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Finite beam elements based on Legendre polynomial expansions

and node-dependent kinematics for the global-local analysis of

composite structures

G. Li1, A.G. de Miguel2, E. Carrera3, A. Pagani4, E. Zappino5,∗

MUL2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract

This article presents an approach to obtain refined beam models with optimal numerical effi-

ciency. Node-dependent Kinematics (NDK) and Hierarchical Legendre Expansions (HLE) are

used in combination to build global-local FE models. By relating the kinematic assumptions

to the selected FE nodes, kinematic refinement local to the nodes can be implemented, and

global-local models can be conveniently constructed. Without using any coupling approach or

superposition of displacement field, beam models with NDK have compact and coherent formu-

lations. Meanwhile, HLE is used in the local zone for the enrichment of the beam cross-sections

to satisfy the requirement for high solution accuracy, leaving the global model with lower-order

kinematic assumptions. Through the numerical investigation on slender laminated structures, it

is demonstrated that the computational costs can be reduced significantly without losing numer-

ical accuracy.
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1. Introduction

Composite structures are widely used in modern engineering nowadays, especially in the

aerospace industry. Nevertheless, their heterogeneous properties give rise to significant challenges

to numerical modeling. On the history of structural mechanics, a great variety of 1D models

for slender structures have been proposed. Classical theories such as Euler-Bernoulli beam and5

Timoshenko beam (Timoshenko, 1922) are broadly applied in numerical methods, though they

fail to give a precise approximation of the transverse stresses over the cross-sections of slender

structures. Some more refined theories were suggested to overcome such a drawback. An inter-

esting review of several of them was presented by Kapania and Raciti (1989a,b). Generally, the

accuracy of the models can be improved by increasing the order of the mathematical functions10

used to describe the deformation of the beam cross-sections. In fact, refined beam models can

be developed in an asymptotic/axiomatic expansion approach (Carrera and Petrolo, 2011), for

example, by using Mac Laurin’s polynomials. On the other hand, the increase in the number

of expansion terms introduces numerous additional variables, which could make the derivation

of the governing equations prohibitive in practice. Such a problem was addressed through the15

Carrera Unified Formulation (Carrera, 2002), which allows the governing equations of refined

models to be attained in a compact and unified manner through the so-called fundamental nu-

clei (FNs). By increasing the order of the polynomials expanded on each cross-section, better

approximation accuracy is promisingly to be achieved. In numerical analysis, the mathematical

models are refined until the prescribed accuracy or numerical convergence is achieved.20

Based on CUF, a variety of refined beam theories were applied to implement efficient beam

finite elements (Carrera et al., 2014). CUF can incorporate both series expansions and interpola-

tion polynomials to build refined beam models. Equivalent Single Layer (ESL) models compute

the integrals of the energy terms over the cross-section domain as a whole, and suit theories based

on series expansions, such as Taylor, trigonometric, and hyperbolic series and so forth. Such mod-25

els were put into practice by Carrera et al. (2013a) and Filippi et al. (2016). For refined beam

elements using Layer-wise (LW) models, 2D-type discretization is used on the cross-sectional do-

main for enrichment purposes. Since LW models can account for the physical boundaries of each

layer, the heterogeneity of the laminates can be appropriately considered. Different sets of poly-

nomials can be used as assumed deformations of the cross-sections, such as the Lagrange-type30

Carrera et al. (2014) and the Chybeshev-type (Filippi et al., 2015) polynomials. Recently, the

hierarchical Legendre polynomial expansions (HLE) were introduced as well for the refinement
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of kinematic assumption of beam models, as reported by Carrera et al. (2017a). The adopted hi-

erarchical functions for quadrilateral domains were inspired by Szabó and Babuška (1991). Such

hierarchical functions can trace back to the work of Peano (1976), Szabó and Mehta (1978) and35

Zienkiewicz et al. (1983). In HLE models, the polynomial degree remains as an independent

input parameter, which makes a re-meshing on the cross-sections unnecessary. Besides, HLE

proves to be a useful tool in describing the exact geometrical boundaries of the cross-section

domains for the refinement of the modes, as discussed by Pagani et al. (2016).

The refinement of mathematical assumptions can improve the solution accuracy, but also40

leads to an increased number of degrees of freedom in FE models, and possibly makes the solu-

tion computationally expensive. A local kinematic refinement can help to reach a compromise

between the desired accuracy and solution expenses. Local refinements can be defined on spe-

cific layers according to a global-local superposition hypothesis (Li and Liu, 1995, 1997). The

basic idea is to superimpose an LW displacement assumption defined on a specific layer to a45

global component of ESL type. The underlying method is a multiple assumed displacement field

approach. Further investigations based this method were carried out by Chen and Wu (2005),

Chen and Si (2013), Khalili et al. (2014), and Lezgy-Nazargah et al. (2011). This approach is

further used to build adequate models that can facilitate the modeling of delamination, as put

forward by Williams (1999), Mourad et al. (2008), and Versino et al. (2014, 2015). An alter-50

native method was suggested by Carrera et al. (2017d), who introduced through-the-thickness

variable kinematic capabilities to refined shell models. In their proposed method, the kinematic

assumptions were directly refined on the chosen layers as LW models, and the other layers will

be grouped and modeled as equivalent layers. D’Ottavio et al. (2016) suggested a similar con-

cept which was named as Sublaminate Generalized Unified Formulation (S-GUF). In these local55

refinement approaches, though the LW kinematics have to be used over the entire planar domain

of the laminates, the requirement for 3D finite elements in ply grouping method (Chang et al.,

1990, Jones et al., 1984, Pagano and Soni, 1983, Sun and Liao, 1990) can be avoided.

A different local refinement scheme regards to the mesh discretization. The most direct

way is the h-version refinement, which increases the density of the mesh grids. Adaptive60

mesh-refinement was proposed to regenerate the mesh in the desired area based on an error

estimator (Zienkiewicz and Zhu, 1987, Zhu and Zienkiewicz, 1988). Alternatively, p-version re-

finement increases the polynomial order of the element shape functions (Babuška et al., 1981,

Surana et al., 2001, Szabó et al., 2004), consequently the numerical convergence performance

can be improved. By augmenting the mesh density and element order at the same time, the65
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h-p-version method combines the advantages of these two approaches (Babuška and Guo, 1988,

Oden et al., 1989, Zienkiewicz et al., 1989, Reddy, 1993). The s-version refinement(Fish, 1992,

Fish and Markolefas, 1992) improves the solution accuracy by superimposing an additional set

of independent meshes on the existing FE model, which is also referred to as the mesh superpo-

sition technique. Still, this concept is based on the idea of multiple assumed displacement fields.70

Exploiting this approach, Reddy and Robbins (1994) and Robbins and Reddy (1996) suggested

a so-called variable kinematic theory, which superimposed an ESL displacement field on a layer-

wisely defined displacement field. Meanwhile, by employing the s-version refinement method,

locally refined mesh with variable kinematics can be overlapped on the global mesh in which

ESL assumptions are used. Consequently, the mathematical kinematic refinement and the mesh75

discretization refinement were both considered.

A variety of methods to couple an adequate global model to a locally refine one were pro-

posed. By using Lagrangian multipliers to enforce the displacement compatibility at domain in-

terfaces, the global model can be connected to a local one (Prager, 1967, Aminpour et al., 1995,

Brezzi and Marini, 2005, Carrera et al., 2013b). This method is also known as the multi-point80

constraints or the three-field formulations. A multi-line approach was suggested by Carrera and Pagani

(2013, 2014) and Carrera et al. (2017b) for refined beam models, in which beam models with dif-

ferent orders were used for different layers along the beam-lines, and the interfacial displacement

compatibility was ensured through Lagrange multipliers. The Arlequin method, proposed by

Dhia (1998) and Dhia and Rateau (2005), can couple two models with incompatible kinematics85

and different mesh discretization through Lagrangian multipliers in an overlapping zone. This

method has been adopted by many researchers in the analysis of multi-layered structures, like

Biscani et al. (2011, 2012a,b), He et al. (2011), and Hu et al. (2008, 2010), to name but a few.

A so-called eXtended Variational Formulation (XVF) with two Lagrange multipliers fields was

proposed for the coupling of non-overlapping domains with different mathematical assumptions90

(Blanco et al., 2008, Wenzel et al., 2014). In a typical one-way sequential global-local method,

the independent local model is driven by the displacement on the boundaries taken from a previ-

ously solved global problem (Muheim Thompson and Hayden Griffin JR, 1990). A drawback of

this method is that the influence of the local model on the global model is ignored. As a remedy,

iterative procedures were then proposed to achieve the equilibrium and compatibility at model95

interfaces (Whitcomb and Woo, 1993a,b, Mao and Sun, 1991). In the meanwhile, the iterative

procedures usually consume extra computational resources. Further efforts towards the devel-

opment of two-way loose global-local coupling approaches were also reported by Hühne et al.
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(2016) and Akterskaia et al. (2018).

Carrera and Zappino (2017) suggested an innovative approach for the construction of FE100

models that can accommodate strong local effects in a natural and straightforward manner,

which was named as Node-dependent Kinematics (NDK). By relating cross-section functions to

the desired FE nodes, the kinematic assumptions attached to different nodes will contribute to

the element deformation capabilities through the shape functions. Elements with miscellaneous

nodal mathematical models can form a transition zone, bridging the refined local model to a105

global model with low-order kinematics. NDK can avoid using additional coupling approaches

and allows the construction of a simultaneous multi-kinematic global-local FE model to be carried

out straightforwardly, without using artificial techniques to superimpose the displacement fields.

Thus, the compactness of the governing equations is maintained, and no homogeneous boundary

conditions on the borders of the local model are needed. NDK has been applied to build global-110

local models of multi-layered structures for 1D (Carrera et al., 2018) and 2D (Zappino et al.,

2017, Carrera et al., 2017c, Valvano and Carrera, 2017) simulation. As a versatile approach,

NDK was also used in the FE modeling of piezo-patches (Carrera et al., 0, 2017e).

In the present work, HLE is used as the displacement assumptions to generate refined beam

models and used in the framework of NDK. Such an approach enables one to refine the kinematics115

locally at any desirable node and improve the accuracy by simply increasing the polynomial

degree of the hierarchical functions. The related formulations are presented in the following

sections. The effectiveness of the proposed method is demonstrated through numerical examples

on multi-layered beam structures.

2. Refined beam element based on CUF120

Figure 1: Reference system and notation of a laminated beam.

For a slender laminated structure shown in Figure 1, Let us consider that the longitudinal
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direction is aligned along the y direction, the cross-section domain lies in the (x, z) plane. The

strain and stress components are herein arranged as:

ǫT = {ǫxx, ǫyy, ǫzz, ǫxz, ǫyz, ǫyx} (1)

σT = {σxx, σyy, σzz, σxz , σyz, σyx} (2)

where the strain vector are related to the displacements through the differential operator

matrix D as:125

ε = Du (3)

For problems with infinitesimal strains, D in an explicit form is:
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(4)

Meanwhile, the stresses and strains can be related through the constitutive equations:

σ = C̃ε (5)

in which C̃ is the matrix of material coefficients rotated from the material system to the

analysis coordinate system shown in Figure 1.

In the framework of CUF, beam models are refined through the cross-section functions130

Fτ (x, z), which lead to the following expression of the displacement field:

u(x, y, z) = uτ (y)Fτ (x, z), τ = 1, · · · ,M (6)

where uτ (y) are the axial displacement unknown vectors, and M is the total number of ex-

pansions used in the cross-section functions Fτ (x, z). In FE discretization, the axial displacement
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vector can be approximated with Lagrangian shape functions and nodal unknowns as follows:

uτ (y) = Ni(y)uiτ i = 1, · · · , Nn (7)

in which Ni(y) are the shape functions, and Nn the number of nodes within an element, uiτ135

the nodal unknowns. Thus, the complete expression of FE displacement functions formulated

according to CUF can be written as:

u(x, y, z) = Ni(y)Fτ (x, z)uiτ , τ = 1, · · · ,M ; i = 1, · · · , Nn (8)

It should be noted that, with the help of Einstein’s summation convention, the displacement

functions can be expressed in a compact form. The sub-indexes play an important role in

describing various beam theories. CUF can account for the two modeling frameworks of laminated140

structures, namely ESL and LW models as illustrated in Figure 2. Beam theories based on higher-

order Taylor series expansion (TE), according to the afore-described formulation, can be written

as:

ux = ux1
+ xux2

+ zux3
+ x2ux4

+ xzux5
+ z2ux6

uy = uy1
+ xuy2

+ zuy3
+ x2uy4

+ xzuy5
+ z2uy6

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

(9)

where:

F1 = 1, F2 = x, F3 = z, F4 = x2, F5 = xz, F6 = z2 (10)

For the Lagrange interpolation polynomial expansions (LE) defined on a quadrilateral domain145

(s, r), a model based on four interpolation points (LE4) can be expressed as:

F1 =
1

4
(1 − ξ)(1 − η); F2 =

1

4
(1 + ξ)(1 − η);

F3 =
1

4
(1 + ξ)(1 + η); F4 =

1

4
(1 − ξ)(1 + η).

(11)

in which s, r ∈ [−1, 1], and F1(−1,−1) = 1, F2(1,−1) = 1, F3(1, 1) = 1, F4(−1, 1) = 1.

LE-type cross-section functions expanded on nine points (LE9) can be defined accordingly.
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(a) Equivalent Single Layer (ESL) model (b) Layer-wise (LW) model

Figure 2: Two types of models for multi-layered structures.

3. Hierarchical Legendre Expansions (HLE) as cross-section functions

The cross-section functions can also be defined by Hierarchical Legendre Expansions (HLE).150

Inspired by the work of Szabó and Babuška (1991) and Szabó et al. (2004), HLE was employed for

the refinement of beam models first by Pagani et al. (2016). Such type of cross-section functions

treat the polynomial degree p as an independent variable. The functions for a quadrilateral

domain (r, s), defined for [-1,1], can be classified into vertex modes, side modes, and internal

modes, as shown in Figure 3.155

Vertex modes: These functions are defined as linear interpolations over the quadrilateral

domain:

Fτ (r, s) =
1

4
(1 − rτ r)(1 − sτs) τ = 1, 2, 3, 4 (12)

where rτ and sτ stand for the local isoparametric coordinates of point τ in a quadrilateral

sub-domain with four points.

Side modes: Correspond to the edge-featuring modes, which are defined as:160

Fτ (r, s) =
1

2
(1 − s)φm(r) τ = 5, 9, 13, 18, · · ·

Fτ (r, s) =
1

2
(1 + r)φm(s) τ = 6, 10, 14, 19, · · ·

Fτ (r, s) =
1

2
(1 + s)φm(r) τ = 7, 11, 15, 20, · · ·

Fτ (r, s) =
1

2
(1 − r)φm(s) τ = 8, 14, 16, 21, · · ·

(13)
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Figure 3: Hierarchical Legendre Expansions (HLE) as cross-section functions of refined beam models, with refer-
ence to Szabó and Babuška (1991).
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where φm is expressed as follows:

φm(r) =

√

2m− 1

2

∫ r

−1

Lm−1(x)dx =
Lm(r) − Lm−2(r)√

4m− 2
m = 2, 3, · · · (14)

Internal modes: Describe the deformation shapes happening on the internal surface which

will vanish on the edges and vertexes, which are:

Fτ (r, s) = φm(r)φn(s) m,n > 2; τ = 17, 22, 23, 28, 29, 30, · · · (15)

Since the set of functions for p − 1 are contained in those for p, these type of functions are

described as hierarchical. For a more detailed description, the reader is referred to Carrera et al.165

(2017a). The four vertexes are used to define the border of the quadrilateral domain on the

cross-section of a beam model. In the LW framework, refined beam models using HLE can

be formulated. Moreover, HLE can avoid the work in the re-allocation of interpolation points

and the consequent re-definition of the functions. In a sense, HLE combines the advantages of

Taylor series, i.e. hierarchical kinematics, and Lagrange interpolation polynomials, i.e. non-local170

distribution of unknowns.

4. Beam elements with Node-Dependent Kinematics (NDK)

In CUF-type displacement functions as in Equation 8, the cross-sections can be further related

to its “anchoring” nodes i, leading to the following expression:

u(x, y, z) = Ni(y)F i
τ (x, z)uiτ , τ = 1, · · · ,Mi; i = 1, · · · , Nn (16)

Equation 16 describes a family of 1D FE models with NDK. In such elements, each node can175

possess individually defined kinematics over the cross-section, then be interpolated by means of

the nodal shape functions Ni over the element axial domain. As an example, Figure 4 shows

a four-node beam with different displacement assumptions on each node, with a separate set

of cross-section functions on each node. Eventually, a kinematic transition is realized. In this

approach, a local kinematic refinement on the nodal level can be conveniently carried out.180

The governing equations of NDK FE models can be derived from the principle of virtual

displacements (PVD). For elastic bodies in static equilibrium, one has:

δLint = δLext (17)
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Figure 4: A B4 element with node-dependent kinematics.

where δLint stands for internal work caused by the virtual deformations, and δLext represents

the work done on the virtual displacements by the external forces. δLint can be expressed as:

δLint =

∫

V

δǫTσdV (18)

By invoking CUF-type displacement functions Equation 16, the geometric relations in Equa-185

tion 3, and constitutive equations Equation 5, the following expression can be obtained:

δLint = δuT
js ·

∫

V

NjF
j
sD

T C̃DF i
τNidV · uiτ = δuT

js ·Kijτs · uiτ (19)

where Kijτs is the fundamental nucleus (FN) of stiffness matrix for NDK FE models. The

explicit expression of Kijτs reads:

Kijτs =

∫

V

NjF
j
sD

T C̃DF i
τNidV (20)

The virtual work δLext done by the external load p is:

δLext =

∫

V

δuTpdV (21)

The above equation can be further written in the form of CUF as:190

δLext = δuT
js

∫

V

NjF
j
s pdV = δuT

jsPjs (22)

where P js represents the FN of the load vector. Hence, the governing equation for 1D FE

models with NDK can be obtained as follows:

δujs : Kijτs · uiτ = Pjs (23)
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For FE models with NDK, the assembly of the stiffness matrix and load vector can be

carried out in a convenient and unified manner in the framework of CUF, as elaborated by

Carrera and Zappino (2017) and Carrera et al. (2018).195

5. Numerical results and discussion

In this section, the capabilities of NDK when used in combination with HLE cross-section

kinematics are investigated through two numerical examples:

� A simply supported sandwich beam under local pressure;

� A two-layered cantilever beam subjected to four points loads.200

The accuracy of the solutions is compared against the computational consumption. The

choice of the transition zone and the kinematics in the outlying area, as well as their influences

on the efficiency, are discussed.

5.1. A simply supported sandwich beam under local pressure

A sandwich beam under local pressure is considered, which comprises two composite faces205

and a soft core as shown in Figure 5. The structure has the length b = 10mm, width a = 2mm,

and total height h = 2mm, with layers of thickness 0.1h/08h/0.1h. The material properties

are as detailed in Table 1. Numerical studies on this case was also reported by Wenzel et al.

(2014) and Zappino et al. (2017). In the present work, by making use of the symmetry features,

a half of the structure is modeled. For the refined HLE beam elements used, the cross-section210

is meshed as presented in Figure 6, in which the three sub-domains are approximated by the

same set of HLEp cross-section functions, respectively. According to the results in Table 2, FE

model with 20 B4 elements along the axial direction can give a satisfactory approximation. The

HLE refinement is first assessed by increasing the polynomial order p until 7. Then FE models

constructed with NDK are employed in the analysis. The obtained displacements and stresses215

are summarized in Table 2. Solutions achieved with pure TE and LE kinematics are listed for

comparison.

Table 1: Material properties used on the sandwich beam.

E11[GPa] E22[GPa] E33[GPa] ν12 ν13 ν23 G12[GPa] G13[GPa] G23[GPa]

Face 131.1 6.9 6.9 0.32 0.32 0.49 3.588 3.088 2.3322
Core 0.2208×10−3 0.2001×10−3 2.76 0.99 0.00003 0.00003 16.56×10−3 0.5451 0.4554
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Figure 5: Geometry and FE model of the sandwich beam.

Figure 6: Mesh on the cross-section of the sandwich beam: 3 sub-domains, each with HLEp.

13



In Table 2, with the increase of the polynomial order of the kinematic assumption on the beam

cross-section, the numerical results converge gradually. In terms of σzz , the theoretical solution

is -1 MPa on the loaded surface, and all the HLE models can achieve fairly good accuracy. The220

through-the-thickness variation of σyz obtained with HLE kinematics of different orders are as

shown in Figure 7(a). It can be observed that, HLE2 fails to capture the variation of σyz through

the two faces of the sandwich. From HLE3 to HLE7, σyz shows converged distribution through

the sandwich thickness, and zero transverse shear stress on the free surfaces is progressively

approached. In fact, HLE3 can already satisfy the accuracy requirement of engineering practice.225

The relative error of σyz given by different kinematics (with respect to HLE7 solution) are

plotted versus the degrees of freedom in Figure 7(b). Even if the curve of relative error is not

monotonically decreasing, the overall trend exhibits a convergence pattern. On the other hand,

this curve shows the possibility of improving the accuracy by further increasing the polynomial

order, yet it may not be necessary considering the computational efforts.230

Table 2: Displacement and stress evaluation on the sandwich beam under local pressure.

Mesh Kinematics −w[10−3mm] −σyy[MPa] −σyz[MPa] −σzz [MPa] DOFs
(0, b

2
,−h

2
) (0, b

2
, h
2

) (a
2
, 9b
20
, 9h
20

) (0, b
2
, h
2

)

B4×10 HLE2 2.467 17.72 0.8339 1.097 1674
B4×20 HLE2 2.467 17.77 0.8164 1.015 3294
B4×20 HLE3 2.469 18.33 1.062 1.048 5124
B4×20 HLE4 2.469 18.14 1.083 0.9965 7503
B4×20 HLE5 2.469 18.11 1.060 0.9884 10431
B4×20 HLE6 2.469 18.24 1.079 0.9789 13908
B4×20 HLE7 2.469 18.24 1.094 0.9771 17934

B4×20 TE1 1.515 7.300 1.163 0.9547 549
B4×20 TE3 2.309 17.52 0.8777 1.502 1830
B4×20 TE5 2.338 17.25 0.8815 0.7839 3843

B4×20 TE1×49-HLE7×12 1.547 15.63 1.437 0.9791 3969
B4×20 TE1×31-HLE7×30 1.820 18.07 1.112 0.9772 9099
B4×20 TE3×31-HLE7×30 2.376 18.23 1.096 0.9771 9750
B4×20 TE5×31-HLE7×30 2.388 18.23 1.096 0.9771 10773
B4×20 TE7×31-HLE7×30 2.419 18.24 1.095 0.9771 12168

Zappino et al. (2017)(2D) 2.471 18.11 1.180 0.9989 37479

HLE7 is further used together with TE kinematics to build FE models through NDK. In the

region containing and near the loaded zone, HLE7 is applied on the beam cross-section, and the

rest of the beam is modeled with TE-type theories. The FE models with NDK are indicated

by TEm×p-HLE7×q, where m signifies the order of the TE model used, while p and q represent

the numbers of nodes adopting the corresponding kinematics. For the FE models with 20 B4235
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Figure 7: Evaluation of σyz on the sandwich beam under local pressure.

elements, there are 61 nodes in total along the beam axis. As explained in previous sections,

in the proposed approach, the transition zone in the global-local model covers the range of one

element. In this section, two locations for the transition zone are examined. Transition zone α

is located around 75% length of the beam which leads to NDK model TEm×49-HLE7×12. While

transition zone β is placed near 50% of the length range and corresponds to models denoted by240

TEm×31-HLE7×30.

Concerning the σyz as illustrated in Figure 7(b), the NDK models with the transition zone β

yield comparable accuracy with a pure HLE7 model at a reduced number of degrees of freedom,

but results achieved by TEm×49-HLE7×12 is far from satisfaction. From the comparison of the

displacement and stress evaluation in Table 2 and Figure 8, it can be observed that TE1×31-245

HLE7×30 has better accuracy than TE1×49-HLE7×12 within the faces. This reality implies that

transition zone β, which is further away from the zone with local effects, is more proper than

transition zone α. In the meanwhile, in TEm×31-HLE7×30 models, the increase of TE kinematic

order m further helps to improve the solution accuracy at the expense of extra computational

effort. Regarding the transverse shear stress σyz , given that TE5 fails to capture its variation250

well, TE1×31-HLE7×30 already leads to results with fairly good accuracy. At the same time,

compared with FE model with pure HLE7 kinematics, a 49% reduction in the number of degrees

of freedom is also achieved by TE1×31-HLE7×30. It should be noted that the cost of the reduced
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computational consumption is some loss in the accuracy of the displacement solution.
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Figure 8: Through-the-thickness variation of σ̄yz and σ̄yy on the sandwich beam under local pressure.

Figure 9 shows the variation of w, σyy and σyz along the beam axial direction. Notably, an255

oscillation exists in the stress distribution within and nearby the transition zone, although no

transition effects are observed in the displacement solutions. Considering σyy and σyz in the

loaded zone, by taking HLE7 solutions as references, TE1×31-HLE7×30 leads to better results

compared with the other models. This fact shows that transition zone β is more appropriately

chosen than transition zone α. Meanwhile, with the refinement of the TE theories, the stress260

oscillation can be mitigated considerably, and the accuracy of both the displacement and stresses

is improved.

The contour of σyz and σzz obtained with model HLE7 and TE5×31-HLE7×30 are compared

in Figure 10 and Figure 11, respectively. The stress oscillation can also be observed in the vicinity

of the transition zone. Such effects in models with incompatible kinematics were also reported265

by (Wenzel et al., 2014) about eXtended Variational Formulation, and by (Zappino et al., 2017,

Carrera et al., 2018) in NDK approaches. Even though, in the local region including the loaded

zone, the stress fields obtained with the two models agree well with each other. In conclusion,

compared with the pure HLE7 model, the NDK model TE5×31-HLE7×30 is capable of capturing

satisfactory displacement and stress field with a much fewer number of degrees of freedom.270
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5.2. A two-layered cantilever beam under four points loads

As the second example, a cantilever beam with two layers is analyzed using the NDK ap-

proach. The beam is clamped on one end and subjected to four point loads at the vertexes

on the loading end. Geometrical features of the structure are shown in Figure 12, with length

b = 0.09m, width a = 0.001m, and height h = 0.01m. The two layers are of equal thickness275

(t = h/2), both with the longitudinal direction along the beam axial direction y. The lower layer

is made of Material 1, and the upper one of Material 2. Elastic properties of the materials are

listed in Table 3, in which L and T stand the longitudinal and transverse direction of the fibers,

respectively. The structure is discretized into a number of B4 elements as in shown Figure 12.

Models with complete HLE kinematics are first analyzed, in which the polynomial order p is280

increased until a numerical convergence is achieved. Then, to reduce the computational costs,

in the area distant from the loaded region on the clamped side, TE kinematics is introduced,

leading to NDK models TE1×49-HLE7×12 and TE1×31-HLE7×30. The superscripts represent the

number of nodes with the corresponding kinematics. TE1×49-HLE7×12 has the transition zone

near 75% position along the axis away from the clamped end, and TE1×31-HLE7×30 has it near285
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the mid-span position.

Figure 12: Geometry features and FE model of the two-layered cantilever beam (not to scale).

Table 3: Properties of the materials used for the two-layered cantilever beam.

EL[GPa] ET [GPa] νLT GLT [GPa]

Material-1 30 1 0.25 0.5
Material-2 5 1 0.25 0.5

From the results summarized in Table 4, it can be noticed that with 20 B4 elements using pure

HLE kinematics, the numerical convergence can be reached when HLE5 is employed. Besides,

the transverse shear stress σyz is the critical case concerning the convergence. The convergence

process can also be observed from the variation of σyz through the thickness along (0, 8b
9
, z̄),290

as shown in Figure 13. The obtained solutions are in good agreement with those given by the

ABAQUS 3D model, which uses 4×180×32 (x × y × z) quadratic brick elements with reduced

integration (C3DR20).

If TE1 kinematics is employed on the left-hand side of the structure, a considerable reduction

in the total degrees of freedom can be achieved, which is 65% for TE1×31-HLE7×30, and 49%295

for TE1×49-HLE7×12. According to the results in Table 4 and the stress variation in Figure 14,

TE1×31-HLE7×30 has better accuracy compared to model TE1×49-HLE7×12 regarding the trans-
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verse shear stress σyz . These effects also confirm that transition zone β is a more decent choice.

Though, both of the two models lead to reasonable evaluations. In engineering practice, if the

transition zone lies outside the critical region, it may not be worthy of extra efforts to take the300

stress oscillation into account.

Table 4: Displacement and stress evaluation on the two-layered cantilever beam.

Mesh Kinematics w[10−3mm] σyy[KPa] σyz [KPa] DOFs
(0, b, 0) (0, 8b

9
,−h

2
) (0, 8b

9
,−h

4
)

B4×10 HL2 9.041 236.6 2.563 1209
B4×20 HL2 9.036 234.0 2.610 2379
B4×20 HL3 9.082 245.1 4.518 3660
B4×20 HL4 9.065 236.4 4.432 5307
B4×20 HL5 9.075 233.4 4.972 7320
B4×20 HL6 9.063 233.8 4.986 9699
B4×20 HL7 9.074 234.8 4.972 12444

B4×20 TE1 9.053 215.1 0.000 549

B4×20 TE1×49-HLE7×12 9.120 234.0 4.294 2889
B4×20 TE1×31-HLE7×30 9.117 234.8 4.970 6399

ABAQUS (3D) 9.071 235.3 4.963 337251
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6. Conclusions

This work presents a class of refined 1D FE models with node-dependent kinematics for the

global-local analysis of laminated composite structures. Hierarchical Legendre Expansions (HLE)

are adopted as cross-section functions for the local refinement on the nodal level. By treating305

the polynomial degree p as an input parameter, and assigning refined kinematics to the desirable

nodes in the local zone of interest, a series of FE models can be built conveniently using when

the FE meshes have been chosen. Such an approach can help to improve the numerical efficiency

in engineering simulations and simplifies the modeling procedure. It can be highlighted that:

� Node-dependent kinematics provides a solution to integrate the accuracy of LW models and310

the low computational cost of ESL models and therefore, provides optimal beam models;

� The combination of HLE and NDK improves the computational efficiency of FE models

for the analysis of multi-layered slender structures;

� Based on CUF, the compactness of the FE formulations is assured by using no additional

coupling nor superposition;315

� The presented approach allows the local kinematic refinement to be carried out without

changing the FE mesh.
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As future work, implementing an adaptive nodal-kinematic refinement routine will help to

further enhance the efficiency of FE models with the least user intervention. And, more realistic

cases of engineering interest can be considered.320
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I. Babuška and B. Guo. The h-p version of the finite element method for domains with curved

boundaries. SIAM Journal on Numerical Analysis, 25(4):837–861, 1988.335
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