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ABSTRACT

In this paper we describe the image compression algo-
rithm and its implementation to be used for the PRISMA
mission of the Italian Space Agency. The mission pay-
load includes a pushbroom hyperspectral instrument as
well as a medium resolution panchromatic camera.

1. INTRODUCTION

PRISMA (PRecursore IperSpettrale della Missione Ap-
plicativa) is a mission of the Italian Space Agency to
serve as a pre-operational technology demonstrator for
hyperspectral payloads in space. The mission payload in-
cludes a pushbroom hyperspectral instrument with 237
bands as well as a medium resolution panchromatic cam-
era. The mission specifications require a compression
ratio of 1.5:1 to match the downlink capacity, there-
fore requiring a compression board to be included in the
payload. Moreover, the compression board must sat-
isfy the target throughput of 60 Msamples/s. This will
be obtained employing an algorithm based on a predic-
tion loop with quantization and entropy coding. For
this compressor, the algorithm will be an extension of
the recently published CCSDS-123 lossless compression
recommendation [1]. Despite having been standardized
very recently, this recommendation is based on an algo-
rithm developed by NASA-JPL [2]. NASA has already
demonstrated a hardware implementation of this algo-
rithm. The requirement on compression ratio is such
that lossless compression is typically not enough, so a
lossy operating mode must be provided. In a recent ESA
project, the CCSDS-123 recommendation has been ex-
tended to handle lossy compression and rate control [3]
and the resulting compression algorithm has been imple-
mented on a space-qualified FPGA. Its validation, includ-
ing a complete image acquisition and processing pipeline
with frame grabber and CCSDS formatter, with the com-
pression algorithm implemented on Xilinx 5QV FX130T
FPGA, has achieved a throughput of 20 Msamples/s [4].
In this paper, we address how the the previous work on a
lossy extension of CCSDS-123 can be tailored to meet the
requirements of the PRISMA mission in terms of com-
pression ratio and, even more critically, throughput. This

is accomplished by using a modified version of a predic-
tion mode specified by CCSDS-123 that allows a faster
hardware implementation. Moreover, we study which en-
tropy coder among a modified range encoder working in
parallel on bitplanes and a Golomb encoder is more suit-
able for the mission. As a further addition to the original
algorithm, PRISMA requires resilience to transmission
errors. This is integrated into the prediction loop with a
reset of the prediction parameters and of the entropy en-
coding in order to create independent coding units.

2. PRISMA SENSORS

PRISMA comprises two spectrometers are used to ac-
quire images in the visible and near-infrared range
(VNIR) and short-wave infrared range (SWIR) as well
as a panchromatic camera. All the sensors produce regis-
tered outputs. The VNIR and SWIR spectrometers have a
spatial resolution of 30 m on a swath of 30 km and a spec-
tral resolution of 12 nm, while the panchromatic camera
has a spatial resolution of 5 m. The VNIR spectrometer is
sensitive to the wavelengths in the [400, 1010] nm range,
subdivided into 66 bands. The VNIR spectrometer is in-
stead sensitive to the wavelengths in the [920, 2505] nm
range, subdivided into 171 bands.

3. REVIEW OF CCSDS-123

The Consultative Committee for Space Data Systems
(CCSDS) has recently developed the CCSDS-123 rec-
ommendation, intended for lossless compression of mul-
tispectral and hyperspectral images. CCSDS-123 is
based on the Fast Lossless compression algorithm [5] [2],
which is a predictive method. The algorithm computes a
local sum σz,y,x, obtained from a causal neighborhood
of the pixel. A weighted combination of the local sums
in the P previous bands yields the predicted pixel value.
The algorithm adapts the weights using the sign algo-
rithm [6], which is a low-complexity solution for the im-
plementation of a least-mean-square filter.

Let sz,y,x denote the pixel value at position (x, y, z), then



the encoder computes:

d̂z,y,x = WT
z,y,xUz,y,x

Under reduced prediction mode:

Uz,y,x =


dz−1,y,x

dz−2,y,x

...
dz−P,y,x

 ,
while under full prediction mode directional differences
are also used:

Uz,y,x =



dNz,y,x
dWz,y,x
dNWz,y,x
dz−1,y,x

dz−2,y,x

...
dz−P,y,x


.

The differences are defined as dz,y,x = 4sz,y,x − σz,y,x,
while the directional differences are:

dNz,y,x =

{
4sz,y−1,x − σz,y,x, y > 0

0, y = 0

dWz,y,x =


4sz,y,x−1 − σz,y,x, x > 0, y > 0

4sz,y−1,x − σz,y,x, x = 0, y > 0

0, y = 0

dNWz,y,x =


4sz,y−1,x−1 − σz,y,x, x > 0, y > 0

4sz,y−1,x − σz,y,x, x = 0, y > 0

0, y = 0

The local sums σz,y,x are defined differently depend-
ing on the choice between neighbor-oriented sums and
column-oriented sums. Under column-oriented mode:

σz,y,x =

{
4sz,y−1,x, y > 0

4sz,y,x−1, y = 0, x > 0

while under neighbor-oriented mode:

σz,y,x =



sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1

y > 0, 0 < x < Nx − 1

4sz,y,x−1, y = 0, x > 0

2sz,y−1,x + 2sz,y−1,x+1,

y > 0, x = 0

sz,y,x−1 + sz,y−1,x−1 + 2sz,y−1,x,

y > 0, x = Nx + 1

A scaled predicted sample s̃z,y,x is calculated from
d̂z,y,x. The prediction residual is computed as ∆z,y,x =

sz,y,x −
⌊
s̃z,y,x

2

⌋
and then mapped to a positive integer

δz,y,x to be entropy encoded.

The entropy coding stage provides two options: a block-
adaptive method, which is intended for backward com-
patibility with the CCSDS 121.0B standard, a sample-
adaptive method. The sample-adaptive entropy coder
maintains separate entropy coding statistics for each
spectral band, thus producing the same compressed im-
age size regardless of the order in which samples are pre-
sented to the encoder. It is typically more efficient than
the block-adaptive coder. Each mapped prediction resid-
ual is encoded into a variable length codeword according
to the Golomb coding. Essentially, a non-negative value
δ is divided by a tunable parameter k to obtain the result
of the division q and a remainder r . Then,

• q is written using unary coding, i.e. a sequence of
q − 1 zeros terminated by a 1

• r is written using truncated binary coding

In the CCSDS 123.0-B-1 implementation, the parameter
k is adaptive and it is computed from statistics on the
mapped residuals kept individually for each band. In par-
ticular, an accumulator and a counter are defined. The ini-
tial counter value for all bands is defined as Γ(0) = 2γ0 ,
where γ0 is a user-defined value in the range 1 ≤ γ0 ≤ 8.
The initial accumulator value for band z is defined as:

Σz(0) = b2−7
(
3 · 2k+6 − 49

)
Γ(0)c

where k is the user-defined initialization value of the
aforementioned parameter, in the range 0 ≤ k ≤ D2
, being D the dynamic range. After coding a mapped
residual, the counter is updated as follows:

Γ(t) =

{
Γ(t− 1) + 1, Γ(t− 1) < 2γ

∗ − 1

bΓ(t−1)+1
2 c, Γ(t− 1) = 2γ

∗ − 1

where γ∗ is a user-defined parameter in the range 4 ≤
γ∗ ≤ 9 . After coding a mapped residual δ , the accumu-
lator is updated as follows:

Σz(t) =

{
Σz(t− 1) + δ, Γ(t− 1) < 2γ

∗ − 1

bΣz(t−1)+δ+1
2 c, Γ(t− 1) = 2γ

∗ − 1

The value of the divisor for the current sample is the
largest nonnegative integer kz(t) ≤ D2 such that
Γ(t)2kz(t) ≤ Σz(t) + b 49

27 Γ(t)c The codeword will have
uz(t) zeros followed by a one, where uz(t) = b δ

2kz(t) c.
Finally, the rest of the codeword is composed of the kz(t)
least significant bits of δ. An exception to this procedure
is made when uz(t) ≥ umax , being umax a user-defined
constant. In such case umax zeros are written and fol-
lowed by the D-bit binary representation of δ.

For further details, we refer the reader to the CCSDS-123
Blue Book [1] and to the paper by Augé et al. [7] for a
more throughout explanation of the encoder parameters
and their impact on performance.



 

Figure 1. Prediction loop with quantization

4. PROPOSED METHOD

The compressor in [3] can be described using the block
diagram in Fig. 1. The algorithm comprises a spatial-
spectral predictor, a quantizer and an entropy coding
stage. The quantizer is inserted in a quantization feed-
back loop. A local decoder generates reconstructed sam-
ples, which are used to predict the next input sample.
The prediction residual is then quantized, and the quan-
tized value is compressed into a codeword by the entropy
coder, and written to file. Quantization step sizes em-
ployed during the compression stage are either implicitly
known by the decoder (e.g., recalculated from past de-
coded samples), or explicitly written in the compressed
file. If the quantizer is bypassed, the compressor works in
purely lossless mode and the reconstructed image is iden-
tical to the original. Increasing quantization step sizes
will lead to increasing information losses, but also larger
amounts of compression.

4.1. Predictor

The CCSDS123 recommendation defines two prediction
modes: “full” and “reduced”, with two modes to compute
local sums, i.e. column-oriented and neighbor-oriented.

The prediction mode used by PRISMA is the reduced,
column-oriented predictor defined in CCSDS 123.0-B-
1 as this is the choice that allows implementations with
highest throughput. The initialization procedure de-
scribed by CCSDS 123.0-B-1 has been modified in or-
der to avoid the use of the sample immediately to the
left of the current sample in the current band. Indeed,
while guaranteeing excellent compression performance,
this choice avoids employing for the prediction any pixel
located on the same line as the current pixel. This enables
pipelining the compressor operation in a much more effi-
cient way, allowing to achieve the desired throughput for
the prediction stage. Moreover, the prediction weights are
reset to their initial values after encoding a predetermined
number of lines N . This solution embeds resilience to
packet losses in the compressed stream. The initialization
of the predictor must be repeated after every reset.

Following the same notation of the recommendation [1],

the local sum is defined in the following way:

σz,y,x =


4sz,y−1,x for y mod N > 0

4sz−1,y,x−1 for y mod N > 0, z > 0

0 otherwise
(1)

Note that σz,kN,0 is undefined for z > 0 and k =
0, 1, 2, . . . . This is handled by the modified computation
of the scaled predicted sample. The scaled predicted sam-
ple value is initialized in the following way:

s̃z,y,x =

{
2smid for x ≥ 0, z = 0, y mod N = 0

2s0,y,z−1 for x = 0, z > 0, y mod N = 0

(2)

where smid = 2D−1, being D the dynamic range.

In order to improve resilience to packet losses during data
transmission, the prediction loop is broken after a prede-
termined number of lines. This allows to partition the
image into independent pieces, so that is a packet is lost
only a portion of the image is corrupted. The reset mech-
anism requires the following operations to be performed
whenever y ≡ 0(modN) , i.e. at the beginning of the
next line after N lines have been coded :

• reset the predictor weights to their default value

• reset the statistical models of the entropy encoder

• pad the output to reach an integer number of bytes

• write a synchronization marker to the output file

4.2. Quantizer

Quantization in the PRISMA compressor architecture
will be a simple scalar uniform quantization, with the
same quantization step size employed for every pixel in
every band of the image. This choice corresponds to the
so-called nearl-ossless compression, which has the desir-
able feature to provide a strict upper bound on the max-
imum absolute error incurred between any pixel of the
original image and the corresponding pixel in the recon-
structed image. It is foreseen that only small quantization
step sizes will be employed, corresponding to very small
maximum errors. The exact values of these quantization
step sizes will be chosen based on the characteristics of
the images to be generated by PRISMA. Moreover, the
choice of a constant quantization step size for every pixel
avoids the need for a rate control algorithm. This will en-
sure that quantization does not act as a bottleneck on the
compressor throughput.

4.3. Entropy coder

The entropy coding stage will be designed so as
to achieve excellent compression performance, while



achieving a very high throughput. HYDRA [3] has been
the first encoder validated for space that employs a range
encoder, i.e. a simplified version of the arithmetic coder,
which obtains close to optimal compression efficiency.
Indeed, HYDRA employed four parallel range encoders
to improve its throughput. With respect to HYDRA, the
following options for entropy coding have been consid-
ered in order to further increase the throughput.

• To employ 16 parallel binary range encoders instead
of four nonbinary ones. A binary range encoder is
faster and occupies fewer hardware resources. Each
binary range encoder shall be applied to a bitplane,
i.e. the set of all bits of equal weight in the binary
representation of the prediction residuals of an im-
age. Since range encoders need to adaptively esti-
mate the statistics of prediction residuals, it is ex-
pected that 16 binary encoders (requiring to esti-
mate 32 probabilities overall) will work as well as
or better than nonbinary encoders, whose transient
for probability adaptation takes a longer time.

• Another viable option, which will certainly achieve
very high throughputs, is to use a Golomb power
-of-two code coder. The Golomb coder has been
a classical choice for onboard image compression,
because of its simplicity leading to high throughput,
coupled with very good performance. The main is-
sue with the Golomb coder lies in the fact that it can-
not generate bitrates smaller than 1 bit/pixel. How-
ever, the compression ratios of interest for PRISMA
are above 6 bit/pixel; at these bitrates the Golomb
coder will work very well, providing very good cod-
ing efficiency.

During implementation it emerged that the solution using
16 binary range coders in parallel could not meet the re-
quired 60 Msamples/s target. Hence, the entropy coding
stage adopts the sample adaptive coder based on Golomb-
Power-of-two codes as defined in the CCSDS 123.0-B-1
standard.

5. EXPERIMENTAL RESULTS

The following results have been obtained using images
generated from the sensor simulation. Only the bands
with nonzero content have been supplied to the compres-
sion algorithm and all the rates in bits per pixel refer to
the actual number of nonzero bands. The images are split
in their short-wave infrared (SWIR) and visible and near
infrared (VNIR) as they will be coded separately by par-
allel instances of the compression hardware. The goal of
the experiments is to verify that the target compression
ratio can be met by the proposed architecture and to mea-
sure the quality reached on the test images. Moreover, we
quantify the impact of prediction reset in terms of output
rate for different choices of the constant N . The qual-
ity metrics that we use are Signal-to-Noise ratio (SNR),

defined as:

SNR = 10 log10

∑Npixels

i=1 x2
i∑Npixels

i=1 (xi − x̂i)2
,

as well as the Maximum Absolute Distortion (MAD),
which is the maximum magnitude of the error on a pixel.
Since we are using near-lossless compression, the MAD
must be bounded by half the quantization step size.

5.1. Results on clean images

We first test the algorithm on clean images, i.e. images
presenting no sensor defects such as bright or dark pixels.
The maximum acceptable rate to satisfy the compression
ratio constraint is about 8 bpp. Table 1 reports the re-
sults on some of the images for different quantization
step sizes. The quantization step size is obtained from
the parameter δ as Q = 2δ + 1. It can be noticed that
the rate constraint is always met even by lossless com-
pression and that the reset mechanism introduces a small
overhead.

5.2. Results on images with defective pixels

The following results consider images where some pix-
els in the detector are defective. Hence, a column of the
image has been zeroed, and its position changes with dif-
ferent bands. The goal of this experiment is to verify
that the compression algorithm behaves correctly even in
presence of artifacts in the image. Table 2 shows that the
rate constraint is satisfied in this case as well with a min-
imal increase in rate from Table 1.

Rate constraint for each line

In addition to the global rate requirement of 8 bpp (1.5:1
compression ratio), the hardware architecture constrains
the rate of each line with all the spectral channels to be
below 9.2 bpp (1.3:1 compression ratio). This require-
ment may pose challenges when the prediction is initial-
ized, such as for the first line and very time it is reset. Fig.
5.2 shows the behaviour of the output rate for each line
for some of the test images for lossless compression. It
can be noticed that despite the peaks due to the reset of
the predictor every 16 lines, the output rate never reaches
the critical value of 9.2 bpp.
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