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Abstract 

Data scarcity can be considered as the main limitation for a more widespread utilization of mathematical 

models in the design, optimization and control of biological nutrient removal activated sludge systems 

(BNRAS). High cost and demanding workload related to experimental data and sufficient sampling 

campaigns make the data collection process an unpleasant necessity for managing stakeholders in 

modelling projects. Complicated use of online-sensors leading to frequent erroneous readings and 

dynamic nature of wastewater treatment processes can intensify the data scarcity problems. This paper 

investigates the influence of data scarcity on the development and calibration of wastewater treatment 

plant (WWTP) models. A straightforward methodology is proposed to address the challenges associated 

with data quality and quantity problems in modelling of a BNRAS in the largest Italian WWTP located in 

Castiglione, Italy. The plant operational modes, weather condition and sensor performance during the 

sampling campaigns were the main sources of the data scarcity. Influent, biokinetic, aeration, hydraulic 

and transport, clarifier, energy consumption and effluent sub-models were calibrated by use of the 

proposed extensive step-wise calibration process. The Monte Carlo analysis was performed to quantify 

the uncertainty of the modelling results. The proposed methodology could be implemented in engineering 

practice to develop and calibrate the WWTP models while it increases the awareness about modelling 

robustness and its characterized uncertainty to avoid bad modelling practice. 

Keywords: Wastewater treatment; Activated sludge models; data scarcity; uncertainty assessment 
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1. Introduction: 

The required effluent limits for wastewater treatment plants (WWTP) proposed in the EU Directive 

91/271/EEC were surely the substantial motive for more implementations of the biological process in 

wastewater treatment industries. From the inauguration of these stringent effluent criteria, the application 

of biological nutrient removal activated sludge (BNRAS) systems has gained great popularity in Europe. 

Recently, considering the high capital and operational costs of these systems (Liu et al., 2011), control 

and optimization of these processes have become necessities. However, the complex, nonlinear and 

dynamic nature of biological and biochemical processes which take place in these systems, make 

controlling of their performance a challenging and not straightforward task. Mathematical models provide 

a valuable evaluation and decision-making tool for wastewater engineers to move forward towards the 

controlling and optimization of various wastewater treatment processes including BNRAS. The by far 

mostly used mechanistic models to mimic complex interactions in BNRAS systems are Activated Sludge 

Models (ASM) developed by the task group of International Association on Water Pollution Research and 

Control (IAWPRC) and summarized in Henze et al. (2000). The successful applications of these models 

in learning, design or process optimization and control have been reported in several studies (e.g. Ferrer 

et al., 2004; Balku and Berber, 2006; Beraud, 2009).  

The large number and complicated nature of the simulated processes which are described by numerous 

state variables as well as kinetic and stoichiometric parameters result in high model complexity which is 

the main limitations for more frequent use of ASMs (Rieger et al., 2010a). To study the identifiability of 

model parameters and to translate the common quality measurements (e.g. TSS, BOD5) into the ASM 

family parameters, several calibration guidelines have been developed: BIOMATH (Vanrolleghem et al., 

2003), STOWA (Hulsbeek et al., 2002), HSG (Langergraber et al., 2004), WERF (Melcer, 2004). The 

high workload and financial resources required for specialized experimental studies proposed in these 
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guidelines to obtain model parameters, are not usually accepted and welcomed by stakeholders and 

wastewater treatment companies. Erroneous on-line measurements due to irregular and deficient sensors 

maintenance and cleaning can cause a reduction of the amount of valid data. Consequently, data scarcity 

is the prevailing problem in WWTP modelling projects which has been discussed in several studies (e.g. 

Sochacki et al., 2009; Rieger et al., 2010b; Martin and Vanrolleghem, 2014; Borzooei et al., 2016). 

Each WWTP is somehow unique, considering its service region, influent quality, industrial discharges, 

age of instruments, implemented treatment methods, maintenance program, the effluent standards should 

be followed, availability of online monitoring systems; their calibration and maintenance schedule, 

environmental conditions such as temperature and rainfall in catchment areas etc. (Bott and Parker, 2011; 

Schilperoort, 2011). As a result, implementing the calibration protocols cannot address all the issues and 

practical problems which may be encountered during a specific modelling project. Therefore, the pathway 

through which a WWTP is being modelled is also unique, challenging, and worth investigating.     

This study proposes a stepwise approach for model development and calibration of the BNRAS 

system of Castiglione Torinese WWTP in Italy, taking into account the limited available operational data 

and a few measuring and sampling campaigns could be conducted. The main objective of this study was 

model-based optimization and upgrading of the existing plant to meet the effluent criteria and reduce the 

energy consumption which will be discussed in an accompanying study (Borzooei et al., in preparation) 

to keep this study focused on the framing of the model development and calibration. This paper adds to 

the existing knowledge in the field of WWTP modelling and simulation by presenting an additional real-

world case study with its practical specifications and challenges. This research addresses the practical 

obstacles and difficulties, authors encountered due to data scarcity, dynamic nature and large-scale of the 

processes and finally proposes a multi-step methodology for modelling and calibration of the WWTP. 
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2. Materials and methods 

2.1 Process description of the Castiglione Torinese WWTP  

The centralized Castiglione Torinese plant is the largest Italian WWTP located in about 11 km 

Northeast of Turin, capital of Piedmont, Northwest of Italy. The plant was designed for treatment of about 

590,000 m3/d of combined municipal and industrial wastewater, corresponding to an organic load of 2.1 

million of equivalent inhabitants. The influent wastewater after the pre-treatment (coarse and fine screens 

and grit, sand and grease removal) is unevenly introduced to 4 wastewater treatment modules, each 

consisting of 2 primary clarifiers (volume VPC = 8070 m3) and 2 anoxic tanks (VAN = 13500 m3), 6 aeration 

basins (volume VAR = 8736 m3) with fine bubble membrane diffusers and 6 secondary clarifiers (volume 

VSC = 8020 m3). This resembles a typical Modified Ludzack-Ettinger (MLE) activated sludge system with 

primary clarifiers. The mixed liquor recirculation (MLR) pipes connect the aerobic to the anoxic zones to 

bring the nitrate to be denitrified in the anoxic units. The underflow from 6 secondary clarifiers flows back 

to the anoxic tanks through a return activated sludge (RAS) recycle channel by three Archimedes screws 

in each module. A part of activated sludge also is continuously extracted from the system and sent to the 

sludge treatment units as the waste activated sludge (WAS) to ensure the biological balance in the system. 

The final effluent of the secondary clarifiers flows to the final filtration units where it is divided between 

27 multilayers sand and coal filtrations. Reject water from sludge treatment units (RWS) and reject water 

from final filtration units (RWF) are entered to the main wastewater stream after pre-treatment units. The 

plant was designed to remove organic matter and nitrogen. In addition, chemical phosphorous removal 

(CPR) is achieved by adding a ferric chloride solution (Fecl3) into the RAS stream. Currently, the plant 

efficiently removes carbon and achieves nitrification and P-removal but lacks denitrification. 
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2.2 Collection of existing data  

Several visits to the WWTP and frequent meetings with operators and management staff were 

carried out to thoroughly understand the plant configuration and identify the current process schemes. 

Various implemented operational modes, number and locations of the online measuring instruments and 

their cleaning and maintenance periods in addition to number and locations of the automatic samplers 

used for regular sampling of the plant, were identified. Further, all the existing information including 

routinely collected data based on 24 h time proportional composite samples (available from 2009 to 2016), 

physical characteristics of treatment units (e.g. tanks configurations, detail information about aerators and 

mixers, capacity and control scheme of pumps etc.) and operational data (e.g. flow splits, aeration control 

parameters, recycle streams etc.) were collected and studied.  

2.3 Additional measurement campaigns  

Due to a large scale of the WWTP, practical challenges in monitoring and controlling of some operational 

parameters during the short period of sampling time and financial limitations of the project, a restricted 

modelling boundary was determined. In place of modelling of the whole plant, half of the single 

wastewater treatment module was investigated. Based on the availability of sensors and accessibility of 

measurement points, measurement campaigns were carried out to estimate MLR (QMLR) and RAS (QRAS) 

flow rates. MLR tubes were lain down underground with low accessibility and to protect them against 

corrosion action of the wet soil, they have been coated by the thick layer of the coal-tar pitch which makes 

the applicability of the ultrasonic flowmeter, impossible. Instead, QMLR was estimated based on the 

maximum capacity of the recirculation pumps. QRAS was measured by the combination of the float method 

(in the access channel) and velocity estimation by ultrasonic velocity meter. The obtained value was 

validated with the maximum capacity of the Archimedes screws pumping the RAS to the anoxic units.  
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2.4 Wastewater characterization  

One of the most important factors in WWTP modelling is the characterisation of the influent 

wastewater. The initial influent characterization was performed according to the protocol developed by 

the Dutch foundation for applied water research (STOWA: Hulsbeek et al., (2002)); however, some minor 

modifications were made. For identification of COD fractions, 24 h composite samples with 1.5-hour 

intervals were collected in duplicates on 07/03/2016 to 14/03/2016 (4 working days) from influent and 

effluent of the studied module. The time between sampling and experimental analyses was kept as short 

as possible, and samples preserved in temperature less than 4°C to prevent any biological activities before 

laboratory tests. A physico-chemical method based on the combination of flocculation with Zn (OH)2 and 

filtration with 0.2 μm nylon filters was implemented for estimation of the readily biodegradable (Ss) and 

inert soluble (SI) COD fractions. The slowly biodegradable COD (Xs) fraction was estimated by a BOD 

monitoring procedure. For inhibition of nitrification 20 mg/l Allylthiourea (ATU) was added. Each sample 

was tested by 2 BOD-flasks for validating the results. The summary of all implemented methods for COD 

fractionation is tabulated in Table 1. 
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2.5 Additional sampling campaigns  

An intensive 20-day sampling campaign was carried out on working days from 26 September to 

21 October 2016. The sampling plan including sampling type, location and frequency as well as sufficient 

instructions about handling, storage and laboratory analytical tests, were well-prepared and communicated 

to the responsible staff. The grab samples were collected from influent and effluent of each treatment unit 

(P1 to P5 in Fig. 1) and from the RAS channel (P6). Between samples collected from one and a subsequent 

point, a lag time was set according to the average hydraulic retention time (HRT) of the corresponding 

unit. For the sludge line, samples were collected from the RAS on 3:00 pm of each sampling day. 

 

 

 

 

 

 

 

 

(L) Laboratory measurements 

(S) Online measurements  

(PS) Portable device and online measurements  

(LS) Laboratory and online measurements   

 

Fig. 1. The scheme of studied half wastewater treatment module in Castiglione Torinese WWTP with locations and types of 

measurements   

Following wastewater characteristics of each grab sample were analysed according to IRSA 

methodology (Blundo et al., 1994): total COD (CODt), soluble COD (CODs), supernatant COD (CODsup), 

total suspended solids (TSS), total nitrogen (TN), ammonium (NH4), nitrate (NO3). For measurement of 

CODsup the supernatant samples were taken from the surface of grab samples after 2-3 min of decantation. 
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All the soluble parameters were measured after filtration with 0.45μm filters following by flocculation. 

Starting the sampling point from before primary clarifier, the impact of both reject water streams (RWS 

and RWF) was considered. All online measurements (parameters with (S) superscript) were recorded from 

the Supervisory Control and Data Acquisition (SCADA) system. To validate some of the online-measured 

parameters, laboratory analyses of grab samples (parameters with (LS) superscript) and/or real-time 

measurement with the portable device (parameter with (PS) superscript) were carried out. Additionally, a 

2-day composite sampling campaign was carried out from influent and effluent of the studied module on 

02/11/2016 and 06/11/2016 to understand the dynamic patterns of influent and effluent concentrations on 

weekend and weekday. The sampling was conducted from 9:00 am to 6:00 pm. Using two autosamplers, 

8 composite samples were collected by 2 h interval and further analyzed in the laboratory to measure 

CODt, CODs, N-NH4, N-NO3, and TSS.  

2.6 Model development     

In this study, wastewater treatment process simulator, GPS-X ver.6.5.1 (Hydromantis, 2016) was 

used to mimic various treatment procedures, run the simulations as well as perform parameter estimation 

and uncertainty analysis. Since no tracer test was performed during the operation of the WWTP, the 

hydraulic characteristics of bioreactors were approximated by a “tanks-in-series” approach. In this 

approach for the flow regimes which are between the ideal plug-flow and completely mixed hydraulic 

flow patterns, a series of complete-mix reactors are used. The flow condition in aeration units was further 

evaluated using an empirical formula. Murphy and Boyko (1970) proposed the Eq. 1 based on the 

investigating the results of the dispersed plug flow model in the full-scale aeration reactors with various 

depth ratio from 0.87 to 2.04.  

𝐸𝐿

𝑊2 = 3.118. (𝑞𝐴)0.346          (1) 
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where EL is the longitudinal dispersion coefficient, m2h-1, qA the air flow rate per unit volume of the tank 

(T-1) and W is the reactor width (L). The Eq.1 was also recommended in US EPA (1993) for both fine and 

coarse bubble diffused air systems. For each aeration unit, the average value of EL was calculated in the 

sampling campaign period. The corresponding value of the dispersion number was calculated as (EL/uL), 

where u is the average longitudinal velocity and L is the length of the aeration tank. Aeration units with a 

dispersion number lower than 0.2 and higher than 4 are classified as plug flow and completely mixed 

systems respectively (Zima et al., 2008). The average dispersion numbers calculated from Eq. 1 for three 

aeration units were between 1.8 and 2. These results suggested that considering continuous stirred-

tank reactor (CSTR) for each aeration unit was a good approximation. Further, assuming the completely 

mixed condition in the anoxic unit, it was simulated with a single CSTR. The biochemical activities 

occurring in the aeration and anoxic reactors were simulated by the ASM1 model (Henze et al., 2000). 

Since due to the data scarcity in this project CPR process was not modelled, ASM1 was the best choice to 

mimic carbon and nitrogen removal processes (Gernaey et al., 2004). 

Considering the available data about clarifiers, an ideal primary clarifier model (removal efficiency 

model) and pre-compiled one-dimensional secondary clarifier model proposed by Takács et al. (1991) 

were implemented. The non-reactive flux-based model considers 10 horizontal layers, of which the 5th 

(from top) is the feed layer. Since the information regarding the settling parameters was not available, the 

correlational model (Hydromantis, 2016) was implemented in which settling parameters are correlated to 

the sludge volume index (SVI) and clarification factor (cf). For simplification, assuming an equal 

hydraulic load of 3 secondary clarifiers they were modelled as a single flat bottom circular clarifier with 

accumulated volume. The endogenous denitrification process due to the presence of biologically active 

solids in the secondary clarifiers (see section 3.1) was modelled by placing a virtual anoxic CSTR after 

the clarifier unit in the RAS stream with the volume of the sludge blanket. As a conservative estimation 
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by operators, this volume was equal to 50% of VSC. The biochemical processes in this virtual reactor were 

described by ASM1. 

Available physical and operational parameters were adjusted for each modelling unit. The depth and 

volume of the basins, as well as the specification of diffusers (height and number) for each aeration unit 

were entered. This information was elaborated for calculation of the standard oxygen transfer efficiency 

(SOTE) according to correlation method reported in Hydromantis (2016). To model the aeration system, 

initially, SOTE was measured by entering the air flowrates collected during the sampling campaign. 

Further, a linear proportional–integral (PI) controller was used to regulate the airflow pumped to each 

basin based on dissolved oxygen (DO) measurements. 

The energy consumption (EC) of each modelling unit was estimated by implementing the operating cost 

models in the GPS-X platform. The aeration energy was estimated based on the air flow rate and the 

efficiencies of the blowers and motors. The required blower energy was evaluated from the adiabatic 

compression equation (Mueller et al., 2002). Pumping energy was linked with pumping flowrate as well 

as head losses. Mixing energy was estimated by considering the power per unit volume of the mixing 

(PPUV) parameter. The sub-models used for each process are summarized in Table 2. 

Table 2. Sub-models of the Castiglione Torinese WWTP 

Unit process Physical model Process model 

Influent model 1 Influent unit COD states influent a 

Primary settling 1 circular unit Ideal clarifier a  

Pre-denitrification  1 CSTR ASM1b 

Aeration system 3 CSTRs ASM1b 

Secondary 

clarification 

1 circular unit Simple 1-Dc 

Denitrification in 

secondary clarifiers  

1 virtual CSTR ASM1b 

Energy consumption All units  Operating cost a  
a (Hydromantis, 2016); b (Henze et al., 2000) ; c (Takács et al.1991) 
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2.7 Model Calibration     

Model calibration is an iterative procedure for adjusting model parameters (physical, operational, kinetic) 

to improve the fit to observed set of data. The definition does not include additional measurements and 

model structural modification. As a general step-wise calibration procedure in this study, the following 

steps were undertaken: 

Step 1) The first steady-state simulation of the model was conducted with the reference parameters for a 

period equivalent to at least three times the average SRT of the system. and Modelling results were 

qualitatively (visual and graphical) compared with available measured data. 

Step 2) The most sensitive parameters of each sub-model were detected based on experience and common 

sense, engineering judgment, BIOMATH (Vanrolleghem et al., 2003) and STOWA (Hulsbeek et al., 2002) 

calibration protocols. In a few cases, full-scale observations and sensitivity analysis using one-variable-

at-a-time approach (Makinia et al., 2005) also contributed in the selection of these parameters.  

Step 3) To compensate for the correlational impact of adjusted parameters, first the influent model was 

calibrated followed by primary and secondary clarifiers to achieve the solids mass balance in the system. 

Further, aeration followed by biokinetic models were calibrated. It should be emphasized that the 

calibration of each sub-model is not independent as the modelled processes are coupled together. As a 

result, several iterations with loops to the earlier steps were required. Selected parameters in each sub-

model were estimated by a Nelder-Mead simplex (polyhedron) algorithm available in GPS-X. The 

methodology is a multi-dimensional method not relying on gradient information for minimization of the 

objective function (Press, 2007). The maximum likelihood objective function as well as default values of 

reflection, expansion, shrink and contraction constants presented in Hydromantis (2016) were used for 

parameter estimation. Proper lower and upper bounds were introduced for each parameter according to 
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literature (e.g. Jeppson, 1996; Henze et al., 2000; Afonso and da Conceição Cunha, 2002) or by 

experience. It should be stressed that in case of encountering identifiability problem in which more than 

one combination of model parameters could result in a good fit to the observed set of data, the realistic 

parameter combinations were identified according to objective of the project and real practical and 

theoretical data about the involved process in the plant (Kristensen et al., 1998). 

Step 4) The obtained parameters and concentrations from steady state runs in step 3 were used as the initial 

conditions for dynamic simulations and the dynamic calibration was performed iterating the procedure in 

step 3.  

For calibration of the aeration process, initially, α factors (ratio of process water to clean water mass 

transfer coefficients) were adjusted to improve the fit to observed set of DO, NH4 and NO3 concentrations 

measured in the effluent of each aeration unit. Further, the implemented PI controllers were tuned with 

adjustment of the DO setpoint (see section 3.1), proportional gain (Kc) and integral time (Ti) tuning 

constants.  

The calibration of the EC models was performed considering the specific electricity consumption values 

reported in Panepinto et al. (2016) for some of the electro-mechanic devices in the Castiglione Torinese 

WWTP. These values were acquired from the tele-control system and some direct measurements to 

evaluate overall energy features of the plant. Two calibrating parameters namely pressure drop in piping 

and diffuser downstream of blower (PD) and combined blower and motor efficiency (BME) were adjusted, 

for calibration of the aeration energy model. The pumping energy models were calibrated by adjustment 

of pump efficiency (PE) and pipe friction loss (PFL), assuming constant static system head. Mixing energy 

models were calibrated by adjusting power per unit volume (PPUV) parameters. The calibrated parameters 

and data used for calibration are presented in Table 3.  
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Table 3. Calibrated and target parameters  

Modelling unit 
Calibrated model 

Parameter 

Data used for 

calibration 

Target measured 

parameter 

Influent input 
Ss, SI L Influent CODs  

ivt, icv L Influent TSS  

Primary clarifier Rep L TSS and COD in P2 

Secondary clarifier FPB, Cc S TSS in P5 

SVI S TSS in P6 

Aeration units α S Air flow rate and DO in P4 

PI controllers DOset, Kc, Ti S Air flow rate and DO in P4 

Biokinetic units KOA, μA, bA S and L NH4 in P4 and P5 

Pumping units Pe, PFL Energy audit 

monitoring 

Energy consumption data 

Mixing units PPUV Energy audit 

monitoring 

Energy consumption data 

Aeration units BME, PD Energy audit 

monitoring 

Energy consumption data 

 

2.8 Evaluation of the results   

The calibrated model was validated to assess the quality of the simulation results by quantifying the 

deviations between the model outputs and observations. To this end, the root mean squared error (RMSE) 

and the mean absolute percentage error (MAPE) were used as quantitative measures of the model 

prediction accuracy with respect to effluent TSS, NH4 and NO3 observations. These statistical criteria 

were calculated from Eq. 2 and Eq. 3. 

𝑀𝐴𝑃𝐸 =
100

𝑛
 ∑ |

𝑃𝑡−𝑚𝑡

𝑃𝑡
|𝑛

𝑡=1                (2) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑡−𝑃𝑡)2𝑛

𝑡=1

𝑛
                  (3) 

where Pt is model predicted output, mt is measured value at the tth time instance and n is the total number 

of observations.  
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2.9 Uncertainty analysis  

To assess the input (subjective) uncertainty of the developed model, the Monte Carlo Analysis (MCA) 

was performed. MCA provides a probabilistic shell around the deterministic models and quantifies the 

uncertainty of the model predictions by expanding the small size sample with the use of probability 

distribution functions assigned to input parameters and running several simulations with randomly 

selected model inputs (Bixio et al., 2002). Fig. 2 demonstrates the stepwise approach implemented in 

MCA.  

 

 

 

 

 

 

 

 

 Fig. 2. Step-wise Monte Carlo analysis  

 

In this study, 13 calibrated parameters (see Table 4) including 7 kinetic and stoichiometric parameters, α 

values of aeration basins and 3 operational parameters related to clarifiers were considered as uncertain 

input parameters.  
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Table 4. Uncertain parameters and their distribution functions in MCA 

 

 

 

 

 

 

 

These parameters were categorized in 3 uncertainty classes depending on their level of uncertainty and 

the extent of available knowledge about them. The first class (C1) corresponded to the numerically 

calibrated kinetic parameters. For the parameters in C1 the universal parameter distributions proposed by 

Cox (2004) as well as uniform distribution functions were considered. Upper and lower bounds around 

their calibrated values were determined according to ranges proposed in the literature (Jeppson, 1996; 

Henze et al., 2000; Afonso and da Conceição Cunha, 2002). For the parameters in the second class (C2), 

normal distribution functions were assigned with 25% upper and lower bounds around their calibrated 

values. The third class (C3) corresponded to 2 influent COD fractions which were obtained by the 

calibration process. Parameters in this class were considered as highly uncertain parameters because of 

their nature (diurnal, monthly and seasonal variations) and identifiability problems occurred during their 

calibration process. For parameters in C3, normal distribution functions were assigned with 50% upper 

and lower bounds around their calibrated values. It should be stressed that for the simplicity, parameters 

were assumed to be independent and their possible correlations were neglected.  

Latin hypercube sampling (LHS) method was implemented for the sampling of the input uncertainty. To 

identify the sufficient number of replications in MCA, steady-state simulations were conducted with a 

Category Parameter Unit Distribution  

C1 μA day-1 Log-normal 

C1 KOA gO2/m3 Log-normal 

C1 bAUT d-1 Log-normal 

C2 icv gCOD/gVSS Normal 

C2 ivt gVSS/gTSS Normal 

C2 Rep - Normal 

C2 α1 - Normal 

C2 α2 - Normal 

C2 α3 - Normal 

C2 CC - Normal 

C2 SVI ml/g Normal 

C3 Ss - Normal 

C3 SI - Normal 
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various number of runs (from 100 to 10000) and input probability distribution graphs were developed 

accordingly. Graphs were further qualitatively (visual and graphical) analysed and the minimum number 

of replications which made the best agreement between assigned distribution function to input variables 

and the developed graph, was chosen as the sufficient number of runs. This simplifying method was 

chosen considering the available computational power and time of the project. Finally, the results were 

represented by mean, 5th and 95th percentiles and cumulative distribution functions (CDF). 

3. Results and discussions  

3.1 Data collection and practical challenges  

Because of the sampling type (daily composite) and location in the plant routine data collection, 

the impact of RWS and RWF and wet-weather events could not be captured which makes the historical 

data not thoroughly representative of the real condition of the plant. However, modular and temporal 

trends of influent flowrate and concentrations in addition to observed ranges for mixed liquor suspended 

solids (MLSS) in aeration units and SVI in secondary clarifiers were identified from routinely collected 

data which were further elaborated in modelling and calibration (see section 3.3). Since no flow 

measurements could be conducted from the effluent of the treatment units, data accuracy evaluation (e.g. 

mass balance) could not be scrutinised in both routine data collection and the sampling campaign.  

During the additional sampling campaign, mixing deficiency in the anoxic units due to mixer 

clogging was frequently observed. Several dead zones and floating sludge areas caused by diffusers 

fouling and bulk air emission due to relocated, broken or deformed diffusers bases were noticed in 3 

studied aeration tanks.  

In the sampling period, managing staff was advised to keep operational conditions of the studied 

module possibly unchanged. However, irregular discharge of RWS to the studied module as well as two 
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extreme wet-weather events occurred during this period. Since both issues were found very important in 

the influent characteristics, recorded results were partitioned into two main categories: the 11-day normal 

operational condition in dry weather (NC-D) and the 9-day high load operational condition in wet weather 

(HC-W) in which discharge of RWS and heavy rain event occurred. During the 2-day dynamic sampling 

campaign the discharge of RWS was recorded in dry weather condition (HC-D). Table 5 shows the 

average influent concentrations of the studied module in each operational mode.  

Table 5. Average of the influent concentration in different operational modes observed in sampling campaign period 

(26.10-21.11.2016) 

Operational 

mode 

Average and standard deviation of measured values [mg/l] 

CODt CODs TN NH4 TP TSS 
NC-D 238(±45.5) 40.1(±7.3) 26.5(±3.3) 25.2(±0.05) 3.7(±2.7) 134.7(±37.9) 
 HC-W 407(±110.2) 41.9(±4.2) 34.6(±4.6) 29.3(±0.1) 7(±3.7) 274.1(±95.1) 
HC-D 734(±135.7) 73.2(±13.2) 44.5(±4.2) 38.4(±2.2) 9(±1.8) 442(±95.1) 

 

Partitioned results highlight the impact of RWS on influent characteristics since concentrations 

recorded in NC-D were found almost doubled or tripled in HC-D operational mode. Moreover, the dilution 

effect of a wet weather event on influent concentrations can be clearly detected, comparing the results 

recorded in HC-D and HC-W modes. Considering the high deviation of influent concentrations in various 

operational modes, it was decided to use collected data in NC-D mode for model calibration. The data 

collected in HC-D and HC-W modes were further elaborated in model-based optimization and scenario 

planning in an accompanying study (Borzooei et al., in preparation) to keep this study focused on the 

framing of the model development and calibration. 

The collected data was further analysed to investigate the performance of treatment units. 

Comparing the CODs, NH4 concentrations recorded in P2 and P3 (see Fig. 1), the reactive nature of the 

primary clarifier was revealed with 270 and 110 kg/d increasing of the NH4 and CODs loads respectively. 

Comprehensive investigation of the reactive primary clarifier was performed in Borzooei et al. (2017). 

Likewise, observing the removal of NO3 concentrations in 3 secondary clarifiers for almost 2 mg/l on 
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average, the occurrence of denitrification during the studied period was confirmed. A tentative study based 

on decision tree proposed in Comas et al. (2008) was performed to evaluate the risk of rising sludge. The 

results confirmed the high risk of sludge rising in denitrifying clarifiers as a result of their high residence 

time and the influent nitrate level above the critical value (Henze et al., 1993). However, to certainly link 

the sludge rising phenomena, which were frequently observed in the plant, to the denitrification process, 

further investigation was proposed. 

A high discrepancy was observed between online measurements of NH4 and lab analyses of grab 

samples collected from the effluent of aeration units (P4). These discrepancies resulted from the 

occurrence of several types of sensors failure including a long period with sensor fault (constant value) as 

well as periodic faults (incorrect scaling and/or out of normal range values) during the campaign (see Fig 

A. 2). Therefore, lab results were used for calibration process. Considering the performance of NH4 sensor 

and investigating the DO concentrations and airflow rate recorded in the sampling period, it was induced 

that ammonium-based supervisory control system was not really implemented in controlling of the 

aeration systems, rather they were controlled manually. 

3.2 Wastewater and biomass characterization      

The initial fractionation of organic matter in influent wastewater was carried out according to methods 

proposed by standard Dutch guidelines (Roeleveld and Van Loosdrecht, 2002). Obtained results are 

presented in Table 1. The average contribution of individual ASM1 components to total COD was found 

as follows: SI = 1.1%, Ss = 9.1%, Xs = 44 %, XI = 45.8 %. The estimated Ss fraction corresponds to a low 

value but still within the reported range in several studies (e.g. Henze, 1992; Chachuat et al., 2005; 

Marquot et al., 2006; Pasztor et al., 2009) in which Ss constituted 3-35% and 14-57% of total COD in raw 

municipal and settled wastewater respectively. However, the estimated SI fraction was found to be out of 

the suggested range which is 2-15% and 3-14.3% for raw and settled municipal wastewater (Pasztor et al., 
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2009). To solve the identifiability problem in the calibration of the influent model (see Table 3), SI value 

was numerically calibrated while Ss was kept unchanged. The adjusted SI value remained in the suggested 

range. The estimated XI/total COD ratio (45.8%) was higher than the reported range (8-39%) (Henze, 

1992; Roeleveld and Van Loosdrecht, 2002). The high XI value can be linked to two factors: long 

hydraulic residence time in sewage pipelines and share of industrial wastewater in the. As proposed in 

several studies (e.g. Szaja et al., 2015; Pasztor et al., 2009; Quevauviller et al., 2007), for the large WWTPs 

like Castiglione Torinese which have more complex sewer collection system with a longer retention time 

of wastewater, the biological degradation of substrate fraction occur at bigger scale in sewer system which 

results the increase of inert particulate components. The higher inert COD fraction can be also linked with 

a presence of industrial wastewater (Mhlanga and Brouckaert, 2013). In the case of this study, Castiglione 

Torinese is the municipal WWTPs with a dominant contribution of non-industrial discharges in the 

wastewater influent.  

The first estimated Xs/XI ratio was revised based on calibration of the influent model. The Xs fraction was 

reduced from 44% to 37%. After this adjustment, Xs fraction remained within the typical range of 28-68% 

(Kappeler and Gujer, 1992; Roeleveld and Van Loosdrecht, 2002). Although the Ss/(Ss+Xs) ratio was 

improved with the adjustment but it is still out of the typical range of 0.3-0.5 reported in Makinia et al. 

(2006). It should be emphasized that autotrophic (XBA) and heterotrophic (XBH) biomass concentrations 

were assumed equal to 0.1-1 and 0 mg/l respectively because these two fractions are included in particulate 

COD fractions.  
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3.3 Model calibration  

The model was calibrated under a dynamic condition with the data originating from both laboratory and 

sensor readings on NC-D operational mode in the sampling period (26.10-21.11.2016) following the 

approach presented before. The final set of adjusted parameters and their original values are tabulated in 

Table 6. After the adjustment of two COD fractions (SI and SS) according to CODs measurements, the 

influent model was calibrated by increasing icv to 1.85 gCOD. (gVSS)-1 which was assumed based on the 

measurement of the CODt and MLVSS in the aeration tanks while keeping ivt constant.  

In the calibration of the secondary clarifier model, clarification coefficient (Cc) was decreased to 0.42 to 

improve the final effluent TSS model prediction. The SVI was decreased from 150 to 130 ml/ to calibrate 

the sludge thickening process in the secondary clarifier and improve the fit to observed TSS values in 

RAS. The adjusted SVI value remained in obtained range (85-148 ml/g) from routine data collection (see 

section 2.2).  

The calibrated α values for 3 aeration basins indicated higher aeration efficiency of one of the tanks in 

comparison to others. Since fouling factor (Ff) equal to 1 was assumed for all three tanks, the differences 

between α values can be the impact of diffusers fouling in real condition.  

 

 

 

 

 

 



23 
 

Table 6. Original and adjusted parameters in the calibration process 

Parameter definition  
Symbol unit Original 

value a 

Adjusted 

value 

Influent model      

Readily biodegradable COD fraction  Ss % 20 9.1 

Inert soluble COD fraction  SI % 5 8.5 

XCOD to VSS ratio  icv gCOD. (gVSS)-1 1.8 1.86 

VSS to TSS ratio  ivt gVSS. (gTSS)-1 0.75 0.75 

Clarifiers model      

Removal efficiency of primary clarifier  Rep - 0.5 0.44 

Feed point from bottom depth of secondary 

clarifier  
FPB m 1 1.46 

Clarification coefficient in secondary clarifier  Cc - 0.5 0.42 

Sludge volume index in secondary clarifier   SVI ml/g 150 130 

Aeration model     

Ratio of process- to clean- water mass transfer 

for aeration tank 1 
α - 0.6 0.49 

Ratio of process- to clean- water mass transfer 

for aeration tank 2 
α - 0.6 0.59 

Ratio of process- to clean- water mass transfer 

for aeration tank 3 
α - 0.6 0.48 

Biokinetic model     

Maximum specific growth rate for autotrophic 

biomass 
μA day-1 0.8 0.76 

Oxygen half-saturation coefficient for 

autotrophic biomass 
KOA gO2/m3 0.4 0.52 

Autotrophic decay rate bAUT d-1 0.04 0.06 
Pumping energy      
Pump efficiency primary clarifier  PEP - 0.7 0.12 
Pipe friction loss primary clarifier PFLP m 5 25 
Pump efficiency of MLR PEMLR - 0.7 0.65 
Pipe friction loss of MLR PFLMLR m 5 6 
Pump efficiency of WAS PEWAS - 0.7 0.2 
Pipe friction loss of WAS PFLWAS m 5 10 
Pump efficiency of RAS PERAS - 0.7 0.4 
Pipe friction loss of RAS PFLRAS m 5 2.5 
Mixing energy      
Power per unit volume for aeration tanks  PPUVAr W/m3 10 0.01 
Power per unit volume for the anoxic tank  PPUVAn W/m3 10 2.5 

Aeration energy      
Pressure drop in piping and diffuser 

Downstream of blower for 3 aeration units 
PD atm 0.069 0.08 

Combined blower and motor efficiency  BME - 0.7 0.25 
a (Hydromantis, 2016) 
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The nitrification process was initially calibrated by decreasing the maximum specific growth rate for 

autotrophic biomass (μA) from 0.8 to 0.76 (d-1) to improve the modelling results fit to the observed set of 

the ammonia level at the effluent of aeration tanks. It should be also mentioned that the nitrate 

concentration in aeration tanks was slightly decreased by adjusting the μA. This value corresponds to the 

reported range (0.2-1.2 d-1) (Henze et al., 2000; Afonso and da Conceição Cunha, 2002). The ammonia 

and nitrate fits were further improved by increasing the autotrophic decay rate (bA) from 0.04 to 0.06 (d-

1) and oxygen half-saturation index for autotrophic biomass (KOA) from 0.4 to 0.52 gO2/m
3. A higher 

estimated bA value can be the result of the long oxic-SRT of the system (average 30 days) (Liwarska-

Bizukojc et al., 2011). As stated in Arnaldos et al. (2015), several factors influence half saturation index 

including factors involved in transport in the bulk medium, into the floc, through the cell membrane, in 

the periplasm and enzymatic binding/release of a substrate. However, among all the influencing factors, 

the bulk mixing condition is logically the first factor to be investigated since its impact may overwhelm 

the contributions of other factors especially in case of non-uniform mixing condition. Since actual dead 

zones were observed in aeration tanks in the Castiglione Torinese plant during the sampling campaign; 

the advection limitation can be the explanation for the need to increase the KOA. Both adjusted parameters 

(bA and KOA) corresponded well within the reported ranges (Henze et al., 2000; Jeppson, 1996). In the 

calibration of the pumping EC models, since no practical information was available about real PE and 

PFL values, one of their obtained combinations in the parameter estimation process was used. However, 

for calibration of the aeration EC model, based on the sensitivity analysis results, initially, the PD 

parameter was adjusted followed by BME. 

3.3 Evaluation of modelling results        

The results of the dynamic simulations for 3 effluent concentrations (TSS, NH4 and NO3) are presented in 

Fig. 3. Good prediction accuracy with respect to the short-term behavior of the effluent TSS was observed 
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(Fig. 3a) and expressed by the low values of the MAPE = 19 % and RMSE = 0.33 mg/l. It should be noted 

that a short period of sensor failure (constant value) in the first two days of the sampling affected the 

model evaluation results. 

For both the description of the effluent NO3 and NH4, even though the differences between online data 

and model prediction were relatively higher (MAPE = 11-34 % and RMSE= 0.14-1.5 mg/l respectively), 

the model predictions reasonably follow the trend of the actual data (Fig. 3 b and c). However, the model 

frequently overpredicted the NO3 level in the afternoon (from 14:00 pm) on each simulating day where 

real data showed drops and lower values. A possible reason could be the increased residence time (lower 

flow rate in afternoons) in the aeration tanks through which simultaneous denitrification can take place, 

especially in the dead zones in presence of enough readily biodegradable COD which is not captured by 

the way the mixing is currently modelled. Besides, in the ASM1 the same oxygen half saturation 

coefficient for heterotrophs (KOH) is considered for modelling both the aerobic and anoxic growth of 

heterotrophic biomass. Hence, in the modelling approach, if aerobic growth of heterotrophs decreases, the 

capacity for anoxic growth will increase. This emphasizes the importance of KOH in calibration process 

which was kept constant in this study due to data scarcity. Moreover, considering the occurrence of the 

denitrification in secondary clarifiers during the sampling campaign, a lower flow rate can result in the 

higher sludge residence time in the clarifier and consequently intensify the denitrification. 

 Since the calibration process was conducted based on the results of composite samples, logically the 

events with fast dynamics could not be well-captured by the developed model; however, the data with 

abrupt changes, disturbance and fluctuations in plant record data brought additional difficulties in the 

calibration process and parameter estimation. The removal efficiencies for effluent parameters were 

calculated based on actual measurement and dynamically simulated average values. The results proved 

that the model can predict 85-95% of the actual removal. 



26 
 

 

Fig. 3. Measurements vs. model predictions of effluent TSS (a), N-NO3 (b), N-NH4 (c) within the sampling campaign period 

(26.10-21.11.2016) 
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EC modelling results confirmed that aeration and pumping systems are the biggest energy consumers with 

70-78% and 20-26 % of the total energy consumption of the studied module respectively. Measured and 

simulated daily averaged EC of treatment units were calculated (Fig. 4). The results presented in Fig. 4 

proved that the model predictions are in relatively good agreement with energy audit data. 

 

Fig. 4. Comparison of the measured and simulated daily averaged energy consumption of the studied module   

3.4 Uncertainty assessment and improving proposals  

To evaluate the uncertainty analysis results, CDFs of aggregated measure of averaged effluent TSS, CODt, 

NO3 and NH4 concentrations were developed (Fig. 5). Comparing the results of the base-case simulation 

(Fig. 4) and the results presented in Fig. 5, one observes that there is considerable uncertainty concerning 

all effluent parameters. These results proved that uncertainty of the kinetic, stoichiometric, influent 

fractions and operational parameters cause significant variance in the predicted effluent concentrations. 

As regards the CDF of the effluent TSS (Fig. 5a) it can be noted that the spread of uncertainty is very 

broad. This can be due to two main reasons: (i) No MLSS controller was implemented in the model to 

counteract the uncertainty in the input parameters and as a result maintaining relatively stable MLSS level 

(ii) uncertainty of the operational input parameters regarding secondary and primary clarifiers. 
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Fig. 5. Representations of uncertainty in four effluent parameters by the cumulative distribution function (CDF) 
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uncertainty was observed in predicted effluent COD and nitrogen concentrations which can be linked to 
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in aeration units and conducting series of experimental batch tests to measure the kinetics parameters were 

proposed to improve the certainty of the modelling results. 

5. Conclusions         

This study proposes a novel methodology to address the impact of data quality and quantity 

problems on modelling and calibration of WWTPs. Historical data of the large-scale Castiglione Torinese 

WWTP, from January 2009 to December 2016, in addition to data collected in a few sampling and 

measurement campaigns, were utilized for model development and calibration. Unprecedented changes 

in weather condition, sensor performance and discharge of reject water from sludge treatment units during 

the sampling campaign were found intensifying sources of data scarcity in this project. The practical 

information presented in this study, stresses the role of a well-designed data collection process for both 

performance investigation and troubleshooting of treatment units which is usually overlooked, or its 

importance underestimated. The reactive nature of the primary clarifier and denitrification in the 

secondary clarifier were identified based on sampling campaign results. The developed model comprises 

biokinetic, aeration, hydraulic and transport, clarifier, input, output and energy consumption sub-models, 

and was calibrated by use of an extensive step-wise calibration process. Short-term predictability of the 

calibrated model was confirmed by comparing the dynamics of simulated and measured TSS, N-NH4 and 

N-NO3 effluent concentrations as well as their removal efficiencies. The uncertainty of the model was 

investigated by Monte Carlo Analysis (MCA). The results of the MCA emphasized the impact of data 

quality and quantity problem on uncertainty of developed model by showing high variances of effluent 

concentrations in MCA results. Considering the MCA results, additional tests, sampling and 

measurements were proposed to improve the modelling results.  
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Appendix: 

 
 Fig. A.1. Comparison of sensor and sampling results for effluent NH4 at 3 aeration tanks within the sampling campaign 

period (26.10-21.11.2016) 
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