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A temporal complex network-based approach is proposed as a novel formulation to
investigate turbulent mixing from a Lagrangian viewpoint. By exploiting a spatial prox-
imity criterion, the dynamics of a set of fluid particles is geometrized into a time-varying
weighted network. Specifically, a numerically solved turbulent channel flow is employed as
an exemplifying case. We show that the time-varying network is able to clearly describe
the particle swarm dynamics, in a parametrically robust and computationally inexpensive
way. The network formalism enables to straightforwardly identify transient and long-
term flow regimes, the interplay between turbulent mixing and mean flow advection,
and the occurrence of proximity events among particles. Thanks to their versatility and
ability to highlight significant flow features, complex networks represent a suitable tool
for Lagrangian investigations of turbulence mixing. The present application of complex
networks offers a powerful resource for Lagrangian analysis of turbulent flows, thus
providing a further step in building bridges between turbulence research and network
science.

Key words:

1. Introduction

One of the most remarkable features of turbulent flows is their ability to strongly
enhance transport and mixing processes. This outstanding property plays a crucial role in
many natural phenomena and engineering applications, ranging from chemical reactions
and combustion mechanisms (e.g., see Warnatz et al. 1996; Nguyen & Papavassiliou
2018) to biophysics (Seuront & Schmitt 2004), as well as atmospheric dispersion and
geophysical phenomena (e.g., see Pasquill & Smith 1983; Fernando 2012). In spite of
many efforts, several issues regarding the understanding and modelling of turbulent
mixing – e.g., anomalous scaling of statistics and signal intermittency – need to be
addressed (Warhaft 2000; Sawford 2001; Dimotakis 2005; Toschi & Bodenschatz 2009).
The Lagrangian viewpoint of turbulent mixing – in which the focus is on particles that
are advected by the flow – has turned out to be better suited than the Eulerian view in
many cases (Falkovich et al. 2001; Sreenivasan & Schumacher 2010). To this aim, the time
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evolution of pair- and multi-particles has usually been explored in terms of geometrical
features – such as pairwise mean-square separation or multi-particle shape evolution –,
and results are typically ensemble averaged (e.g., see Salazar & Collins 2009; Pitton et al.
2012; Bianchi et al. 2016; Polanco et al. 2018).

In this work, turbulent mixing is investigated in a Lagrangian way by exploiting
the recent advances in complex networks, aiming to extend the level of information of
classical statistics. Differently to previous approaches, the geometrical representation into
complex networks of the particle dynamics offers a twofold tool. On one hand, the network
topology systematically geometries the particle dynamics, thus introducing a schematic
and synthetic representation of the particle swarm in time. On the other hand, the
network formalism provides a robust and well-established framework for studying non-
trivial spatio-temporal dynamics of a discrete set of interacting elements (Boccaletti et al.
2006). Here, we propose a network-based geometrization of particle dynamics in which
nodes correspond to fluid particles and links are active by means of a spatial proximity
criterion, such that the relative position between particles at any time is enclosed into
the network structure. In this way, we obtain a time-varying network which is able to
capture in a synthetic way both transient and long-term effects of turbulent mixing, as
well as the extent to which particles interact with each other.

Network science has emerged in last two decades as an effective technique to study
real-world complex systems (Newman 2018), and growing attention is given to the
application to turbulent flows (e.g., see Charakopoulos et al. 2014; Murugesan & Sujith
2015; Scarsoglio et al. 2016; Taira et al. 2016; Iacobello et al. 2018). Very recently,
network-based analysis of fluid flows both in a Eulerian and in a Lagrangian frame
has also been carried out. In general, the focus of Lagrangian approaches has been on
fluid transport and coherent structure identification, by exploiting the discrete transfer
operator (Ser-Giacomi et al. 2015) and spectral-graph procedures (Hadjighasem et al.
2016; Schlueter-Kuck & Dabiri 2017; Padberg-Gehle & Schneide 2017; Schneide et al.
2018). Specifically, the linking criterion is usually based on a similarity measure – e.g.,
Euclidean distance, correlation coefficient or Granger causality (see Donner et al. 2017, for
an overview) – between particle trajectories evaluated in a given time interval; by doing
so, the temporal details of particle trajectories do not explicitly emerge. Differently,
in this work the spatio-temporal evolution of particles is captured at each time step,
providing a rich and detailed time-dependent picture of turbulent mixing. Therefore, the
time-varying network formulation intrinsically highlights the temporal development of
particle dynamics due to the turbulent motion.

As a paradigm of possible applications, the proposed approach is shown for a numeri-
cally solved turbulent channel flow. In this way, we are able to provide physical insight
into the interplay between the mean flow advection and wall-normal turbulent mixing on
particles at different times, thus highlighting the key role of the spatial inhomogeneity.

2. Flow description and networks building

A DNS of a three-dimensional fully-developed incompressible turbulent channel flow
was performed at Reτ = Huτ/ν = 950, where H is half the channel height, uτ the friction
velocity and ν the kinematic viscosity (Kuerten & Brouwers 2013). The length of the
domain equals 2πH in streamwise direction, and πH in the spanwise direction; in these
two directions, periodic boundary conditions are applied to velocity and fluctuating part
of the pressure. A constant mean pressure gradient in the streamwise direction is applied
to drive the flow. The grid spacing in wall units equals 7.8 and 3.9 in the streamwise
and spanwise direction, respectively, while the maximum wall-normal grid spacing (at
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Figure 1. (a) Sketch of the setup of the analysis. Particles are initially released from a uniformly
spaced grid at x+ = 0. Coloured spheres represent particles while the ellipsoid is shaded in grey.
Connections between particles are illustrated as black lines. (b) Example of particle dynamics
depicted as a contact sequence, and (c) temporal evolution of the corresponding networks (the
link thickness is proportional to its weight). For all panels, colors from red to blue highlight
different starting levels (i.e., different initial y+ values).

the channel centre) is 7.8. The total simulation time is T+ = 15200, while the time-step
is ∆t+ = 4.75, where the + superscript indicates wall-units normalization. The T+ value
was set greater than the wall-normal (Eulerian) mixing time, T+

ε , namely the integral
time-scale after which the Taylor dispersion analysis is asymptotically valid (Fischer
1973). By definition, T+

ε ν/u
2
τ = H2/εy (Fernando 2012), where εy = 0.067Huτ is Elder’s

vertical mixing coefficient (Elder 1959); as a result, T+
ε ≈ 14180.

The numerical simulation is run until the statistically stationary condition of the flow
is reached. After this condition is fulfilled, particles are seeded in the fully-developed
turbulent flow and tracked in time (for more simulation details, see Appendix A). At this
initial time, a set of (Ny ×Nz) fluid particles was arranged as a uniformly distributed
grid in the plane (y+, z+) at x+ = 0, where (x+, y+, z+) are the streamwise, wall-normal
and spanwise coordinates, respectively. Although in this work we considered fluid tracers,
inertial particles could alternatively be employed. The time-dependent particle positions
are then obtained from dx+/dt+ = u

(
x+(t+), t+

)
, where x+ is the position of a tracer

particle. Since the focus is on the wall-normal mixing process, particles were grouped into
Ny wall-normal levels, li, where each level includes a spanwise-row of fluid particles at
the initial time, i.e. li depends only on the y+ value of particles at t+ = 0 (e.g., figure 1(a)
shows five levels highlighted with different colors). In this work, we set Ny = Nz = 100,
where particles closest to the walls are located at y+ = 9.5 and the remaining ones are
separated by ∆y+ = 2Reτ/Ny = 19, while the initial spanwise separation is ∆z+ =
29.85. The initial particle grouping into levels naturally emerges here as the presence
of the walls introduces an inhomogeneous direction, y+. The proposed initial particle
arrangement is suitable to numerically represent, for example, a uniformly distributed
release of contaminant in the domain. In general, initial particle grouping can be not easily
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identifiable, resulting in a non-trivial task which requires ad hoc partition techniques (e.g.,
see Hadjighasem et al. 2017; Balasuriya et al. 2018).

To investigate the turbulent dispersion through the network formalism, the interactions
between fluid particles were determined based on mutual spatial proximity. Accordingly,
if two particles come sufficiently close in space during their motion, a connection is
established between them. To specify the particle proximity, we assume that a particle
i is connected to a particle j if i lies inside a reference ellipsoid centred at j, and vice
versa (by symmetry). For instance, figure 1(a) illustrates the temporal evolution of a
particle along its trajectory, and the connections with other particles enclosed in its
reference ellipsoid. The ellipsoid was geometrically anchored to each particle location and
it was chosen as reference geometry to take into account the anisotropy of the flow. Each
ellipsoid is determined by means of its semi-axis lengths, a = (ax, ay, az), representing
spatial scales of turbulent motion along each Cartesian direction. Accordingly, if the
Euclidean distance between a pair of particles is less than ai in each direction i = x, y, z
(namely they are connected), then the two particles share turbulent length scales greater
(or equal) than ai. The choice of a is generally a non-trivial task which depends on
the specific problem under study, such as the presence of inhomogeneities in the flow or
if particles are involved in chemical or biological process (in which specific interactions
occur when particles are sufficiently close). When characteristic scales are not known a
priori, the issue of setting a – namely to assess the typical length scales in the flow – can
be faced, for instance, by relying on turbulence spectra, correlation functions, as well as
coherent structure identification techniques.
In this work, in order to illustrate the potential of the proposed approach, the semi-axes of
the ellipsoid were set proportional to the average pairwise distances in the corresponding
Cartesian directions. In this way, the increase of the average mutual distance between
particles with time – that is mainly due to the streamwise dispersion and partly to the
spanwise mixing – is taken into account. By indicating the average Euclidean distance
as 〈d〉, then ai(t

+) = αi 〈di(t+)〉, where angular brackets indicate the average over all
particle pairs, i = x, y, z and α = (αx, αy, αz) is a set of parameters. Although α may
also explicitly depend on t+, we considered αi constant in time in order to focus only on
the temporal dependency of the semi-axes a, as retained in 〈d(t+)〉. In particular, as the
simplest case, we selected α as a constant in the range α ∈ (0, 1], so that the ellipsoid
size in each Cartesian direction does not exceed the average distance, 〈d〉 (this is crucial
along y+ since particles can not exceed the inter-wall height, 2H). As a reference case, we
set α = 0.5 so that the ellipsoid size in each Cartesian direction is equal to the average
distance; however, similar results are obtained with other α values.

Since particles follow different trajectories due to turbulent motion, the spatial prox-
imity approach results in a non-trivial time-sequence of connections. An example of a
geometrical representation of the particle dynamics is shown in figure 1(b) as a contact
sequence: each connection between pairs of particles (depicted as small coloured circles) is
indicated as a black arc, meaning that particles are sufficiently close in space at that time.
Therefore, we employed a complex network-based approach to geometrically represent
and investigate particle dynamics. Complex networks are defined as graphs – namely they
are made up of entities called nodes which are interconnected by links – that show non-
trivial topological features (Boccaletti et al. 2006; Newman 2018). In this work, nodes
correspond to levels, li, i.e. spanwise-groups of particles initially at the same y+. By
doing so, information of particles starting at the same wall-normal positions is enclosed
in each node. Therefore, the metrics extracted from the network increase their statistical
significance because they do not represent the dynamics of a single particle.

For any time, a weight is associated to each link between a pair of nodes (i, j), which
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takes into account the total number of connections shared by particles belonging to levels
li and lj . As a result, particle dynamics is modelled by means of a time-varying network
(Barrat et al. 2004; Holme & Saramäki 2012), that is a sequence of NT = T+/∆t+ weight
matrices, defined as

Wi,j(a,λ, t
+) =

∑
p∈li

∑
q∈lj

Ip,q(a, t
+)K

(
λp,q(t

+)
)
, i, j = 1, ..., Ny, (2.1)

where Wi,j = Wj,i, and the binary indicator function Ip,q is equal to 1 if a particle p lies
inside the ellipsoid of a particle q (or vice versa) at time t+, and 0 otherwise. The window
function K is a weighting function taking into account the interaction strength, λp,q =
(λx, λy, λz)p,q, between particle pairs (p, q). In this work, λ corresponds to the pairwise

Euclidean distance (evaluated in wall units) between particles (i.e., λp,q ≡ dp,q), but other
similarity or distance functions can be adopted. As discussed for the characterization of a,
the choice of K is conditioned to the specific problem under study and the corresponding
aim. For instance, when K = 1 each link-weight exactly counts the total number of
connections shared by particles belonging to pairs of nodes. An example of a time-varying
network for K = 1 is shown in figure 1(c): the particle dynamics represented in figure
1(b) is geometrized into time-evolving networks, where nodes correspond to levels and
thickness of each link is proportional to its weight.

Due to its versatility (i.e., by properly setting a, λ and K, as well as the number and
the initial arrangement of particles), the proposed time-varying network approach is a
powerful tool for turbulence analysis. In fact, the weight matrices, Wi,j(t

+), capture and
inherit the turbulent mixing information of particles initially located at different y+, at
time any t+. In particular, a pair of nodes that is not linked at a given time (i.e., Wi,j = 0)
consists of two levels whose particles are not sufficiently close in space (namely, a link is
absent in the network topology). On the other hand, non-zero Wi,j values quantify the
intensity of the connection between levels, namely the extent to which particles are close
in space. By doing so, nodes do not vary with time (i.e., they still represent the same
levels), while link weights depend on time.
Finally, it should be noted that the network-based approach recently proposed by
Padberg-Gehle & Schneide (2017) for the study of Lagrangian transport and mixing
(which follows the idea by Rypina & Pratt (2017)) can be obtained from equation 2.1 by
setting λ = d, ax = ay = az, K = 1 and by checking whether a pair of particles comes
sufficiently close in space at least once in the time window considered. Additionally,
equation 2.1 can be generalized by removing the dependence on a (that is, by setting
ai = ∞), thus only keeping the window function K as a similarity measure between
particle pairs (e.g., as adopted in Lagrangian coherent structure approaches, see also
Hadjighasem et al. (2016); Schlueter-Kuck & Dabiri (2017); Schneide et al. (2018)).

3. Results and discussion

In this section, we present the results of the time-varying weighted network approach
to investigate turbulent mixing. Two configurations of window function K are explored.
First, in order to show the main features of the time-varying networks in a simple case, we
set K ≡ Ku = 1, where superscript u indicates a uniform window function (see Sections
3.1-3.3); namely, particle interaction is unweighted (binary representation). In this way,
each connection is equally weighted, and the connection criterion is only driven by a –
i.e., the main criterion is to check if particles come sufficiently close or not, at any time.
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In the second configuration (see Section 3.4), we set

K ≡ Kw
p,q =

(
1

dp,q + 1
− 1

Dp,q + 1

)/(
1− 1

Dp,q + 1

)
, (3.1)

where dp,q is the Euclidean distance between particles p and q, given that p and q are
connected (i.e., Ip,q = 1, see equation 2.1). If the ellipsoid is centred on a particle p,
Dp,q is the distance from p and the point of intersection between the ellipsoid border
and the straight line between p and q (the same criterion holds if the ellipsoid is centred
on the particle q). In this way, the window function is bounded as Kw ∈ [0, 1], where
the ellipsoid border represent an iso-value Kw = 0, while Kw = 1 is obtained if particle
positions coincide (see also Hadjighasem et al. (2016); Schneide et al. (2018) for other
works following an inverse distance-based weighting function). In this case, the anisotropy
of the flow is explicitly considered as Dp,q depends on the length of the ellipsoid semi-
axes. By using a monotonically decreasing function for K, the smallest spatial scales
are more weighted than the largest ones. This corresponds to the assumption that the
smallest turbulent scales play a more significant role in particle dynamics.

3.1. Network structure of particle dynamics

To show the networks from the particle dynamics, in figure 2 the weight matrices at six
characteristic times and their corresponding network topology are reported (for further
visualizations see Movie1 ). Since particles are initially arranged in a uniform grid at
x+ = 0, each level is simply connected to levels close-in-space in the (y+, z+) plane at
t+ = 0, resulting in the diagonal weight matrix of figure 2(a1). For small times, the
particle dynamics is led by an almost purely advective motion and the particle swarm
takes the shape of a bow-like surface (at the very beginning, this surface reproduces the
mean velocity profile, U(y+), in each (x+, y+) plane). Accordingly, the weight matrix
exhibits a predominant diagonal pattern, as shown in figure 2(b1). However, wall-normal
turbulent mixing enables out-of-diagonal connections, and an increasing number of weak
Wi,j values between initially distant levels appears in time (e.g., levels l10 and l75 in figure
2(c1)). Sufficiently far enough downstream from x+ = 0, all levels are interconnected with
each other (e.g., see figure 2(d1)), due to the progressively enhanced transversal mixing.
Nevertheless, the mean flow advection is still dominant over mixing at this stage: the
initial linear diagonal structure of Wi,j evolves into a three-square diagonal pattern,
where the central square is bounded between y+ ≈ 500 and y+ ≈ 1400 (namely levels
l27 and l74). This wall-normal coordinate corresponds to the y+ value at which the mean
shear, ∂U/∂y, sharply decreases towards zero. In fact, while particles initially located
far from the walls experience an almost zero mean shear (thus moving downstream at
a high mean velocity), particles close to the wall tend to form two long tails due to the
large mean shear close to the wall. The advection process makes the tails progressively
stretched along the walls as time increases, highlighting the effect of the mean shear
on particle swarm. Therefore, the three-square pattern emerges as a consequence of the
mean shear on the particle dynamics. Finally, at some time long after, turbulent mixing
becomes as effective as streamwise advection. This is first manifested as a smoothing in
the three-square pattern of Wi,j (figure 2.1(e1)), and later as a random-like structure
(figure 2.1(f1)). This final state represents the Taylor dispersion regime, in which the
streamwise particle distribution approaches a Gaussian distribution (see also Movie2 ).

The temporal characterization of particle dynamics is also highlighted by a different
network topology in figure 2. For short times, the networks show a tree-like elongated
structure (figure 2(a2-c2)) in analogy with the diagonal pattern of the corresponding
Wi,j (figure 2(a1-c1)). On the other hand, turbulence mixing – by enabling links between
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Figure 2. Representation of the time-varying network as: (a1-f1) weight matrices, Wi,j ; (a2-f2)
their corresponding network topology. In panels (a1-f1), the labels of the matrix ordinates
indicate the y+ value (relative to the closest wall, i.e. y+ ∈ [0, 950]) of the corresponding level
reported in the matrix abscissas, while colors represent the weight of the links, Wi,j . Network
visualizations in panels (a2-f2) are obtained through the OpenOrd layout algorithm (Martin
et al. 2011); node colors indicate different y+ values and range from red (i.e., level 1) to blue
(i.e., level 100), while link weights are shown in a grey-scale, where strong links are in black and
weak links are in light-grey.

distant levels – has the effect to induce a clustered topology, that is a network geometry in
which nodes tend to aggregate with each other. In fact, as illustrated in figure 2(d2), the
nodes of the network at t+ = 2327.5 tend to group based on their wall-normal coordinate:
this topology corresponds to the three-square pattern of figure 2(d1). Finally, for large
times the turbulent mixing is much more effective and the network topology develops
towards a strongly aggregated pattern with a random-like layout (figure 2(e2-f2)).
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Figure 3. (a) Total number of connections, E(t+), as a function of time. Three regimes are
highlighted and distinguished by T+

a ∼ 400 and T+
d ∼ 5200. The two insets show the particle

swarms in the first and third regimes, where particle colors indicate their starting level (blue
is l1, red is l100). The values of E at the same times reported in figure 2 are also illustrated as
coloured circles. (b) Effect of α on E(t+), where Ea and Ed are the average value of E(t+) over
t+ < T+

a and t+ > T+
d , respectively. Dashed lines indicate the scaling as α2 and α3.

3.2. Advection-mixing regimes and network robustness

In order to highlight the richness of the information contained in the weighted network
as time evolves, we introduce a scalar metric, E ≡

∑
i

∑
jWi,j/2, that is the total number

of network connections established at each time. Figure 3(a) shows the behaviour of E
as a function of t+, where we see three temporal regimes. The first regime ranges in
t+ ∈ (0, T+

a ], where T+
a ≈ 400 is the time-scale in which particle dynamics is primarily

led by streamwise advection. Therefore, in this first regime particles are arranged in a
bow-like shape, as shown in the top inset in figure 3(a). Since the wall-normal mixing
is the main responsible for the activation of distant inter-levels connections, in the first
regime the total number of links is almost unchanged and only particles initially close in
space are connected with each other (see also figure 2). As time increases, however, mixing
progressively strengthens and E(t+) decreases up to t+ ≈ 5200. In fact, if two particles
are connected (i.e., each particle lies inside the reference ellipsoid of the other one),
wall-normal mixing tends to move the two particles apart in the wall-normal direction.
Accordingly, particles tend to deviate from the bow-like profile (typical of the first regime)
in the y+ direction, and they come across a region in which the particles are less dense;
as a result, in the second regime E(t+) decreases as turbulent mixing progressively
intensifies. Therefore, the second regime is an intermediate stage between an advection-
dominant and a mixing-dominant regime. At some time long after, the advection process
and the transversal mixing are balanced and the particle dynamics approaches the Taylor
asymptotic state. Hence, the third regime is characterized by a nearly constant value of
E(t+), because the particle swarm spreads in the streamwise and spanwise directions
without showing any spatial pattern (see the bottom inset in figure 3(a)). According to
our analysis, this third regime starts at time T+

d ≈ 5200, corresponding to the time-scale
from which Taylor’s dispersion analysis can be applied (Fernando 2012). By comparing
T+
d and T+

ε , we found that Taylor’s analysis holds for T+
d /T

+
ε & 0.37 which is in excellent

agreement with the value 0.4 reported in literature (e.g., see Fischer 1973). It is worth
noting that, while T+

ε (and T+
d ∝ T+

ε ) can be estimated from a dimensional analysis of the
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conservation equation of a tracer, the value of T+
a is non-trivial. Indeed, T+

a is governed
by a transient dynamics in which the magnitude of the advection and mixing terms is not
easy to quantify. By means of particle geometrization into networks, however, we are able
to easily distinguish the onset of both transient (i.e., T+

a ) and long-term regimes (i.e.,
T+
d ). It should also be noted that the chosen time resolution (∆t+ = 4.75) is sufficiently

accurate for the present analysis, as the network features smoothly evolve over time (see
figure 3(a)).
To summarize, the network structures are directly affected over time by wall-normal
turbulent mixing or, in general, by the interplay between mixing and advection. In
particular, the effect of turbulent mixing on particle dynamics is captured by the total
number of connections, E, which is able to reveal to which extent wall-normal mixing
breaks the initial particle arrangement towards the Taylor asymptotic state.

For a fixed number of levels, Ny, the behaviour of E(t+) – and in turn of the weighted
network – basically depends on two modelling parameters: the number of particles in each
level, Nz, and the constant of proportionality, α, between the ellipsoid semi-axes and the
average pairwise Euclidean distance. Besides, the DNS spatial resolution could affect the
network structure, since a coarse spatial resolution implies an inaccurate velocity field
and, in turn, a poor particle position resolution. However, the adopted spatial resolution
is sufficient to provide a reliable particle position evaluation (Geurts & Kuerten 2012;
Kuerten & Brouwers 2013).
To assess the robustness of the proposed approach, we first performed a parametric
analysis on Nz while keeping α = 0.5. By decreasing Nz (keeping Ny = 100 constant),
the total number of particles released in the channel is reduced, thus weakening the
statistical significance of the results. However, we found that – by considering a fraction
1/δ of the total number of particles (with δ = 2, ..., 10) – the curve of E(t+) scales down
from the reference case shown in figure 3(a) proportionally to 1/δ2, as expected, with a
relative error below 10%. The effect of different α values, instead, is to vary the size of
the reference volume for the link activation between particles. Hence, a higher (lower)
value of α increases (decreases) the possibility that particles connect with each other. By
varying α in the range (0, 1], the curve of E(t+) is scaled but the values of T+

a and T+
d

do not change (as for the parametric analysis on Nz). However, in this case, E(t+) does
not scale as α3 at any time, as one would expect, but the scaling depends on the regime.
In fact, as shown in figure 3(b), the mean value of E(t+) for t+ < T+

a (namely Ea)
scales as α2, because in the first regime only a fraction of each ellipsoid is occupied by
particles, resulting from the intersection of a bow-like surface with an ellipsoidal volume.
Differently, the mean value of E(t+) for t+ > T+

d (i.e., Ed) scales as α3, because in the
third regime particles are spread in all directions and particles occupy the entire volume
of each ellipsoid.

3.3. Characterization of turbulent mixing

The investigation of E(t+) provides concise insights into the ensemble behaviour of
all levels at each time, and it enables to distinguish different advection-mixing regimes.
Nevertheless, from the weight matrices Wi,j it is possible to extract much more detailed
information. In fact – as shown in figure 2(b1-c1) where low Wi,j values appear out of
the main diagonal – the key effect of mixing is to promote the activation of links between
nodes corresponding to distant levels (e.g., l1 and l100). Since particle geometrization into
the network framework is based on the spatial proximity, the appearance of a link between
two distant levels represents a peculiar event, which is important information, for instance
when particles are involved in chemical reactions. In order to characterize such events,
in figure 4(a) we show the temporal behaviour of Wi,j(t

+) for six representative pairs of
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Figure 4. (a) Time evolution of Wi,j for six pairs of levels. Each horizontal bar corresponds
to an entry of the Wi,j matrices, while link activation is highlighted by horizontal coloured
bands, where color variations indicate the change of the link weight over time proportionally
to log10(Wi,j). (b) Standard deviation, σli , of different levels inside the ellipsoid of particles in
five representative levels. The horizontal dashed line indicates the standard deviation from a
discrete uniform distribution in the interval [1, Ny], namely σl,u ≈ 28.87.

nodes. If we focus on how connections between particles in the same level change over time
(that is the main diagonal of Wi,j , with i = j), link activation starts as expected at the
initial time (both for levels close to the wall, l1, and at the center, l50) and the weight
decreases towards an asymptotic average value. For the level pair (50− 25) – namely
particles initially started at y+ ' 940 and y+ ' 465, respectively –, link activation
starts quickly in time, because particles belonging to l25 and l50 do not experience a
strong velocity gradient and turbulent mixing enables their connection after a short time
interval. A link between the pair (1− 25), instead, appears only at t+ ≈ 570, because
during the first regime particles in l1 experience higher mean shear than particles in l25,
so only when the mixing is strong enough a link appears between them. Unexpectedly,
as shown in figure 4(a), a link between the two furthest levels, (1− 100), appears before
a link between levels (1− 50). This can be explained by recalling that if particles in
the bow-like swarm are moved apart due to wall-normal mixing, they come across a
region less dense of other particles. Therefore, particles in l1 are more likely to connect
with particles in l100 than particles in level l50, because when W1,100 > 0 particles in
l50 are mainly located far downstream so that W1,50 = 0. Therefore, link activation
strongly depends on the flow features, namely both mixing and advection, and it reveals
non-trivial results. In particular, since each node represents a set of Nz particles, the
activation of a link between two nodes takes into account all the pairwise connections
between the Nz particles in each node. By doing so, each link captures and highlights –
through its weight – ensemble information about the dynamics of the Nz particles in each
node. It is worth noting that, for simplicity, we only explored the inter-relation between
pairs of nodes, namely 2−tuples, but the weighted networks comprise the information of
all n−tuples of nodes.

Finally, we focused on how the presence of different levels inside each ellipsoid varies
over time due to the effect of mixing. In fact, any particle belonging to a level li is
connected – due to spatial proximity – with a set of other particles belonging to different
levels lj , at each time. This is illustrated in figure 1(a) where the presence of different
levels inside the ellipsoid of a reference particle is highlighted by different particle colors.
To quantify such variability at any time, we evaluated the standard deviation, σli , of the
indices, j = 1, ..., Ny, of levels lj found inside the ellipsoids of all particles belonging to
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a reference level, li. In this way, we quantify the efficiency of mixing between different
levels. In figure 4(b) we show σli as a function of time for five representative levels, li: due
to the progressive strengthening of turbulent mixing, the values of σli generally increase
with time. Specifically, since in the first regime advection tends to move particles apart in
the streamwise direction initially started at different y+, levels close to the walls display
lower values of σli because they are unlikely to connect with other levels at higher y+

(see top inset in figure 3(a)). For long times, instead, all the σli approach the value of
a uniform distribution, σl,u, because of strong turbulent mixing. However, only levels
close to the wall (i.e., l1 and l100) show σli values above σl,u, as a consequence of their
preferential connection with very distant levels (as illustrated in figure 4(a)). It should
also be noted that pairs of levels at a similar distance from the wall (i.e., pairs 1 − 100
and 20− 80) show analogous behaviour, since they experience similar dynamics.

3.4. Time-varying network: weighting connections, Kw

The time-varying network built by equally weighting each particle connection (i.e.,
K ≡ Ku = 1) shows several remarkable features of the turbulent dispersion over time,
as well as its effect on particle dynamics. However, in order to explicitly account for the
distance between particles in a particle pair, in the present section we show the results
for a non-uniform weighting function, which monotonically decreases with the Euclidean
distance, as defined in equation 3.1. The ellipsoid is still used as a spatial proximity limit
for particle connections – so that particles outside each ellipsoid are not considered since
Ip,q = 0 – but now particles at smaller spacing inside each ellipsoid are more weighted.
It should be noted that the (binary) structure of networks for Kw at any time is the
same as shown for Ku in figure 2. In fact, the diagonal and three-square patterns are
also found for Kw in the first and second regime, respectively, while for large times
patterns do not emerge. However, by using a non-uniform window function, the values
of the link weights (i.e., the link colors in figure 2) for the Kw case tend to be more
intense along the diagonal, as shortest connections are weighted more. In figure 5 we
show four network metrics to further characterize the time-varying weighted networks in
both configurations, Ku and Kw. The four metrics are selected in order to progressively
highlight the main network features, ranging from a local (i.e., single nodes) to a global
(i.e., the entire network) point of view: the node centrality by evaluating the strength;
the node pairs by evaluating the assortativity coefficient; the node triples by evaluating
the clustering coefficient; and the node n−tuples (of higher order) by computing all the
shortest paths.

Figure 5(a) shows the average strength, 〈S(t+)〉, of the networks as a function of time
(angular brackets indicates average over all nodes). The strength of a node i in a weighted
network is defined as Si(t

+) ≡
∑
jWi,j(t

+), and quantifies the intensity of the relation
between node i and all other nodes (Barrat et al. 2004). In the case Ku = 1, 〈S〉 is related
to the number of particle connections, E, as 〈S〉 = 2E/Ny. The behaviour of 〈S(t+)〉 as
a function of time for the two cases of K is essentially the same, because (as discussed
in section 3.2) the effect of turbulent dispersion on particle dynamics is fully captured
by the network structure corresponding to Ku = 1. However, the values of 〈S(t+)〉 for
the case Ku are globally higher (about two order of magnitude) than the corresponding
values for Kw (note that in figure 5(a) there are two ordinate axes), as Kw ranges in the
interval [0, 1]. The difference in the temporal behaviour between the two K configurations
is more evident in the first regime, where 〈S〉 for the Kw case (red curve in figure 5(a))
decreases more rapidly. In the first regime, advection is dominant over mixing and most
of the links are present between nodes initially close in space (i.e., along the diagonal
of Wi,j). However, as mentioned in Section 3.2, wall-normal turbulent mixing promotes
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Figure 5. Network metrics as a function of time, t+, for the two cases of window function, Ku

(black lines) and Kw (red lines). (a) Average strength, 〈S〉; the red ordinate axis on the right
refers to the range of 〈S〉 for the Kw case. (b) Weighted assortativity coefficient, r. (c) Average
clustering coefficient, 〈C〉. (d) Average path length, L, and number of disconnected nodes in the
networks (blue dotted line). The inset in panel (d) is a zoom of the decreasing behaviour of L
with time. In all panels, coloured circles refer to the times reported in figure 2, while background
colors highlight the three advection-mixing regimes (see Section 3.2).

the activation of links between initially distant nodes, as emerges from the appearance
of out-of-diagonal links in figure 2(a1-c1) and the increase of standard deviation in figure
4(b). These out-of-diagonal links correspond to connections between particles that are
distant in space within an ellipsoid, thus corresponding to very low Kw values. In fact, if
a particle q enters inside the ellipsoid centred in a particle p at a given time (with p and
q belonging to distant initial levels), it is very likely that q is close to the border of the
ellipsoid of p (where Kw

p,q = 0). On the other hand, for the Ku case, connections between
particles either close or distant in space are equally weighted. Therefore, the activation
of distant links (i.e., out-of-diagonal points in figure 2(b1-c1)) makes the values of 〈S〉
decrease faster for the Kw case than for the Ku case.
Following the concept of strength, in figure 5(b), we show the assortativity coefficient,
r(t+), which is defined as the Pearson correlation coefficient of the strength of the nodes at
the ends of each link (Boccaletti et al. 2006). A network is named assortative (0 < r 6 1)
or disassortative (−1 6 r < 0) if nodes tend to link with other similar or dissimilar
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nodes (this similarity is here measured through the strength), respectively; otherwise the
network is said non-assortative (i.e., r ≈ 0). In both K configurations, r(t+) similarly
decreases from approximatively 0.8 at small times to zero at large times. In the first
regime (especially at short times) nodes are primarily linked with other similar nodes
(e.g., see figure 2(a1-c1)), which implies that the networks are assortative; on the other
hand, for long times, the networks lose any pattern (e.g., see figure 2(e1-f1)), thus showing
a non-assortative behaviour.

Figure 5(c) shows the average clustering coefficient, 〈C(t+)〉, for the configurations Ku

(black curve) and Kw (red curve). The clustering coefficient quantifies the probability
that two randomly chosen neighbours of a node i (i.e., two nodes linked to i) are also
neighbours, thus ranging in the interval [0, 1]. It is formally defined as Ci = N∆(i)/N3(i),
where N∆(i) is the number of triangles and N3(i) is the number of triples involving node
i, respectively (Newman 2018). A weighted clustering coefficient takes into account the
interaction intensity between nodes comprising triplets (Barrat et al. 2004). As shown
in figure 5(c), 〈C〉 increases to one for both configurations as time increases: indeed, for
large times particles are well mixed with each other and it is very likely that nodes form
triangles, namely nodes are locally very well inter-connected. The effect of a weighted
network is to enhance the local cohesiveness especially in the first regime, thus the values
of 〈C〉 are the highest in the Kw case, for which spatial proximity plays a more significant
role.

Another feature of complex network structure is the concept of shortest path, namely
the path with minimal cost between two nodes, where a path is an alternating sequence
of nodes (and edges) considered only once (Boccaletti et al. 2006). We investigate the
average path length, L(t+), that is the average of all shortest path lengths in the network.
Specifically, the average path length is L =

∑
i6=j d

G
i,j/(N

2
y −Ny), where dGi,j is the length

(cost) of the shortest path between node i and j in a graph G (Boccaletti et al. 2006). In
this work, since the weight associated to each link, Wi,j , represents the intensity of spatial
proximity between nodes, higher Wi,j implies closer distances. Accordingly, the shortest
paths for the evaluation of L(t+) are computed by using a weighting cost 〈W 〉 /Wi,j ,
where 〈W 〉 is the average link weight of the networks at any time (Opsahl et al. 2010).
The entries of the weighted matrix, Wi,j , are normalized through 〈W 〉 in order to consider
the change of Wi,j range as time increases (e.g., see the colorbar ranges in figure 2(a1-f1)).
Therefore, a high weight means a low cost of the path. Figure 5(d) shows the behaviour
of L as a function of t+. The networks during the first regime are able to display high
L values, since two nodes are reachable via a high-cost path. By inspecting the values
of dGi,j we found that outliers in L for t+ ∈ [20, 50] are due to the nodes starting very
close to the walls (namely, li with i = {1, 100}). In the first regime, nodes starting very
close to the walls are disconnected from the other nodes in the network (see blue-dotted
curve in figure 5(d)) – namely dG1,j = dG100,j = ∞ – because of a strong effect of mean
shear on particle positions (see also figure 2(b1) or the visualizations in Movie1 ). Since
disconnected nodes are conventionally excluded from the computation of the average
path length (Boccaletti et al. 2006), the peaks in L appear when nodes 1 and 100 are
linked to the other nodes, that is at t+ ≈ 25 and t+ ≈ 40, respectively. From the point
of view of the network topology, the re-attachment of the disconnected nodes implies
high-cost shortest paths, as the values of dGi,j for nodes i = {1, 100} are two orders of

magnitude larger than dGi,j for all the other nodes. As a consequence, very high values of
L are detected. It should be noted that, although the effect of the mean shear is evident
in the first regime, disconnected nodes are not expected for t+ → 0, as follows from the
initial particle arrangement. For long times, instead, L tends to decrease as an effect
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of turbulent mixing. By comparing the two weighted configurations, Ku and Kw, the
values of L in the first two regimes are higher for the Kw case because (as mentioned
for the assortativity and the clustering coefficient) the window function highlights the
local mixing by enhancing the spatial proximity. In the third regime, instead, both K
configurations approach the same constant L value.

In conclusion, the analysis of the metrics at different network levels (from the single
node, to node pairs and triples, as well as the shortest path of variable length) of the
time-varying weighted network, is able to unveil both the main general features and the
presence of extreme cases in the particle dynamics.

4. Conclusions

The proposed Lagrangian network-based approach is exemplified by means of DNS
of a turbulent channel flow, where the dynamics of fluid particles is characterized by
a spatial proximity criterion. The resulting time-varying weighted network is fully able
to inherit the non-trivial time sequence of connections between (groups of) particles,
which emerges due to turbulent motion. Indeed, we can identify in a straightforward
way the characteristic regimes of particle dynamics, the appearance of peculiar events
(e.g., the time of first contact between initially distant levels), as well as the intensity of
wall-normal turbulent mixing (quantified by the total number of links). Accordingly, the
potential of the Lagrangian-based networks is twofold, since the time-varying weighted
network – represented by the weight matrices – captures in a unique framework both the
qualitative spatial features of the particle swarm and the strength of turbulent mixing.
The proposed complex network geometrization reveals to be robust and frame-invariant
(as the Euclidean distance is used). Moreover, this approach is computationally affordable
for a typical number of tracers of the order of 104 − 105, and it is thus suitable for
experimental techniques, such as particle tracking velocimetry, where the number of
tracers is usually of the order of 102 − 103 (Kim et al. 2013). Due to its versatility,
particle geometrical representation into time-varying networks can easily be extended to
other flows and other tracers, such as inertial particles or passive scalars. Based on present
findings, Lagrangian-based networks can pave the way for a systematic network-based
investigation of turbulent mixing, especially in the context of dispersion modelling.
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Appendix A. Numerical simulation details

A DNS of a three-dimensional fully-developed incompressible turbulent channel flow
was performed at Reτ = 950. To this end, the continuity equation and the Navier-Stokes
(NS) equations

∇ · u = 0,
∂u

∂t
+

1

ρ
∇p = f − ω × u+ ν∇2u, (A 1)

are solved. In these equations ρ and u denote mass density and velocity of the fluid,
p the total pressure, ω the vorticity and t is time. The friction Reynolds number of
the flow is kept fixed by prescribing the mean driving force per unit mass, f , in the
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streamwise direction parallel to the plates. The velocity, u, satisfies no-slip conditions
at the two plates, i.e. y+ = 0 and y+ = 1900. In the other two directions, x+ and z+,
periodic boundary conditions are applied for the velocity and the fluctuating part of the
pressure. In the two periodic directions of the domain a Fourier-Galerkin approach is
applied, and in the wall-normal direction y+ a Chebyshev-tau method. The continuity
equation is exactly satisfied by using the wall-normal component of the vorticity vector
and the Laplacian of the wall-normal velocity component as dependent variables, instead
of the three velocity components. The non-linear terms in the Navier-Stokes equations
are calculated in the physical space by fast Fourier transform, with application of the 3/2
rule in both periodic directions. The equations are integrated in time by a combination
of a three-stage explicit Runge-Kutta method and the Crank-Nicolson method. In the
two periodic directions 768 Fourier modes are used, while in the wall-normal direction
385 Chebyshev polynomials are employed. The time step used in the simulation equals
0.095νu−2τ , while the grid spacing are ∆x+ = 7.8, ∆y+max ≈ 7.8 (at the channel centre),
and ∆z+ = 3.9.

In order to extract particle trajectories, x+(t+), the equation dx+/dt+ =
u
(
x+(t+), t+

)
, is solved with the same explicit second-order accurate Runge-Kutta

method as used in the solution of the NS equations. The fluid velocity is interpolated to
the particle location by tri-linear interpolation. The accuracy of the numerical method
has been assessed in previous papers (Geurts & Kuerten 2012; Kuerten & Brouwers
2013).
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