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ABSTRACT

Predictive compression has always been considered an attractive solution for onboard compression thanks to its
low computational demands and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally,
predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can
be bounded but the rate of the compressed image is variable. Fixed-rate is considered a challenging problem
due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal
representation that packs the signals energy into few coefficients as in the case of transform coding. In this
paper, we show how it is possible to design a rate control algorithm suitable for onboard implementation by
providing a general framework to select quantizers in each spatial and spectral region of the image and optimize
the choice so that the desired rate is achieved with the best quality. In order to make the computational
complexity suitable for onboard implementation, models are used to predict the rate-distortion characteristics
of the prediction residuals in each image block. Such models are trained on-the-fly during the execution and
small deviations in the output rate due to unmodeled behavior are automatically corrected as new data are
acquired. The coupling of predictive coding and rate control allows the design of a single compression algorithm
able to manage multiple encoding objectives. We tailor the proposed rate controller to the predictor defined
by the CCSDS-123 lossless compression recommendation and study a new entropy coding stage based on the
range coder in order to achieve an extension of the standard capable of managing all the following encoding
objectives: lossless, variable-rate near-lossless (bounded maximum error), fixed-rate lossy (minimum average
error), and any in-between case such as fixed-rate coding with a constraint on the maximum error. We show the
performance of the proposed architecture on the CCSDS reference dataset for multispectral and hyperspectral
image compression and compare it with state-of-the-art techniques based on transform coding such as the use of
the CCSDS-122 Discrete Wavelet Transform encoder paired with the Pairwise Orthogonal Transform working
in the spectral dimension. Remarkable results are observed by providing superior image quality both in terms
of higher SNR and lower maximum error with respect to state-of-the-art transform coding.

INTRODUCTION

Image spectrometers collect vast amounts of data which can be used for a variety of tasks. Fine spectral
resolution can be a desired featured when it comes to detecting fingerprints in the spectral response of a scene,
but a problem of handling such wealth of information naturally arises and calls for the use of compression
methods. Onboard compression enables spacecrafts to save transmission time, allowing more images to be sent
to the ground stations. The design of compression algorithms for onboard applications must carefully meet
the limited resources in terms of computational power and memory available on the spacecrafts. Two main
compression techniques are available in this scenario: transform coding and predictive coding.

Transform coding relies on computing a linear transform of the data to achieve energy compaction and
hence transmit few carefully chosen transform coefficients. One of the most popular approaches is JPEG2000
[1] and its multidimensional extension. A wavelet-based 2D lossless and lossy compression algorithm has also
been standardized for space applications [2]. Spectral transforms to eliminate the inter-band redundancy have
been subject of intense research. There exists an optimal transform for Gaussian sources, i.e., the Karhunen-
Loève transform (KLT) but its complexity does not match the computational resources typically available
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Figure 1. Serial rate control implementation.

for onboard compression. Hence, low-complexity approximations to the KLT have been derived, such as the
Pairwise Orthogonal Transform (POT) [3]. Transform coding allows to perform lossless and lossy compression
and to accurately control the rate in a simple manner thanks to the simple relation between rate and quantized
transform coefficients [1]. On the other hand, per-pixel quality control as in near-lossless compression is hard to
obtain. Transform coding also typically suffers from the problem of dynamic range expansion, which is a direct
consequence of energy compaction. While it is difficult to generalize due to the availability of many different
transforms and predictors, a transform generally uses many (past and future) pixels of the image to represent a
given pixel, while a predictor generally employs few pixels in a causal neighborhood, thus making it less prone to
performance loss when the prediction is reset over different image areas, e.g., in order to achieve error resilience.

Predictive coding uses a mathematical model to predict pixel values and encode only the prediction error.
Adaptive linear prediction is often used [4, 5, 6, 7] (e.g., the predictor adopted by the CCSDS-123 reccomendation
[8] relies on the LMS filter [9], with the sign algorithm [10] for weight update), but other methods have been
devised as well, e.g., based on edge detection [11] or vector quantization [12]. In lossless compression, the
prediction residuals are written in the compressed file after entropy coding. Lossy compression instead quantizes
them before entropy coding. The quantization step size determines the amount of compression and hence
information losses with respect to the original image. Near-lossless compression is readily implemented by
setting a maximum quantization step size, so that the quantization error never exceeds half of it. On the other
hand, rate control in a predictive coder is challenging because: i) no simple mathematical relationship between
the rate and the quantized prediction residual exists, ii) the quality of the prediction, hence the magnitude of
the residuals, and ultimately the rate depend on how coarse the quantization is.

In this paper we review an innovative design of a rate controller for a predictive encoder, proposed in [13].
We show that the proposed method can achieve accurate control, while having complexity suitable for onboard
implementation. In particular, the algorithm is designed to work in line-based acquisition mode, as this is the
most typical setup of spectral imaging systems. We first describe the proposed algorithm in general terms, as
it can be applied to any predictive coder but then, we focus our attention on using it with the LMS predictor
used in the CCSDS-123 standard for lossless compression [8], which is an improved version of the Fast Lossless
algorithm [14]. The resulting system can be seen as an extension of the standard featuring lossless, near-lossless
and rate-controlled lossy compression. The rate controller provides lossy reconstructions with increasingly better
quality, up to lossless encoding, as the target rate approaches that of lossless compression. The controller can
also work in a hybrid rate-controlled and near-lossless mode by specifying the maximum quantization step size
that the controller is allowed to use. Finally, we discuss the architecture proposed in [15] which overcomes the
serial nature of the algorithm, as well as the large memory requirements of the entropy coding stage, achieving
a pipelined implementation suitable for high-throughput onboard implementation, at a negligible cost in terms
of coding efficiency.

RATE CONTROL ALGORITHM

The purpose of the algorithm is to control the output rate of a predictive encoder of hyperspectral and multi-
spectral images, under low complexity and memory constraints. This rate control algorithm can work with any
predictor, as it selects the quantizers operating on the prediction errors. The rate control algorithm works on
a slice-by-slice basis, where we call “slice” a predefined number of lines with all their spectral channels. Each
slice is divided into nonoverlapping 16 × 16 blocks. An individual quantization step size is computed for each
block in each spectral channel, so that lossy predictive coding employing the computed step sizes will achieve
a rate as close as possible to the target. The rate control algorithm is a two stage process that computes such
step sizes, as depicted in Fig. 1. In particular the following steps are performed:
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• Training stage: a model predicting the rate-distortion curve of each block in the slice is built as function
of the variance of the unquantized prediction residuals and of the quantization step size. The former is
estimated by running the lossless predictor on a small number of lines in the slice. The number of lines
employed in the training is denoted as E. While the best choice in terms of estimation error is using all
the lines in the slice, this operation is costly, so E is typically kept to a small value such as 2 lines only.

• Optimization stage: the final quantization step sizes are obtained as follows. First, an initial set of
quantization step sizes is calculated, which approximately achieves the target rate but is suboptimal in
terms of distortion. Then, a greedy algorithm makes local adjustments aimed at promoting low-distortion
allocations of the quantization step sizes, employing the rate-distortion models of all blocks in the slice.

Furthermore, the algorithm measures the actual rate produced by encoding the slice with the computed quanti-
zation step sizes and uses this information to update the target rate for the next slices. This mode of operation
has been shown to effectively correct inaccuracies in the model without reducing the rate-distortion performance.

Training

We now introduce the model used to describe the prediction residuals in each block. This model allows to obtain
closed-form expressions for the rate and the distortion of the quantized residuals in the block. It is commonly
observed that accurate predictors tend to yield residuals with leptokurtic (high kurtosis) distribution, hence
similar to the Laplace probability density function, which we use to model the distribution of prediction residuals:

fr(x) =
Λ

2
e−Λ|x|, (1)

where Λ is related to the variance σ2 of the distribution by Λ =
√

2
σ2 . We assume that the residuals in each

block and the blocks themselves are independent of each other. The residuals are quantized using a quantization
step size Q. We can derive analytic expressions for the rate and the distortion (MSE) of the quantized residuals,
which are (2) and (3). We can notice that both the rate and the distortion are functions of the variance σ2 of
the unquantized residuals in the block and of the quantization step size Q, whose value is yet unknown. Each
block in the slice has its own variance parameter and quantizations step size. The variance must be estimated,
while obtaining the quantization step size is really the ultimate goal of the rate control algorithm. Estimation
of the variance is done by running the predictor without quantization of the residuals for E lines.

Optimization

Algorithm 1 Projection algorithm to solve (5)

Sort R(Λ,Q) into µ in descending order

Find ρ = max
{
j : µj − 1

j

(∑NB

i=1 µi −Rtarget

)
> 0

}
Define θ = 1

ρ

(∑NB

i=1 µi −Rtarget

)
Find w such that wi = max {R(Λi, Qi)− θ, 0}
Find Q̂ = R−1(Λ,w)

The final quantization step sizes are obtained after a sequence of two procedures called l1 projector and
Selective Diet. First, the integer problem of choosing the quantization step sizes is approximated by a continuous
one and a projection step onto the simplex defined by the rate constraint is taken. Then, Selective Diet



Algorithm 2 Selective Diet

Require: Qg, λ = 50, Niter

for iter = 1→ Niter do
Set default = Qg , Q(+2) = Q+2, Q(−2) = Q-2
Set output chain Qg = Q(−2)

Compute Rdiff =
∑

R(Qg)−Rtarget, i.e., the rate you need to lose to reach the target

Sort the nodes in Q(+2) by decreasing value of Ji =
(
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(+2)
i

)
+ λ

(
R

(−2)
i −R

(+2)
i

)
i = 1
while

∑
R(Qg)−Rtarget < Rdiff do

Replace the corresponding node in Qg with the i-th node in the sorted Q(+2)

i = i+ 1
end while
if iter ̸= 1 then

if Distortion did not lower AND inner iterations not exceeded then
Set λ← λ/2 and repeat current iteration

else
Proceed to next iteration

end if
end if

end for

performs an optimization of the solution returned by the projector by making local integer adjustments aimed
at reaching the target rate and promoting low-distortion allocations of the quantization step sizes, according to
the theoretical model. Some adjustments, described in [13], are made to this basic scheme in order to deal with
dependencies among prediction residuals, originating in the propagation of quantization noise in the prediction
loop and to deal with blocks where the estimated variance is deemed too low and unrealiable.

Concerning the l1 projector, suppose that the encoder is given a target rate for the encoded image equal
to T bits-per-pixel (bpp), and suppose that there are NB blocks in the current slice (NB is the product of
the number of blocks in one band times the number of bands). We define the quantity Rtarget = T · NB as
the product of the target rate in bpp and the number of blocks in the slice (note that this quantity does not
represent the actual number of bits at our disposal since we are multiplying times the number of blocks and not
the number of pixels). Ideally we would like to satisfy the rate constraint exactly, hence have

NB∑
i=1

R(Λi, Qi) = Rtarget (4)

where Qi is the quantization step size selected for the i-th block. Notice that since the rate of each block is a
positive quantity, (4) defines a simplex in NB dimensions. We can consider an initial solution having Qi = 1 ∀i
(lossless encoding), with corresponding rates R(Λi, 1). Geometrically, we have a vector in an NB-dimensional
space whose entries are the rates R(Λi, 1) and we can project it onto the simplex defined by (4). In other words,
we seek to solve the following optimization problem, where we slightly abuse notation using boldface to indicate
NB-dimensional vectors and making the R function operate component-wise:

R̂ = argmin
R
∥R−R(Λ,1)∥2 subject to ∥R∥1 = Rtarget (5)

Problem (5) is a continuous problem, whereas quantization step sizes are odd-integer-valued. After solving (5)
we need to search the value of Q̂i such that R(Λi, Q̂i) is closest to R̂i. Any search method such as linear search
or binary search can be used for this purpose. The algorithm is summarized in Algorithm 1. This solution,
albeit inaccurate, is a good starting point to initialize the Selective Diet algorithm, summarized in Algorithm
2. Selective Diet is a local search method trying to solve an integer optimization problem consisting in lowering
the distortion of the encoded slice while satisfying the constraint on its final rate. It does so by making local
adjustments to the solution provided by the l1 projector, hence the need for a good initialization point. For
convenience of explanation, we shall represent the blocks in the current slice as nodes in a chain. It is possible to
modify the chain by making adjustments to the nodes, namely changing the quantization step size assigned to
that node. Only local adjustments are allowed: the quantization step of each node can only be increased by 2 or



decreased by 2. We shall call +2 level an assignment of Qi+2 where Qi is the current value of the quantization
step, called default level, and -2 level an assignment equal to Qi− 2. A chain can be formed by choosing one of
those three levels for each and every node. Consistently with the notation, we will call +2/default/-2 chain a
chain made only of nodes in the +2/default/-2 level. The ultimate goal of Selective Diet is creating a chain that
meets the rate constraint and has low distortion and to do so it moves some nodes to the -2 and +2 levels. The
starting point is to consider the -2 chain as the new candidate output chain, since it has the lowest distortion.
Obviously, selecting the -2 chain causes an increase in the rate, which must be compensated to meet the target.
In order to reduce the rate moving back towards the target, some nodes are assigned to the +2 level. Each
node is associated a cost function that considers the trade-off between the gain in rate reduction and the loss in
quality due to switching from the -2 to the +2 level. The following cost function modelling the trade-off with
a Lagrange multiplier is used:

Ji =
[
D(Λi, Q

(−2)
i )−D(Λi, Q

(+2)
i )

]
+ λ

[
R(Λi, Q

(−2)
i )−R(Λi, Q

(+2)
i )

]
i ∈ [1, NB ] (6)

The nodes are sorted by decreasing value of this cost function and this is the order in which the nodes are
selected to be assigned to the +2 level. Specifically, one node at a time is added to the +2 level until the rate
reaches Rtarget. The new chain is then formed by the nodes that remained at the -2 level and the nodes that
were demoted to the +2 level. This chain is taken as the new default chain for a new iteration of the algorithm
in order to try to further improve distortion. Notice that even if in a single iteration the algorithm selects nodes
from the +2 and -2 levels only, it is possible to reach any value of Q using successive iterations, thus considering
all possible odd values of the quantization step as possible choices for any block. The algorithm is run in a
greedy manner, stopping when the distortion is not improving further. We have experimentally observed that
the algorithm requires very few iterations (typically less than 10). Finally, the value of λ controls the tradeoff
between the reduction in rate and increase in distortion when adding a node to the +2 level. The optimal value
of λ would let us choose those nodes that allow a maximization of the gain in rate and a minimization of the
increase in distortion. However, finding the optimal value would be computationally very demanding, so we
resort to initializing λ to an empirically determined value (λ = 50) that we observed to be performing nicely
over the whole test image set.

Rate feedback

The rate control algorithm outlined so far is completely model-based, meaning that no information about the
real rate of the encoded slices is available. A more accurate control can be achieved by adding a feedback
mechanism that modifies the target rate for future slices based on the actual rate used to encode the previous
slices. Note that we do not want to increase the complexity of the system, hence we are not performing a
multi-pass encoding of the same slice but rather correcting the target for future slices. The system adopts
a Least-Mean-Square tracking approach to determine the target rate for the next slice, after measuring the
rate produced by the encoding of the current slice. The target update formula is derived to take into account
two issues. First, the inaccuracies in the rate controller make the actual output rate different from the target,
thus we want to estimate the input-output relationship of the controller and track it in case of nonstationary
behaviour. Second, we would like to count how many bits were used up to the current slice, and modify the
target rate depending on the amount of bits that we saved, and we would like to spend on the next slices or,
viceversa, the number of bits that we spent but we should have not. The goal is to try to assign all, but not
more than the budget bits at our disposal, by spending them on or saving them from the remaining slices. The
final rate update formula, to be motivated hereafter, is:

Tnew[n+ 1] = η[n+ 1] +
c[n+ 1]

τ
· 1

w̄[n]
(7)

with

c[n+ 1] =
n∑

k=0

(T − y[k]) = c[n] + T − y[n] (8)

η[n+ 1] = η[n] + w̄[n]

[
T − y[n] +

c[n]

τ

]
(9)

w̄[n] =
1

|I|
∑
k∈I

w[k] (10)
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Figure 2. Parallel implementation.

where y[n] is the actual rate produced encoding slice n, Tnew[n+1] is the target rate specified to the (n+1)-th
slice, which is the next slice to be coded, and T is the original target rate for the whole image (and the initial
condition for Tnew). c[n], which we call “residual budget”, stores how much deviation in rate from T has
been accumulated up to slice n. The τ factor used in the formulas plays the role of a time constant, ideally
distributing the residual budget over τ future slices. I is the set of previous slices to be used.

PARALLEL ARCHITECTURE

The first issue concerning an efficient implementation of the rate control algorithm is its serial structure, as shown
in Fig. 1, which requires to first perform the training stage. Only when this step is completed, the algorithm can
move to the optimization stage. When this is done, the task of the rate controller is completed and the actual
coding pass can begin, in which the residuals are quantized using the assigned step sizes. Conversely, designing
a pipeline where the rate controller computes the quantization steps for a future (n + 1)-th slice in parallel
to the encoding of the current n-th slice, is highly desirable. Indeed, such a pipelined implementation would
eliminate any throughput decrease due to the rate control operation, which could be executed by a software
thread or hardware module of its own. Moreover, additional benefits would include the ability of using a larger
value of E, thus providing a more accurate estimate of the variance of unquantized prediction residuals due to
the availability of more lines for this task.

In order to accomplish this objective, two main obstacles have to be faced: i) the need to provide an updated
predictor for the training phase (e.g., updated weights of an LMS filter), and ii) the need to provide an updated
target rate for slice n + 1 to the rate controller based on the actual rate produced for slice n. The former
problem can be solved by allowing the thread coding slice n to complete a certain number of lines (C) before
passing the predictor parameters to the rate control thread, which is ready to start variance estimation for slice
n + 1. Avoiding to perform a full weight adaptation over C + E lines allows to anticipate the beginning of
the rate control task for slice n + 1, which can finish before the beginning of the coding task for slice n + 1,
allowing to pipeline the rate control and coding stages. The latter issue is solved by noticing that the target
rate is needed only by the optimization stage. Thus, in the proposed architecture the coding thread passes the
information about the actual rate only after the rate controller has completed the training phase. This allows
the coding thread to complete a significant number of lines (about C +E lines), so that the actual output rate
reliably represents the rate of the full slice, and can thus be used to update the target rate for future slices
effectively. Synchronization can be easily managed by forcing the coding thread to pass the rate information
when L lines are missing before completing the coding of slice n. We can notice that most of the complexity
of the rate controller lies in the training phase and not in the optimization phase, so that L can have a small
value. The rate control thread returns the assigned quantization step sizes, just in time for the coding thread
to start processing slice n+ 1. Fig. 2 shows the interactions between the coding and rate control threads. It is
worth noticing that several tradeoffs are available for different choices of the parameters. A typical setup uses
slices of 16 lines, with C = 6, E = 8, and L = 2.

RANGE CODER

The CCSDS-123 recommendation defines an adaptive coding approach using Golomb-Power-of-2 codes, mainly
due to its low complexity and good performance, as well as the existence of an earlier standard (CCSDS 121.0-B
[16]) using the Rice coding algorithm, embedded in the block-adaptive mode. We propose a different entropy
coding stage based on the range coder [17]. The range coder is essentially a simplified arithmetic encoder.



Such a block coder is needed in order to achieve rates lower than 1 bpp, as the minimum codeword length for
the Golomb code is 1 bit. Moreover, a higher performance entropy coder improves the effectiveness of the rate
controller, by limiting the suboptimality introduced at this stage. An earlier version of the proposed range coder
kept four separate models for each band for the prediction residuals, as described in [18]. Some modifications
to this structure have been made to address the excessive memory consumption. First, prediction residuals
are mapped onto non-negative integers following the same scheme adopted in CCSDS-123, thus the sign model
only has to distinguish a zero residual from a positive one. Then, a total of four models are kept for all the
spectral channels, i.e., the same structure storing the model is updated during the coding process, which follows
a Band-Interleaved-by-Line (BIL) order. The proposed approach is suboptimal with respect to the original
solution because a single model cannot discriminate the different statistics of the prediction residuals in the
various bands. However, this scheme allows to reduce the memory requirement by factor equal to the number
of bands, which can be very large. In [15] we showed that this structure incurs in a very small performance loss
in terms of output rate.

NUMERICAL RESULTS

We have performed extensive tests on images extracted from the corpus defined by the MHDC working group
of the CCSDS for performance evaluation and testing of compression algorithms. For brevity, we report the
results of a comparison between the performance of the proposed extension of CCSDS-123 to lossy compression
with rate control against a state-of-the-art transform coder intended for onboard compression. The CCSDS-122
standard [2] defines a transform coder employing the Discrete Wavelet Transform and a low-complexity Bit Plane
Encoder, for the compression of 2D imagery. An extension of such standard to multiband imagery by including
a spectral transform has been implemented and is publicly available online [19]. The implementation combines
the CCSDS-122 encoder with the POT spectral transform [3]. The proposed system is instead run using the
rate control algorithm with slice-by-slice rate feedback with τ = 5, and memory-1. Full prediction mode and
neighbor-oriented local sums are the parameters of CCSDS-123 predictor. We remark that the availability of
the rate controller for the predictive system allows to perform a direct comparison, in which both systems work
in a pure rate-controlled fashion by specifying a target rate and letting the encoder perform all the coding
decisions automatically. The proposed rate controller is operated using E = 8 for both the serial and parallel
version. Table 1 reports a comparison between the proposed system with serial an parallel architectures and the
transform coding method. The proposed predictive system is competitive against transform coding by typically
providing superior quality, both in terms of SNR and in terms of maximum absolute distortion (MAD), for the
same rate. Other quality metrics such as the maximum spectral angle (MSA) and average spectral angle (ASA)
have been studied in the literature, but we omit them for reasons of brevity. However, such metrics follow the
same trends observed for SNR and MAD, respectively. We observe that, at lower rates, the proposed algorithm
achieves significant gains in terms of MAD even when the SNR gain is small or for the few cases when the
transform coder is more effective.

Table 1. Performance comparison.

PREDICTIVE (parallel) PREDICTIVE (serial) TRANSFORM
IMAGE RATE (bpp) SNR (dB) MAD RATE (bpp) SNR (dB) MAD SNR (dB) MAD

airs gran9 2.015 63.19 4 1.988 63.13 4 60.76 19
135× 90× 1501 4.034 77.16 1 3.986 76.70 1 70.42 4

aviris sc0 1.998 55.84 24 2.001 56.07 24 55.02 107
512× 680× 224 4.001 69.39 3 3.993 69.52 3 65.03 21

CRISM-sc214-nuc 2.000 56.35 9 1.935 56.32 4 52.72 45
510× 640× 545 3.955 94.07 1 3.819 97.03 1 65.32 3

MODIS-MOD01 500m 2.001 39.10 87 2.009 39.41 90 36.54 244
4060× 2708× 5 4.001 53.70 12 4.005 54.18 12 49.77 53
montpellier 2.030 36.78 47 2.025 37.14 43 33.46 635
224× 2456× 4 4.035 50.78 8 4.020 51.15 7 45.44 47

vgt1 1b 2.000 39.84 31 2.004 40.22 28 37.05 231
10080× 1728× 4 4.003 53.25 5 4.000 53.60 5 49.76 15
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