pa, which is 

remarkably close to the commonly accepted low WSS threshold of 0.4 Pa [2]. More generally, 

image-based CFD suffers from uncertainties and assumptions (e.g., Newtonian viscosity, rigid 

walls, as discussed elsewhere [45]), which might influence the relationships described in the 

present study. Nonetheless, the only alternative, i.e. direct measurement of the velocity field and 

WSS from in vivo imaging (e.g., PC-MRI) is similarly affected by several limitations and 

inaccuracies [46]. 

Finally, like most human studies of hemodynamics and early atherosclerosis, our conclusions are 

drawn from cross-sectional data. Prospective validations are therefore warranted and encouraged. 

CONCLUSIONS 

Different facets of early atherosclerosis at the carotid bifurcation appear to be associated with 

low vs. oscillatory WSS. From the present results, low WSS is strongly associated with CE, a 
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marker of endothelial dysfunction, while oscillatory WSS is more weakly associated with wall 

thickening. Owing to its causative role in determining WSS, helical flow intensity may serve as a 

convenient and pragmatic surrogate intravascular flow marker of contrast uptake and low WSS. 

Our study thus confirms what large carotid MRI studies have only been able to infer: that 

hemodynamic variables, or their geometric and flow rate surrogates, represent independent risk 

factors to potentially augment systemic CV risk factors for identifying individuals at greater 

susceptibility for atherosclerosis at the carotid bulb. Nevertheless, their incremental value, 

clinical utility and cost-effectiveness as risk markers for atherosclerosis remain to be determined 

[47]. 
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TABLES 

Table 1. Summary of exclusion criteria. 

# Cases Description 

129 Initial cohort of VALIDATE cases 

−13 Low quality BB-MRI and/or could not reliably measure WT or CE at FD+1 slice 

−9 Oblique FD+1 slice (>25) 

−36 Inward remodeling (ICA-WT>1.38 mm or CCA-WT>2.06 mm) 

71 Potential cases for CFD 

−19 Low quality CE-MRA and/or could not reliably segment lumen 

−4 Low quality PC-MRI and/or could not reliably segment flow rates 

−7 Lumen indentation evident after segmentation 

41 Cases for CFD vs. wall variables 
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Table 2. Investigated hemodynamic descriptors. 

WSS-based hemodynamic parameters 

Time-Averaged WSS (TAWSS) TAWSS =
1

𝑇
∫ |𝐖𝐒𝐒|

𝑇

0

𝑑𝑡 

Oscillatory Shear Index (OSI) OSI = 0.5 [1 − (
|∫ 𝐖𝐒𝐒

𝑇

0
𝑑𝑡|

∫ |𝐖𝐒𝐒|
𝑇

0
𝑑𝑡

)] 

Relative Residence Time (RRT) RRT =
1

TAWSS ∙ (1 − 2 ∙ OSI)
=

1

1
𝑇 |∫ 𝐖𝐒𝐒

𝑇

0
𝑑𝑡|

 

Transverse Wall Shear Stress (transWSS) transWSS =
1

𝑇
∫ |𝐖𝐒𝐒 ∙ (𝐧 ×

∫ 𝐖𝐒𝐒
𝑇

0
𝑑𝑡

|∫ 𝐖𝐒𝐒
𝑇

0
𝑑𝑡|

)|
𝑇

0

𝑑𝑡 

Bulk-flow-based hemodynamic parameters 

Volume of Recirculation (VolRec) 

VolRec =
1

𝑉
∫ 𝛿 𝑑𝑉

𝑉

 

where δ =  {
1 𝑖𝑓 𝑣𝑎𝑣𝑔

𝑎𝑥 < 0

0 𝑖𝑓 𝑣𝑎𝑣𝑔
𝑎𝑥 ≥ 0

 

Average Helicity Intensity (AvgHel) AvgHel =
1

𝑇 𝑉
∫ ∫ |𝐯 ⋅ 𝛚| 𝑑𝑉 𝑑𝑡

𝑉𝑇

 

WSS is the (time-varying) WSS vector; T is the period of the cardiac cycle; n is the unit vector 

normal to the arterial surface at each element; V is the volume; 𝑣𝑎𝑣𝑔
𝑎𝑥  is the axial component of 

the cycle-averaged velocity vector; v is the (time-varying) velocity vector; and ω is the (time-

varying) vorticity vector. 
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Table 3. Descriptive statistics for cardiovascular (CV) risk factors. 

CV Risk Factor Mean±SD or % 

Age, years 58.5±11.7 

Sex, Male 41% 

Race, White 63% 

BMI, kg/m
2
 27.0±5.9 

Ever smoker 25% 

Hypertension 58% 

Diabetes mellitus 22% 

Triglycerides, mg/dL 99.4±74.6 

HDL, mg/dL 61.2±21.5 

LDL, mg/dL 105.4±29.4 

Glucose, mg/dL 88.5±14.4 
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Table 4. Standardized coefficients () from linear regressions of segment-specific hemodynamic 

variables vs. contrast enhancement (CE) or wall thickness (WT), adjusted for CV risk factors. 

Hemodynamic or Contrast Enhancement  Wall Thickness 

Geometric Variable ICA-CE CCA-CE  ICA-WT CCA-WT 

LSA 0.533‡ -0.061  0.238 0.211 

OSA 0.216 -0.084  0.292 0.265 

RTA 0.493† -0.097  0.280 0.256 

TSA -0.209 -0.123  -0.008 -0.123 

VolRec -0.055 -0.176  0.122 -0.237 

AvgHel -0.337* -0.018  -0.200 -0.188 

Flare -0.039 -0.109  -0.055 -0.269 

Curvature 0.229 -0.298  -0.135 -0.059 

*p<0 05; 
†
p<0.01; 

‡
p<0.001 

 

 

Table 5. Bivariate correlation coefficients (r) for selected hemodynamic variables at the ICA 

segment vs. geometric and flow variables. 

Hemodynamic 

Variable 

 Flare Curvature Cycle Average 

Inflow Rate 

Peak Systolic 

Inflow Rate 

Heart 

Rate 

 

LSA  -0.162 0.176 -0.390* -0.336* -0.380*  

OSA  -0.260 0.018 0.265 0.575‡ 0.163  

AvgHel  0.489† 0.008 0.011 -0.071 0.078  

*p<0.05; †p<0.01; ‡p<0.001 
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FIGURE CAPTIONS 

Figure 1. Schematic diagram of the study design, showing how imaging data contribute to define 

vessel wall, hemodynamic and geometric variables. 

 

Figure 2. Representative MRI images, showing locations of the CCA and FD+1 slices on a 

maximum intensity projection of the 3D CE-MRA of the carotid bifurcation; and BB-MRI slices 

from those locations both pre- and post-contrast, with vessel-of-interest identified by yellow 

arrow. Insets show inner and outer boundaries of the segmented vessel walls, with white radial 

lines delineating the 12 sectors over which CE and WT were computed. 

 

Figure 3. Summary of hemodynamic analysis for a representative case, showing: A) segmented 

lumen surface, including flow extensions for CFD; B) the computed WSS magnitude, 

automatically clipped and then divided into CCA and ICA segments, with dotted line shows 

region of low WSS); C) negative axial velocity, used to calculate VolRec (inset: axial view of 

ICA segment, showing protrusion of negative axial velocity into the lumen; –ve: negative); and 

D) helical flow patterns visualized using local normalized helicity (LNH, the normalized dot 

product of velocity and vorticity vectors [29]; –ve: negative, +ve: positive), with signed LNH 

values identifying counter-rotating flow patterns (inset: rotated view of ICA segment, showing 

asymmetric LNH). 

 

Figure 4. Linear regressions illustrating segment-specific differences in hemodynamic 

associations with contrast enhancement, but not wall thickness (unadjusted). CE vs. LSA at the 

ICA was the only significant correlation among those shown, with p<0.001. 

 

Figure 5. Schematic representation of the main findings. The relative exposure to low WSS and 

oscillatory WSS appear to be associated with different facets of early atherosclerosis at the 

carotid artery. Low WSS is associated with increased contrast uptake at the carotid bulb, whereas 

oscillatory shear is (weakly) associated with increased bulb thickness. Low shear links and 

explains both mechanisms of increased CE (i.e., CE coming from luminal or adventitial side). 

Associations between low or oscillatory WSS with other hemodynamic and flow rate-related 

variables are also shown.  
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