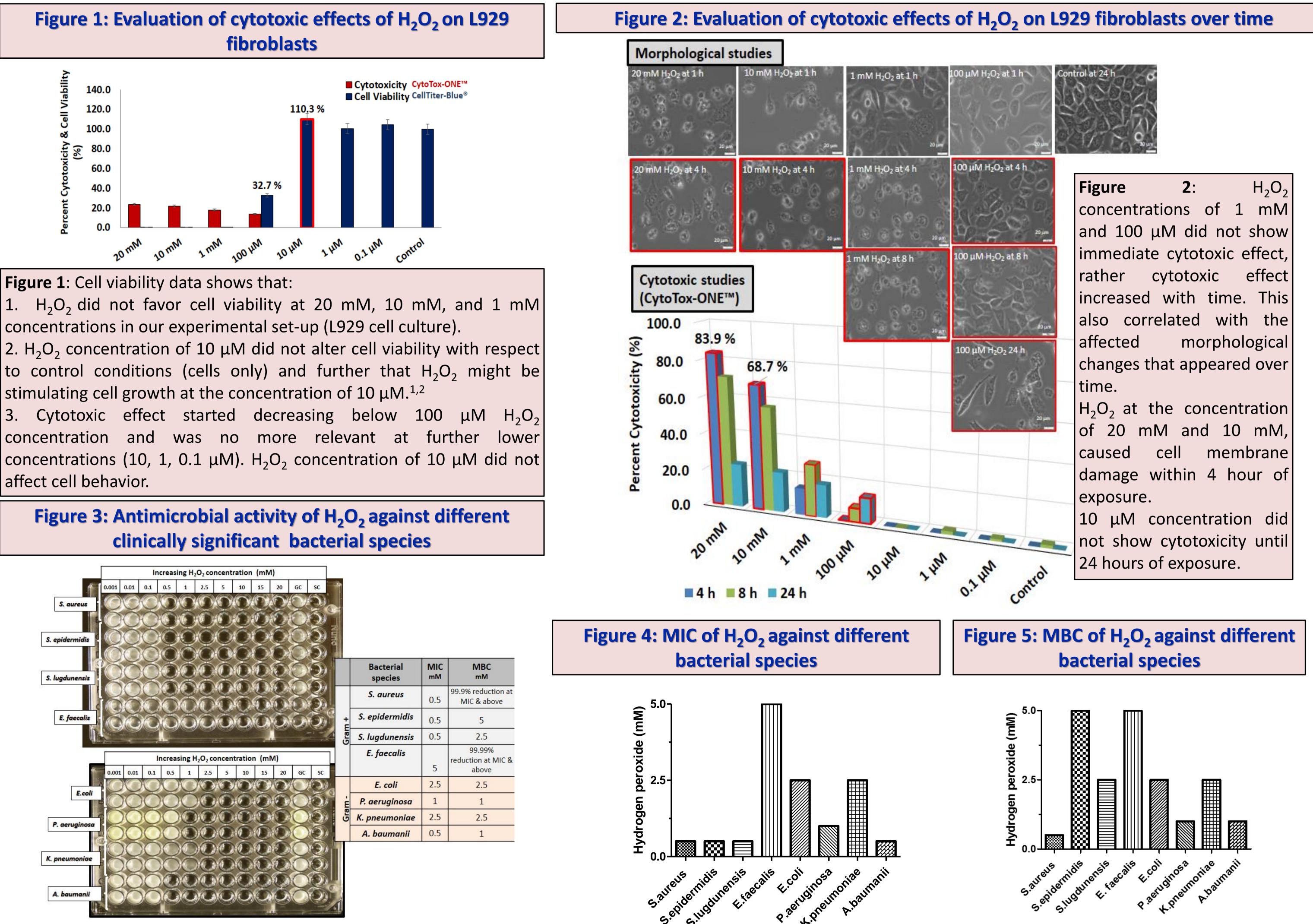
Antimicrobial and Cytotoxicity Evaluations of Hydrogen peroxide-Towards Clinical Application of Antimicrobial Biomaterials for Wound Dressings

A Idrees^{1,2,3}, S Pacharra³, L Marlinghaus⁴, V Chiono¹, G Ciardelli¹, JM Vasquez^{1,5}, U Greiser⁵, W Wang⁵, R Viebahn², SG Gatermann⁴, J Salber^{2,3}

¹Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy. ²Clinic of Surgery, Knappschaftskrankenhaus Bochum, Hospital of the RUHR-University, In der Schornau 23-25, 44892 Bochum, Germany. ³Clinical Research Center, RUHR University Bochum, Universitätsstraße 150, 44801 Bochum ⁴Department of Medical Microbiology, Institute for Hygiene and Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Germany.

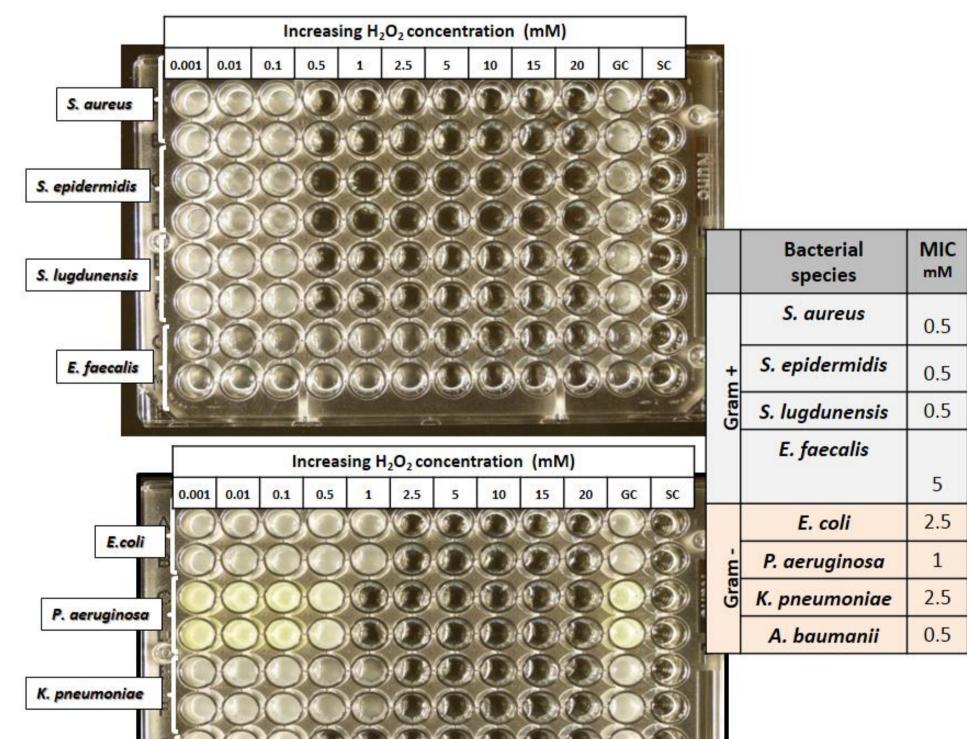
⁵Vornia Biomaterials Ltd, Dublin.

Introduction: Chronic wound infections and emerging drug resistance are serious problems in the present world causing a considerable morbidity and a high healthcare costs. For this purpose, investigation on novel antimicrobial strategies is of great interest. Use of honey from ancient times is reputed for its wound-healing and antibacterial properties. It has been reported that the major antibacterial factor in honey is the release of hydrogen peroxide (H_2O_2) produced by glucose oxidase. This approach can be exploited to prepare novel polymer-based antimicrobial biomaterials for wound healing purposes. In this study, the inhibitory effect of H₂O₂ on the growth of numerous bacteria of clinical significance was investigated. To determine the "safe" antimicrobial concentration of H₂O₂, cytocompatibility analysis was also performed for H₂O₂ induced cellular cytotoxicity.


Methods: The effect of externally added H₂O₂ was performed by exposing L929 fibroblasts to various H₂O₂ concentrations. At different time points after exposure with H2O2, cell viability was assessed by measuring cell metabolic activity, cell membrane integrity and cell morphology. Antimicrobial efficacy was evaluated against a wide range of gram-positive and gram-negative bacteria that are involved in chronic wounds namely S. aureus, S. epidermidis, S. lugdunensis, E. faecalis, E. coli, P. aeruginosa, K. pneumoniae, and A. baumanii. Antimicrobial tests were performed using broth microdilution method for the determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). MIC is the lowest concentration of antimicrobial agent that inhibits bacterial growth, while the MBC is the lowest level of antimicrobial agent that kills the bacteria (by reducing the viability of the initial bacterial inoculum by $\geq 99.9\%$).

Universitätsklinikum

Knappschaftskrankenhaus Bochum


KRUB UNIVERSITÄTSKLINIKUM DER RUHR-UNIVERSITÄT BOCHUM

stimulating cell growth at the concentration of 10 μ M.^{1,2}

3. Cytotoxic effect started decreasing below 100 µM concentration and was no more relevant at further concentrations (10, 1, 0.1 μ M). H₂O₂ concentration of 10 μ M did not affect cell behavior.

Figure 3: Antimicrobial activity of H₂O₂ against different

Results & Conclusion: Results (Figure 3, 4 and 5) showed different MIC and MBC values of H₂O₂ for different bacterial species indicating their differences in susceptibility to treatment. There was no clear preference between Gram positive and Gram negative bacteria. Among the tested bacteria, S. aureus showed 99.9% bacterial reduction at the concentration of 0.5 mM, while E. faecalis showed the highest MIC value of 5 mM. H₂O₂ was found most effective against S. aureus (one of the most pathogenic bacteria) and less effective against E. faecalis. Acinetobacter baumanii being one of the most pathogenic bacteria involved in serious skin wound infections also showed the same MIC value (0.5 mM) as *S. aureus*. Cytotoxicity results (figure 1 and 2) showed two distinct patterns in our experimental set-up: the highest concentrations rapidly induced cell death characterized by morphological evidence and plasma membrane damage as compared to the concentrations of 1 mM and 100 μ M where the cytotoxic effect only gradually increased with time. Results showed that 10 µM concentration did not show cytotoxicity. This data also indicated the concentration dependent distinct pathways of H_2O_2 -induced cytotoxicity. Also, we speculated that the cytotoxic effects would differ depending on "at once" H_2O_2 exposure or exposure to "gradually" produced H₂O₂ by glucose oxidase and glucose entrapped into a matrix. Different H₂O₂ administration influences the ability of the cells to eliminate and detoxify H_2O_2 and needs further investigation.

H. Pet

Acknowledgements: HyMedPoly received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 643050. The authors thank all the HyMedPoly Partners in this HyMedPoly project.

9^{;0}

epide