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Abstract—The incoming Internet of Things revolution requires
the adoption of innovative paradigms for the design of low-power
ubiquitous sensor nodes. This can be achieved by exploiting
Compressed Sensing (CS), that is a recently introduced approach
capable of simultaneously sampling and compressing an input
signal with a limited amount of resources. While the underlying
basic theory is well developed, in recent years we have seen a
flourishing of CS techniques capable of exploiting some additional
priors on the input signal to improve performance. In this paper,
we propose a survey and a comparison of the most promising
ones. We use a classification mechanism based on which prior is
used and which processing block is modified with respect to the
standard CS.

I. INTRODUCTION

Internet of Things (IoT) is emerging as a promising and
revolutionary paradigm in Information and Communication
Technology related tasks [1]. Based on the collection and
processing of large amounts of data from a number of in-
terconnected sensor nodes, the IoT paradigm relies on the
development of low-cost, low-energy data acquisition nodes,
typically communicating with a central gateway by means of
a Wireless Sensor Network (WSN). According to this point
of view, low energy consumption and high communication
capacity will be fundamental properties of any sensing node.

As already pointed out by some contributions in the lit-
erature [2]–[5], standard approaches applied to the forth-
coming sensing nodes show many limitations. The situation
is illustrated in Fig. 1, showing the amount of resources
required by different approaches. A simple and straightforward
transmission of uncompressed Nyquist rate symbols may be
unacceptable due to the inefficient use of the transmission
channel capacity. Conversely, the adoption of a compression
technique at the sensor node exploiting spatial and/or temporal
correlation of the input signal to reduce the amount of trans-
mitted data may require algorithms that are out of budget,
either in terms of hardware complexity or energetic cost. A
possible workaround for this situation is represented by the
recently introduced Compressed Sensing (CS) paradigm [6].
Under some assumptions on the input signal, CS is capable
to perform a sub-Nyquist sampling, (i.e., a simultaneous ac-
quisition and compression process) with a surprisingly simple
mechanism (projection of the input signal on a set of typically
random sampling waveforms). In this way, as illustrated in
Fig. 1, it is possible to lower both sensing node energy and
channel capacity requirements, at the cost of an increased
complexity of the recovery stage [7]. In other words, CS works
as a resource redistribution technique between encoding and
decoding stage. Note that this is an important advantage in the

1

TX RXsignal
encoding

signal
reconstruction

Nyquist rate
sampling

Traditional
compression

Compressed
Sensing

Resource Requirements

Fig. 1. Comparison between resources required by Nyquist rate sampling
(large transmission channel capacity required), traditional compression (high
encoder resources required) and Compressed Sensing (resources are balanced,
with predominant decoder requirements).

WSN-based IoT, since the energetic budget at an IoT collector
is typically much higher with respect to that available at a
sensor node.

The aim of this paper is to provide a survey and a compari-
son of advanced CS techniques that could reduce requirements
at the sensor node by fostering the resource redistribution
between encoding and decoding stage. All these techniques
are capable of exploiting additional input signal priors either
to improve CS performance at given resources budget, or to
lower resource requirement to achieve a target performance
level. We will also propose a classification of these techniques
according to the signal prior that is used, and to the signal
processing block that is modified with respect to standard CS
approach. This will help readers to understand the differences
and to evaluate the proposed techniques.

The paper is organized as follows. In Section II a brief
introduction on the CS is provided. Section III provides an
overview of recently proposed CS optimization techniques,
organized in three different groups depending on which part
of the system is modified with respect to the standard CS
approach. Finally, we draw the conclusion.

II. CS FUNDAMENTALS

The working principle of CS is illustrated in Fig. 2. Basi-
cally, an input signal x with intrinsic dimension n (i.e., x has n
degrees of freedom) is encoded into a vector of measurement
with dimension m < n, that is dispatched to a decoder whose
aim is to reconstruct x̂ as the best approximation of x. CS can



be applied either to signals that are instances of a continuous
time or discrete time process. For the sake of simplicity, we
focus on the latter, and define a signal instance x ∈ Rn
according to its n Nyquist rate samples.

CS is effective under the assumption that input signal is κ-
sparse, i.e., that a proper orthonormal n-dimensional sparsity
basis S ∈ Rn×n exists, along which any instance x = Sξ
is such that ξ ∈ Rn has no more than κ � n non-zero
components. The set Ξ of the κ non-zero components of ξ
is referred to as the support of the signal.

Then, encoding is achieved by linearly projecting x over a
sensing matrix A ∈ Rm×n

y = Ax+ ν = Bξ + ν (1)

where B = AS is the matrix mapping the sparse representa-
tion ξ into the vector y ∈ Rm made with the m measurements,
and ν is an additive disturbance term used to model non-
idealities such as the quantization error or the signal noise.
We define the compression ratio provided by the CS encoder
as CR = n/m.

Finally, decoding is ensured given some properties on A
and a minimum number of measurements

m ≥ Cκ log10

(n
κ

)
(2)

where C is a constant whose value is commonly set around 5
[8].

Mathematically, x̂ = Sξ̂, where ξ̂ is found by looking for
vectors ξ that solve (1) with a proper tolerance. Being an ill-
posed problem, multiple solutions exist; a classical result [7]
states that the correct one is the sparsest one given by the
constrained optimization problem

ξ̂ = arg min
ξ
‖ξ‖1 s.t. ‖Bξ − y‖2 < ε (3)

where ‖ · ‖p is the standard `p norm and ε bounds the
effects of ν. Such an approach is called basis pursuit with
denoising (BPDN), and can be shown to be equivalent to the
unconstrained problem

ξ̂ = arg min
ξ

(
1

2
‖Bξ − y‖2 + λ‖ξ‖1

)
(4)

for a proper value of the parameter λ.
Two properties of A guarantee correct reconstruction: i)

the restricted isometry property (RIP), i.e., A is able to
approximately preserve the signal energy as ‖Ax‖2 ≈ α‖x‖2
for some constant α as close as possible to 1 and for all κ-
sparse vectors x; and ii) the low-coherence property, where
coherence is defined as follows

µ(A,S) = sup
j,k
|〈Aj,·, S·,k〉| (5)

where Aj,· is the j-th row of A and S·,k is the k-th column
of S.

The adoption of either Gaussian or Sub-Gaussian random
sensing matrices ensures both properties and provides upper
bounds on the reconstruction error ‖x − x̂‖2, that is usually
defined except for a positive constant. These bounds are based
on both coherence (for the noiseless case, i.e., ν = 0) and on
RIP (for noisy case) [7].
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Fig. 2. Block scheme of the CS processing chain, along with the proposed
classification mechanism of the considered optimization techniques.

III. IMPROVING CS BY USING ADDITIONAL PRIORS

Many circuital solutions have been proposed to reduce
energy requirements in a CS-based sensor node [9]–[12]. As
an example, limiting Aj,k ∈ {−1, 1} or Aj,k ∈ {−1, 0, 1}
reduces both hardware complexity and energy necessary for
the encoding [13] with almost no performance loss [8].

Here we are interested not in circuit-related solutions, but
in approaches that can improve performance using additional
signal priors independently of the CS implementation. As an
example, according to standard CS theory, (2) represents the
optimum value of m in the sense that without any additional
knowledge on the acquired class of signals there is no alter-
native method to design A that ensures better reconstruction
performance.

However, given a class of input signals, this approach is
completely nonadaptive, and performance could not corre-
spond to the required minimum level. A first step in this
direction was presented in [14], [15], with guidelines in the
design of a sensing matrix that, for a given S, is capable to
reduce µ(A,S) and thus the value of m required for a correct
reconstruction. These methods, exploiting only the knowledge
of S, have a limited impact on the overall system performance
with respect to other methods that work with additional priors
as, for example, second order statistic or structural sparsity. In
the following, we propose a review of the latter approaches,
organizing them in three categories depending on which part
of the system is modified with respect to the standard CS
approach. Classification is also illustrated in Fig. 2, while a
high-level comparison of considered approaches is reported in
Tab. I.

A. Signal model improvement
As first class of CS approaches, we refer to methods based

on a different signal model. In [16]–[19] the signal of interest
is supposed to be block-sparse, i.e., signal instances are still
sparse and non-null elements of ξ are grouped in few blocks.

As an example, in [19] electrocardiogram signals (ECG) are
considered as chunks of non-null signals (in case of peaks)
followed by pieces of signals that are approximately zero. As
a case study, authors discuss the impact of CS in the design
of a Fetal ECG (FECG) tele-monitoring device, where the
main part of the desired information is hidden among mother
ECG details. For this task standard CS typically fails, since
the entire CS framework aims to recover the highest entries
in ξ only.

Nevertheless, this is the case where the adoption of a
block sparse signal along with a Bayesian learning framework,
makes FECG encoding/decoding by CS effective. In particular,
each block of non-null entries is modeled as a multivariate
random Gaussian variable such that the reconstruction algo-
rithm performs recovery by estimating the current instances of



these random multivariate variables by means of the Block-
Sparse Bayesian Learning algorithm (BSBL). To prove the
effectiveness of this method, authors extract the FECG from
the raw mother ECG, and compare it with that obtained from
the reconstructed mother ECG using the BSBL algorithm. The
two extracted FECGs are almost identical, with a Pearson
correlation equal to 0.931.

Another research branch focuses on WSN applications
where the signal x could be sparse with respect to both
spatial and temporal representations [2], [5]. In particular, the
approach presented in [2] proposes a WSN data acquisition
whose aim is to monitor a multi source phenomena such
as the temperature inside a sensing area, and based on the
knowledge that most nodes keep a sleeping operation mode
with a predefined mechanism. This additional prior, addressed
as signal discontinuity, could be used in the design of A and
in the recovery mechanism.

The input vector x contains data from all sensors at a
given time that are transmitted to a number of gateways,
each of them monitoring a sub-network and further relying
the data to a central aggregator by means of long-range
communications. This system model is mapped in the sensing
matrix considering that: i) the i-th gateway compresses data
from sensors in its neighborhood into mi rows of A in order
to compute a subset of the entire measurement vector y where∑M
i=1mi = m and M is the number of gateways; ii) only

a subset of the nodes in a neighborhood are active, i.e., the
corresponding elements of x are not null. For these reasons,
the mi rows of A associated to the i-th gateway have zeros in
all columns associated to sensors outside its neighborhoods,
as well as in the columns associated to inactive sensors. All
other matrix entries in the same rows are randomly drawn in
accordance to standard CS. Therefore, the entire matrix A has
a set of structured zeros related to the positions of nodes and
gateways and zero entries changing dynamically in accordance
to the adopted policy in the sensors activation.

The authors of [2] propose also a new decoding approach
based on this signal model that is able to outperform others
more common approaches used in CS decoding as, for exam-
ple, the CoSaMP algorithm [20]. This new decoding algorithm
is named Adaptive Cluster Sparse Reconstruction Algorithm
(ACSRA). Authors also show with a practical example that the
proposed framework decreases the communication load over
the network by approximately 80%.

B. Sensing matrix adaptation

In the second class of CS approaches we consider, the
design of A is tuned according to some properties of x. This is
the case of [3], [21] where A is changed in a very simple way.
These methods, by a continuous monitoring of the sparsity
level of the reconstructed signals, exploit a feedback from the
decoder to the encoder to adapt the CR value and thus to
dynamically change the number of rows in A.

An even more interesting approach is the focus of [22]–[24]
known as adaptive sensing, where one of the main CS general
assumptions is broken, i.e., a dependency between successive
rows of A is introduced. In particular, [23] investigates the
case where the rows of A are constrained to be part of
a predefined set (the constrained adaptive sensing). As an
example, in magnetic resonance imaging, the encoder limits

itself to compute measurements by projecting the input signal
on vectors of the Fourier basis.

The underlying idea is that rows of A properly selected
over a predefined set are able to outperform a purely random
selection in terms of minimum reconstruction error. As main
prior, an estimation of the current signal support Ξ is provided
such that the reconstruction error can be written as

E[‖x− x̂‖22] = ‖(ASΞ)†‖2F σ2 = tr
((

(ASΞ)
∗
ASΞ

)−1
)
σ2

where E[·] stands for expectation, SΞ is S limited to the
columns corresponding to the support Ξ, ‖·‖F is the Frobenius
matrix norm, ·† is the Moore-Penrose pseudoinverse and σ2

represents the variance of the noise term in (1).
Let us indicate with Ã ∈ Rn×n the transpose of the matrix

with all possible sensing waveforms, and with P a diagonal
matrix whose elements Pj,j = 1 if the j-th row of Ã is selected
to compose A, and 0 otherwise. The authors of [23] say that
error reconstruction is minimized if such a selection follows
the solution of the optimization problem

min
diag. mat. P

tr
(

((ÃSΞ)∗PASΞ)−1
)

s.t. tr(P ) ≤ m

where tr(·) stands for matrix trace.
In a case study, the authors devote m/2 measurement,

obtained in accordance to the standard CS, in order to estimate
Ξ while the remaining measurement are obtained by applying
the above method. Simulations with signals sparse on the Haar
wavelet basis and Ã> as the Fourier basis show that this
method is able to strongly reduce the reconstruction error with
respect to the case where sensing vectors are randomly chosen.

A different framework has been introduced in [25], with
applications in [26]–[30], known as rakeness-based CS. Here
the main difference with respect to standard CS is the use of
a proper correlation profile for the symbols composing each
row of A while independence between rows is still preserved.

The exploited prior is the second order statistic of the input
signals, i.e., an estimation of the signal correlation matrix X =
E[xx>]. Such matrix can be analyzed to assess how much
the process generating signal instances deviates from a purely
random process with a flat spectral profile. This deviation can
be named as localization and could be evaluated by

Lx = tr
(
X 2
)
/tr2(X )− 1/n

Rakeness-based CS suggests drawing the generic row a of A
according to a process with correlation matrix A = Ea[aa>]
that is the solution of an optimization problem aiming to
increase the measurement vector energy with the constraint
that La ≤ lLx, where La is the localization of the process
generating rows of A and l is typically set to 0.5 [31].

Interestingly, the rakeness optimization problem in [25] can
be analytically solved such that the application of the entire
method uses matrices A whose rows feature the following
correlations matrix

A = e

(
X

tr(X )

√
l +

1

n
IIIn

(
1−
√
l
))

where e is the `2 norm of each row of A. In [30] there are also
definitions and methods to cope with cases where A entries are
limited to be either binary, i.e., Ai,j ∈ {0, 1} or ternary, i.e.,



Ai,j ∈ {−1, 0, 1}1. Results in [26]–[30], [32], for different
classes of signals, show a strong reduction in terms of error
reconstruction with respect to the standard CS approach. In
particular, [30] provides a comparison with [19] and [33] that
highlights the effectiveness of this approach.

C. Reconstruction algorithm modification
In the third class of approaches, we include solutions that

focus on the decoding stage. The reconstruction problem,
either in the form of (3) or (4), can be easily solved by
mapping it into a linear programming problem. Based on this
observation, general purpose solvers as `1-MAGIC [34] and
SPG-`1 [35] have been developed.

Nevertheless, even if these solvers ensure good reconstruc-
tion performance according to the CS theory, they are compu-
tationally expensive and do not feature any specialization to a
signal class. In order to reduce reconstruction costs (in terms
of both time and energy), one can rely on greedy approaches
that iteratively promote sparsity by means of intermediate
and approximated solutions. Among the several approaches
developed so far, a fast and light-weighted algorithm that
is worth mentioning is OMP [36]. Despite providing only
approximated solutions, all these approaches ensure a lower
complexity with respect to general methods [12] and can be of
paramount importance when the decoder is a battery-powered
device or when n is high and the real-time constraint holds.

Some iterative reconstruction algorithms are also able to
exploit input signal priors, for example, authors of [20] pro-
pose CoSaMP, that is based on the a-priori knowledge of the
sparsity level κ. A similar approach is used in the light-weight
IHT proposed in [37], that ensures correct signals reconstruc-
tion when κ/n is low with a very limited computational cost.

Many other approaches can be found in the literature based
on other priors. For example, MU-GAMP [38] uses hypothesis
on both input signal and noise statistics. Other approaches use
an iterative and reweighted algorithm [39], [40]. The literature
on decoding approaches is extremely flourishing [41]–[44]
and a complete overview would exceed the limit of this brief
survey.

We may here focus on an interesting decoding solution,
the Weighted `1 Minimization (WLM) proposed in [33]. As
rakeness-based CS, WLM uses signal statistic as additional
prior, but in a different way. In more detail, authors make
an estimation of the probability, for each column of S, to be
included in the current Ξ. From these values, a diagonal matrix
W ∈ Rn×n is defined whose entries are the inverse of the
observed frequency. The intuition is to promote reconstructed
vectors ξ̂ with a support similar to what is observed in
average instead of using the straightforward solution of the
reconstruction problem where each element of ξ̂ is non-null
with the same probability. To this aim, it is possible to replace
(4) with the optimization problem

ξ̂ = arg min
ξ

1

2
‖Bξ − y‖22 + λ‖Wξ‖1

where the normalization parameter is set to λ = 0.1 according
to authors’ suggestion.

The authors of [33] focus on the ECG signal. They provide
a matrix W to be used for reconstructing ECG signal when

1Matlab implementation avaliable at http://cs.signalprocessing.it

TABLE I
CS FRAMEWORKS WITH ADDITIONAL PRIORS

Main
change

Additional
prior

Introduced
novelty Universality Performance Ref.

III-A

block
sparse

new
decoder • ••• [16]–[19]

signal
discontinuity

new
decoder •• •• [2]

III-B

signal
support

new
encoder •• •• [23]

signal
statistic

new
encoder ••• ••• [25]–[30]

III-C

signal
statistics

new
decoder ••• •• [33]

signal
decomposition

new
decoder • ••• [45]

n = 512 and when S is the Daubechies-6 wavelet basis matrix.
Simulations on real ECG tracks show how WLM reduces the
reconstruction error, for a proper value of m, when compared
with other decoding approach as OMP, IHT, BSBL and more.

Finally, [45] presents an innovative decoding procedure
in the design of a multi-electrode neural signals acquisition
system based on CS. The main characteristic of this approach
is a two-step signal reconstruction. It is assumed that each
instance x is composed by two contributions, xc containing
the mean shape, and xf with waveform details. Furthermore,
xc is a 1-sparse signal over a custom dictionary D trained
during an initialization phase where the system transmits raw
data of the proper user, while for the κ-sparse signal xf a
Wavelet basis is considered as S.

x = xc + xf = Dξc + Sξf

Authors used this model to define a two-step decoding proce-
dure that is described as follows. As first ξc is recovered by
enforcing sparsity equal to 1.

ξ̂c = arg min
ξc
‖y −ADξc‖2 s.t. ‖ξc‖0 = 1

After that a residual of the measurement vector is computed
as r = y −ADξ̂c and xf is reconstructed by

ξ̂f = arg min
ξf
‖r −ASξf‖2 s.t. ‖ξf‖1 ≤ λ

where λ is a regularization parameter that limits xf sparsity.
Finally, the reconstructed signal is x̂ = Dξ̂c + Sξ̂f .

Tests on a reference dataset highlight how this method is
able to outperform standard CS in terms of both reconstruction
error and spike detection or, equivalently, this approach allows
to keep m to a value lower then what is needed by standard
CS with the same neural spike identification capability and
with the same reconstruction error.

IV. CONCLUSION

In this paper, a survey of innovative CS technique for
improving system performance exploiting input signal priors
is presented. These techniques have been divided into three
groups according to the processing block that has been modi-
fied with respect to the standard CS approach. The used prior
is also identified to help readers to understand the differences
and to evaluate the proposed techniques.
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