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Particle swarm optimization of 2D magnetotelluric data

Francesca Pace1, Alessandro Santilano2, and Alberto Godio1

ABSTRACT

We implement the particle swarm optimization (PSO) algo-
rithm for the two-dimensional (2D) magnetotelluric (MT) in-
verse problem. We first validate PSO on two synthetic models
of different complexity and then apply it to an MT benchmark
for real-field data, the COPROD2 data set (Canada). We pay
particular attention to the selection of the PSO input parameters
to properly address the complexity of the 2DMT inverse prob-
lem. We enhance the stability and convergence of the solution
of the geophysical problem by applying the hierarchical PSO
with time-varying acceleration coefficients (HPSO-TVAC).
Moreover, we parallelize the code to reduce the computation
time because PSO is a computationally demanding global
search algorithm. The inverse problem was solved for the syn-
thetic data both by giving a priori information at the beginning
and by using a random initialization. The a priori information
was given to a small number of particles as the initial position
within the search space of solutions, so that the swarming
behavior was only slightly influenced. We have demonstrated
that there is no need for the a priori initialization to obtain ro-
bust 2Dmodels because the results are largely comparablewith
the results from randomly initialized PSO. The optimization of
the COPROD2 data set provides a resistivity model of the earth
in line with results from previous interpretations. Our results
suggest that the 2D MT inverse problem can be successfully
addressed by means of computational swarm intelligence.

INTRODUCTION

The interpretation of geophysical data requires the solution of the
inverse problem, which is, in most cases, nonlinear and ill posed. Dur-
ing the past three decades, global search algorithms as inversion meth-
ods have become of growing interest because the probabilistic or

evolutionary approach has been adopted to find the optimum solution,
which is affected by nonuniqueness. The most important global search
algorithms generally used for the inversion of geophysical data are
simulated annealing (SA), the genetic algorithm (GA) (Sen and Stoffa,
2013), the ant colony algorithm (ACO) (Yuan et al., 2009), and particle
swarm optimization (PSO) (Shaw and Srivastava, 2007).
The inversion of magnetotelluric (MT) data is usually based on

algorithms such as Occam, nonlinear conjugate gradient (NLCG),
and Gauss-Newton (GN), which are now widely recognized as
milestones among two-dimensional (2D) and three-dimensional
(3D) MT inversion codes (Avdeev, 2005; Boerner, 2010; Siripunvar-
aporn, 2012; Ghaedrahmati et al., 2014; Newman, 2014). Even if
they ensure convergence in few iterations, they are all based on
the local search principle; consequently, the final solution depends
on the initial assumption of the starting model. If a homogeneous
half-space is adopted as a starting model, some trials have to be done
to define the most appropriate value of the electrical resistivity to start
with, depending on the data set and inversion code (Miensopust et al.,
2013). Otherwise, the inversion should be initially constrained by an
a priori model that can resolve the nonuniqueness of the solution by
using information from well-log data (Yan et al., 2017a), seismic data
(Yan et al., 2017b), MT data (Santilano, 2017), or other geophysical
methods. However, if the a priori knowledge is unreliable or unavail-
able, the initial guess can create a bias in the final result and inter-
pretation (Dong and Jones, 2018). Global search methods have also
recently become of pivotal importance in MT, with the essential ad-
vantage that the inversion is independent from the starting model.
Another advantage of metaheuristic methods, such as GA, SA, and
PSO, is that they are theoretically able to find, as the final solution,
the global minimum of a function without being trapped in one of
several local minima. The solution of the MT inverse problem using
SAwas first explored by Dosso and Oldenburg (1991), whereas Ever-
ett and Schultz (1993) and then Pérez-Flores and Schultz (2002)
focus on GA. There are also some recent works adopting the Mar-
kov-chain-Monte-Carlo method to solve the 1DMT inversion: Xiang
et al. (2018), Conway et al. (2018), and Brodie and Jiang (2018). So

Manuscript received by the Editor 27 February 2018; revised manuscript received 6 September 2018; published ahead of production 25 January 2019;
published online 12 March 2019.

1Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering (DIATI), Torino, Italy. E-mail: francesca.pace@polito.it (corresponding
author); alberto.godio@polito.it.

2Institute of Geosciences and Earth Resources-National Research Council (IGG-CNR), Pisa, Italy. E-mail: alessandro.santilano@igg.cnr.it.
© 2019 Society of Exploration Geophysicists. All rights reserved.

E125

GEOPHYSICS, VOL. 84, NO. 3 (MAY-JUNE 2019); P. E125–E141, 22 FIGS., 6 TABLES.
10.1190/GEO2018-0166.1

D
ow

nl
oa

de
d 

03
/2

3/
19

 to
 8

8.
6.

10
3.

21
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2018-0166.1&domain=pdf&date_stamp=2019-03-12


far, PSO has been applied by Shaw and Srivastava (2007), Godio and
Santilano (2018), and Santilano et al. (2018), although they investi-
gate only the 1D MT inverse problem. PSO application to other geo-
physical problems includes the interpretation of vertical electrical
sounding (Fernández Martínez et al., 2010a), gravity (Darisma et al.,
2017), and multitransient electromagnetic data (Olalekan and Di,
2017). The main limitation of these works is that they analyze either
1D field data or oversimplistic 2D synthetic models. Other scientific
applications of the PSO algorithm are artificial neural networks, bio-
medical engineering, hydrogeology, electronics, electromagnetics,
power systems, robotics, and signal processing (Poli, 2008; Adhan
and Bansal, 2017 and references therein).
The present paper focuses on the implementation of the PSO algo-

rithm for the 2D MT inverse problem. A preliminary application of
this method to MTand audio-MT synthetic data has been presented in
Pace et al. (2017). The novelty of this paper concerns the validation of
the method on two MT synthetic models of different complexity and,
for the first time to the authors’ knowledge, the application to real-field
data, the COPROD2 data set (Jones, 1993a). This data set was made
available to the electromagnetic induction scientific community with
the aim of comparing different techniques for 2DMT inversion (Jones,
1993b). Since several inversion solutions have been made available so
far, COPROD2 represents an interesting (and challenging) field data
set for the application of our method. We started from the PSO code of
Ebbesen et al. (2012), but then we modified that generic MATLAB
code for our specific purpose. The efficiency of the PSO algorithm
was improved by applying the principle of hierarchical PSO with
time-varying acceleration coefficients (HPSO-TVAC) (Ratnaweera
et al., 2004). Previous works on PSO applied to the geophysical in-
verse problem have always considered constant values for the social
and cognitive accelerations of particles (Shaw and Srivastava, 2007;
Godio and Santilano, 2018; Santilano et al., 2018). However, this
assumption is not adequate for the 2D inverse problem due to its high
dimensionality and complex searching behavior. We carried out a de-
tailed sensitivity analysis to find the most appropriate values of the
time-varying accelerations: Their iterative variation improved the con-
vergence speed of the algorithm and prevented the solution from being
trapped in some local minima. The tuning of the social and cognitive
accelerations of the particles was hence crucial to finally achieve the
convergence of the solution. In addition, a new parallelized version of
the code was developed with the aim of overcoming the time-consum-
ing nature of PSO, which is computationally demanding, like the other
global search algorithms. We modified the released PSO code to be
run on a high-performance computing (HPC) cluster.
The ensuing sections are organized as follows: First, we explain the

waytheswarmintelligenceprincipleisappliedtothegeophysical inverse
problem and, specifically, to the 2DMTinverse problem. Then, the first
synthetic model is adopted to show the calibration of the main tuning
parameters of PSO, the accelerations, and the population size. Once
the input arguments are set, the two different synthetic models of MT
data are optimized and the obtained results are illustrated. After the
method validation with the synthetic models, the PSO algorithm is
applied to theCOPROD2data set, and the final resistivitymodel is com-
pared with results reported in the literature and using well-established
algorithms. Finally, the computational improvements are outlined.

PSO APPLICATION TO 2DMT INVERSE PROBLEM

The PSO algorithm is a population-based algorithm that simu-
lates the self-organizing behavior of species living in groups, such

as flocks of birds or schools of fish. The way they share knowledge
to search for food or find the best reciprocal distance in motion fas-
cinated Kennedy and Eberhart (1995) so strongly that they proposed
applying this evolutionary approach to the optimization of nonlinear
problems. Simple interactions between individuals yield a complex
collective behavior, meaning that each individual is able to adapt
and derive new and coherent behaviors in case of changes in the
external environment. The most striking feature of this method is
that every particle has a memory component that rules its behavior.
This is influenced by the cognitive knowledge of the particle and the
experience of its neighbors, whose leadership can be emulated. Piv-
otal references for computational swarm intelligence are Kennedy
et al. (2001) and Engelbrecht (2007).
The basic concept of PSO application to geophysics is that each

particle of the swarm represents a possible solution of the MT in-
verse problem, that is an electrical-resistivity model. Since the sol-
ution of the problem is affected by nonuniqueness, the search space
of solutions needs to be fully explored to find the best model, which
fits the observed data. This need is fulfilled by the adaptive and
swarming behavior of the particles. During the optimization process,
iteration after iteration, the particles “fly” within the search space,
bounded between a minimum and a maximum resistivity value. At
the end of the swarming, the optimized solution is identified. Readers
can find a detailed description of the application of PSO to the geo-
physical 1D inverse problem in Fernández Martínez et al. (2010a,
2010b) for VES and self-potential methods and Santilano et al.
(2018) for MT.
Since the implementation of the PSO algorithm for the 2D MT

problem required a high number of particles forming the swarm and
numerous iterations to achieve convergence, the standard release of
the code for MATLAB appeared to need some modifications. Sev-
eral variations of the PSO algorithm have been proposed to accel-
erate convergence and avoid a solution trapped in local minima
(Zhan et al., 2009). The PSO variant that showed improved out-
comes, with respect to the standard PSO, was the HPSO-TVAC
(Ratnaweera et al., 2004). This method takes the social and cogni-
tive behavior of particles into account to enhance the solution con-
vergence and stability.
In the 2D MT problem, the particle of the swarm represents a

resistivity model, which is a vector whose elements are the resis-
tivity values of the 2D mesh cells. Each particle of the swarm
changes its position x within the search space by means of the
velocity vector v. The vectors x and v are updated iteration by iter-
ation according to

vkþ1
i ¼ ωkvki þ αk1γ1ðPi − xki Þ þ αk2γ2ðG − xki Þ; (1)

xkþ1
i ¼ xki þ vkþ1

i ; (2)

where i ¼ ½1; : : : ; N�, N is the number of particles forming the
swarm; k is the current iteration number; xki and vki are the current
vectors of position and velocity of the ith particle, respectively; ωk

is the inertia weight that linearly decreases from 0.9 (first iteration)
to 0.4 (last iteration) to balance the momentum remembered from
the previous iteration (Shi and Eberhart, 1998); αk1 is the cognitive
acceleration toward the best particle position P, also called the “lo-
cal best”; αk2 is the social acceleration toward the best global posi-
tion G (or the “global best”) found by the group leader; and γ1 and
γ2 ∈ ½0; 1� are the uniformly distributed random values that provide
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stochastic perturbation. At the beginning (k ¼ 0), the velocity vec-
tor ðv0i Þ is zero and the position vector ðx0i ) is randomly initialized.
Then (k > 0), the particle velocity ðvki Þ changes according to three
terms: cognitive memory αk1, social attraction αk2, and inertia com-
ponent ωk. Finally, the particle position xki is updated. Although all
of the previous PSO applications to the inverse problem adopted
constant accelerations (Fernández Martínez et al., 2010a; Godio and
Santilano, 2018; Santilano et al., 2018), we set both acceleration
coefficients to vary at each iteration, according to the HPSO-TVAC
approach. At the beginning of the HPSO-TVAC optimization, α1
was larger than α2, then they linearly reversed. In this way, at the
start the diversity of the swarm ensured the search space exploration
(high αk1), and, at the end, the exploitation of the best regions and
the convergence toward the best solution were enabled (high αk2).
Hence, the resulting adaptive behavior was enhanced. In more de-
tail, the cognitive and social accelerations changed according to,
respectively,

αk1 ¼ αmax
1 − ðαmax

1 − αmin
1 Þ

�
k − 1

maxðkÞ − 1

�
; (3)

αk2 ¼ αmin
2 þ ðαmax

2 − αmin
2 Þ

�
k − 1

maxðkÞ − 1

�
; (4)

where αk is the acceleration value at the current
iteration k; αmax1 and αmax2 are the maximum
acceleration values for the cognitive and social
accelerations, respectively; αmin1 and αmin2 are the
minimum acceleration values for the cognitive and
social accelerations, respectively; and maxðkÞ is
the maximum number of iterations set for the
optimization (Engelbrecht, 2007, p. 313). So, at
the first iteration (k ¼ 1), αk¼1

1 ¼ αmax1 and
αk¼1
2 ¼ αmin2 , whereas, at the last iteration

(k ¼ maxðkÞ), αk¼maxðkÞ
1 ¼ αmin1 and αk¼maxðkÞ

2 ¼
αmax2 . In addition, the accelerations were chosen
to satisfy the stability solution conditions (Perez
and Behdinan, 2007):

α1 þ α2 < 4; (5)

α1 þ α2
2

− 1 < ω < 1: (6)

The values of the accelerations influenced the
way the particles explored the model space and
changed their trajectory with respect to the local
and global bests. A thorough sensitivity analysis
on the PSO control parameters, accelerations and
inertia, can be found in Ratnaweera et al. (2004)
and Fernández Martínez et al. (2010a, 2010b).
These works tested several benchmark functions
and identified the best ranges of these values, en-
suring the convergence and stability of the PSO
algorithm. Starting from their results, and obey-
ing equations 5 and 6, we performed some tests
to assess the influence of several acceleration val-

Figure 1. The PSO algorithm flowchart: P is the local best solution
and G is the global best solution.

Figure 2. Synthetic model 1: (a) The 2D mesh is discretized into 33 layers and a total of
957 grid cells. The labels S1, : : : , S15 indicate the location of the 15 MT stations. The
dashed area is shown in (b): A 10 ohm-m conductive body is hosted in a 100 ohm-m
medium.
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ues on the solution of the MT inverse problem.
For cognitive and social accelerations, we adopted
three different maximum values, αmax1 and αmax

2

equal to 1.5, 2, and 2.75, and three different mini-
mum values, αmin

1 and αmin
2 equal to 0.25, 0.5, and

0.75. This sensitivity analysis was applied to syn-
thetic model 1, and the results are presented in the
next section.

The fitness function

The final goal of the optimization process is
the minimization of the fitness or objective func-
tion. The particle with the lowest fitness value
is awarded with the global best position G and
is going to attract neighbors depending on the
social acceleration α2. The fitness function that
we adopted was the same as that of Everett and
Schultz (1993) for the calculation of the data mis-
fit, whereas the Occam-like regularization was
added as proposed by deGroot-Hedlin and Con-
stable (1990). Therefore, for 2D MT data, the
function to be minimized was

FðmÞ ¼
�
1

M

���� logðρa;oÞ − logðρa;pÞ
logðΔρa;oÞ

����
2

2

þ 1

M

����ϕo − ϕp

Δϕo

����
2

2

�
1∕2

þ λxk∂xmk2 þ λzk∂zmk2;
(7)

where ρa;o and ρa;p are the observed and predicted apparent resis-
tivity, respectively; Φo and Φp are the observed and predicted
impedance phases, respectively; Δρa;o and ΔΦo are the errors in
observed apparent resistivity and phase, respectively;M is the num-
ber of degrees of freedom, i.e., the number of evaluated data; λx and
λz are the Lagrange multipliers in the x- and z-directions, respec-
tively, set as the trade-off between the model and data misfit to regu-
late the model roughness, and ∂xm and ∂zm are the first derivatives
of the model solution along the x- and z-directions, respectively.
The solution m is the electrical-resistivity model, i.e., the vector
of resistivity values of the 2D domain. This vector has as many el-
ements as the grid cells of the 2D mesh and is represented by the
particles of the swarm. At each iteration, the particle that best min-
imizes the objective function is assumed as the global best solution
(G), whereas the other particles can be either attracted or driven
away looking for other solutions in the search space. At the end
of the optimization, the particle with the minimum FðmÞ is selected
as the final solution and most of the other particles converge to it
(swarming behavior). Apparent-resistivity values were transformed
to their logarithmic values because they can cover different orders
of magnitude. The first part in the right side of equation 7 addresses
the minimization between the observed data, apparent resistivity
(ρa) and impedance phase (Φ), and predicted data computed by
the forward modeling. This calculation of the misfit is defined as
the square root of the sum of two squared Euclidean norms because
ρa and Φ can have different orders of magnitude and ranges. The
forward modeling incorporates the physics of the problem and,

Figure 3. Synthetic model 2: Two 10 ohm-m deep anomalies and one superficial 50 ohm-
m body are embedded in a 100 ohm-m host medium. The labels S1, S2, : : : , S15 indicate
the 15MT stations. The magnified box on the top shows the 50 ohm-m body below S2–S5.

Figure 4. The L-curve response for synthetic model 1 along the hori-
zontal (black diamonds) and vertical (red circles) directions. The
trade-off between the data misfit and the model norm indicates the
best Lagrange multiplier λ equal to 0.1.

Table 1. Synthetic data from example 1 were adopted to
perform the calibration of the cognitive acceleration α1 and
social acceleration α2 starting from different values at the
first iteration (k � 1).

αk¼1
2 ¼ 0.25 αk¼1

2 ¼ 0.5 αk¼1
2 ¼ 0.75

αk¼1
1 ¼ 2.75 rms 0.91 2.17 2.18

FðmÞ 1.34 2.88 3.03

αk¼1
1 ¼ 2 rms 0.88 0.86 0.91

FðmÞ 1.47 1.37 1.33

αk¼1
1 ¼ 1.5 rms 1.11 1.01 0.87

FðmÞ 1.73 1.52 1.4444

Note: The final values of the rms error and fitness function FðmÞ are listed for
each test.
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starting from the assumed model m, predicts the responses ρa, and
Φ for each particle of the swarm. The remaining part of equation 7
was added to minimize the roughness of the model solution m: In
the horizontal and vertical directions, the differencing operator onm
was weighted by the Lagrange multiplier λ. This approach is the
Occam-like optimization and has been adopted for the 1DMT prob-
lem in Godio and Santilano (2018) and Santilano et al. (2018). In
this way, the minimization of the objective function looks for the
smoothest model that fits the data, thus ensuring a balance between
the data fitting and the roughness of the model. The value of λ was
appropriately chosen following the L-curve criterion (Farquharson
and Oldenburg, 2004). It consists in finding the optimal trade-off
between the misfit of the data and the roughness of the final model
(i.e., the model norm) in the horizontal and vertical directions. The
synthetic and real models analyzed in this work
had their specific optimal value of λ.

PSO input arguments

The PSO algorithm was iterated enough to
guarantee as robust a minimization of the fitness
function as possible. Previous PSO applications
adopted the maximum number of iterations as
the unique stopping criterion (Godio and Santi-
lano, 2018; Santilano et al., 2018). However, the
number of iterations is problem dependent and
its arbitrary choice can lead to either an ending
before the solution convergence or unnecessary
computation (Engelbrecht, 2007). In this work,
we took into account the fitness-function trend
during the minimization process. PSO ran as
long as the fitness value did not minimize for 80
consecutive iterations or, if this condition was
not satisfied, up to a maximum number of 6000
iterations. Another stopping criterion was the
minimum root-mean-square (rms) error of the
data equal to 1 (�10% of tolerance), to avoid
the fitting of the data below their uncertainty
(deGroot-Hedlin and Constable, 1990).
The swarm size, i.e., the number of particles,

influences the way that particles distribute over
the search space to guarantee the exploration of
possible solutions. The swarm size must be suf-
ficiently high to ensure a wide initial coverage of
the search space, so that the particles can effi-
ciently explore all of the regions potentially host-
ing the global minimum. This behavior is missed
if the swarm is too small, although giving the ad-
vantage of unburdening the computational com-
plexity. An interesting analysis on the relation
between the swarm size and the computational
complexity can be found in Van den Bergh and
Engelbrecht (2001). The number of particles is a
problem-dependent parameter, and it is usually
set proportional to the number of unknowns, that
is, for us, the number of resistivity cells the 2D
domain was discretized into. The ratio between
the problem unknowns and the number of par-
ticles was suggested to be between 8 and 12 times
the unknowns by Engelbrecht (2007, p. 241) for

GA and Fernández Martínez et al. (2010a) for PSO. Starting from
these guidelines, we performed a sensitivity analysis to verify the in-
fluence of this ratio on the solution of the MT inverse problem. The
number of particles was set at 6, 8, 9, 10, and 12 times the number of
unknowns. This analysis was carried out on synthetic model 1, and
the results are shown in the next section.
The initialization of the optimization is another essential feature

of PSO. At the beginning, the particle distribution within the search
space is, by default, completely random and bounded between a
minimum and maximum value of resistivity. This range is kept con-
stant during the optimization but can vary from each layer (or group
of layers or cells) to another (Godio and Santilano, 2018). The
decision of the lower and upper resistivity boundaries is problem
dependent and should be coherent with the desired coverage of the

Figure 5. Fitness function FðmÞ and particle positions at the end of the optimization:
(a) Fitness-function value, iteration after iteration, for the best particle (red dots) and the
rest of the swarm (black dots), (b) the fitness-function value as a function of the particle
positions in the resistivity (ρ) search space, at the first (gray dots) and final (blue dots)
iterations, (c) plain view of (b), and (d) final distribution of the fitness-function values
among all the particles.

Figure 6. Fitness function FðmÞ and particle positions at the end of the optimization:
(a) Fitness-function value, iteration after iteration, for the best particle (red dots) and
the rest of the swarm (black dots), (b) the fitness-function value as a function of the particle
positions in the resistivity (ρ) search space, at the first (gray dots) and final (blue dot) iter-
ations, (c) plain view of (b) with all particles converged to the last position (red-circled blue
dot), and (d) final distribution of the fitness-function values among all the particles.
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search space of solutions. We set the boundaries far larger than the
limits of the apparent-resistivity curves. After the random initializa-
tion, the adaptive behavior controls the position updating and a sto-
chastic perturbation is guaranteed by γ1 and γ2 of equation 1. Local
search algorithms usually deploy a starting model (a homogeneous
or a priori model) to initialize the geophysical inversion. The a priori

information is derived from geologic (well-log) data or other geo-
physical methods. Although it is possible to use a priori information
to partially influence the swarm behavior, the key factor of global
search algorithms such as PSO is that they do not require a starting
model. To demonstrate this, synthetic data were optimized starting
with and without aprioristic information, which was given to the
particles in the form of starting positions in the search space. This
a priori information was given only to a small amount of particles,
5% of the total, so that the initial position of the rest of the swarm was
randomly selected and the swarming nature of PSO was obeyed. We
derived the a priori information from the solution PSO gave for the
1D MT inverse problem (Santilano, 2017).
The PSO flow chart is shown in Figure 1. This procedure was re-

peated three times (or “trials”) for each study case, due to the vari-
ability on the solution given by the random initialization. In fact, the
final solutions coming from different initial random distributions are
quite similar but not identical, as shown in Santilano et al. (2018) for
1D MT. The solution with the lowest fitness value was then selected
as the final optimized model.

Computational aspect

Since the optimization process implied the computation of sev-
eral model responses, the reliability of the solution was also related
to the accuracy of the forward modeling. We adopted the 2D MT
forward modeling described in Candansayar (2008). It is based on
the finite-difference technique, which solves the complex system of
MT equations for transverse-electric (TE) and transverse-magnetic
(TM) polarizations. First, the electric and magnetic fields are de-
rived for each mesh node and, finally, the apparent resistivity
and impedance phase are calculated. We adopted this forward-mod-
eling code because it is stable, published, and written in MATLAB.
Addressing the 2D problem made the overall computation time

consuming due to several factors. The runtime was affected not
only by the number of iterations, but also by the population size
and the number of unknowns. The number of iterations depends
on the complexity of the problem. The population size was related
to the number of unknowns, i.e., to the desired resolution of the 2D
model. Obviously, an unnecessarily dense mesh grid would have
made the computation excessively long. From taking into account

all these issues, a heavy computation effort was
to be managed. To speed up the computation, we
developed and applied the parallel computing
option for the PSO algorithm. First, we enabled
the option “UseParallel,” that was potentially
provided but not implemented in the standard
code. Then, the most overloaded “for” loops
were set to run as parallel for loops, such as, for
example, the loop that evaluates the fitness func-
tion for each particle. Finally, the PSO algorithm
was enabled to run in parallel on the academic
cluster by activating the “Parallel Computing
Toolbox” of MATLAB. All of the simulations
were executed on a 24-core node of a HPC clus-
ter for academic research. The CPU model of
the single node is an Intel Xeon E5-2680 v3
2.50 GHz (turbo 3.3 GHz) with 128 GB of
RAM. The sustained performance of the cluster
is 9.7 TFLOPS.

Table 3. Results of PSO applied to the two synthetic models
(with and without a priori initialization) and to the
COPROD2 data set (without a priori initialization).

Data set Initialization rms Runtime (h) Iterations

Synthetic model 1 No a priori 0.86 4.6 154

A priori 0.91 3.17 250

Synthetic model 2 No a priori 0.9 28.8 1674

A priori 0.99 0.55 53

COPROD2 No a priori 2.42 8 6000

Note: Results are presented in terms of rms error, runtime, and number of iterations
performed before the optimization stop. The runtime is in hours and refers approximately
to one single trial.

Figure 7. The PSO solution for synthetic model 1, after approximately 150 iterations
without a priori initialization for the 8600 particles of the swarm. Lagrange multiplier
λ ¼ 0.1.

Table 2. Sensitivity analysis on the population size as PSO
input argument.

Number of
particles

Times the
unknowns rms Runtime (h) Iterations

5700 6 0.88 3.47 166

7500 8 0.90 7.17 275

8600 9 0.86 4.60 154

9500 10 0.88 5.82 176

11,500 12 0.87 6.52 165

Note: The number of particles was 6, 8, 9, 10, and 12 times the number of unknowns
of the problem (957 grid cells). Results are analyzed in terms of rms errors, total
runtime in hours, and the maximum number of iterations reached.
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2D OPTIMIZATION OF MT SYNTHETIC DATA

The theoretical MT data sets were computed from two synthetic
models depicted in Figures 2 and 3. They covered a 2D domain
350 km long and 250 km deep, to take proper
boundary conditions into account for the MT for-
ward modeling (Simpson and Bahr, 2005). Fifteen
MT stations were centrally placed in the mesh and
reciprocally spaced 1.3 km. The mesh discretiza-
tion used for the generation of the synthetic data
was different from that used for the optimization.
Specifically, the latter was slightly coarser than the
former due to the computational load given by the
thousands of forward-modeling calculations in
the PSO algorithm. The mesh size along the hori-
zontal direction has been kept constant between
the stations and doubled from the outer stations
toward the boundaries. Along the vertical direc-
tion, the layer size increased logarithmically with
depth. In the case of a priori given, the optimiza-
tion ran on a subdomain of approximately 400
cells because the a priori information regarded
only 15 stations. Without the initial conditioning,
the domain extended far away from stations due to
the boundary conditions and the number of cells
increased up to approximately 900 for synthetic
model 1 and approximately 750 for synthetic
model 2.
Both synthetic models simulated the presence

of one or more electrically conductive features
embedded in a resistive body beneath the station
sites. In case of different configurations, e.g., prior
knowledge of a conductor outside the location of
the sites or the ocean nearby, the mesh discretiza-
tion would have been denser outside the station
locations and the mesh boundaries would have
been enlarged. Moreover, the presence of the
ocean could have been addressed in PSO using
a priori information, as previously explained about
the initial position of the particles. The first syn-
thetic model is presented in Figure 2. Figure 2a
shows the entire 2D mesh, discretized into 33
layers for a total of 957 grid cells. The synthetic
model 1 is quite simple and composed of a host
medium of 100 ohm-m including a conductive
body of 10 ohm-m from3 to 5 kmdepth. Figure 2b
shows synthetic model 1 as a magnification in the
center of the whole mesh.
Figure 3 illustrates synthetic model 2 as a sub-

section of the true mesh, too. The mesh is discre-
tized into 754 grid cells, and, even so, the model
space is not undersampled. The 100 ohm-m resis-
tive medium hosts, from the bottom up, a 10 ohm-
m body 4–9 km deep on the left side of the mesh,
a 10 ohm-m body 1–2.5 km deep on the right side
of the mesh, and a 50 ohm-m body 0–500 m deep
under stations S2–S5. The forward modeling that
created the synthetic data considered 26 frequency
values between 10−2 and 103 Hz. Synthetic data
were corrupted with uncorrelated Gaussian noise

of 10%. This noise corresponded toΔρa;o andΔΦa matrices in equa-
tion 7, which are the normalization terms of the data misfit. At each
kth iteration, the noise influenced the forward calculated response of

Figure 8. Fitting curves between data of synthetic model 1 and calculated data for ap-
parent resistivity (ρapp) and impedance phase for TE and TM polarizations. The selected
MT stations are S1, S4, S7, and S11. The synthetic data are marked as dots for TE and
diamonds for TM, whereas the PSO-predicted data are plotted as solid lines for TE and
dashed lines for TM. The optimization was randomly initialized.

Figure 9. The PSO solution for synthetic model 1 using a swarm size of only 5700
particles (six times the unknowns), after approximately 160 iterations and without a
priori initialization. Lagrange multiplier λ ¼ 0.1.
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the corresponding kth model m. The optimization process was con-
strained by upper and lower resistivity boundaries equal to 200 and
1 ohm-m, respectively.

This section is divided into two parts. In the first subsection, the
Lagrange multiplier of synthetic model 1 is identified and, then,
synthetic model 1 is adopted as a study case to calibrate two input
arguments of PSO, the accelerations and the population size; in the

second subsection, the final resistivity models are
presented for synthetic models 1 and 2.

Calibration of the PSO input arguments

The sensitivity analysis on the Lagrange multi-
plier was carried out on synthetic model 1 using
benchmark values for the accelerations and the
population size. These values were chosen as
benchmarks for the best convergence of the sol-
ution after Ratnaweera et al. (2004). The calibra-
tion of the accelerations and population size is
presented in the next paragraph because it has
significance if the most appropriate Lagrange
multiplier is adopted. As a benchmark, the cog-
nitive acceleration α1 linearly decreased from
αmax
1 ¼ 2 to αmin

1 ¼ 0.5 and the social accelera-
tion α2 linearly increased from αmin

2 ¼ 0.5 to
αmax
2 ¼ 2. The benchmark population size was

approximately nine times the number of un-
knowns, i.e., given 957 cells, 8600 particles. To
retrieve the optimal value of the Lagrange multi-
plier λ, we performed a sensitivity analysis on
five different values in the range between 0.001
and 10. λx and λz were contextually analyzed
with the same value and the optimal value was
chosen as the point of maximum curvature in the
plot of data misfit versus model norm. Figure 4
shows the data misfit of synthetic model 1 with
respect to the model roughness along the hori-
zontal (black diamonds) and vertical (red circles)
directions. The best trade-off value was equal to
0.1 for λx and λz.
The sensitivity analysis on the cognitive and

social accelerations was carried out for synthetic
model 1 once its optimal value of the Lagrange
multiplier was identified. For this calibration, the
population size was fixed to the aforementioned
benchmark value of 8600 particles and its sensi-
tivity analysis is shown in the next paragraph. We
chose three different values for the maximum
cognitive acceleration, αmax

1 ¼ 2.75; 2; 1.5, and
three different values for the social acceleration,
αmin
2 ¼ 0.25, 0.5, 0.75. These values were se-

lected on the basis of the existing literature and
equations 5 and 6. The solution reliability was
evaluated via some parameters of the optimiza-
tion process, such as the first stopping criterion
achieved, the solution clustering, and the trend of
the fitness function at each iteration. The simu-
lations ran until one of the three stopping criteria
was first fulfilled, i.e., when the fitness function
did not significantly decrease and (almost) all of
the particles converged to a unique position in the
search space or solutions. Table 1 lists the rms
errors and the fitness-function values (FðmÞ) at

Figure 10. The PSO solution for synthetic model 1, after approximately 250 iterations
and with a priori information given to 5% of the particles. Lagrange multiplier λ ¼ 0.1.

Figure 11. Fitting curves between data of synthetic model 1 and calculated data for
apparent resistivity (ρapp) and impedance phase for TE and TM polarizations. The se-
lected MT stations are S1, S4, S7, and S11. The synthetic data are marked as dots for TE
and diamonds for TM, whereas the PSO-predicted data are plotted as solid lines for TE
and dashed lines for TM. The optimization was initialized with a priori information.
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the end of the optimization of each test. Our results are largely con-
sistent with the acceleration values pointed out in Ratnaweera et al.
(2004) for other applications. The tests using αk¼1

1 ¼ 2.75 with
αk¼1
2 ¼ 0.5 and with αk¼1

2 ¼ 0.75 ended before that the rms was
equal to 1 because the fitness function did not decrease for 80 con-
secutive iterations. These values prevented an effective minimiza-
tion, as shown in Figure 5, which summarizes the optimization
performance using αk¼1

1 ¼ 2.75 and αk¼1
2 ¼ 0.5. The four subplots

show, in order: Figure 5a — the fitness-function values of the best
particle (red dots) and the mean values of the rest of the swarm
(black dots) from the first to the final iteration; Figure 5b —
the fitness-function values of the whole swarm as a function of
the particle positions in two representative dimensions of the search
space, i.e., the first two cells of the 2D grid, at the first (gray dots)
and final (blue dots) iterations; Figure 5c — the positions, i.e., the
resistivity values, of the particles in the first two cells of the 2D grid
at the first and final iterations (gray dots and blue dots, respec-
tively); and Figure 5d — the histogram containing the distribution
of the fitness-function values at the last iteration among all of the
particles (8600 in this case). Figure 5 reveals that the optimization
did not end in a convergence state because at the last iteration the
minimum FðmÞ was not reached by the totality of the particles
(Figure 5a and 5d) and the distribution of the particles in the search
space was still scattered (the blue dots in Figure 5b and 5c). The
other tests in Table 1 show an optimal convergence, rms errors equal
to approximately 1, and the minimized FðmÞ between 1.33 and
1.73. Figure 6 plots the optimization performance using αk¼1

1 ¼ 2

and αk¼1
2 ¼ 0.5. The minimization of the fitness function was more

effective than that of Figure 5 because all of the particles converged
toward a unique position (the blue dots in Figure 6b and 6c) with the
same fitness-function value corresponding to the peak in Figure 6d.
It is evident that, iteration by iteration, particles converged from an
initial scattered distribution to a unique position following the best
particle leadership. In this way, the fitness-function value dropped
and the histogram developed a unique peak. This sensitivity analy-
sis confirmed αmax

1 ¼ 2, αmin
1 ¼ 0.5, αmin

2 ¼ 0.5,
and αmax

2 ¼ 2 as optimal acceleration values for
a robust minimization of the fitness function.
These accelerations were applied to the optimi-
zation of the other MT data sets of this work.
The synthetic model 1 was also a study case

for the sensitivity analysis on the population size,
to assess the influence of the number of particles
on the solution and the runtime. The tests were
performed using five different values, chosen as
multiples of the number of unknowns (957):
5700, 7500, 8600, 9500, and 11,500 particles,
i.e., 6, 8, 9, 10, and 12 times the unknowns. The
accelerations and Lagrange multiplier were set as
explained before for the corresponding sensitiv-
ity analyses. The results are shown in Table 2. All
of the tests reached the minimum rms of approx-
imately 0.9, but with different numbers of itera-
tions and runtimes because of the different initial
distributions of the particles in the search space
of solutions. The test using the multiple 8 gave
the worst result because the solution was found
after the biggest runtime and the highest number
of iterations. Differently, the multiple 9 gave the

best result, with the minimum number of iterations and the second
shortest runtime. The ratio of 9, i.e., 8600 particles for synthetic
example 1, ensured the most effective convergence and exploration
of the solution space, so that it was adopted for the other tests pre-
sented in this work.

Results from two synthetic examples

In this subsection, we present the results of PSO applied to the
two synthetic examples depicted in Figures 2 and 3. The optimiza-
tion of MT data from the synthetic models was performed adopting
the optimal values for the Lagrange multipliers, accelerations, and
population size reported in the previous subsection. The results re-
garding synthetic model 1 are presented in this order: the model
obtained without external conditioning of the PSO initialization,
the model resulting from a poorly populated swarm, and, finally,
the result after the PSO initialization with a priori information given

Figure 12. The L-curve response for synthetic model 2 along the
horizontal (black diamonds) and vertical (red circles) directions.
The trade-off between the data misfit and the model norm indicates
the best Lagrange multiplier λ equal to 0.1.

Figure 13. The PSO solution for synthetic model 2, after 1674 iterations and without a
priori initialization. Lagrange multiplier λ ¼ 0.1.
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as the starting model. The resistivity model ob-
tained without a priori information is shown in
Figure 7. After approximately 150 iterations and
4.6 h, the rms error stabilized around the final
value of 0.86, whereas FðmÞ was 1.37. These
values are listed in Table 3, but they can also
be found in Table 1 for αk¼1

1 ¼ 2 and αk¼1
2 ¼ 0.5,

and in Table 2 for 8600 particles. The resistivity
model in Figure 7 was largely comparable with
the true model in Figure 2 because the conduc-
tive anomaly was correctly detected in size and
resistivity. Figure 8 plots the fitting curves be-
tween the synthetic and calculated data for appar-
ent resistivity (ρapp) and phase, both TE and TM
polarizations. The synthetic data are marked as
dots for TE and diamonds for TM, whereas
the PSO-predicted data are plotted as solid lines
for TE and dashed lines for TM. Four stations
were selected for their different positions in rela-
tion to the lateral discontinuities: S1, S4, S7, and
S11. They show an example of poor (S4 ρapp),
average (S11), and good fit (S1 and S7). Consid-
ering the high number of unknowns and the wide
range of variation of ρapp, it could be said that
these curves are clearly similar to each other
as also proved by the low rms error.
The influence of the population size on the op-

timization process is presented in Table 2. Fig-
ure 9 shows the effect of a poorly populated
swarm on the final resistivity model. This result
followed from a population size of 5700 par-
ticles, i.e., six times the unknowns. The result
was similar to the true model in Figure 2 because
the conductive body was identified. However, the
output was not completely appreciable due to
some lateral conductive artifacts that broke in
the homogeneous 100 ohm-m background. As
expected, this outcome was the consequence of
an ineffective initial distribution of the particles
in the search space of solutions, and possibly, of
the missing of the global minimum.
The a priori information used to initialize the

optimization came from the PSO solutions of the
1D inverse problem for the 15 stations of syn-
thetic model 1. Only 5% of the particles were ini-
tially influenced with this solution. After 250
iterations, the rms error reached the minimum
threshold, with a corresponding fitness-function
value of 1.4. The final resistivity model is shown
in Figure 10 and is comparable with the original
of Figure 2 because the conductive anomaly was
adequately identified. Figure 11 plots the fitting
curves of the selected stations. The PSO-pre-
dicted responses were distinctly consistent with
the synthetic data, and the difference with the
curves of Figure 8 was negligible, except for the
slight improvement for ρapp of S4 and S11.
Table 3 lists the details regarding rms, runtime
(in hours), and the total number of iterations.

Figure 14. Fitting curves between data of synthetic model 2 and calculated data for the
apparent resistivity (ρapp) and impedance phase for TE and TM polarizations. The se-
lected MT stations are S1, S5, S9, and S12. The synthetic data are marked as dots for TE
and diamonds for TM, whereas the PSO-predicted data are plotted as solid lines for TE
and dashed lines for TM. The optimization was randomly initialized.

Figure 15. The PSO solution for synthetic model 2, after 53 iterations and with a priori
information given to 5% of the particles. Lagrange multiplier λ ¼ 0.1.
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The optimization of synthetic data from synthetic model 2 (the
true model in Figure 3) was performed after the calibration of the
input arguments, the accelerations, and population size. The iden-
tification of the optimal Lagrange multiplier λ for synthetic model 2
was inferred from the L-curve response presented in Figure 12. It
refers to the data-misfit trend as a function of the horizontal (black
diamonds) and vertical (red circles) roughness for synthetic model
2. The best tradeoff value was 0.1 for λx and λz.
The best solution for synthetic model 2 without a priori initial-

ization is illustrated in Figure 13. All the three low-resistivity bodies
were accurately positioned as can be seen from the magnified panel.
After 1674 iterations, the minimum fitness-function value was 1.3
and the RMS error was 0.9. Figure 14 plots the comparison between
the synthetic and the calculated data for apparent resistivity (ρapp)
and phase (TE and TM). Stations S1, S5, S9, and S12 were selected
as being representative for their poor (S1), average (S5 and S9), and
good fit (S12). Taking the complexity of this synthetic example into
proper account, the curves are in good agreement. The runtime is
reported in Table 3.
The a priori information was set as previously explained. Once

5% of the particles were initially influenced, convergence was
reached only after 53 iterations with a minimum fitness-function
value of 1.5. Figure 15 displays the final output.
The 10 ohm-m lateral bodies were correctly im-
aged, whereas the superficial 50 ohm-m body
was scarcely identified. A distinct difference be-
tween the models with and without a priori is in-
deed the superficial body, as can be seen in the
magnified panels of Figures 13 and 15. Figure 16
graphically demonstrates the low rms error of
0.99, which is reported in Table 3. The fitting
curves of Figure 16 show a good agreement be-
tween synthetic and predicted data and no sig-
nificant improvements compared with Figure 14.

2D OPTIMIZATION OF MT FIELD
DATA

The COPROD2 data set

The COPROD2 data set collects long-period
MTmeasurements along a profile of 35 sites cross-
ing a 2D geoelectrical structure in Saskatchewan
and Manitoba, Canada (Jones and Savage, 1986).
The name stands for “Comparison of One-dimen-
sional PROfiles from MT Data,” whereas the “2”
refers to the two-dimensionality different from the
1D data set called “COPROD.” The most appreci-
able advantages of this data set are the following:
A wide period bandwidth (from 2.6 × 10−3 s to
1.8 × 103 s), low impedance errors (<2%), pre-
vious static shift correction, and the possibility of
comparing different models from well-established
inversion algorithms (Jones, 1993b). Our aim is to
apply the PSO algorithm to detect deep electro-
magnetic anomalies, whereas any geologic inter-
pretation is beyond the scope of this paper.
Since responses at low periods (below 10 s)

have been widely recognized as 1D, original data
were selected from 10.67 to 910.2 s (deGroot-

Hedlin and Constable, 1993). As proposed in the aforementioned
studies, a subset of 20 MT stations, from the 8th to the 27th of the
original line, was chosen to focus only on the center of the 400 km
east–west profile. This selection was also adopted because these
20 sites have the same number of acquisition frequencies (14)
within the considered interval. The errors on the data were kept
as original for TE and TM apparent resistivity and phase. Figure 17
plots MT observations and error bars for stations 12, 13, and 14,
chosen as representative of the subset. The maximum observed er-
ror is 1.2 for TE apparent resistivity (on logarithmic scale) and 6.92°
for TM phase.
The 2D model was divided into 10 layers, from 1.8 to 60.5 km

deep, and the thickness of each layer increased logarithmically with
depth. Along the horizontal direction, the mesh was approximately
200 km long and subdivided into 34 bricks, one for each station
plus others as boundary conditions. The total number of cells was
340. Since some structures of the region are known to be highly
conductive, the lower boundary of the problem was set equal to
0.1 ohm-m. Literature references also state that superficial sedi-
ments are far more conductive than the resistive basement. For this
reason, the upper boundary of resistivity was chosen to be different
between the upper and underlying layers. We observed that a search

Figure 16. Fitting curves between data of synthetic model 2 and calculated data for ap-
parent resistivity (ρapp) and impedance phase for the TE and TM polarizations. The se-
lected MT stations are S1, S5, S9, and S12. The synthetic data are marked as dots for TE
and diamonds for TM, whereas the PSO-predicted data are plotted as solid lines for TE
and dashed lines for TM. The optimization was initialized with a priori information.
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space too large for the upper layers would have
driven the solution toward no convergence and
erroneous local minima. In detail, the first two
superficial layers, namely, up to 5 km deep, had
10 ohm-m as an upper boundary, whereas, the
layers below had 1000 ohm-m. The population
size was equal to 2500 particles, proportional to
the number of cells. The Lagrange multiplier λ
was chosen after a sensitivity analysis on five dif-
ferent values in the range between 0.001 and 10.
The value that coincides with the point of maxi-
mum curvature in the plot of data misfit versus
model norm is 0.1, as shown in Figure 18. A pri-
ori information was not given: The optimization
started with a completely random initialization.
The final model from COPROD2 data was

computed after 6000 iterations and is depicted
in Figure 19. The shallow conductive structure
was extensively identified, whereas, at a depth
from 5 km to the bottom, the background resis-
tivity was predominantly 1000 ohm-m. The most

significant feature of this model was represented by the low-resis-
tivity anomalies below stations E3-E4 and 12-11 at approximately
20–35 km of depth. Our output is well comparable with the ones
represented in Figure 20 and are reported by Jones (1993b). For ease
of comparison, the color scale and the name of the stations of
Figure 19 were plotted as the original ones in Figure 20. There was
good agreement between our model and those called “degroot-2”
(deGroot-Hedlin and Constable, 1993), “rasmussen” (Rasmussen,
1993), “wu” (Wu et al., 1993), and “uchida” (Uchida, 1993): Low-
resistivity anomalies were identified in the same regions. The simi-
larity can be explained by the same approach adopted in the Occam’s
inversion using the smoothing parameter, except for “wu”, which
used a different approach. In detail, the most evident similarity
was the conductive region in the first 5–7 km of depth. Another sim-
ilarity regarded the 30 km deep conductor below the stations from E2
to 14 and its extension at greater depths. A further correspondence
was the interruption of the 1000 ohm-m structure below the stations
from 13 to 11 at approximately 20 km of depth. Apart from the “wu”
model, all of the analyzed results presented a low-resistivity region
(approximately 100 ohm-m) in the westernmost part of the model at a

depth greater than 30 km.
Figure 21 plots the apparent resistivity (ρapp)

and phase at selected periods for the 20 stations
in the horizontal axis. The observed data are
marked with dots for TE and diamonds for TM,
and the predicted responses are plotted with a
solid line for TE and a dashed line for TM. The
rms error is reported in Table 3. The final fitness-
function value was 26.6.

Computation time

The computationally demanding nature of the
PSO algorithm was actually expected due to the
high number of (1) iterations, (2) population size,
and (3) cells assembling the mesh. The standard
release of the code was not effective in addressing
the 2D inverse problem; therefore, we applied
some modifications to develop a parallelized

Figure 17. The MT responses and error bars for TE and TM modes of three represen-
tative stations (12, 13, and 14) of the COPROD2 data set. They show the high quality of
the data. The ρapp stands for the apparent resistivity.

Figure 18. The L-curve response for COPROD2 data along the hori-
zontal (black diamonds) and vertical (red circles) directions. The
trade-off between data misfit and model norm indicates the best
Lagrange multiplier λ equal to 0.1.

Figure 19. Resistivity model of COPROD2 data from PSO computation, after 6000
iterations. Lagrange multiplier λ ¼ 0.1.
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version of PSO. The tests on an HPC cluster proved that, when 24
cores were adopted, the runtime saving was more than 80% with re-
spect to the use of four cores (see Figure 22). A test using the non-
parallelized release of the code (one single worker) would have been
unfeasible in terms of machine working load. Figure 22 shows the
dramatic speedup of PSO computation for a refer-
ence simulation of 150 iterations and 10,000 par-
ticles: The black lines indicate the running
duration in hours, whereas the blue indicate lines
the total speedup in percentage. The parallel envi-
ronment “shared” (the dotted lines) exploited
workers of the same node, whereas “orte” (the
dashed lines) referred to workers from different
machines of the cluster. It could be seen that
“shared” was a bit faster than “orte”, especially
at high numbers of cores.
The total runtime of PSO computations is re-

ported in Table 3 for each study case. These values
refer to one single trial, whereas a total of three
trials were performed. Runtimes are not directly
comparable to each other because the stopping
criterion was met after different numbers of iter-
ations, i.e., less than 1600 iterations for the syn-
thetic models and 6000 for the real data set.
The optimization of synthetic examples stopped
because the minimum rms error was achieved,
whereas the optimization of the real data stopped
because the fitness function did not minimize for
80 iterations. The synthetic examples were opti-
mized in a few iterations, but the runtime was
longer than that of the COPROD2 data set due
to the higher number of layers and particles. In
fact, the different runtimes are explained by the
low number of layers the COPROD2model is dis-
cretized (i.e., about one-third of that of the syn-
thetic models). The optimization of synthetic
data 1 and 2 without a priori differed in the num-
ber of iterations needed, but the runtimes are quite
similar if the proportion between the iterations is
taken into account. The optimization of synthetic
data 1 and 2 had shorter runtimes when a priori
initialization was given.

DISCUSSION

Our tests on synthetic data demonstrate the
reliability of PSO in solving the 2D inverse prob-
lem for MT data sets.
The choice of the most appropriate values of

accelerations and population size was crucial
for obtaining valid models. The initial sensitivity
analysis on the PSO input arguments was essential
to identify the most appropriate tuning coeffi-
cients, which effectively minimized the objective
function and enhanced the solution convergence.
The calibration of the social and cognitive accel-
erations led to the optimal values of αmax

1 ¼ 2,
αmin
1 ¼ 0.5, αmin

2 ¼ 0.5, and αmax
2 ¼ 2. Our find-

ings are hence in agreement with Ratnaweera et al.
(2004). We demonstrated that the population size

was directly proportional to the total runtime, but at the same time, a
poorly populated swarm negatively influenced the model. The reason
for this was that the search space was ineffectively covered by the
initial random distribution of the particles. We showed that the best
ratio between the number of unknowns and the number of particles

Figure 20. Reference models of COPROD2 data from Jones (1993b). The 20 stations
are sorted and named as in Figure 19. The color scale for the resistivity (ρ) is consistent
with Figure 19: white (ρ < 1 ohm-m), pink (ρ ¼ 1 ohm-m), red (ρ ¼ 10 ohm-m),
yellow (ρ ¼ 100 ohm-m), and green (ρ ¼ 1000 ohm-m).
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was 9. This outcome is significant for our high-dimensional problem
because, so far, the literature has suggested increasing the number of
particles up to 12 times the number of unknowns. The conclusion of
our analysis slightly modifies this ratio, with the advantage of avoid-
ing extra computational load.
We showed that the application of PSO did not require an initial

assumption about the solution (i.e., a priori information). At the

same time, we introduced a novel and valid tool to potentially com-
municate external or additional information to the swarm, in terms
of the initial position of particles within the search space. Our find-
ings showed that, if the geologic or geophysical information is re-
liable (e.g., from wells, seismic reflectors, and so on), it influences
the behavior of particles at the beginning of the optimization. This
kind of initialization resulted in shorter runtimes because the swarm

did not waste time searching for local minima,
which were already given from the beginning
(see Table 3). On the other hand, using default
random initialization, the results of synthetic
models proved that there was no requirement for
a priori initialization because the final resistivity
model was perfectly comparable with the origi-
nal synthetic model. Moreover, there was high
solution quality, despite two factors: Gaussian
noise disturbing the data and the presence of
equivalent solutions in the MT inverse problem.
In fact, the conductive anomalies embedded in
the resistive host medium were accurately iden-
tified in terms of size and resistivity values. The
rms errors were around 1 and, interestingly quite
similar with and without a priori initialization.
Another element confirming the PSO independ-
ence from the starting model is the comparison of
the fitting curves in Figures 8 and 11 for syn-
thetic model 1, and Figures 14 and 16 for syn-
thetic model 2. These plots proved that there
were not substantial differences between calcu-
lated responses with and without a priori, even
considering the stations above the lateral discon-
tinuities (S4 and S11 for synthetic model 1 and
S5 and S9 for synthetic model 2).
A significant result arose from the application

of PSO to real 2D data, the COPROD2 data set.
As regards the problem settings, the uppermost
layers of the 2D mesh had different boundary
conditions with respect to the underlying layers,
due to the complexity of the investigated area.
Many applications of global search algorithms
to geophysics have considered different resistiv-
ity boundaries between one layer (or group of
layers) and another, so that each unknown of the
problem can independently be bounded within its
search space (Godio and Santilano, 2018). The
setting of the boundary conditions is not a trivial
step for the deterministic inversion either because
it implies full comprehension of the problem and
some insight into the possible solution. For the
optimization of the COPROD2 data set, prelimi-
nary information from the geology of the area
facilitated the definition of a wide interval of re-
sistivity values within which the solution could
be searched. We applied this approach to en-
hance the convergence of the solution. This op-
tion distinguished the solution space of upper
layers from that of deep layers. The final model
had a mean resistivity of 6 ohm-m in the two
upper layers, thus confirming the presence of

Figure 21. Fitting curves between observed apparent resistivity (ρapp) and phase, and
predicted responses at selected periods: 56.9, 85.3, and 341.3 s. Observed data include
error bars and are marked with dots for TE and diamonds for TM. Calculated responses
are plotted with a solid line for TE and a dashed line for TM. The optimization was
randomly initialized.
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superficial sediments. At a depth of approximately 25 km, a conduc-
tive region breaks the 1000 ohm-m background, with a minimum
value of 1.2 ohm-m. The final rms error was slightly bigger than that
of the synthetic examples and was negatively affected by the mis-
match of data at long periods (Figure 21). This was unexpected, given
the satisfactory behavior of the fitting curves of the synthetic exam-
ples in Figures 8 and 14. It would have been interesting to quanti-
tatively compare our result with the model obtained by Everett and
Schultz (1993) using GA, which is also a global search algorithm.
Unfortunately, their rms misfit of 1.48 is not directly comparable with
our value of 2.42 because there were substantial differences in our
methods, such as period range, number of stations, mesh discretiza-
tion, and stopping criteria for iterations. Interestingly, the adoption of
Occam-like optimization may provide a more effective solution of the
resistivity distribution with respect to the GA. It has also been proved
in the literature that PSO ensures a higher convergence with respect to
the other global search algorithms (Yuan et al., 2009; FernándezMar-
tínez et al., 2010a). The application to field data represents a new,
encouraging approach for their optimization by means of computa-
tional swarm intelligence.
Regarding the optimizations run without a priori initialization,

the runtimes of the different data sets were not straightforwardly
comparable due to the different number of iterations required to
achieve convergence. The COPROD2 optimization needed 6000
iterations to stop at rms = 2.42, whereas the synthetic examples
reached rms = 1 in fewer iterations but taking a runtime proportion-
ally longer than that for the real-data optimization. This is mainly
explained by the high level of mesh discretization for the synthetic
models, approximately 800 cells, compared with approximately
340 cells for the domain chosen for real-data interpretation. The
more unknowns, the greater the swarm size and hence the compu-
tation time. The computation speedup was obtained by introducing
the parallelization of the code. The tests performed on an HPC clus-
ter pointed out the capability of our version of PSO to speed up the
computation by more than four times with respect to running it on a
simple machine of four cores. The decrease of the runtime allowed
us to efficiently perform several trials of the optimization process,
starting from different random distributions of the swarm. The final
fitness-function value of the synthetic examples was lower than that
of the real data due to the peculiarity of the data sets. The choice of
the optimal Lagrangian multiplier may be seen as a computational

cost because the sensitivity analysis of different values of λ was
performed. This analysis could represent a slight limitation of
the presented method because PSO ran for each investigated value
of λ. However, once the balance was found, we were able to deploy
the model with the adequate level of smoothing.
Although we reduced the computation time, it remained not com-

parable with that of deterministic algorithms. PSO applied to the 2D
inverse problem is relatively time consuming if clusters cannot be
exploited and densely discretized meshes are adopted. However, the
parallelization of the code has the potential of making the PSO com-
putation more manageable. Moreover, high computing capacity is
nowadays within everyone’s reach and global search algorithms, de-
spite the skeptical view of the past, can now be considered worthy of
attention. We do not see the long runtime as a scientific barrier for the
application of PSO to high-dimensional geophysical problems. The
computational load was balanced by the advantages of this metaheur-
istic method, namely, independence from the choice of the starting
model and the solution driven by the evolutionary approach.

CONCLUSION

The particle swarm optimization (PSO) algorithm has proven to
be a valid method to solve the two-dimensional (2D) inverse prob-
lem for magnetotelluric (MT) data, for synthetic and field (COP-
ROD2) data sets. This work extended the application of PSO to
MT inversion from the one-dimensional (1D) problem, already vis-
ited in the literature, to the 2D problem. The stochastic nature of
PSO and the combination of exploration and exploitation behaviors
played a key role in finding the optimized solution within the search
space, which was composed of all the possible solutions of resis-
tivity models.
The standard release of the code was easily implemented for our

specific application. We observed striking improvements moving
from standard PSO to hierarchical PSO with time-varying acceler-
ation coefficients (HPSO-TVAC). This issue has not been addressed
in previous research on PSO applied to geophysics, but it
was crucial in the optimization of 2D MT data. In fact, thanks
to time-varying acceleration coefficients, the optimization ended
with true convergence and stability. The complexity of the 2D prob-
lem had a direct influence on the computation time, which we re-
duced with the parallelization of the code. Running PSO on an high
performance computing (HPC) cluster resulted in runtime savings
of approximately 80%.
We carried out a detailed sensitivity analysis on some input

parameters of the PSO algorithm due to their direct influence on
the stability and convergence of the solution. The social and cog-
nitive accelerations and the population size were investigated to re-
trieve their optimal values and analyze their effect on the final
resistivity models and total runtime. We first applied PSO to 2D
MT synthetic data, to validate the method. The initialization of the
optimization was purely random by default, but we also tried to
influence it with a starting model derived from PSO solutions of the
1D problem. In this case, the optimization was externally but not
totally influenced because only a small portion of the swarm was
initialized. We proved that a priori information as the starting model
can be avoided. The resistivity models that did not receive the a
priori initialization were in line with the original synthetic models.
Then, PSO was applied to the field data set COPROD2, with a ran-
dom initialization. The optimization of COPROD2 data produced

Figure 22. Black curves show the computation times in hours (left
ordinate axis) as a function of the number of cores exploited for a
reference PSO simulation of 150 iterations with a 10,000-particle
swarm. The right ordinate axis and the blue curves refer to the total
runtime speedup with exploited cores increasing. The dotted lines
refer to “shared” parallel environment (workers of a single node)
and the dashed lines refer to “orte” (workers of different nodes).
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a valid resistivity model, largely comparable with results from
existing research.
The most important conclusions of this work are that PSO can be

successfully applied to the 2D MT inverse problem and the a priori
starting model is not required for the achievement of valid models.
Our results are encouraging enough to extend the application of
evolutionary algorithms to other geophysical inverse problems,
bearing in mind that the high dimensionality of the problem implies
runtimes longer than those of local search methods. Future work
will investigate a further speedup of the PSO computation, as well
as its application to other MT real data sets. A possible direction of
future studies should consider the comparison between local and
global search methods for the 2D MT inversion, as well as the chal-
lenge of the 3D inverse problem.
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