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OPTIMAL DESIGN OF FRACTURED MEDIA WITH PRESCRIBED MACROSCOPIC

STRAIN

JOSÉ MATIAS, MARCO MORANDOTTI, AND ELVIRA ZAPPALE

Abstract. In this work we consider an optimal design problem for two-component fractured media for
which a macroscopic strain is prescribed. Within the framework of structured deformations, we derive an

integral representation for the relaxed energy functional. We start from an energy functional accounting for
bulk and surface contributions coming from both constituents of the material; the relaxed energy densities,

obtained via a blow-up method, are determined by a delicate interplay between the optimization of sharp

interfaces and the diffusion of microcracks. This model has the far-reaching perspective to incorporate
elements of plasticity in optimal design of composite media.

Keywords: Structured deformations, optimal design, relaxation, disarrangements, interfacial energy den-
sity, bulk energy density.

2010 Mathematics Subject Classification: 49J45 (74A60, 49K10, 74A50).

1. Introduction

Starting with the pioneering papers by Kohn and Strang [19, 20, 21], much attention has been drawn to
optimal design problems for mixtures of conductive materials. The variational formulation of these problems,
particularly useful for finding configurations of minimal energy, entails some technical problems from the
mathematical point of view, in particular the non-existence of solutions. In [3, 18] this issue is addressed
by introducing a perimeter penalization in the energy functional to be minimized, which has also the effect
of discarding configurations where the two materials are finely mixed. For a related problem, leading to a
similar energy functional in the context of brutal damage evolution, see [1] and [14].

In the spirit of [22, 23] we want to study an optimal design problem which can incorporate elements of
plasticity, in a way that it is suited to treat both composite materials (made of components with differ-
ent mechanical properties) and polycrystals (where the same material develops different types of slips and
separations at the microscopic level). In order to do so, we extend the framework introduced in [3], by
considering a material with two components each of which undergoes an independent (first-order) structured
deformation, according to the theory developed by Del Piero and Owen [12]. The generalization of our model
to account for materials with more than two components, or to polycrystals, is straightforward.

Structured deformations set the basis to address a large variety of problems in continuum mechanics
where geometrical changes can be associated with both classical and non-classical deformations for which an
analysis at macroscopic and microscopic level is required. For instance, in a solid with a crystalline defective
structure, opening of cracks at the macroscopic level may compete with slips and lattice distortions at the
microscopic level preventing the use of classical theories, where deformations are assumed to be smooth. The
objective of the theory of structured deformations is to generalize the theoretical apparatus of continuum
mechanics as a starting point for a unified description of bodies with microstructure. It also turns out to be
relevant to describe phenomena as plasticity, damage, creation of voids, mixing, and fracture in terms of the
underlying microstructure (see [12]).

We discuss now in more detail the application to polycrystals, which consist of a large number of grains,
each having a different crystallograpic orientation, and where the intrinsic elastic and plastic response of
each portion may vary from point to point. The anisotropic nature of crystal slip usually entails reorien-
tation and subdivision phenomena during plastic straining of crystalline matter, even under homogeneous
and gradient-free external loadings. This leads to spatial heterogeneity in terms of strain, stress, and crystal
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orientation. Beyond the aim of gaining fundamental insight into polycrystal plasticity, an improved under-
standing of grain-scale heterogeneity is important, and this is the main motivation for our work. As noted
in [25], structural and functional devices are increasingly miniaturized. This involves size reduction down to
the single crystal or crystal-cluster scale. In such parts, crystallinity becomes the dominant origin of desired
or undesired anisotropy. In miniaturized devices plastic heterogeneity and strain localization can be sources
of quality loss and failure. Thus, optimized design of small crystalline parts requires improved insight into
crystal response and kinematics at the grain and subgrain scale under elastic, plastic, or thermal loadings.
Moreover, the better understanding of the interaction between neighbouring grains, namely the quantifi-
cation of its elastoplastic interaction, is in itself relevant for the verification and improvement of existing
polycrystals homogenization models. These models are often considered to capture the heterogeneities on
material response for polycrystals, see, e.g., [24]. In this spirit, this work can also be viewed as a first step
towards the derivation of a homogenization result for a polycrystalline material in the context of plasticity.

To minimize our functional from a variational point of view, we rely on the energetics for structured
deformations first studied by Choksi and Fonseca [9], where the problem is set in the space of special
functions of bounded variation. Given an open bounded subset Ω ⊂ RN , a structured deformation (in the
context of [9]) is a pair (g,G) ∈ SBV (Ω;Rd)×L1(Ω;Rd×N ), where g is the microscopic deformation and G is
the macroscopic deformation gradient. The energy associated with a structured deformation is then defined
as the most effective way to build up the deformation using sequences un ∈ SBV (Ω;Rd) that approach (g,G)
in the following sense: un → g in L1(Ω;Rd) and ∇un ⇀ G in Lp(Ω;Rd×N ), for p > 1 a given summability
exponent. The convergences above imply that the singular parts Dsun converge, in the sense of distributions,
to Dg −G. To have a better understanding of this phenomenon, consider the simpler case of a deformation
g ∈ W 1,1(Ω;Rd), that is, without macroscopic cracks. Then, Dun = ∇unLN +Dsun with Dsun absolutely
continuous with respect to the Hausdorff measure HN−1 and supported in S(un), the jump set of un. Since
Dun ⇀ ∇g in the sense of distributions and ∇un ⇀ G, we conclude that Dsun ⇀ ∇g − G in the sense of
distributions.

This tells us that the difference between microscopic and macroscopic deformations is achieved through a
limit of singular measures supported in sets S(un) such that HN−1(S(un))→ +∞. The tensor M := ∇g−G
is called the disarrangements tensor and embodies the fact that the difference between the microscopic and
the macroscopic deformations in the bulk are achieved as a limit of singular measures.

The results obtained in [9] show that the bulk density of the energy of a structured deformation can be
influenced by both the bulk and interfacial densities of the energy of these approximating sequences, and
the interplay is characterized by means of precise relations between them.

The energy functional that we consider (see (1.1)) will feature (i) different bulk densities associated with
each of the two components, (ii) surface energy densities to account for the jumps in the deformations inside
each component, (iii) a perimeter penalization (which measures the boundary between the two components
independently of the discontinuities in the deformation), and finally (iv) a surface energy term that accounts
for the interaction between neighbouring components (where both discontinuities in the deformation and in
the components are counted).

More precisely, in order to take the presence of two components into account, we consider a set of finite
perimeter E ⊂ Ω, describing one of them, and let χ ∈ BV (Ω; {0, 1}) be its characteristic function. Denoting
by {χ = 1} the set of points in Ω with density 1 (see [4]), by {χ = 0} the set of points in Ω with density 0, and
letting u ∈ SBV (Ω;Rd), we consider the following energy Eod-sd : BV (Ω; {0, 1})×SBV (Ω;Rd) → [0,+∞[,
defined as

Eod-sd(χ, u) :=

∫
Ω

((1− χ)W 0(∇u) + χW 1(∇u)) dx

+

∫
Ω∩{χ=0}∩S(u)

g0
1([u], ν(u)) dHN−1 +

∫
Ω∩{χ=1}∩S(u)

g1
1([u], ν(u)) dHN−1

+

∫
Ω∩S(χ)∩S(u)

g2(χ+, χ−, u+, u−, ν(u)) dHN−1 + |Dχ|(Ω),

(1.1)

where ν(u) ∈ SN−1 denotes the normal of the function u to the jump set S(u) of u, SN−1 being the unit
sphere in RN . For i = 0, 1, W i : Rd×N → R are the bulk energy densities associated with the two components,
gi1 : Rd×SN−1 → [0,+∞[ are the surface energy densities associated with jumps in the deformation in the
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two components, and g2 : {0, 1}2×(Rd)2×SN−1 → R is the surface energy density associated with the jumps
in the deformation at the interface between the two components.

The energy contribution of the interface, independently of the discontinuities of the deformation, is carried
by |Dχ|(Ω), the total variation of Dχ in Ω.

In (1.1) we have split the jump set S(χ, u) of the pair (χ, u) into the disjoint union S(χ, u) = (S(χ) ∩
S(u))∪(S(u)\S(χ))∪(S(χ)\S(u)). In this way, we penalize the underlying structured deformation occurring
in {χ = 0} ∩ (S(u) \ S(χ)) and {χ = 1} ∩ (S(u) \ S(χ)) through g0

1 and g1
1 , respectively, and we penalize the

interface S(χ) through 1 in S(χ)\S(u) (via the perimeter term) and through 1+g2 in S(χ)∩S(u). Therefore,
when χ jumps, we are accounting for the perimeter of ∂E plus a contribution along S(χ) depending on the
discontinuities of u.

Our main goal is to find an integral representation for the functional Fod-sd : BV (Ω; {0, 1})×SBV (Ω;Rd)×
L1(Ω;Rd×N )→ [0,+∞[ defined by

Fod-sd(χ, u,G) := inf
{

lim inf
n→∞

Eod-sd(χn, un) : (χn, un) ∈ BV (Ω; {0, 1})×SBV (Ω;Rd),

χn
∗
⇀ χ in BV (Ω; {0, 1}), un → u in L1(Ω;Rd),∇un ⇀ G in Lp(Ω;Rd×N )

}
.

(1.2)

Our main result (see Theorem 3.3) states that for χ ∈ BV (Ω; {0, 1}), u ∈ SBV (Ω;Rd), G ∈ L1(Ω;Rd×N ),
and Fod-sd defined by (1.2) for functions W i, gi1, i ∈ {0, 1} and g2 satisfying hypotheses (H1)–(H7) in Section
3, for some p > 1 (see Section 3), we have that Fod-sd(χ, u,G) admits an integral representation of the form

Fod-sd(χ, u,G) =

∫
Ω

H(χ,∇u,G) dx+

∫
Ω∩S(χ,u)

γ(χ+, χ−, u+, u−, ν) dHN−1,

where H and γ are given in (3.5) and (3.6), respectively.
We observe that the bulk energy density H : BV (Ω; {0, 1})×(L1(Ω;Rd×N ))2 → [0,+∞[ depends on

the structured deformation on {χ = 0} or {χ = 1} (see (3.5)) and that the interfacial energy density
γ : {0, 1}2×(Rd)2× SN−1 → [0,+∞[ (see (3.6)) can be further specialized on the various pieces of the de-
composition of S(χ, u), as noted in detail in Remark 3.4. We remark also that if we consider the classical
deformation setting, that is no jumps in u and G = ∇u, then we recover an optimal design problem studied
in [8]; if we consider just one material, then we recover the results in [9].

The overall plan of this work is the following: in Section 2 we fix the notation and recall some basic
results used throughout this article. In Section 3 we formulate the problem, with detailed settings and
assumptions and state the main result. Section 4 is devoted to proving some auxiliary results and finally we
prove the main theorem in Section 5. The proof follows the blow-up method of [16]: we will compute the
Radon-Nikodým derivatives of Fod-sd with respect to the LN and HN−1 measures and see that they can be
bounded above and below by the densities H and γ, respectively.

2. Preliminaries

In this section we fix the notation used throughout this work and give a brief survey of functions of
bounded variation and sets of finite perimeter.

2.1. Notation. Throughout the text Ω ⊂ RN will denote an open bounded set.
We will use the following notations:

- O(Ω) is the family of all open subsets of Ω;
- M(Ω) is the set of finite Radon measures on Ω;
- LN andHN−1 stand for theN -dimensional Lebesgue measure and the (N − 1)-dimensional Hausdorff

measure in RN , respectively;
- |µ| stands for the total variation of a measure µ ∈M(Ω);
- the symbol dx will also be used to denote integration with respect to LN ;
- SN−1 stands for the unit sphere in RN ;
- Q denotes the unit cube of RN centered at the origin;
- Q+ := Q ∩ {xN > 0} and Q− is defined similarly;
- Qη denotes the unit cube of RN centered at the origin with two sides perpendicular to the vector
η ∈ SN−1;

- Q(x, δ) := x+ δQ, Qη(x, δ) := x+ δQη;
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- C represents a generic positive constant that may change from line to line;
- limδ,n := limδ→0+ limn→∞, limk,n := limk→∞ limn→∞ .

2.2. Measure Theory. In the proof of the upper and lower bounds via the blow-up method of [16], it is
necessary to localize the functional Fod-sd and see that the localized functional is a Radon measure. The
following lemma, proved in [15], provides sufficient conditions for a set function Π : O(Ω) → [0,+∞) to be
the restriction of a Radon measure on O(Ω). It is a refinement of the De Giorgi-Letta’s criterion (see [11])
and it is of importance to apply the Direct Method as well as for the use of relaxation methods that strongly
rely on the structure of Radon measures.

Lemma 2.1 (Fonseca-Malý). Let X be a locally compact Hausdorff space, let Π : O(X)→ [0,+∞] be a set
function and µ be a finite Radon measure on X satisfying

i) Π(U) 6 Π(V ) + Π(U \W ) for all U, V,W ∈ O(X) such that W ⊂⊂ V ⊂⊂ U ;
ii) Given U ∈ O(X), for all ε > 0 there exists Uε ∈ O(X) such that Uε ⊂⊂ U and Π(U \ Uε) 6 ε.
iii) Π(X) > µ(X).
iv) Π(U) 6 µ(U) for all U ∈ O(X).

Then, Π = µ O(X).

2.3. BV functions. We start by recalling some facts on functions of bounded variation which will be used
in the sequel. We refer to [4] and the references therein for a detailed theory on this subject.

A function u ∈ L1(Ω;Rd) is said to be of bounded variation, and we write u ∈ BV (Ω;Rd), if all of its first
distributional derivatives Djui ∈M(Ω) for i = 1, . . . , d and j = 1, . . . , N. The matrix-valued measure whose
entries are Djui is denoted by Du. The space BV (Ω;Rd) is a Banach space when endowed with the norm

‖u‖BV := ‖u‖L1 + |Du|(Ω).

Since the norm defined above is too strong for practical applications, we shall work with the weak∗ conver-
gence in BV , which is the good notion for compactness properties (see [4]). We say that a sequence un of

functions in BV (Ω;Rd) converges weakly∗ to a function u ∈ BV (Ω;Rd), in symbols un
∗
⇀ u, if

un → u in L1(Ω;Rd) and Dun
∗
⇀ Du in the sense of measures.

By the Lebesgue Decomposition theorem Du can be split into the sum of two mutually singular measures
Dau and Dsu (the absolutely continuous part and singular part, respectively, of Du with respect to the
Lebesgue measure LN ). By ∇u we denote the Radon-Nikodým derivative of Dau with respect to LN , so
that we can write

Du = ∇uLN Ω +Dsu.

Let Ωu be the set of points where the approximate limits of u exists and S(u) the jump set of this function,
i.e., the set of points x ∈ Ω \ Ωu for which there exists a, b ∈ RN and a unit vector ν ∈ SN−1, normal to
S(u) at x, such that a 6= b and

lim
ε→0+

1

εN

∫
{y∈Qν(x,ε):(y−x)·ν>0}

|u(y)− a|dy = 0 (2.1)

and

lim
ε→0+

1

εN

∫
{y∈Qν(x,ε):(y−x)·ν<0}

|u(y)− b|dy = 0. (2.2)

The triple (a, b, ν) is uniquely determined by (2.1) and (2.2) up to permutation of (a, b), and a change of
sign of ν and is denoted by (u+(x), u−(x), ν(u)(x)).

If u ∈ BV (Ω;Rd) it is well known that S(u) is countably (N − 1)-rectifiable, i.e.

S(u) =

∞⋃
n=1

Kn ∪N ,

whereHN−1(N ) = 0 and Kn are compact subsets of C1 hypersurfaces. Furthermore, HN−1((Ω\Ωu)\S(u)) =
0 and the following decomposition holds

Du = ∇uLN + [u]⊗ ν(u)HN−1 S(u) +Dcu,

where [u] := u+ − u− and Dcu is the Cantor part of the measure Du, i.e., Dcu = Dsu|(Ωu).
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The space of special functions of bounded variation, SBV (Ω;Rd), introduced by De Giorgi and Ambrosio
in [10] to study free discontinuity problems, is the space of functions u ∈ BV (Ω;Rd) such that Dcu = 0, i.e.
for which

Du = ∇uLN + [u]⊗ ν(u)HN−1 S(u).

Proposition 2.2 ([4, Section 3.6]). If w ∈ BV (Ω;Rd) then

i) for LN -a.e. x ∈ Ω

lim
ε→0+

1

ε

{
1

εN

∫
Q(x,ε)

|w(y)− w(x)−∇w (x) · (y − x)|
N
N−1 dy

}N−1
N

= 0;

ii) for every x ∈ S(w) there exist w+(x), w−(x) ∈ Rd, and ν(x) ∈ SN−1 normal to S(w) at x, such that

lim
ε→0+

1

εN

∫
Q+
ν (x,ε)

∣∣w (y)− w+ (x)
∣∣dy = 0, lim

ε→0+

1

εN

∫
Q−ν (x,ε)

∣∣w (y)− w− (x)
∣∣dy = 0,

where Q+
ν (x, ε) := {y ∈ Qν(x, ε) : (y − x) · ν > 0} and Q−ν (x, ε) := {y ∈ Qν(x, ε) : (y − x) · ν < 0};

iii) for HN−1-a.e. x ∈ Ω \ S(w)

lim
ε→0+

1

εN

∫
Q(x,ε)

|w(y)− w (x)|dy = 0.

We next recall some properties of BV functions used in the sequel. We start with the following lemma
whose proof can be found in [9]:

Lemma 2.3. Let u ∈ BV (Ω;Rd). Then there exist piecewise constant functions un ∈ SBV (Ω;Rd) such that
un → u in L1(Ω;Rd) and

|Du|(Ω) = lim
n→∞

|Dun|(Ω) = lim
n→∞

∫
S(un)

|[un](x)| dHN−1.

The next result is a Lusin-type theorem for gradients due to Alberti [2] and is essential to our arguments.

Theorem 2.4. Let f ∈ L1(Ω;Rd×N ). Then there exist u ∈ SBV (Ω;Rd) and a Borel function g : Ω→ Rd×N
such that

Du = f LN + gHN−1 S(u),∫
S(u)

|g|dHN−1 6 C‖f‖L1(Ω;Rd×N ).

Remark 2.5. From the proof of Theorem 2.4 it also follows that ‖u‖L1(Ω;Rd) 6 2C‖f‖L1(Ω;Rd×N ).

Lemma 2.6 ([16, Lemma 2.6]). Let w ∈ BV (Ω;Rd), for HN−1-a.e. x in S(w),

lim
ε→0+

1

εN−1

∫
S(w)∩Qν(x)(x,ε)

|w+(y)− w−(y)|dHN−1 = |w+(x)− w−(x)|.

2.4. Sets of finite perimeter. In the following we give some preliminary notions related with sets of finite
perimeter. For a detailed treatment we refer to [4, 26].

Definition 2.7. Let E be an LN -measurable subset of RN . For any open set Ω ⊂ RN the perimeter of E in
Ω, denoted by P (E; Ω), is the variation of its characteristic function χ in Ω, i.e.

P (E; Ω) := sup

{∫
E

divϕdx : ϕ ∈ C1
c (Ω;Rd), ‖ϕ‖L∞ 6 1

}
.

We say that E is a set of finite perimeter in Ω if P (E; Ω) < +∞.

If LN (E ∩ Ω) is finite, then, denoting by χ its characteristic function, we have that χ ∈ L1(Ω) (see [4,
Proposition 3.6]). It follows that E has finite perimeter in Ω if and only if χ ∈ BV (Ω) and P (E; Ω) coincides
with |Dχ|(Ω), the total variation in Ω of the distributional derivative of χ.

The following approximation result can be found in [6]

Lemma 2.8. Let E be a set of finite perimeter in Ω. Then, there exists a sequence of polyhedra En, with
characteristic functions χn such that χn → χ in L1(Ω) and P (En; Ω)→ P (E; Ω).
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In the sequel we denote by {χ = 1} the set of points in Ω with density 1, and by {χ = 0}, the set of
points in Ω with density 0. We recall (see [4]) that for every t ∈ [0, 1], the set Et (set of all points where E
has density t) is defined by

Et :=

{
x ∈ RN : lim

%→0

LN (E ∩B%(x))

LN (B%(x))
= t

}
.

The essential boundary of E is defined by ∂∗E := RN \ (E0 ∪ E1), and

|Dχ|(Ω) = P (E; Ω) = HN−1(Ω ∩ ∂∗E) = HN−1(Ω ∩ E 1
2 ).

3. Statement of the problem and main results

Let Ω be a bounded open subset of RN and consider continuous functions W i : Rd×N → [0,+∞[, gi1 : Rd×
SN−1 → [0,+∞[, i ∈ {0, 1}, and g2 : {0, 1}2×(Rd)2×SN−1 → [0,+∞[ satisfying

(H1) there exists c, C > 0 such that for i ∈ {0, 1} and ζ1, ζ2 ∈ Rd×N ,

|W i(ζ1)−W i(ζ2)| 6 C|ζ1 − ζ2|(1 + |ζ1|p−1 + |ζ2|p−1), c|ζ1|p 6W i(ζ1),

for some p > 1;
(H2) there exist c, C > 0 such that for all λ ∈ Rd, ν ∈ SN−1, and for i ∈ {0, 1},

c|λ| 6 gi1(λ, ν) 6 C|λ|;

(H3) (positive homogeneity of degree one in the first variable) for all t > 0, λ ∈ Rd, ν ∈ SN−1, and for
i ∈ {0, 1},

gi1(tλ, ν) = tgi1(λ, ν);

(H4) (subadditivity) for all λ1, λ2 ∈ Rd, ν ∈ SN−1, and for i ∈ {0, 1},

gi1(λ1 + λ2, ν) 6 gi1(λ1, ν) + gi1(λ2, ν);

(H5) there exists C > 0 such that for all a, b ∈ {0, 1}, c, d ∈ Rd, and ν ∈ SN−1,

0 6 g2(a, b, c, d, ν) 6 C(1 + |a− b|+ |c− d|);

(H6) (mechanical consistency of the surface energy density) for all a, b ∈ {0, 1}, c, d ∈ Rd, and ν ∈ SN−1,

g2(a, b, c, d, ν) = g2(b, a, d, c,−ν);

(H7) there exists C > 0 such that for all a, b,∈ {0, 1}, ci, di ∈ Rd, i = 1, 2, and ν ∈ SN−1,

|g2(a, b, c1, d1, ν)− g2(a, b, c2, d2, ν)| 6 C
∣∣|c1 − c2| − |d1 − d2|

∣∣ 6 C|(c1 − d1)− (c2 − d2)|.

Some comments on the hypotheses are in order. Observe that if g2(a, b, c, d, ν) = g̃2(b − a, d − c, ν), for
some function g̃2, then (H7) corresponds to imposing Lipschitz continuity in the second variable for g̃2. In
particular, this model includes densities of the type g2(a, b, c, d, ν) = 1 + |d− c|.

In the sequel we will use the following notation, for the sake of simplicity,

f(χ,∇u) := (1− χ)W 0(∇u) + χW 1(∇u), (3.1)

and letting g1(i, λ, ν) := gi1(λ, ν) for every λ ∈ Rd, ν ∈ SN−1, and for i ∈ {0, 1}, we can include all the
surface energy densities in one single function g : {0, 1}2×(Rd)2×SN−1 → [0,+∞[ by requiring

g(0, 0, u+, u−, ν) = g1(0, [u], ν) = g0
1([u], ν),

g(1, 1, u+, u−, ν) = g1(1, [u], ν) = g1
1([u], ν),

g(χ+, χ−, u+, u−, ν) = g2(χ+, χ−, u+, u−, ν), for χ+ 6= χ−.

(3.2)

In what follows, we assume further that

g2(·, ·, c, c, ·) = g2(a, a, ·, ·, ·) = 0, (3.3)

which is not a restriction, since g2 is the density defined in S(χ) ∩ S(u).

Remark 3.1. We remark the following facts:
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• From condition (H1), it easily follows that there exists C > 0 such that, for all ζ ∈ Rd×N and
i ∈ {0, 1},

W i(ζ) 6 C(1 + |ζ|p).
The coercivity condition on the energies W i is not physically meaningful, since the Helmholtz free
energy associated with crystals may have potential wells (at matrices where the energy vanishes).
However, it can be dropped following arguments in [9, Proof of Prop. 2.22, Step 2] that are now
standard: one considers a sequence of energies W i

ε(ζ) := W i(ζ) + ε|ζ|p and recovers the results for
W i by letting ε→ 0.

• Conditions (H2) and (H3) may also rule out some important physical settings, but they can be
relaxed following arguments in [9]: the coercivity condition (H2) can be weakened by asking that
the admissible sequences have bounded total variation (see [9, pages 76 and 77 ]); the homogeneity
condition (H3) can be relaxed to sublinearity gi1(tλ, ν) 6 tgi1(λ, ν) (see [9, last paragraph of Section
3, on page 78]).

• We will extend by homogeneity the functions gi1, i ∈ {0, 1} to all of RN in the second variable. Let
ξ ∈ RN , then gi1(·, ξ) := |ξ|gi1(·, ξ/|ξ|);

• We could replace the subadditivity assumption (H4) by assuming Lipschitz continuity in the first
variable.

• Without any extra difficulty one could replace f in (3.1) by f : T × Rd×N → [0,+∞[, where T is a
set of finite cardinality of Rm. We also believe that a similar analysis to the one presented below,
can be performed when the range of χ is countable. Such a case is considered, e.g., in [8];

The following remark motivates the convergences in the definition of Fod-sd.

Remark 3.2 (Compactness). Assume that we have a sequence (χn, un) ∈ BV (Ω; {0, 1})×SBV (Ω;Rd)
such that un is bounded in L1 and the energies Eod-sd(χn, un) are bounded. Then the growth assumptions
(H1), (H2), and (H5) entail that ‖∇un‖Lp(Ω;Rd×N ) 6 C, |Dun|(Ω) 6 C and so there exist χ ∈ BV (Ω; {0, 1}),
u ∈ BV (Ω;Rd), and G ∈ L1(Ω;Rd×N ) such that

χn
∗
⇀ χ in BV (Ω; {0, 1}),

un → u in L1(Ω;Rd),

∇un ⇀ G in Lp(Ω;Rd×N ).

Along the lines of [9], we seek for a representation of the functional Fod-sd(χ, u,G) defined in (1.2) for
χ ∈ BV (Ω; {0, 1}), u ∈ SBV (Ω;Rd), and G ∈ L1(Ω;Rd×N ). To achieve this, we shall use the blow-up
method from [16]. Recalling the definiton (1.1) of Eod-sd, given U ∈ O(Ω) and f , g satisfying (3.1), (3.2),
and (3.3), define the localized functional

Fod-sd(χ, u,G;U) := inf
(un,χn)

{
lim inf

n

∫
U

f(χn,∇un) dx

+

∫
U∩S(un,χn)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1 + |Dχn|(U) :

χn ∈ BV (U ; {0, 1}), un ∈ SBV (U ;Rd), χn
∗
⇀ χ in BV (U ; {0, 1}),

un → u in L1(U ;Rd),∇un ⇀ G in Lp(U ;Rd×N )

}
.

Let Fod-sd(χ, u,G) denote Fod-sd(χ, u,G; Ω). Then, our main theorem reads as follows

Theorem 3.3. Let χ ∈ BV (Ω; {0, 1}), u ∈ SBV (Ω;Rd), and G ∈ L1(Ω;Rd×N ). Let Fod-sd be defined by
(1.2) for functions W i, gi1, i ∈ {0, 1} and g2 satisfying (H1)-(H7), for some p > 1. Then Fod-sd(χ, u,G)
admits an integral representation of the form

Fod-sd(χ, u,G) =

∫
Ω

H(χ,∇u,G) dx+

∫
Ω∩S(χ,u)

γ(χ+, χ−, u+, u−, ν) dHN−1 (3.4)
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where, for i ∈ {0, 1} and A,B ∈ Rd×N ,

H(i, A,B) = inf
u

{∫
Q

W i(∇u) dx+

∫
Q∩S(u)

gi1([u], ν(u)) dHN−1 :

u ∈ SBV (Q;Rd), |∇u| ∈ Lp(Q), u|∂Q = Ax,

∫
Q

∇udx = B

}
,

(3.5)

and, for a, b ∈ {0, 1}, c, d ∈ Rd, ν ∈ SN−1,

γ(a, b, c, d, ν) := inf

{∫
Qν∩{χ=0}∩S(u)

g0
1([u], ν(u)) dHN−1 +

∫
Qν∩{χ=1}∩S(u)

g1
1([u], ν(u)) dHN−1

+

∫
Qν∩S(χ)∩S(u)

g2(χ+, χ−, u+, u−, ν(u)) dHN−1 + |Dχ|(Qν) :

(χ, u) ∈ Aod-sd(a, b, c, d, ν)

} (3.6)

where

Aod-sd(a, b, c, d, ν) := {(χ, u) ∈ BV (Qν ; {0, 1})×SBV (Qν ;Rd) :

χ|∂Qν = χa,b,ν , u|∂Qν = uc,d,ν , ∇u = 0 LN -a.e. }
with

χa,b,ν(x) :=

{
a if x · ν > 0,

b if x · ν 6 0,
and uc,d,ν(x) :=

{
c if x · ν > 0,

d if x · ν 6 0.

Remark 3.4. The formula for H only sees each component separately, so for i ∈ {0, 1} and A,B ∈ Rd×N ,
H(i, A,B) = Hi

sd(A,B), where the latter is the bulk energy density given by formula (2.16) in [9]. In
particular, arguing as in [9] (see formula (4.22) therein), for i ∈ {0, 1} and A,B ∈ Rd×N ,

H(i, A,B) 6 C(1 + |A|+ |B|p), (3.7)

which will be used in the sequel. The formula for γ can be specialized giving rise to 3 cases:

• in S(χ)∩ S(u) we have in fact the formula in its full generality, and it could be denoted as γod-sd as
it fully reflects both the optimal design and structured deformation effects. In particular (H2) and
(H5) entail that for a, b ∈ {0, 1}, c, d,∈ Rd, ν ∈ SN−1,

γ(a, b, c, d, ν) 6 C(1 + |d− c|); (3.8)

• in S(u) \ S(χ) the formula for γ reads as

γsd(i, λ, ν) := inf

{∫
Qν∩S(v)

gi1([v], ν(v)) dHN−1, v ∈ Asd(λ, ν)

}
for i ∈ {0, 1}, λ ∈ Rd and ν ∈ SN−1, with

Asd(λ, ν) := {v ∈ SBV (Qν ;Rd) : v|∂Qν = vλ,ν , ∇v = 0 LN -a.e.}
and

vλ,ν :=

{
λ if x · ν > 0,

0 if x · ν 6 0.
(3.9)

The symbol γsd is adopted to underline that it is similar to the formula for the interfacial energy
density in [9] and is due only to structured deformations. In fact, for every a, b ∈ {0, 1}, c, d ∈ Rd,
ν ∈ SN−1, and for i ∈ {0, 1}, we have

γ(a, b, c, d, ν) > inf

{∫
Qν∩{χ=i}∩S(u)

gi1([u], ν(u)) dHN−1 : (χ, u) ∈ Aod-sd(a, b, c, d, ν)

}
= inf

{∫
Qν∩S(u)

gi1([u], ν(u)) dHN−1 : u ∈ Asd(λ, ν)

}
,

where c− d = λ. In order to prove the latter equality one can argue as in the proof of (5.18) below,
where we show that the contribution of gi1 on Qν ∩{χ = j}∩S(u) with j ∈ {0, 1}, j 6= i is negligible.
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On the other hand, when a = b = i, the function χ ≡ a is admissible for the definition of γ, hence
we can conclude that

γ(i, i, c, d, ν) = γsd(i, λ, ν).

On the other hand (H2) and (H5) entail that there exists a constant C > 0 such that, for every
λ ∈ Rd, ν ∈ SN−1,

γsd(λ, ν) 6 C|λ|. (3.10)

• in S(χ) \ S(u) the formula for γ reads

γod(a, b, ν) := inf{|Dχ|(Qν), χ ∈ Aod(a, b, ν)} = |(b− a)⊗ ν| = 1

for a, b ∈ {0, 1} and ν ∈ SN−1, with

Aod(a, b, ν) := {χ ∈ BV (Qν ; {0, 1}) : χ|∂Qν = χa,b,ν = 1}.

We use the symbol γod in order to emphasize that it only reflects the optimal design setting ([8]).
In fact, for every c, d ∈ Rd we have

γ(a, b, c, d, ν) > inf {|Dχ|(Qν), χ ∈ Aod(a, b, ν)} > |(b− a)⊗ ν|.

On the other hand, if c = d, then the function u ≡ c is admissible for the definition of γ(a, b, c, d, ν)
and we have

γ(a, b, c, c, ν) = γod(a, b, ν) = |(b− a)⊗ ν|,
thus we can conclude that on S(χ) \ S(u), the surface term reduces to the perimeter of S(χ).

4. Auxiliary Results

The following result can be proved following arguments analogous to [9, Proposition 3.1] and [9, Lemma
2.20].

Lemma 4.1. Let i ∈ {0, 1} and A, B ∈ Rd×N , and define

H̃(i, A,B) = inf
un

lim inf
n

{∫
Q

W i(∇un) dx+

∫
Q∩S(un)

gi1([un], ν(un)) dHN−1 :

un ∈ SBV (Q;Rd), |∇un| ∈ Lp(Q), un → Ax in L1,∇un ⇀ B in Lp(Q;Rd)
}
.

(4.1)

Under the assumptions (H1)− (H4) it results that H̃ = H, where H is the density defined in (3.5).

In fact, by [9, Lemma 2.20], (H1), and (4.1), we have that

H̃(i, A,B) = inf
un

lim inf
n→∞

{∫
Q

W i(∇un)dx+

∫
Q∩S(u)

gi1([un], ν(un))dHN−1 :

un ∈ SBV (Q;Rd), un → Ax in L1(Q;Rd), sup |un|L∞(Q;Rd) < +∞,

|∇un| ∈ Lp(Q;Rd), ∇un ⇀ B in Lp(Q;Rd)
}
,

for i ∈ {0, 1}, A,B ∈ Rd×N .
On the other hand, exploiting the same arguments in [9, Proposition 3.1] we have

H(i, A,B) = inf
u

{∫
Q

W i(∇u) dx+

∫
Q∩S(u)

gi1([u], ν(u)) dHN−1 :

u ∈ SBV (Q;Rd) ∩ L∞(Q;Rd), |∇u| ∈ Lp(Q), u|∂Q = Ax,

∫
Q

∇u = B

}
,

for i ∈ {0, 1}, A,B ∈ Rd×N .
Analogously, we can prove that
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Lemma 4.2. Assume that (H2) and (H4)−(H7) hold. Then, for every a, b ∈ {0, 1}, c, d,∈ Rd and ν ∈ SN−1,
it results

γ(a, b, c, d, ν) := γ̃(a, b, c, d, ν),

where

γ̃(a, b, c, d, ν) = inf
vn

{
lim inf
n→∞

∫
Qν∩S(χn,vn)

g(χ+
n , χ

−
n , v

+
n , v

−
n , ν(χn, vn)) dHN−1 + |Dχn|(Qν) :

χn
∗
⇀ χa,b,ν in BV (Qν ; {0, 1}), vn → uc,d,ν in L1(Qν ;Rd), ∇vn ⇀ 0 in Lp

}
.

Proof. Trivially we have that γ̃(a, b, c, d, ν) 6 γ(a, b, c, d, ν). Indeed it suffices to observe that any function
u ∈ SBV (Qν ;Rd) such that u = uc,d,ν on ∂Qν and ∇u = 0, and χ ∈ BV (Qν ; {0, 1}) such that χ = χa,b,ν
on ∂Qν are constant sequences admissible for defining γ̃.

In order to prove the opposite inequality consider ν ∈ SN−1, un ∈ SBV (Qν ;Rd) and χn ∈ BV (Qν ; {0, 1})
such that un → uc,d,ν in L1, with ∇un → 0 in Lp strongly, and χn

∗
⇀ χa,b,ν , with |Dχn|(Qν) → |Dχ|(Qν),

i.e. χn → χ strictly.
By Theorem 2.4 we can take a sequence vn ∈ SBV (Qν ;Rd) such that ∇un = ∇vn LN -a.e. and

|Dvn|(Qν) 6 C||∇un||L1(Qν ;Rd×N).
Then by Lemma 2.3 there exist piecewise constant functions wn,m such that wn,m → vn as m →∞ and

|Dwn,m|(Qν)→ |Dvn|(Qν).
Define zn,m := un − vn + wn,m. It results ∇zn,m = 0 LN -a.e. Furthermore limn,m ‖zn,m − uc,d,ν‖L1 = 0.

Moreover, using the fact that

|Dsvn|(Qν) + |Dswn,m|(Qν) 6 C
∫
Qν

|∇un|dx→ 0

as n→∞ and exploiting (H2) and (H7), we have that

lim
n,m

∫
Qν∩S(χn,zn,m)

g(χ+
n , χ

−
n , z

+
n,m, z

−
n,m, ν(χn, zn,m)) dHN−1

6 lim
n→∞

∫
Qν∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1.

Extract a diagonal sequence in n and m, say (χk, zk), such that zk → uc,d,ν in L1(Qν) with ∇zk = 0
LN -a.e. and χk → χa,b,ν strictly in BV (Qν , {0, 1}), are such that

lim
k→∞

∫
Qν∩S(χk,zk)

g(χ+
k , χ

−
k , z

+
k , z

−
k , ν(χk, zk)) dHN−1 6 lim

n→∞

∫
Qν∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1.

Finally we modify the sequences zk and χk near the boundary of Qν . Applying Fubini’s theorem we can
find rk → 1− such that, up to a subsequence,∫

∂Qν(0,1−rk)

|trχk − χa,b,ν |dHN−1 → 0,

∫
∂Qν(0,1−rk)

|trzk − uc,d,ν |dHN−1,

as k →∞.
Define

χ̃k(x) :=

{
χk if x ∈ Qν(0, 1− rk),

χa,b,ν if x ∈ Qν(0, 1) \Qν(0, 1− rk),

and

z̃k(x) :=

{
zk if x ∈ Qν(0, 1− rk),

uc,d,ν if x ∈ Qν(0, 1) \Qν(0, 1− rk).

Clearly ∇z̃k = 0 LN -a.e. and (H2), (H4), (H5), (H7) , and the above convergences entail that

lim
k→∞

∫
Qν∩S(χ̃k,z̃k)

g(χ̃+
k , χ̃

−
k , z̃

+
k , z̃

−
k , ν(χ̃k, z̃k)) dHN−1 6 lim

n→∞

∫
Qν∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1,

which concludes the proof. �
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Remark 4.3. A similar argument leads to the following sequential characterization of γsd (see Remark 3.4
and Proposition 4.1 in [9]):

γsd(i, λ, ν) = γ̃sd(i, λ, ν),

for every i ∈ {0, 1}, λ ∈ Rd and ν ∈ SN−1, where

γsd(i, λ, ν) = inf
vn

{
lim inf
n→∞

∫
Qν∩S(vn)

gi1([vn], ν(vn)) dHN−1 : vn → uc,d,ν in L1(Qν ;Rd), ∇vn ⇀ 0 in Lp
}
.

Lemma 4.4. Let g satisfy (H2), (H4), and (H7). Then

|γ(a, b, c′, d′, ν)− γ(a, b, c, d, ν)| 6 C(|c− c′|+ |d− d′|) (4.2)

for every a, b ∈ {0, 1}, c, c′, d, d′ ∈ Rd, ν ∈ SN−1. Moreover, γ is upper semicontinuous with respect to ν.

Proof. We start by proving (4.2). By Lemma 4.2, for any given ε > 0 there exist sequences χn ∈
BV (Qν ; {0, 1}) such that χn

∗
⇀ χa,b,ν , and vn ∈ SBV (Qν ;Rd) such that vn → uc,d,ν in L1(Qν ;Rd), ∇vn ⇀ 0

in Lp(Qν ;Rd) and

ε+ γ(a, b, c, d, ν) > lim
n→∞

∫
Qν∩S(χn,vn)

g(χ+
n , χ

−
n , v

+
n , v

−
n , ν(χn, vn)) dHN−1 + |Dχn|(Qν).

By Lemma 2.3 there exists a sequence of piecewise constant functions un such that

un → −uc,d,ν + uc′,d′,ν , |Dun|(Qν)→ |D(uc,d,ν − uc′,d′,ν)|(Qν) = |(c− c′)− (d− d′)|.

By Lemma 4.2 we have that

γ(a, b, c′, d′, ν) 6 lim inf
n→∞

∫
Qν∩S(χn,wn)

g(χ+
n , χ

−
n , w

+
n , w

−
n , ν(χn, wn)) dHN−1 + |Dχn|(Qν)

6 lim inf
n→∞

∫
Qν∩S(χn,vn)

g(χ+
n , χ

−
n , v

+
n , v

−
n , ν(χn, vn)) dHN−1 + |Dχn|(Qν) + ε

6 γ(a, b, c, d, ν) + ε+ C|(c− c′)|+ |(d− d′)|+ ε,

where (H2), (H4), and (H7) have been exploited. It suffices to send ε→ 0 to achieve one of the inequalities
in (4.2). The reverse inequality can be proved in the same way.

In order to prove the upper semicontinuity of γod-sd in the last variable, we observe that for every ε > 0
there exists χε ∈ BV (Q; {0, 1}), χε = χa,b,ν on ∂Qν and uε ∈ SBV (Qν ;Rd), uε = uc,d,ν on ∂Qν , with
∇uε = 0 LN -a.e. in Qν and such that∣∣∣∣∣γ(a, b, c, d, ν)−

∫
Qν∩S(χε,uε)

g(χ+
ε , χ

−
ε , u

+
ε , u

−
ε , ν(χε, uε)) dHN−1

∣∣∣∣∣ < ε. (4.3)

For every sequence νn → ν we can take a family of rotations Rn, such that Rnν = νn and it results clearly
that Rn converges to the identity.

Then γ(a, b, c, d, νn) 6
∫
Qν∩S(χε,uε)

g(χ+
ε , χ

−
ε , u

+
ε , u

−
ε , ν(χε, uε))dHN−1, which in turn, by virtue of (4.3),

provides

lim sup
n→∞

γ(a, b, c, d, νn) 6 γ(a, b, c, d, ν) + ε.

The proof is concluded by sending ε→ 0. �

Lemma 2.20 in [9] holds in our context leading to the following result, whose proof can be obtained in a
similar fashion, so we omit it.

Lemma 4.5. Let u ∈ SBV (Ω;Rd) ∩ L∞(Ω;Rd). Assume that (H1)− (H7) hold. Then

Fod-sd(χ, u,G;U) = F∞od-sd(χ, u,G;U),
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for every χ ∈ BV (U ; {0, 1}), G ∈ Lp(U ;Rd), and U ∈ O(Ω), where

F∞od-sd(χ, u,G;U) := inf
(un,χn)

{
lim inf
n→∞

∫
U

f(χn,∇un) dx

+

∫
U∩S(un,χn)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1 + |Dχn|(U) :

χn ∈ BV (U ; {0, 1}), un ∈ SBV (U ;Rd), χn
∗
⇀ χ in BV (U ; {0, 1}),

un → u in L1(U ;Rd), ||un||L∞ < C,∇un ⇀ G in Lp(U ;Rd×N )

}
.

5. Proof of the main result

This section is devoted to the proof of Theorem 3.3 and is divided in four subsections. First we prove
that the functional Fod-sd(χ, u,G; ·), in (1.2), is the restriction of a suitable Radon measure to open subsets
of Ω, then we prove a lower bound and an upper bound estimate in terms of its integral representation when
the target field u is in L∞(Ω;Rd) and finally we prove the general case via a truncature argument.

5.1. Localization. This subsection is devoted to show that Fod-sd(χ, u,G;U), U ∈ O(Ω), is the trace of a
Radon measure absolutely continuous with respect to LN +HN−1|S(χ,u).

Proposition 5.1. Assume that (H1), (H2), and (H5) hold and let u ∈ SBV (Ω;Rd). Then Fod-sd(χ, u,G; ·)
is the trace on O(Ω) of a finite Radon measure on B(Ω).

Proof. The proof relies on Lemma 2.1. First we prove that, for every χ ∈ BV (Ω; {0, 1}), u ∈ SBV (Ω;Rd),
and G ∈ Lp(Ω;Rd×N ),

Fod-sd(χ, u,G;U) 6 |Dχ|(U) + LN (U) + |Du|(U) + ‖G‖Lp(U ;Rd×N ).

We observe that by Theorem 2.4 there exists h ∈ SBV (U ;Rd) such that ∇h = G LN -a.e. in U and
|Dh|(U) 6 C‖G‖L1(U ;Rd×N ). By Lemma 2.3 there exists a sequence of piecewise constant functions ūn such

that ūn → u− h in L1, |Dūn|(U)→ |Du−Dh|(U).
Define now

un := ūn + h.

Clearly ∇un(x) = G(x) for LN -a.e. x and un → u in L1. Thus, the definition of Fod-sd(χ, u,G;U) and
hypotheses (H1), (H2), and (H5) entail that

Fod-sd(χ, u,G;U) 6 C
{
LN (U) + ‖G‖Lp(U ;Rd×N ) + |Du|(U) + |Dχ|(U)

}
. (5.1)

We now turn to the proof of the hypotheses of Lemma 2.1. We start by proving (iv). We know that (H1)
and the lower semicontinuity of total variation entail the existence of a sequence (χn, un) ∈ BV (Ω; {0, 1})×
SBV (Ω;Rd) such that χn

∗
⇀ χ in BV and un → u in L1(Ω;Rd), ∇un ⇀ G in Lp(Ω;Rd×N ) and

Fod-sd(χ, u,G; Ω) = lim
n→∞

{∫
Ω

f(χn,∇un) dx+

∫
Ω∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1 + |Dχn|(Ω)

}
.

Up to the extraction of a further subsequence we know that

f(χn,∇un) dx+ g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1|S(χn,un) + |Dχn|(·)

∗
⇀ µ in M(Ω),

as n→∞, and

µ(Ω) = Fod-sd(χ, u,G; Ω). (5.2)

For every U ∈ O(Ω) we can say that

Fod-sd(χ, u,G;U) 6 lim inf
n→∞

{∫
U

f(χn,∇un) dx+

+

∫
U∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1 + |Dχn|(U)

}
6 µ(U).

(5.3)
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Next we prove that (i) in Lemma 2.1 holds. Consider U, V,W ∈ O(Ω) such that U ⊂⊂ V ⊂⊂W . Fix ε > 0
and consider (χn, un) ∈ BV (V ; {0, 1})× SBV (V ;Rd) and (χ′n, vn) ∈ BV (W \ U ; {0, 1})× SBV (W \ U ;Rd)
almost minimizing sequences for Fod-sd, i.e.

lim
n→∞

{∫
V

f(χn,∇un) dx+

∫
V ∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1 + |Dχn|(V )

}
6 ε+ Fod-sd(χ, u,G;V ),

lim
n→∞

{∫
(W\U)

f(χ′n,∇vn) dx+

∫
(W\U)∩S(χ′n,vn)

g(χ′
+
n , χ

′−
n , v

+
n , v

−
n , ν(χn, vn)) dHN−1 + |Dχ′n|(W \ U)

}
6 ε+ Fod-sd(χ, u,G;W \ U),

with χn
∗
⇀ χ in V , χ′n

∗
⇀ χ in W \ U , un → u in L1(V ;Rd), vn → u in L1(W \ U ;Rd), ∇un ⇀ G in

Lp(V ;Rd×N ) and ∇vn ⇀ G in Lp(W \ U ;Rd×N ).
In order to connect the functions without adding more interfaces, we argue as in [7] (see also [8]). For

δ > 0 small enough, consider

Uδ := {x ∈ V : dist(x, ∂U) < δ}.

For x ∈ W , let d(x) := dist(x;U). Since the distance function to a fixed set is Lipschitz continuous (see
[26, Exercise 1.1]), we can apply the change of variables formula (see [13, Theorem 2, Section 3.4.3]), to
obtain ∫

Uδ\U
|un(x)− vn(x)|Jd(x) dx =

∫ δ

0

[∫
d−1(y)

|un(x)− vn(x)|dHN−1

]
dy

and, since Jd(x) is bounded and un−vn → 0 in L1(V ∩(W \U);Rd), it follows that for almost every % ∈ [0; δ]
we have

lim
n→∞

∫
d−1(%)

|un(x)− vn(x)|dHN−1(x) = lim
n→∞

∫
∂U%

|un(x)− vn(x)|dHN−1 = 0. (5.4)

An argument entirely analogous guarantees that

lim
n→∞

∫
d−1(%)

|χn(x)− χ′n(x)|dHN−1(x) = lim
n→∞

∫
∂U%

|χn(x)− χ′n(x)|dHN−1 = 0. (5.5)

Fix %0 ∈ [0; δ] such that (5.4) and (5.5) hold. We observe that U%0 is a set with locally Lipschitz boundary
for almost every %0 since it is the level set of a Lipschitz function (see, e.g., [17]). Hence we can consider
χn, χ

′
n, un, vn on ∂U%0 in the sense of traces and define

χ′′n =

{
χn in U%0
χ′n in W \ U%0 ,

wn =

{
un in U%0
vn in W \ U%0 .

By the choice of %0, χ′′n and wn are admissible for Fod-sd(χ, u,G,W ). In particular

χ′′n
∗
⇀ χ in BV (W ; {0, 1}),

wn → u in L1(W ;Rd),

∇wn ⇀ G in Lp(W ;Rd×N ).
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Thus we have

Fod-sd(χ, u,G;W )

6 lim inf
n→∞

{∫
W

f(χ′′n,∇wn) dx+

∫
W∩S(χ′′n,wn)

g(χ′′
+
n , χ

′′−
n , w

+
n , w

−
n , ν(χ′′n, wn)) dHN−1 + |Dχ′′n|(W )

}

6 lim inf
n→∞

{∫
V

f(χn,∇un) dx+

∫
V ∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1 + |Dχn|(V )+

+

∫
W\U

f(χ′n,∇vn) dx+

∫
V ∩S(χ′n,vn)

g(χ′+n , χ
′−
n , v

+
n , v

−
n , ν(χ′n, vn)) dHN−1 + |Dχ′n|(W \ U)+

+

∫
∂U%0∩S(χ′′n,wn)

g(χ′′
+
n , χ

′′−
n , w

+
n , w

−
n , ν(χ′′n, wn)) dHN−1 + |Dχ′′n|((S(wn) ∪ S(χ′′n)) ∩ ∂U%0)

}
6 Fod-sd(χ, u,G;V ) + Fod-sd(χ, u,G;W \ U) + 2ε

+ lim inf
n→∞

{∫
∂U%0∩S(χ′′n,wn)

g(χ′′
+
n , χ

′′−
n , w

+
n , w

−
n , ν(χ′′n, wn)) dHN−1 + |Dχ′′n|(∂U%0) ∩ S(χ′′n, wn)

}
.

Observing that, by (H2), (H5), and (5.4), the first integral converges to 0, while the convergence to 0 of the
latter term is ensured by (5.5), the proof of (i) follows sending ε to 0.

The proof of (ii) and (iii) in Lemma 2.1 is standard and can be easily obtained by adapting [9, Lemma
2.18], and using point (i). �

5.2. Lower bound. This subsection is devoted to prove “>” in (3.4) in two steps, first identifying a lower
bound for the bulk density and then for the surface one.

5.2.1. Bulk. Upon considering a sequence µn of bounded Radon measures associated with a sequence (χn, un)
admissible for Fod-sd(χ, u,G), and denoting by µ the weak-star limit of (a subsequence of) µn, we want to
show that

dµ

dLN
(x0) > H(χ(x0),∇u(x0), G(x0)),

for LN -a.e. x0 ∈ Ω.
Let x0 be a point of absolute continuity and approximate differentiability for χ and u, and a point of

absolute continuity for G. Namely, assume that

lim
δ→0+

1

δ

{
1

δN

∫
Q(x0,δ)

|χ(y)− χ(x0)|
N
N−1 dy

}N−1
N

= 0, (5.6)

d|Du|
dLN

(x0) = ∇u(x0),
d|Dχ|
dLN

(x0) = 0, (5.7)

lim
δ→0+

1

δ

{
1

δN

∫
Q(x0,δ)

|u(y)− u(x0)−∇u (x0) · (y − x0)|
N
N−1 dy

}N−1
N

= 0, (5.8)

and

lim
δ→0+

1

δN

∫
Q(x0,δ)

|G(x)−G(x0)|+ |∇u(x)−∇u(x0)|dx = 0. (5.9)

Observe that the above requirements are satisfied for LN -a.e. x0 ∈ Ω.
Without loss of generality suppose that χ(x0) = 1, the other choice can be handled similarly.
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We assume that the sequence δ is chosen in such a way that µ(∂Q(x0, δ)) = 0, thus

µ(Q(x0, δ))

δN
>

1

δN
lim inf
n→∞

{∫
x0+δQ

f(χn(x),∇un(x)) dx

+

∫
(x0+δQ)∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1

}
= lim
n→∞

{∫
Q

f(χn(x0 + δy),∇un(x0 + δy)) dy

+
1

δ

∫
Q∩S(χn,un)−x0

δ

g(χ+
n (x0 + δy), χ−n (x0 + δy), u+

n (x0 + δy), u−n (x0 + δy), ν(χn, un)(x0 + δy)) dHN−1

}
.

Since we are estimating a lower bound, in the right hand side we can neglect the term g2 in g, moreover,
according to the notations established in (3.2), g1(i, ·, ·) will denote gi1(·, ·), where i ∈ {0, 1}.

Defining

χn,δ(y) :=
χn(x0 + δy)− χ(x0)

δ
,

one has

lim
δ,n
‖χn,δ‖L1(Q) = lim

δ,n

1

δ

∫
Q

|χn(x0 + δy)− χ(x0)|dy

= lim
δ→0

1

δ

∫
Q

|χ(x0 + δy)− χ(x0)|dy

= lim
δ→0

1

δN+1

∫
x0+δQ

|χ(x)− χ(x0)|dx = 0.

(5.10)

Analogously, by defining

un,δ(y) :=
un(x0 + δy)− u(x0)

δ
and

w0(y) := ∇u(x0)y,

it easily follows that

lim
δ,n
‖un,δ − w0‖L1(Q;Rd) = lim

δ→0

1

δ

∫
Q

|u(x0 + δy)− u(x0)− δ∇u(x0)y|dy

= lim
δ→0

1

δN+1

∫
Q

|u(x)− u(x0)−∇u(x0)(x− x0)|dx = 0.

(5.11)

Moreover ∇un,δ(y) = ∇un(x0 + δy).
We have that

dµ

dLN
(x0) = lim

k,n

µn
δNk

(Q(x0, δk)),

for a sequence of side lengths δk → 0+ as k →∞, and one can choose this sequence so that

lim
k,n

HN−1(S(χn) ∩Q(x0, δk))

δNk
= 0. (5.12)

In fact, since

lim
k,n

HN−1(S(χn) ∩Q(x0, δk))

δNk
6 lim
k,n

HN−1(S(χn) ∩Q(x0, δk))

δNk

= lim
k,n

|Dχn|(Q(x0, δk))

δNk
6 lim

k

|Dχ|(Q(x0, δk))

δNk
,

for (5.12) to hold, it is enough to choose δk so that

lim
k

|Dχ|(Q(x0, δk))

δNk
= lim

k

|Dχ|(Q(x0, δk))

δNk
=
d|Dχ|
dLN

(x0) = 0,
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where the last equality holds since x0 /∈ S(χ).

Consequently we may estimate from below dµ
dLN (x0) as

lim inf
k,n

{∫
Q

f(χ(x0) + δkχn,k(y),∇un,k(y)) dy

+
1

δk

∫
Q∩

(S(un,k)\S(χn,k))−x0
δk

g1(χ(x0) + δkχn,k(y), [δkun,k(y)], νn,k(y)) dHN−1

}
= lim inf

k,n
{I1
n,k + I2

n,k},

where we wrote for simplicity χn,k := χn,δk and un,k := un,δk , and νn,k denotes the unit exterior normal to
S(un,k).

A diagonalization argument allows to define subsequences (not relabelled) δk, χk := χnk,δk , and uk :=
unk,δk , such that

lim
δk→0

‖χk − χ(x0)‖L1(Q) = 0,

lim
δk→0

|Dχk|Q(x0, δk)

δNk
= 0,

lim
δk→0

‖uk − w0‖L1(Q,Rd) = 0,

(5.13)

and

dµ

dLN
(x0) > lim inf

k

{∫
Q

f(χ(x0) + δkχk(y),∇uk(y)) dy

+
1

δk

∫
Q∩ (S(uk)\S(χk))−x0

δk

g1(χ(x0) + δkχk(y), δk[uk](y), νk(y)) dHN−1

}
= lim inf

k
{I1
k + I2

k},

where, as above, νk denotes the unit normal to S(uk), and I1
k and I2

k denote I1
nk,δk

and I2
nk,δk

, respectively.

Without loss of generality, up to subsequences if necessary, the above liminf is a limit, and, by (5.11) and
Lemma 4.2 applied to Q and to w0 := ∇u(x0) · y, we can assume that uk is uniformly bounded in L∞.

We aim to fix χ(x0) and to estimate limk[I1
k + I2

k ] from below with a sequence that satisfies the conditions

in the definition of H̃(χ(x0),∇u(x0), G(x0)) (see Lemma 4.1). For the sake of exposition, we control each
term of the sum I1

k + I2
k separately and then add them. First we consider I1

k .
Chacon biting Lemma ([4, Lemma 5.32]) guarantees the existence of a not relabelled subsequence uk and
of a decreasing sequence of Borel sets Er, such that LN (Er) → 0, as r → ∞ and the sequence |∇uk|p is
equiintegrable in Q \ Er for any r ∈ N.

Since f > 0 and by (H1),

lim
k

∫
Q

f(χ(x0) + δkχk(y),∇uk(y)) dy > lim
k

∫
Q\Er

f(χ(x0) + δkχk(y),∇uk(y)) dy

> lim
k

{∫
Q\Er

f(χ(x0),∇uk(y)) dy −
∫
Q\Er

|χk(x0 + δky)− χ(x0)|C(1 + |∇uk(y)|p) dy

}

> lim
k

∫
Q\Er

f(χ(x0),∇uk(y)) dy − lim sup
k

C

∫
Q\Er

|∇uk|p dy

where (5.10) has been used. In order to pass from
∫
Q\Er f(χ(x0),∇uk(y))dy to

∫
Q
f(χ(x0),∇uk(y))dy,

we extract a further subsequence.
Indeed, we claim that for each j ∈ N there exists k = k(j) and rj ∈ N, such that∫

Q\Erj
f(χ(x0),∇vj(y)) dy >

∫
Q

f(χ(x0),∇vj(y)) dy − C

j
, (5.14)
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where vj := uk(j). In light of (H1), in order to guarantee that (5.14) holds, we need to make sure that for
each j, there exists k = k(j) and r(j), such that∫

Erj

(1 + |∇uk(j)|p) dy 6
1

j
.

Suppose not. Then, there exists j0 such that, for all r and k,∫
Er

(1 + |∇uk|p) dy >
1

j0
. (5.15)

For k fixed, and for r ∈ N noting that wr = uk is a constant sequence (and hence with p-equiintegrable
gradients), letting r → ∞ we get a contradiction from (5.15). Therefore, by (5.14), the sequence vj gives
the right estimate from below for I1

k(j), that is, up to the extraction of a further subsequence and denoting

in what follows χj := χk(j), δj := δk(j) and Ej := Erj , we have

dµ

dLN
(x0) > lim

j

{∫
Q

f(χ(x0),∇vj(y)) dy

+

∫
Q∩(S(vj)\S(χk(j))

g1(χ(x0) + δk(j)χj(y), [vj ](y), ν(χj , vj)(y)) dHN−1

}
− lim sup

j

{
C

j
+

∫
Q\Ej

|∇vj |p dy

}

= lim
j

{∫
Q

f(χ(x0),∇vj(y)) dy +

∫
Q∩(S(vj)\S(χj))

g1(χ(x0) + δjχj(y), [vj ](y), ν(χj , vj)(y)) dHN−1

}

− lim sup
j

{
C

j
+

∫
Q\Ej

|∇vj |p dy

}
,

where the positive 1-homogeneity of g1 in the first variables has been exploited.
Recall also that, by the choice of the sizes of the cubes in (5.13), we are going to neglect the contribution

supported in S(χj).
This sequence still needs to be slightly changed in order to control the surface term I2

k and to comply
with the conditions in Lemma 4.1.

Set now:

Fj := {y ∈ Q : x0 + δjy 6∈ S(χj) and |χj(x0 + δjy)− χ(x0)| = 0}
and note that

LN (Q \ Fj)→ 0. (5.16)

Define:

ṽj :=

{
vj in Fj

∇u(x0)y in Q \ Fj .
Note that ṽj is still uniformly bounded in L∞ and it converges in L1 norm to w0(y) = ∇u(x0)y. Moreover,
since ∇vj ⇀ G(x0) in Lp, by (5.16) the same holds for ∇ṽj . Next we show that passing from vj to ṽj there
is no change in the control from below of I1

j . By (H1) we have that:∫
Q

f(χ(x0),∇vj(y)) dy >
∫
Q

f(χ(x0),∇ṽj(y)) dy − C
∫
Q\Fj

1 + |∇vj(y)|p + |∇u(x0)|p dy.

Since, by (5.14) it results∫
Q\Fj

|∇vj(y)|p dy =

∫
(Q\Ej)\Fj

|∇vj(y)|p dy +

∫
Ej\Fj

|∇vj(y)|p dy

6
∫
Q\Ej

|∇vj(y)|p dy +

∫
Ej\Fj

|∇vj(y)|p dy

6
∫
Q\Ej

|∇vj(y)|p dy +
1

j
,
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we obtain

dµ

dLN
(x0) >

lim
j

{∫
Q

f(χ(x0),∇ṽj(y))dy +

∫
Q∩(S(vj)\S(χ(x0)+δjχj))

g1(χ(x0) + δjχj(y), [vj ](y), ν(vj(y))) dHN−1

}

− lim sup
j

{
C

j
+ 2

∫
Q\Ej

|∇vj |p dy

}

= lim
j

{∫
Q

f(χ(x0),∇ṽj(y)) dy +

∫
Q∩(S(vj)\S(χ(x0)+δjχj))

g1(χ(x0) + δjχj(y), [vj ], ν(vj(y))) dHN−1

}
where the last equality follows by the equiintegrability of |∇ṽj |p in Q \ Ej .

Now we control I2
k , observing that

lim inf
j

∫
Q∩S(vj)\S(χj)

g1(χ(x0) + δjχj(y), [vj ](y), ν(vj(y)) dHN−1

> lim inf
j

∫
Q∩S(ṽj)\S(χj)

g1(χ(x0) + δjχj(y), [ṽj ](y), ν(ṽj(y))) dHN−1

> lim inf
j

∫
Fj∩S(ṽj)

g1
1([ṽj ](y), ν(ṽj(y))) dHN−1

= lim inf
j

∫
Q∩S(ṽj)

g1
1([ṽj ](y), ν(ṽj(y))) dHN−1.

This last equality comes from the fact that ṽj has no jumps in {y ∈ Q : |χj(y)− χ(x0)| = 1} and

lim
j

∫
Q∩S(ṽj)∩S(χ̃j)

g1
1([ṽj ], ν(ṽj)) dHN−1 = 0. (5.17)

In fact, by Lemma 4.5 and (H2), we have:

lim
j

∫
Q∩S(ṽj)∩S(χj)

g1
1([ṽj ], ν(ṽj)) dHN−1 6 C lim

j
HN−1(S(ṽj) ∩ S(χj)) 6 C lim

j
HN−1(S(χj))→ 0,

since x0 /∈ S(χ), by the appropriate choice of the sizes of the cubes δj so that (5.12) holds.
Thus

dµ

dLN
(x0) > lim

j

{∫
Q

f(χ(x0),∇ṽj(y)) dy +

∫
Q∩S(vj)

g1
1([ṽj ], νj(y)) dHN−1

}
.

Since ṽj is admissible for the definition of H̃, the proof is concluded.

5.2.2. Interfacial. We want to show that

dFod-sd(χ, u,G)

dHN−1|S(χ, u)
(x0) > γ(χ+(x0), χ−(x0), u+(x0), u−(x0), ν(χ, u)(x0)),

namely taking into account Remark 3.4,

dFod-sd(χ, u,G)

dHN−1|S(u)
(x0) > γsd(χ(x0), [u](x0), ν(u)(x0)), (5.18)

for HN−1-a.e. x0 ∈ S(u) \ S(χ),

dFod-sd(χ, u,G)

dHN−1|S(χ, u)
(x0) > γ(χ(x0), [u](x0), ν(χ, u)(x0)), (5.19)
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for HN−1-a.e. x0 ∈ S(u) ∩ S(χ), and

dFod-sd(χ, u,G)

dHN−1|S(χ)
(x0) > |Dχ|(x0), (5.20)

for HN−1-a.e. x0 ∈ S(χ) \ S(u).
Let U ⊂ O(Ω), open and let (χn, un) be an admissible sequence for the definition of Fod-sd(χ, u,G)(U),

such that, for η > 0 fixed,

η + Fod-sd(χ, u,G)(U) > lim
n

{∫
U

f(χn,∇un) dx

+

∫
U∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , ν(χn, un)) dHN−1 + |Dχn|(U)

}
= lim

n
µn(U),

(5.21)

where µn is a bounded sequence of Radon measures, such that, upon a choice of a (non-relabelled) sub-

sequence, µn
∗
⇀ µ. We divide the proof in three parts according to the choice of x0. First consider

x0 ∈ U ∩ (S(u) \ S(χ)). In this case, we prove (5.18), taking into account the sequential characterization of
γsd (see Remark 4.3).

The desired lower bound follows from proving that

dµ

dHN−1
(x0) > γsd(χ(x0), [u](x0), ν(u)(x0)),

for HN−1-a.e. x0 ∈ S(u) \ S(χ) and by letting η → 0. Choose a sequence of radii δk → 0 such that
µ(∂Qν(x0, δk)) = 0, ∀k ∈ N. Then we have that

dµ

dHN−1
(x0) > lim

k,n

1

δN−1
k

∫
Qν(x0,δk)∩S(un)\S(χn)

g1(χn, [un], ν(un)) dHN−1

= lim
k,n

∫
Qν∩S(un)\S(χn)−x0

δk

g1(χn(x0 + δky), [un](x0 + δky), ν(un(x0 + δky)) dHN−1,

where ν := ν(u)(x0). Define

χn,k(y) := χn(x0 + δky), (5.22)

and

un,k(y) := un(x0 + δky)− u−(x0). (5.23)

The point x0 ∈ S(u) \ S(χ) is to be chosen HN−1-a.e so that

lim
k,n
‖χn,k(y)− χ(x0)‖L1(Qν) = 0, (5.24)

and

lim
k,n
‖uk,n(y)− uλ,ν‖L1(Qν ;Rd) = 0, (5.25)

where λ = |[u]|(x0), ν is as defined above, and uλ,ν is defined according to (3.9). Following arguments in [9],
we get a diagonalizing sequence vk := un(k),k such that

vk → uλ,ν inL1 and ∇vk ⇀ 0 in Lp.

Let χ̃k := χn(k),k. Next we change slightly this sequence in order to fix χ(x0). For that, we need to prove
that

lim
k→∞

∫
{y∈Qν :|χ̃k(y)−χ(x0)|6=0}∩S(vk)\S(χ̃k)}

g1(χ̃k(y), [vk](y), ν(vk)) dHN−1 = 0,

where g1(i, ·, ·) = gi1(·, ·) is as in (3.2). By (H2), it is enough to prove that

lim
k→∞

∫
{y∈Qν :|χ̃k(y)−χ(x0)|6=0}∩S(vk)\S(χ̃k)}

|[vk]|(y) dHN−1.

Similarly to the lower bound bulk, this is achieved by changing vk.
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Define

ṽk :=

{
vk in Qν ∩ {|χ̃k(y)− χ(x0)| = 0},
uλ,ν otherwise

Denoting Fk := {|χ̃k(y) − χ(x0)| = 0}, we have that (see the proof of lower bound inequality for bulk)
LN (Qν \ Fk)→ 0 and so, we still have that ṽk → uλ,ν in L1. Moreover we clearly still have that, ∇ṽk ⇀ 0
in Lp.

Then, taking into account the definition of ṽk, we have that

dµ

dHN−1
(x0) > lim

k→∞

∫
Fk∩S(vk)\S(χ̃k)

g1(χ(x0), [vk], ν(vk)) dHN−1

> lim
k→∞

∫
Fk∩S(ṽk)\S(χ̃k)

g1(χ(x0), [ṽk], ν(ṽk)) dHN−1

= lim
k→∞

∫
Qν∩S(ṽk)\S(χ̃k)

g1(χ(x0), [ṽk], ν(ṽk)) dHN−1 − lim
k→∞

∫
(Qν\Fk)∩S(ṽk)\S(χ̃k)

g1(χ(x0), [ṽk], ν(ṽk)) dHN−1

> lim
k→∞

∫
Qν∩S(ṽk)\S(χ̃k)

g1(χ(x0), [ṽk], ν(ṽk)) dHN−1 − lim
k→∞

∫
Qν∩{y·ν=0}∩{|χ̃k(y)−χ(x0)|=1}

λ dHN−1

=T1 − T2.

For the sake of illustration, we control separately the terms T1 and T2. Control of T2: setting y = (ỹ, yν)

T2 6
∫
Qν∩{y·ν=0}

|χ̃k(y)− χ(x0)|dyν = λ

∫ ∫
|χ̃k(y)− χ(x0)|dyνdỹ = λ

∫
Qν

|χ̃k(y)− χ(x0)|dy → 0,

by (5.24). It remains to notice that, for what concerns T1, similarly to (5.17), we have that

lim
k→∞

∫
Qν∩S(ṽk)\S(χ̃k)

g1([ṽk], χ(x0), ν(ṽk)) dHN−1 = lim
k→∞

∫
Qν∩S(ṽk)

g1([ṽk], χ(x0), ν(ṽk)) dHN−1,

and we conclude that

dµ

dHN−1
(x0) > lim

k→∞

∫
Qν∩S(ṽk)\S(χ̃k)

g1([ṽk], χ(x0), ν(ṽk)) dHN−1

= lim
k→∞

∫
Qν∩S(ṽk)

g1([ṽk], χ(x0), ν(ṽk)) dHN−1

Since ṽk is admissible for the definition of γ̃sd, (5.18) is proved. We proceed now with the proof of (5.19)
Similarly to the proof of (5.18), we start with an admissible sequence (χn, un) in the conditions of (5.21).
The desired lower bound follows from proving that

dµ

dHN−1
(x0) > γ(χ+(x0), χ−(x0), u+(x0), u−(x0), ν(χ, u)(x0))

for HN−1-a.e. x0 ∈ S(χ, u). Let ν := ν(χ, u)(x0) and choose a sequence of radii δk → 0 such that
µ(∂Qν(x0, δk)) = 0, ∀k ∈ N. Then we have that

dµ

dHN−1
(x0) > lim

k,n

1

δN−1
k

∫
Qν(x0,δk)∩(S(χn,un))

g(u+
n , u

−
n , χ

+
n , χ

−
n , ν(χn, un)) dHN−1 + |Dχn|(Qν(x0, δk)

> lim
k,n

1

δN−1
k

∫
Qν(x0,δk)∩(S(χn,un))

g(u+
n , u

−
n , χ

+
n , χ

−
n , ν(χn, un)) dHN−1 + |Dχ|(Qν).

Define χn,k and un,k as in (5.22) and (5.23).
The point x0 ∈ S(u) ∩ S(χ) is to be chosen HN−1-a.e. so that (5.25) and

lim
k,n
‖χk,n(y)− χa,b,ν‖L1(Qν) = 0,

hold, with a = χ+(x0) and b = χ−(x0).
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We have that

dµ

dHN−1
(x0) > lim

k,n

1

δN−1
k

∫
Qν(x0,δk)∩(S(χn,un))

g(u+
n , u

−
n , χ

+
n , χ

−
n , ν(χn, un)) dHN−1 + |Dχ|(Qν)

= lim
k,n

∫
Qν∩{x0+δky}∈S(un)∩{χn(x0+δky)=1}

g1
1([un], ν(un)) dHN−1

+ lim
k,n

∫
Qν∩{x0+δky}∈S(un)∩{χn(x0+δky)=0}

g0
1([un], ν(un)) dHN−1

+ lim
k,n

∫
Qν∩{x0+δky}∈S(un)\S(χn)

g2(u+
n , u

−
n , χ

+
n , χ

−
n , ν(un)) dHN−1

+ |Dχ|(Qν).

The result follows along the lines of what was done for γsd, upon finding diagonalizing sequences vk and χk
admissible for γ̃(χ+(x0), χ−(x0), u+(x0), u−(x0), ν(χ, u)(x0)) and relying on Lemma 4.2.

Finally, for x0 ∈ S(u)∩S(χ), the proof of (5.20) is an immediate consequence of the lower semicontinuity
of |Dχ| and of the following trivial chain of inequalities which holds for every U ∈ O(Ω):

Fod-sd(χ, u,G)(U) > lim
n

{∫
U

f(χn,∇un) dx+

∫
U∩S(χn,un)

g(χ+
n , χ

−
n , u

+
n , u

−
n , νn) dHN−1 + |Dχn|(U)

}
> lim

n
|Dχn|(U).

5.3. Upper bound.

5.3.1. Bulk. We assume first that u ∈ L∞(Ω;Rd).
For LN -a.e. x0 ∈ Ω we have that:

dFod-sd(χ, u,G)

dLN
(x0) = lim

δ→0

1

δN
Fod-sd(χ, u,G,Q(x0, δ)).

The point x0 is taken such that dFod-sd

dLN (x0) exists and (5.6), (5.7), (5.8), and (5.9) hold.
In what follows assume that χ(x0) = 1, the case χ(x0) = 0 is handled similarly. Let ρ > 0 small enough

and let w ∈ SBV (Q;Rd) ∩ L∞(Q;Rd), w|∂Q = ∇u(x0)x,
∫
Q
∇w dx = G(x0), |∇w| ∈ Lp(Q) such that

H(1, u(x0), G(x0)) + ρ >
∫
Q

W1(∇w) dx+

∫
Q∩S(w)

g1
1([w], ν(w)) dHN−1. (5.26)

Note that, due to Lemma 4.5, which obviously has an equivalent form in terms of functions defined in the
unit cube, we can take w ∈ SBV (Q;Rd) ∩ L∞(Q;Rd) in (5.26).

We construct now admissible sequences (χn,δ, un,δ) for Fod-sd(χ, u,G,Q(x0, δ)). We take χn,δ ≡ χ and
rely in (5.26) to define un,δ.

Let ζ(x) = w(x)−∇u(x0)x. Then ζ|∂Q = 0. Extend ζ by periodicity to all of RN .
For each δ, let ηδ ∈ SBV (Q(x0, δ);Rd) be given by Theorem 2.4 and such that

∇ηδ = G(x)−G(x0) +∇u(x0)−∇u(x) for LN -a.e. x ∈ Q,

|Dηδ|(Q(x0, δ)) 6 C(N)

∫
Q(x0,δ)

[|G(x)−G(x0)|+ |∇u(x)−∇u(x0)|] dx, (5.27)

Moreover, by Remark 2.5

||ηδ||L1(Q(x0,δ);Rd) 6 C||G(x)−G(x0) +∇u(x0)−∇u(x)||L1(Q(x0,δ);Rd).

By Lemma 2.3, for each δ, let ηn,δ piecewise constant and such that ηn,δ → −ηδ in L1(Q(x0, δ);Rd) as
n→∞. Moreover,

|Dηn,δ|(Q(x0, δ))→ |Dηδ|(Q(x0, δ)), as n→∞. (5.28)

Define:

un,δ(x) = u(x) +
δ

n
ζ

(
n(x− x0)

δ

)
+ ηδ + ηn,δ. (5.29)
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For fixed δ it is clear that un,δ → u in L1. Moreover,

∇un,δ(x) = ∇ζ
(
n(x− x0)

δ

)
+G(x)−G(x0) +∇u(x0). (5.30)

By Riemann-Lebesgue Lemma, for fixed δ and as n→∞

∇ζ
(
n(x− x0)

δ

)
⇀ G(x0)−∇u(x0) in Lp,

and hence, by (5.30) we also have that

∇un,δ ⇀ G(x) in Lp,

that is, un,δ is admissible for Fod-sd(χ, u,G,Q(x0, δ)).
Then,

dFod-sd(χ, u,G)

dLN
(x0) 6 lim

δ,n

1

δN

{∫
Q(x0,δ)

f(χ,∇un,δ) dx

+

∫
Q(x0,δ)∩S(χ,un,δ)

g(χ+, χ−, u+
n,δ, u

−
n,δ, ν(χn,δ, un,δ)) dHN−1 + |Dχ|(Q(x0, δ))

}

= lim
δ,n

1

δN

{∫
Q(x0,δ)

f(χ,∇un,δ) dx+

∫
Q(x0,δ)∩S(un,δ)\S(χ)

g1(χ, [un,δ], ν(un,δ)) dHN−1

+

∫
Q(x0,δ)∩S(un,δ)∩S(χ)

g2(χ+, χ−, u+
n,δ, u

−
n,δ, ν(χn,δ, un,δ)) dHN−1 + |Dχ|(Q(x0, δ))

}

= lim
δ,n

1

δN

{∫
Q(x0,δ)∩{χ=1}

f(1,∇un,δ) dx+

∫
Q(x0,δ)∩{χ=0}

f(0,∇un,δ) dx

+

∫
Q(x0,δ)∩{χ=1}∩S(un,δ)

g1
1([un,δ], ν(un,δ)) dHN−1

+

∫
Q(x0,δ)∩{χ=0}∩S(un,δ)

g0
1([un,δ], ν(un,δ)) dHN−1

+

∫
Q(x0,δ)∩S(un,δ)∩S(χ)

g2(χ+, χ−, u+
n,δ, u

−
n,δ, ν(χn,δ, un,δ)) dHN−1 + |Dχ|(Q(x0, δ))

}
.

The term 1
δN
|Dχ|(Q(x0, δ))→ 0 by (5.7), so we omit it in the following computations.

We address separately each one of the other terms.

lim
δ,n

1

δN

{∫
Q(x0,δ)∩{χ=1}

f(1,∇un,δ) dx+

∫
Q(x0,δ)∩{χ=0}

f(0,∇un,δ) dx

}
= lim

δ,n

1

δN

{∫
Q(x0,δ)

f(1,∇un,δ) dx+

∫
Q(x0,δ)∩{χ=0}

f(0,∇un,δ) dx− f(1,∇un,δ) dx

}
6 lim

δ,n

1

δN

{∫
Q(x0,δ)

f(1,∇un,δ) dx+ 2β

∫
Q(x0,δ)∩{χ=0}

(1 + |∇un,δ|p) dx

}
,

(5.31)

by (H1). By (5.30) and, since by (5.7) we have that

lim
δ→0

1

δN
LN (Q(x0, δ) ∩ {χ(x) = 0}) = 0,
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together with (5.6), we can control all terms in
∫
Q(x0,δ)∩{χ=0}(1 + |∇un,δ|p) dx but the one involving

∇ζ
(
n(x−x0)

δ

)
, which we address now. We have that

lim
δ,n

1

δN

∫
Q(x0,δ)∩{χ=0}

∣∣∣∣∇ζ (n(x− x0)

δ

)∣∣∣∣p dx→ 0,

since

lim
δ,n

1

δN

∫
Q(x0,δ)∩{χ=0}

∣∣∣∣∇ζ (n(x− x0)

δ

)∣∣∣∣p dx = lim
δ,n

∫
Q(0,1)∩{χ(x0+δy)=0}

|∇ζ(ny)|p dy

= lim
δ→0

∫
{χ(x0+δy)=0}

‖∇ζ‖pLp(Q(0,1)) = 0,

by the Riemann-Lebesgue Lemma and since χ(x0) = 1 and (5.6) holds. Thus we can conclude that

lim
δ,n

1

δN

∫
Q(x0,δ)∩{χ=0}

(1 + |∇un,δ|p) dx = 0. (5.32)

Hence, by (5.30), (5.32), and (5.31), it remains to check the following estimate. Using (H1), we have

lim
δ,n

1

δN

∫
Q(x0,δ)

f(1,∇un,δ) dx

6 lim
δ,n

1

δN

{∫
Q(x0,δ)∩{χ=1}

f

(
1,

(
∇u(x0) +∇ζ

(
n(x− x0)

δ

)))
dx

+ C

∫
Q(x0,δ)

(|G(x)−G(x0)|)(|G(x)|p−1 + |G(x0)|p−1) + 1) dx

}
.

The last term is controlled by (5.9); regarding the remaining term, upon a change of variables and taking
into account the periodicity of ζ, we have that

lim
δ,n

1

δN

∫
Q(x0,δ)

f

(
1,∇u(x0) +∇ζ

(n(x− x0)

δ

))
dx = lim

δ,n

1

nN

∫
nQ

f(1(,∇u(x0) +∇ζ(y)) dy

=

∫
Q

f(1,∇u(x0) +∇ζ(y)) dy =

∫
Q

f(1,∇w(y)) dy.

By (H2) we have

lim
δ,n

1

δN

{∫
Q(x0,δ)∩{χ=1}∩S(un,δ)

g1
1([un,δ], ν(un,δ)) dHN−1

+

∫
Q(x0,δ)∩{χ=0}∩S(un,δ)

g0
1([un,δ], ν(un,δ)) dHN−1

}

= lim
δ,n

1

δN

{∫
Q(x0,δ)∩(S(un,δ)\S(χ))

g1
1([un,δ], ν(un,δ)) dHN−1

+

∫
Q(x0,δ)∩{χ=0}∩(S(un,δ)\S(χ))

g0
1([un,δ], ν(un,δ))− g1

1([un,δ], ν(un,δ)) dHN−1

}

6 lim
δ,n

1

δN

{∫
Q(x0,δ)∩S(un,δ)\S(χ)

g1
1([un,δ], ν(un,δ)) dHN−1

+ C

∫
Q(x0,δ)∩{χ=0}∩S(un,δ)

|[un,δ]|dHN−1

}
,

(5.33)

and by (5.29),

|[un,δ]|(x) 6 |[u]|(x) +
δ

n
|[ζ]|

(
n(x− x0)

δ

)
+ |[ηδ]|(x) + |[ηn,δ]|(x).



24 JOSÉ MATIAS, MARCO MORANDOTTI, AND ELVIRA ZAPPALE

The term

lim
δ,n

1

δN

∫
Q(x0,δ)∩{χ=0}∩S(u)

|[u]|dHN−1 (5.34)

is controlled by (5.7), while the term

lim
δ,n

1

δN

∫
Q(x0,δ)∩{χ=0}∩S(ηδ)

|[ηδ]|dHN−1 (5.35)

is controlled by (5.27) and (5.9). The control of the term

lim
δ,n

1

δN

∫
Q(x0,δ)∩{χ=0}∩S(ηn,δ

|[ηn,δ]|dHN−1 (5.36)

is similar, taking into account (5.28). Finally, we have

lim
δ,n

1

δN

∫
Q(x0,δ)∩{χ=0}∩{n(x−x0)

δ ∈S(ζ)}

δ

n
|[ζ]|

(
n(x− x0)

δ

)
dHN−1(x)

= lim
δ,n

1

δN

∫
Q(x0,δ)∩{χ=0}∩{n(x−x0)

δ ∈S(w)}

δ

n
|[w]|

(
n(x− x0)

δ

)
dHN−1(x)

= lim
δ,n

1

δN
δ

n

δN−1

nN−1

∫
nQ∩{χ(x0+ δ

ny)=0}∩S(w)

|[w]|dHN−1(y)

= lim
δ,n

1

δN
δ

n

δN−1

nN−1
nN
∫
Q∩{χ(x0+ δ

ny)=0}∩S(w)

|[w]|(y) dHN−1(y)

= lim
δ,n

∫
Q∩S(w)

|χ(x0 +
δ

n
y)− χ(x0)||[w]|(y) dHN−1(y) = 0,

(5.37)

since |χ(x0 + δy)− χ(x0)| → 0 for HN−1-a.e. y ∈ S(w) (see [4, Theorem 3.108]).
Therefore, going back to equation (5.33), we have that

lim
δ,n

1

δN

{∫
Q(x0,δ)∩{χ=1}∩S(un,δ)

g1
1([un,δ], ν(un,δ)) dHN−1

+

∫
Q(x0,δ)∩{χ=0}∩S(un,δ)

g0
1([un,δ], ν(un,δ)) dHN−1

}

= lim
δ,n

1

δN

∫
Q(x0,δ)∩(S(un,δ)\S(χ))

g1
1([un,δ], ν(un,δ)) dHN−1

6
∫
Q(x0,δ)∩(S(w)\S(χ))

g1
1([w], ν(w)) dHN−1,

where the last equality follows from arguments similar to the ones used in (5.34), (5.35), (5.36), (5.37), and
since w ∈ L∞.

We still have to show that

lim
δ,n

1

δN

∫
Q(x0,δ)∩(S(un,δ)∩S(χ))

g2(χ+, χ−, u+
n,δ, u

−
n,δ, ν(un,δ)) dHN−1 = 0.

By (H5), (5.29), the fact that 1
δN
|Dχ|(Q(x0, δ))→ 0, and by arguments that were used before, we just have

to show that

lim
δ,n

1

δN

∫
Q(x0,δ)∩{x0+ δ

nS(w)}∩S(χ)

|[w]|
(
n(x− x0)

δ

)
dHN−1 = 0.

Similarly to the previous calculations
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1

δN

∫
Q(x0,δ)∩{x0+ δ

nS(w)}∩S(χ)

δ

n
|[w]|

(
n(x− x0)

δ

)
dHN−1

=
1

δN
δ

n

δN−1

nN−1

∫
nQ∩{x0+ δ

ny∈S(χ)}∩S(w)

|[w(y)]|) dHN−1 =
1

nN
nN
∫
Q∩{x0+ δ

ny∈S(χ)}∩S(w)

|[w(y)]|dHN−1

6 CHN−1({x0 +
δ

n
y ∈ S(χ)} ∩Q(x0, δ))→ 0.

The desired upper bound follows from (5.26) by letting ρ→ 0.

5.3.2. Interfacial. We want to show that for HN−1-a.e. x0 ∈ S(χ, u)

dFod-sd(χ, u,G)

dHN−1|S(χ, u)
(x0) 6 γ(χ+, χ−, u+, u+, ν(χ, u))(x0),

which by virtue of Remark 3.4 can be decomposed as follows:
- for HN−1-a.e. x0 ∈ S(u) \ S(χ)

dFod-sd(χ, u,G)

dHN−1|S(u)
(x0) 6 γsd([u], χ, ν(u))(x0), (5.38)

- for HN−1-a.e. x0 ∈ S(u) ∩ S(χ)

dFod-sd(χ, u,G)

dHN−1|S(χ, u)
(x0) 6 γ(χ+, χ−, u+, u+, ν(χ, u))(x0), (5.39)

and

- for HN−1-a.e. x0 ∈ S(χ) \ S(u)

dFod-sd(χ, u,G)

dHN−1|S(χ)
(x0) 6 |Dχ|(x0). (5.40)

Following an argument of [5, Proposition 4.8], in view of the continuity properties of γ proved in Lemma
4.4 it suffices to consider the couple (χ, u) = (aχE + bχΩ\E , cχE + dχΩ\E), with a, b ∈ {0, 1}, c, d ∈ Rd, and
χE the characteristic function of a set E of finite perimeter. We consider first the case where the set E is a
polyhedron and then any set of finite perimeter.

E polyhedral set. Covering Ω via Besicovitch Theorem with disjoint open cubes Qν(xi)(xi, εi), centered

at points of approximate continuity for γ(a, b, c, d, ν(x)) with respect to HN−1|S(χ, u), one can restrict the
analysis to a single cube. Indeed, it is enough to prove the upper bound inequality for the case Ω = Qν , with
ν = eN and for u = uc,d,ν(x0), c = u+(x0), d = u−(x0) and χ = χa,b,ν(x0), with a = χ+(x0) and b = χ−(x0).

We start with the proof of (5.39). For ρ > 0 let w ∈ SBV (Q;Rd), w|∂Q = uc,d,ν satisfying
∫
Q
∇w = 0

and χ̃ ∈ BV (Q; {0, 1}), χ̃|∂Q = χa,b,ν such that

γ(χ+, χ−, u+, u−, ν(χ, u))(x0) + ρ >
∫
Q∩S(w)∩S(χ̃)

g2(χ̃+, χ̃−, w+, w−, ν(χ̃, w)) dHN−1

+

∫
Q∩{χ̃=1}∩S(w)

g1
1([w], ν(w)) dHN−1

+

∫
Q∩{χ̃=0}∩S(w)

g0
1([w], ν(w)) dHN−1

+ |Dχ̃|(Q).
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For δ > 0 small enough, and n ∈ N, define

Dn(x0, δ) := Q(x0, δ) ∩
{
x :
|(x− x0) · eN |

δ
<

1

2n

}
,

Q+(x0, δ) := Q(x0, δ) ∩
{
x :

(x− x0) · eN
δ

> 0

}
,

Q−(x0, δ) := Q(x0, δ) ∩
{
x :

(x− x0) · eN
δ

< 0

}
.

Extend w(·, yN ) by Q′-periodicity (Q′ := {y ∈ Q : yN = 0}) and construct the sequence

wn,δ(x) :=


u+(x0) x ∈ Q+(x0, δ) \Dn(x0, δ),

w
(
n(x−x0)

δ

)
x ∈ Dn(x0, δ),

u−(x0) x ∈ Q−(x0, δ) \Dn(x0, δ).

Notice that, arguing as in [9, Theorem 4.4 – Upper bound], wn,δ
L1

→ uu+(x0),u−(x0),ν and ∇wn,δ ⇀ 0 in Lp as
n→∞.

Let now hδ given by Theorem 2.4 be such that ∇h = G in Q(x0, δ) and satisfying

|Dhδ|(Q(x0, δ)) 6 C(N)

∫
Q(x0,δ)

|G(x)|dx, (5.41)

and let hn,δ be a sequence of piecewise constant functions given by Lemma 2.3 such that hn,δ → −hδ in L1

as n→∞ and

|Dhn,δ|(Q(x0, δ))→ |Dhδ|(Q(x0, δ)), as n→∞. (5.42)

Define the sequence

un,δ := wn,δ + hδ + hn,δ. (5.43)

Similarly, extend χ̃ by periodicity and define:

χn,δ(x) :=


χ+(x0) x ∈ Q+(x0, δ) \Dn(x0, δ),

χ̃
(
n(x−x0)

δ

)
x ∈ Dn(x0, δ),

χ−(x0) x ∈ Q−(x0, δ) \Dn(x0, δ).

Clearly, for fixed δ, the sequences un,δ is admissible for the definition of γ(u+, u−, χ+, χ−, ν(χ, u))(x0).
Regarding χn,δ, we have that χn,δ → χa,b,ν(x0) in L1 as n→∞, and |Dχn,δ| is bounded uniformly with

respect to n. Therefore, by Proposition 3.12 in [4] we have that χn,δ
∗
⇀ χa,b,eN in BV as n→∞.

Then we have that un,δ and χn,δ are admissible for Fod-sd(χ, u,G)(Q(x0, δ) and so,

dFod-sd(χ, u,G)

dHN−1
(x0) 6 lim

δ,n

1

δN−1

{∫
Q(x0,δ)

f(χn,δ,∇un,δ) dx

+

∫
Q+(x0,δ)∩S(χn,δ,un,δ)

g(χ+
n,δ, χ

−
n,δ, u

+
n,δ, u

−
n,δ, ν(χn,δ, un,δ)) dHN−1

+|Dχn,δ|(Q(x0, δ))
}

= L1 + L2 + L3.

As in [9], the term L1 is controlled by (H1) and choosing x0 (HN−1-a.e. in S(χ, u)) so that

lim
δ→0

1

δN−1

∫
Q(x0,δ)

|G|p dx = 0.

The term L3, upon a change of variables gives trivially |Dχ̃|(Q). It remains to control L2. We have that
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L2 = lim
δ,n

1

δN−1

∫
Q(x0,δ)∩S(un,δ)∩S(χn,δ)

g2(χ+
n,δ, χ

−
n,δ, u

+
n,δ, u

−
n,δ, ν(χn,δ, un,δ)) dHN−1

+ lim
δ,n

1

δN−1

∫
Q(x0,δ)∩S(un,δ)\S(χn,δ))

g1(χn,δ, [un,δ], ν(un,δ)) dHN−1

=K1 +K2.

The term K2 can be written as

K2 = lim
δ,n

1

δN−1

∫
Q(x0,δ)∩{χn,δ=1}∩(S(un,δ)\S(χn,δ))

g1
1([un,δ], ν(un,δ)) dHN−1

+ lim
δ,n

1

δN−1

∫
Q(x0,δ)∩{χn,δ=0}∩(S(un,δ)\S(χn,δ))

g0
1([un,δ], ν(un,δ)) dHN−1

= lim
δ,n

1

δN−1

∫
Q(x0,δ)∩{χn,δ=1}∩(S(wn,δ)\S(χn,δ))

g1
1([wn,δ], ν(wn,δ)) dHN−1

+ lim
δ,n

1

δN−1

∫
Q(x0,δ)∩{χn,δ=0}∩(S(wn,δ)\S(χn,δ))

g0
1([wn,δ], ν(wn,δ)) dHN−1

= lim
δ,n

1

δN−1

∫
Dn(x0,δ)∩{x0+ δ

n∈χ̃=1}∩{x0+ δ
nS(w)}

g1
1

([
w

(
n(x− x0)

δ

)]
, ν(wn,δ)

)
dHN−1

+ lim
δ,n

1

δN−1

∫
Dn(x0,δ)∩{x0+ δ

n∈χ̃=0}∩{x0+ δ
nS(w)}

g0
1

([
w

(
n(x− x0)

δ

)]
, ν(wn,δ)

)
dHN−1

=

∫
Q∩{χ̃=1}∩S(w)

g1
1([w], ν(w)) dHN−1 +

∫
Q∩{χ̃=0}∩S(w)

g0
1([w], ν(w)) dHN−1.

by the definition of un,δ (see (5.43)), by (H2), (H4), by (5.42) and (5.41), and by a change of variables and
periodicity of both w and χ̃. It remains to control K1. Writing for simplicity νn,δ := ν(χn,δ, un,δ) in what
follows, we have that

K1 = lim
δ,n

1

δN−1

∫
Q(x0,δ)∩S(un,δ)∩S(χn,δ)

g2(χ+
n,δ, χ

−
n,δ, u

+
n,δ, u

−
n,δ, νn,δ) dHN−1

= lim
δ,n

1

δN−1

∫
Dn(x0,δ)∩S(wn,δ)∩S(χn,δ)

g2(χ+
n,δ, χ

−
n,δ, w

+
n,δ, w

−
n,δ, νn,δ) dHN−1

+ lim
δ,n

1

δN−1

∫
Q(x0,δ)∩S(wn,δ)∩S(un,δ)∩S(χn,δ)

(g2(χ+
n,δ, χ

−
n,δ, u

+
n,δ, u

−
n,δ, νn,δ)− g2(χ+

n,δ, χ
−
n,δ, w

+
n,δ, w

−
n,δ, νn,δ)) dHN−1

− lim
δ,n

1

δN−1

∫
Dn(x0,δ)∩(S(wδ)\S(un,δ))∩S(χn,δ)

g2(χ+
n,δ, χ

−
n,δ, w

+
n,δ, w

−
n,δ, νn,δ) dHN−1

6 lim
δ,n

1

δN−1

∫
Dn(x0,δ)∩S(wn,δ)∩S(χn,δ)

g2(χ+
n,δ, χ

−
n,δ, w

+
n,δ, w

−
n,δ, νn,δ) dHN−1

+ lim
δ,n

1

δN−1

∫
Q(x0,δ)∩(S(hn,δ)∪S(hδ))∩S(χn,δ)

C |[hn,δ]|+ |[hδ]|dHN−1,

where we used (H7). We observe that

lim
δ,n

1

δN−1

∫
Q(x0,δ)∩S(hn,δ)∩S(χn,δ)

|[hn,δ]|dHN−1 6 C lim
δ,n

1

δN−1

∫
Q(x0,δ)

|G(x)|dx

6 C lim
δ,n

1

δN

∫
Q(x0,δ)

|G(x)|dx = 0,

by (5.41) and the choice of x0. The control of

lim
δ,n

1

δN−1

∫
Q(x0,δ)∩S(hδ)∩S(χn,δ)

|[hδ]|dHN−1
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follows from the same type of estimates together with (5.42). The result now is an immediate consequence
of periodicity and a change of variables. In fact, we have that

K1 6 lim
δ,n

1

δN−1

∫
Q∩S(w)∩S(χ̃)

g2(χ̃+, χ̃−, w+, w−, ν(χ̃, w)) dHN−1.

This concludes the proof of (5.39).
The proof of (5.38), since x0 /∈ S(χ), is simpler and follows the previous arguments for the proof of equation
(5.39), taking χn,δ to be the constant sequence χn,δ = χa,b,eN with a = b = χ(x0). We skip the proof.

Finally in order to prove the upper bound when x0 ∈ S(χ) \ S(u), i.e. (5.40) it suffices to consider
χn,δ ≡ χa,b,ν and un,δ constant.
E set of finite perimeter. For every fixed quadruple (a, b, c, d) ∈ {0, 1} × {0, 1} × Rd × Rd, in view of
the upper semicontinuity of γ with respect to the normal variable (see Lemma 4.4), there exists a sequence
γm : RN → [0,+∞) such that

γ(a, b, c, d, p) 6 γm(a, b, c, d, p) 6 C|p|, for every p ∈ RN ,

and

γ(a, b, c, d, p) = inf
m
γm(p),

where, with an abuse of notations, γ has been extended to RN as a positive 1-homogeneous function.
Consider now a sequence of polyhedra approximating E in the sense of Lemma 2.8 and define the sequence

(χn, un) = (aχEn + bχΩ\En , cχEn + dχΩ\En). From (5.39) we have that, for every U ∈ O(Ω) and for any
n ∈ N,

Fod-sd(χ, u,G;U) 6 C(N)

∫
U

|G(x)|p dx+

∫
∂En∩U

γ(a, b, c, d, ν(χn, un)(x)) dHN−1.

Thus, taking into account the upper bound of γ in terms of γm, we obtain

Fod-sd(χ, u,G;U) 6 lim inf
n→∞

Fod-sd(χn, un, G;U)

6 lim inf
n→∞

{
C(N)

∫
U

|G(x)|p dx+

∫
∂En∩U

γ(a, b, c, d, ν(χn, un)(x)) dHN−1

}
6 lim inf
n,m→∞

{
C(N)

∫
U

|G(x)|p dx+

∫
∂En∩U

γm(a, b, c, d, ν(χn, un)(x)) dHN−1

}
6 lim inf

n→∞

{
C(N)

∫
U

|G(x)|p dx+

∫
∂E∩U

γ(a, b, c, d, ν(χn, un)(x)) dHN−1

}
,

by first sendingm→∞ and by the Monotone Convergence Theorem. Finally, by the Dominated Convergence
Theorem we get

Fod-sd(χ, u,G;U) 6 C(N)

∫
U

|G(x)|pdx+

∫
∂E∩U

γ(a, b, c, d, ν(x)) dHN−1.

Taking the Radon-Nykodym derivative at x0 point of absolute continuity for γ(χ+(·), χ−(·), u+(·), u−(·), ν(·))
with respect to the HN−1 measure gives the desired result.

5.4. Completion of the proof of Theorem 3.3. Putting together the results obtained in Subsections 5.2
and 5.3 we have proved that

Fod-sd(χ, u,G) =

∫
Ω

H(χ,∇u,G) dx+

∫
Ω∩S(χ,u)

γ(χ+, χ−, u+, u−, ν(χ, u)) dHN−1. (5.44)

for every χ ∈ BV (Ω; {0, 1}) and u ∈ SBV (Ω;Rd) ∩ L∞(Ω;Rd).
In order to achieve the representation for every u ∈ SBV (Ω,Rd) we start observing that the proof of the

lower bound did not exploit the fact that u ∈ L∞. Thus it remains to deduce the upper bound in the general
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case. To this end, define

Jod-sd(χ, u,G) =

∫
Ω

H(χ,∇u,G) dx+

∫
Ω∩(S(u)\S(χ))

γsd(χ, [u], ν) dHN−1

+

∫
Ω∩S(u)∩S(χ))

γod-sd(χ+, χ−, u+, u−, ν(χ, u)) dHN−1

+

∫
Ω∩(S(χ)\S(u))

γod([χ], ν) dHN−1.

Consider functions φi ∈ C∞0 (Rd;Rd) such that

φi(s) :=

{
s if |s| < ei,

0 if |s| > ei+1.

and ‖∇φi‖L∞ 6 1. Since φi(u)→ u in L1 as i→∞, the lower semicontinuity of Fod-sd(χ, ·, G) entails that

Fod-sd(χ, u,G) 6 lim inf
i→∞

Fod-sd(χ, φi(u), G) = lim inf
i→∞

Jod-sd(χ, φi(u), G),

where in the latter equality it has been exploited (5.44) and the definition of Jod-sd.
We recall that (3.7), (3.10), and (3.8) hold. Then, defining for every i ∈ N

Ωi := {x ∈ Ω : |u+(x)| > ei or |u−(x)| > ei} ∩ {x ∈ Ω : |u+(x)| < ei+1 or |u−(x)| < ei+1},
we have

Jod-sd(χ, φi(u), G) 6 Jod-sd(χ, u,G)+C

∫
{x:|u(x)|>ei}

(1+|∇φi(u)|+|G|p) dx+C

∫
Ωi∩S(u)

(1+|[u]|)(x)|dHN−1.

Exactly the same arguments in [9, formula (3.19)-(3.23)] guarantee that the latter integrals are O
(

1
i

)
, hence,

letting i→∞, one can conclude that

Fod-sd(χ, u,G) 6 Jod-sd(χ, u,G).
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