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Abstract—Surface electromyography (sEMG) waveforms are
widely used to generate control signals in several application
areas, ranging from prosthetic to consumer electronics. Classi-
cally, such waveforms are acquired at Nyquist rate and digitally
transmitted trough a wireless channel to a decision/actuation
node. This causes large energy consumption and is incompatible
with the implementation of ultra-low power acquisition nodes. We
already proposed Compressed Sensing (CS) as a low-complexity
method to achieve substantial energy saving by reducing the
size of data to be transmitted while preserving the information
content. We here make a significant leap forward by showing that
hand movements recognition task can be performed directly in
the compressed domain with a success rate greater than 98%
and with a reduction of the number of transmitted bits by two
order of magnitude with respect to row data.

I. INTRODUCTION

Surface ElectroMyoGraphy (sEMG) signals are fundamen-
tal in the analysis of muscle activity. Since they are com-
posed of spike trains that neurons send to muscles, they
are commonly used in rehabilitation medicine for controlling
prosthetic devices [1], [2]. More recently, sEMG signals has
been used in consumer applications such as sign language
recognition [3] and remote control [4], where the device
recognizes performed hand gestures by detecting patterns in
muscles activation.

A classical hand movement recognition system based on
sEMG signals is quite complex, since it is composed by
three main stages: 1) signal acquisition (including electrodes
transduction, signal conditioning and A/D conversion), 2)
feature extraction and 3) classification. Notwithstanding such
a complexity, wearability is a key feature for the system –
especially in commercial applications– which set stringent
constraints both in size and power consumption of the device.
To solve the impasse, a typical approach relies on decoupling
signal acquisition from gesture recognition task, the latter
being performed on a more powerful hub. Yet, since sEMG
signals need to be acquired from multiple electrodes and at
2-4 kHz frequency [1], [2], even the sole data transmission
operation requires a great amount of energy that makes the
acquisition node incompatible with a long battery life.

A possible solution to reduce the data size is to transmit
only the features needed for classification which are extracted
locally. In [5], the authors proposed a solution based on the
transmission via impulse-radio ultra-wide-band (IR-UWB) of
the locally computed Willison amplitude to extract the muscle

force. This allows an overall power consumption reduction by
more than an order of magnitude.

Yet, several applications of sEMG signals requires the
knowledge of more sophisticated features. To cope with this,
in [6], Compressed Sensing (CS) –as well as its improved
version based on acquisition sequence maximizing rakeness
[7], i.e. the signal energy acquired by every CS sample–
was applied to sEMG signal acquisition in hand movement
recognition context with the aim of reducing the size of data
and still have access to the whole information content. CS is, in
fact, very interesting for wearable applications since it allows
considerable data compression with a very low computational
at transmitter side. Complexity is moved at the receiver/hub
side, where power consumption and size constraints are less
stringent.

In this work we extend the CS approach in [6] by adopting
two strategies that, when combined, are able to reduce both
latency and data size without significant accuracy loss. First,
we show that, in a hand movement recognition system, latency
can be reduced by avoiding CS decoding (which is often
the most time-consuming stage in CS processing chain) and
extracting the features needed for classification directly in the
compressed domain, similarly to what was done [8] for EEG
signals. Then we demonstrate that a further substantial data
compression can be achieved by reducing the number of bit
used (and transmitted) to represent the compressed information
without appreciably altering the performances of the classifier.

The paper is organized as follows: Section II briefly intro-
duces (rakeness-based) CS. In Section III, a hand movement
recognition system is first presented; then CS blocks are
inserted in the processing chain to drastically reduce the size
of the transmitted data and to perform the desired classification
in the compressed domain. System performances are shown in
Section IV and finally conclusions are drawn in Section V.

II. RAKENESS-BASED COMPRESSED SENSING

Compressed Sensing (CS) is an acquisition technique in
which chunks of an input signal are represented with fewer
scalars than the intrinsic limit indicated by the Nyquist-
Shannon theorem. This is possible assuming that the signal
to process is sparse, i.e. a proper basis exists such that the
projection of any input waveform over that basis has only few
terms significantly different from zero.



Let us consider the discrete-time representation of the input
signal x ∈ Rn, where n is the number of samples at Nyquist
rate for given time window. Let also D ∈ Rn×n be the sparsity
basis and ξ ∈ Rn the vector containing the projection of x on
D such that x = Dξ. If, for any possible instance x, the
corresponding ξ has at most κ non-null elements (κ � n),
then the class of signals is κ-sparse and compression can be
achieved.

The idea grounding CS is to capture the information con-
tained in x with its m ≤ n projections on a set of suitable
sensing vectors such that:

y = Ax+ ν = ADξ + ν (1)

where y ∈ Rm is the vector containing these m projections
(also called measurements), A ∈ Rm×n is the acquisition
matrix whose rows are the m sensing vectors, and ν accounts
for noise and non-idealities in acquisition process.

It is possible to recover x from y by looking for the sparsest
vector over all possible ξ that satisfy (1), which can be shown
to be equivalent to solve the following optimization problem:

ξ̂ = argmin
ξ∈Rn

‖ξ‖1 s.t. ‖ADξ − y‖2 < ε (2)

where ‖·‖p is the lp norm, ε accounts for the effect of ν and the
reconstructed signal can be written as x̂ = Dξ̂. From [9] it is
known that, if the elements of A are instances of independent
and identically distributed (i.i.d.) random Gaussian values or
random antipodal values [10], reconstruction is guaranteed by
adopting m = O (κ log(n/κ)).

Standard CS acquisition can be improved by exploiting an
additional prior on the class of signals x, called localization
Lx [11], which measures the non-uniformity of the signal
energy distribution. By indicating with E[·], ·> and tr(·),
the expectation, the transpose operator and the matrix trace,
Lx can be evaluated starting from an estimation of the input
signal correlation matrix Cx = E[xx>], and by computing the
deviation from the correlation matrix of a white process (i.e.
the identity matrix In), that is

Lx =
tr(Cx

2)

tr(Cx)2
− 1

n
(3)

Such an additional prior is used by rakeness-based CS [7] to
maximize the average energy ρ collected by the measurements
by adapting the correlation profile of the sensing vectors (rows
of A) to Cx. This can be achieved by solving

ρ = max
CA

tr (CACx) (4)

s.t. CA> = CA (5)
s.t. CA � 0 (6)
s.t. tr(CA) = 1 (7)
s.t. LA ≤ τLx (8)

where (5) and (6) ensure that CA is a correlation matrix
(i.e., symmetric and positive semidefinite), (7) normalizes the

energy of the rows of A and (8), with τ ∈ [0, 1], sets the
localization level of the sensing sequences with respect to Lx

1.
The analytic solution of the above optimization problem is

given by

CA =
1

2

(
Cx

tr(Cx)
− In

n

)
(9)

With CA is possible to generate the sensing vectors by
using jointly-Gaussian variables or by exploiting available
techniques [12] capable of synthesize sequences formed by
antipodal values {−1,+1} with a given correlation.

III. SYSTEM DESIGN AND HAND MOVEMENT
RECOGNITION

The hand movements recognition task we consider requires
to distinguish between three specific gestures, which are
extremely relevant in upper limb prosthetic control: i) hand
relaxed in natural position, ii) hand closed as in a power grasp,
iii) hand open with fingers extension.

The dataset we use consists of a single record (65s duration)
of an experiment where the subject, a healthy 32 years old
male, was asked to perform 4 repetitions of the 3 move-
ments for approximately 5 seconds each. The sEMG signal
is acquired by mean of an armband equipped with 16 equally
spaced electrodes and arranged in 2 rows. The 16 traces are
amplified and filtered before being digitized with a 12 bit ADC
working at 4 kHz sampling frequency.

Classification is first performed by using the root mean
square (RMS) value computed on non-overlapping windows.
As in real time applications latency should not exceed 150 ms
[13], we choose windows of length 256 samples (that is
64 ms) to account for further delay along the processing
chain. Our classifier is an artificial neural network (NN) with
a hidden layer of 20 neurons, whose inputs are the RMS
values computed on the 16 traces and the output classes
correspond to the 3 hand movements. The NN is trained
with the Leveberg-Marquardt backpropagation algorithm. The
test set is constructed by randomly choosing three different
movements among all possible instances and collecting all
corresponding samples. The remaining data constitutes the
training set. Performances are evaluated by averaging over
1000 different configurations. The figure of merit used to as-
sess the classification performances is the Average Recognition
Rate:

ARR = E

[
# correct recognitions

# signal windows

]
By extracting RMS values directly from the acquired signal
an ARRx = 99.8% is obtained2.

To improve performance in terms of reducing energy for
wireless transmission we add the CS encoder and decoder
between acquisition and feature extraction stages, as shown in
Figure 1, with the aim of reducing the amount of transmitted

1τ is needed to guarantee the sufficient randomness of the sensing
waveforms to reconstruct uncommon signal instances and a usal choice is
τ = 0.25.

2Results reported here have been obtained using an extended set of data
with respect to our previous work [6]. This had the consequence of increasing
classification accuracy from 95% to 99.0%



Fig. 1. Block diagram of the hand movement recognition system.1
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Fig. 2. Reconstruction performance in term of ARSNR as function of the
compress ratio CR for both standard CS and Rakeness-based CS.

data. The CS coding block compresses the discrete sEMG
signals into measures vectors that are transmitted to the
receiver side. CS is applied independently to the 16 traces
following (1) with the desired compress ratio CR = n/m,
where n = 256 is the dimension of the signal window (same
length used to compute RMS values) and m is the number of
the rows of A. Furthermore, to reduce complexity, sensing
vectors are composed by antipodal values that, in case of
standard CS (std-CS) are generated as i.i.d. random values and
for rakeness-based CS (rak-CS) are the output of a sequences
generator that uses CA evaluated as in (9).

There are two possible approaches for classification. On the
one hand, one can use the CS decoder to reconstruct the signal,
give it as input to the feature extraction stage which computes
the RMS value for each signal trace, and passes them to the
NN for classification. In this work, we use the SPGL1 toolbox3

in the CS decoder to achieve reconstruction by solving (2).
On the other hand, we show here that one can by-pass the CS
decoder and extract the feature directly from the CS measures.

IV. NUMERICAL EVIDENCE

We first confirm the benefits of adopting rak-CS with respect
to std-CS. To do so, performance is evaluated (in terms of
reconstructed signal quality) in all windows composing the
sEMG record by computing the Average Reconstruction Signal
to Noise Ratio

ARSNR = E

[
‖x‖2
‖x− x̂‖2

]
3http://www.cs.ubc.ca/∼mpf/spgl1/
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Fig. 3. Classification performance in terms of ARR as function of the
compress ratio CR. The plot shows results obtained with RMS computed
on reconstructed signal ARRx̂ and directly on the measures ARRy , with
the upper bound ARRx = 99.9% obtained transmitting signal acquired at
Nyquist rate without compression.

Figure 2 shows ARSNR as function of the compression ratio
for both std-CS and rak-CS, obtained by averaging over 16000
sEMG signal windows (1000 per signal trace). Clearly, rak-
CS outperforms std-CS with a gap that increase by decreasing
CR and reaches 12 dB for CR = 2. Since the rak-CS obtains
better results than std-CS also in following analysis, from now
on, we only consider the former approach.

With the aim of demonstrating that classifying hand move-
ments in the compressed domain is possible, we compared
results when classification is performed after signal recon-
struction and when the CS decoder is bypassed. Figure 3
shows ARR as a function of CR in both cases. Although
the NN classifier performs better with RMS computed on
reconstructed signal ARRx̂ than on measures ARRy the gap
is almost negligible. Both curves remain at approximately the
same level of the reference case (that is ARRx = 99.0%,
corresponding to sEMG signals acquired at Nyquist rate and
transmitted without compression) until CR ≤ 5 and still enjoy
ARR > 0.98 for CR ≤ 40.

The above analysis does not however offer a complete
picture in terms of the required energy for the wireless
transmission of information. To this aim, in fact, instead of
considering CR = n/m, we need to adopt CRbit = nbx/mby,
where bx and by are the number of bit used to represent
the each sample of the signal and of the measure vectors,
respectively. Since each element of x is coded with bx =
12 bit and each measure is obtained via (1) with n signed
additions, a generic element of y needs to be represented with



1

10 100

0.95

0.98

0.99

1

2 5 20 50 200
CRbit

A
R
R

ARRx

by = 4
by = 6
by = 12
by = 20

Fig. 4. Classification performance in term of ARR as function of the bit
compression ratio CRbit, for different values of by .

by = bx + log2(n) = 20 bit to avoid accuracy loss.
Perhaps surprisingly, such level of accuracy is not necessary

to correctly perform the hand movement recognition task, so
that the number of transmitted bits can be very significantly
reduced, without any appreciable decrease of ARR. To show
this, let us explore the effect of reducing by by quantizing the
measures. The quantization range [−r,+r] has been fixed to
include 99% of the measure values (that is so that Rr(|y| <
r) = 0.99) so that the quantization step size is set to q =
r/2by−1. Hence we consider by ranging from 1 bit to 20 bit.

Figure 4 shows classification performance in terms of ARR
as a function of CRbit for few significant values of by .

The graph shows that by = 20 is not the best choice since
any reduction ot its value causes an increase in performance.
On the other hand, also when the number of bit per measure is
too low, performance tends to deteriorate. Interesting enough,
when by = 6 results are better than both cases by = 12
and by = 4. The non-monotonic trend in byindicates the
existence of an optimal working point. To highlight this, we
can fix a desired value for ARR and numerically determine
the maximum value of CRbit for different values of by . The
result is shown in Figure 5 for ARR = 0.90, 0.95, 0.98.

Each of the three curves follows a common trend: with full
resolution by = 20 and until by reaches 8, a small reduction
of by do not significantly affect the recognition ratio so CRbit

increases. Then the accuracy starts to deteriorate but it is
compensated by an increment of the measures. Eventually,
when by is too low to represent the signal information,
classification performance drops. The optimal working point
for the considered system correspond to the curves maximum
that lies at by = 6.

Results show that CRbit = 62 is reachable by quantizing
measures with 6 bit and maintaining ARR > 98%. With
ARR > 95% the system achieve a compression ratio close
to 200.

V. CONCLUSION

This work considered a classical hand movements recogni-
tion system and introduced the rakeness-based CS techniques
to reduce the bandwidth needed to transmit the sEMG signal
information content. The analysis shows that feature extraction
does no require signal reconstruction and can be performed in
the CS domain without impairing the hand gesture recognition

1

2 6 10 14 18

100

50

200

500

by

C
R

b
it

ARR = 0.90
ARR = 0.95
ARR = 0.98

Fig. 5. Maximum obtainable bit compression ratio CRbit that guarantees
a certain level of hand movement recognition rate ARR as function of the
number of bit used to represent the measures by .

rate. Such a bypass of the CS decoder ensures lower latency
that is fundamental in real-time applications. Moreover, we
shown that data to be transmitted can be further reduced by
quantizing the compressed signal and that an optimal working
point exists for each value of ARR.
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