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Abstract—Gait asymmetry is typically evaluated using 

spatio-temporal or joint kinematics parameters. Only a few 

studies addressed the problem of defining an asymmetry 

index directly based on muscle activity, extracting 

parameters from surface electromyography (sEMG) 

signals. Moreover, no studies used the extraction of the 

muscle principal activations (activations that are necessary 

for accomplishing a specific motor task) as the base to 

construct an asymmetry index, less affected by the 

variability of sEMG patterns. The aim of this study is to 

define a robust index to quantitative assess the asymmetry 

of muscle activations during locomotion, based on the 

extraction of the principal activations. SEMG signals were 

analyzed combining Statistical Gait Analysis (SGA) and a 

clustering algorithm that allows for obtaining the muscle 

principal activations. We evaluated the asymmetry levels of 

four lower limb muscles in: (1) healthy subjects of different 

ages (children, adults, and elderly); (2) different 

populations of orthopedic patients (adults with 

megaprosthesis of the knee after bone tumor resection, 

elderly subjects after total knee arthroplasty and elderly 

subjects after total hip arthroplasty); and (3) neurological 

patients (children with hemiplegic cerebral palsy and 

elderly subjects affected by idiopathic Normal Pressure 

Hydrocephalus). The asymmetry index obtained for each 

pathological population was then compared to that of age-

matched controls. We found asymmetry levels consistent 

with the expected impact of the different pathologies on 

muscle activation during gait. This suggests that the 

proposed index can be successfully used in clinics for an 

objective assessment of the muscle activation asymmetry 

during locomotion. 

 
Index Terms— asymmetry, clustering, electromyography, 

EMG, gait, muscle activation. 

 

I. INTRODUCTION 

NSTRUMENTED gait analysis is a powerful method used to 

quantitatively assess the normal and pathological functions 

of human walking [1]. The study of EMG cyclic patterns is 

especially important in the clinical practice and research, as an 

assessment tool in the management of locomotion pathologies 

and rehabilitation. 

In the last decades, the function of muscles during gait was 

studied through surface electromyography (sEMG), which 
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allows for determining the timing and extent of muscles 

activation [2]. However, there is a great variability in sEMG 

signals collected during gait, even in healthy subjects [3]. To 

overcome this issue, Statistical Gait Analysis (SGA) was 

introduced: the acquisition and processing of a large number of  

gait cycles makes it easier to compare muscles activity of 

different subjects and to find relevant similarities [4]. Recently, 

it was proposed an algorithm (CIMAP – Clustering for 

Identification of Muscle Activation Patterns) [5] and its 

optimization [6], to further improve SGA. CIMAP enables the 

grouping of gait cycles into clusters with similar muscle 

activation patterns [7]. Each cluster is characterized by an 

element (the prototype) that is representative of all the elements 

belonging to the cluster. As a spin-off of the CIMAP, the 

subject’s “principal activations” can be obtained as the 

intersection of the cluster prototypes. Principal activations are 

defined as those muscle activations that are necessary for 

accomplishing a specific motor task and they describe the 

essential contributions of a specific muscle to the movement. In 

recent studies, the extraction of principal activations has proved 

to be a useful tool for the analysis and interpretation of the 

muscle activation patterns during gait [8]. 

In this study we used principal activations to define an index 

for quantitatively assessing the muscle-activation asymmetry 

during gait. 

Gait asymmetry can be generally defined as the different 

behavior of the left and right lower limbs during locomotion. 

The identification of gait asymmetry is very important in the 

clinical practice, since it may be associated with a number of 

negative consequences such as inefficiency, difficulty in 

balance control, risk of musculoskeletal injury to the non-

paretic lower limb, and loss of bone mass density in the paretic 

lower limb [9]. 

Moreover, pronounced asymmetry levels have been 

associated with pathological conditions such as cerebral palsy, 

stroke, osteoarthritis, and knee and hip arthroplasties. 

Consequently, several different gait asymmetry indexes have 

been defined in literature [10], [11], [12], [13], helpful for 

evaluating improvement or deterioration of patient clinical 

pictures. 

However, there is no commonly accepted standard for either 

the method used to calculate the gait asymmetry or the gait 

parameters to assess. Most of the studies found in the literature 

base the asymmetry quantification on spatio-temporal [14], [15] 

or joint kinematics parameters [16], [17] and only a few studies 
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address the problem of defining an asymmetry index based on 

sEMG signals [18], [19]. To the best of our knowledge, no 

studies used the extraction of the muscle principal activations 

obtained from a “physiological” walk as the base to construct a 

sEMG asymmetry index. 

The aim of this work is to define a robust sEMG asymmetry 

index, for assessing muscle-activation asymmetry in cyclic 

movements. The proposed index is used to evaluate the 

asymmetry level of four muscles (Tibialis Anterior, 

Gastrocnemius Lateralis, Rectus Femoris and Lateral 

Hamstring) in different populations of healthy controls, as well 

as in different populations of neurological and orthopedic 

patients. We also provide a critical comparison with EMG 

asymmetry indices previously defined in literature [19], [18].  

II. MATERIALS AND METHODS  

A. Populations and Gait Data Acquisition 

Gait data from a total of 114 subjects were extracted from 

our database:  

(1) 30 control subjects with no neurological or orthopedic 

pathologies (10 children [4], 10 adults and 10 elderly)  

(2) 49 orthopedic patients (19 adults with megaprosthesis of 

the knee after bone tumor resection (Mega TKR), 10 elderly 

subjects with Total Knee Replacement (TKR) and 20 elderly 

subjects with Total Hip Arthroplasty (THA) evaluated at 3, 6 

and 12 months after surgery [20])  

(3) 35 neurological patients (25 children with Winters’ type 

I and II hemiplegia (Hemiplegic Children) after cerebral palsy 

[21], and 10 elderly subjects with idiopathic Normal Pressure 

Hydrocephalus (iNPH) [22].   

Population details are reported in Table I. 

The acquisition system STEP32 (Medical Technology, 

Italy) was used to acquire foot-switch signals and surface EMG 

signals. Foot-switches (size: 10 mm × 10 mm × 0.5 mm; 

activation force: 3 N) were placed under the foot-soles, beneath 

the first and fifth metatarsal heads, and beneath the back portion 

of the heel. Surface EMG probes were placed over the muscle’s 

belly after skin preparation. EMG signals were acquired from 

four muscles of both lower limbs: Tibialis Anterior (TA), 

Gastrocnemius Lateralis (LGS), Rectus Femoris (RF), and 

Lateral Hamstring (LH). Notice that, since we retrospectively 

analyzed data collected from previous studies, we selected, for 

this work, only the common subset of muscles that were present 

in all of the previous studies. Nevertheless, a pair of agonist-

antagonist muscles acting at each joint of the lower limb is 

present. Active EMG probes were used, with AgCl-disks as 

electrodes (probe size: 27 mm × 19 mm × 7.5 mm, inter-

electrode distance: 12 mm). The signal amplifier had a gain 

ranging from 1000 to 50000 – adjusted for each specific muscle 

– and a 3-dB bandwidth from 10 Hz to 400 Hz. The sampling 

frequency was 2 kHz and signals were converted by a 12-bit 

analog to digital converter.  

Subjects walked barefoot, at self-select speed, back and 

forth over a straight path (walkway length: from 7 to 15 m, 

depending on the protocol), for at least 150s. 

The experimental protocol conforms to the Helsinki 

declaration on medical research involving human subjects. 

B. EMG signal pre-processing 

The SGA routines included in the software of the acquisition 

system were used to obtain, for each lower limb, the following 

gait phases: heel contact (H), flat foot contact (F), push off (P), 

swing (S). The signal was then segmented in separate gait 

cycles and time-normalized to the stride duration [23]. For all 

the groups, except for hemiplegic children, we considered only 

the strides showing the normal sequence of gait phases (H, F, 

P, S). For hemiplegic children, since a very few numbers of 

HFPS strides were available, we analyzed the strides of the 

most represented sequence of gait phases of each subject [21], 

[24]. 

A multivariate statistical filter was then used to discard those 

strides corresponding to the changes of direction along the path 

(including deceleration before and acceleration after the U-turn) 

[20]. 

Finally, for each stride, the ON/OFF muscle activation 

 

TABLE I 

POPULATIONS DETAILS 

 

 

Number 

of 

subjects 

Age 

(mean ± S.D.) 

[years] 

Sex 
Height (cm) 

(mean ± S.D.) 
Weight (kg) 

(mean ± S.D.) 

 Number of 

analyzed 
strides (mean ± 

S.D.) 

CONTROLS 

Healthy Children  10 9 ± 1.5 5M/5F 133.3 ± 7.1 29.1 ± 5.1 
 

164 ± 31 

Healthy Adults 10 39.5 ± 16.2 6M/4F 174.4 ± 9.0 70.4 ± 13.9 
 

197 ± 45 

Healthy Elderly  10 69.7 ± 2.5 5M/5F 167.9 ± 9.1 66.8 ± 12.1 
 

151 ± 20 

ORTHOPEDIC 

PATIENTS 

Megaprosthesis (Mega TKR) 19 37.8 ± 17.8 10M/9F 170.4 ± 10.5 68.9 ± 11.4 
 

152 ±21 

Total Knee Replacement 

(TKR) 
10 71.2 ± 8.8 5M/5F 168.2 ± 9.1 86.8 ± 21.0 

 
167 ± 29 

Total Hip Arthroplasty 

(THA) 
20 66.1 ± 7.2 11M/9F 168.7 ± 10.5 77.0 ± 13.3 

3 m. 134 ± 19  

6 m. 140 ± 24  

12 m. 159 ± 23  

NEUROLOGICAL 

PATIENTS 

Hemiplegic Children 25 8.7 ± 3.2 15M/10F 129.7 ± 18.8 30.2 ± 11.7 
 

133 ± 37 

idiopathic Normal Pressure 
Hydrocephalus (iNPH) 

10 72.1 ±9.6 8M/2F 170.8 ± 7.7 78.3 ± 10.5 
 

141 ± 28 
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intervals were detected by means of a double threshold 

statistical detector [25]. 

C. CIMAP algorithm 

Considering a specific muscle, at first left and right strides 

were pooled together (Fig. 1a) and then they were separated in 

several datasets, grouping strides with the same number of 

activation intervals (Fig. 1b). Only datasets consisting of at least 

35 strides were considered. 

We applied dendrogram clustering to every dataset 

separately. Initially, each stride is considered as a single-

element cluster. Then, after each iteration, the two closest 

clusters are merged, until a unique cluster including all the 

strides is obtained. A specific cutoff point is used to cut the tree 

and obtain the final clusterization (see below). The final 

representative clusters are then obtained considering only those 

clusters containing at least 10% of the total number of cycles in 

the dataset (Fig. 1c). Finally, for each representative cluster, left 

 

 
Fig. 1.  Example of CIMAP processing pipeline; muscle Tibialias Anterior (TA) of an adult healthy subject. a) Activation intervals of both left and right strides 

are pooled together. b) Strides are grouped into datasets with the same number of activation intervals. c) Clustering result: strides included in representative clusters 

are colored in blue, while strides included in not-representative clusters are colored in grey (these are the excluded strides).  
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and right strides were separated. For each side (left/right), 

clusters with less than 10% of the original number of strides (of 

the side under consideration) were discarded. The reason for the 

exclusion of small clusters (i.e. those containing less than 10% 

of the total gait cycles) is that their cluster centroids may be 

misleading if used to characterize the overall activation patterns 

of the subject.  

In a previous work [6] the optimal CIMAP procedure for the 

dendrogram construction and the stride clusterization was 

described, considering the following steps detailed below: 1) 

centroid definition, 2) application of the linkage method, 3) 

selection of the cutoff point, 4) clustering evaluation.  

1) Centroid Definition 

The Centroid is the element that characterizes each cluster. 

In the CIMAP algorithm the centroid was defined as a 

vector containing the “representative” ON and OFF timings, 

computed as the median value of the elements belonging to 

the cluster.  

2) Application of the Linkage Method 

The Linkage Method is the procedure used to select the 

clusters to be jointed at each iteration. In our algorithm we 

applied the complete linkage, which uses the farthest 

distance between every pair of elements in the two 

considered clusters as merging criterion [26]. The distance 

between each couple of clusters corresponds to the distance 

between those elements (one in each cluster) that 

are farthest away from each other. At each iteration, the two 

clusters with the smallest distance are merged together. 

To assess the distance during the linkage process we used 

both the Manhattan and the Chebyshev distance: the 

dendrograms using both these distances were constructed. 

3) Selection of the Cutoff Point 

For each dendrogram, we obtained the final clusters using a 

cutoff rule based on three criteria. We considered the series 

Diff consisting of the differences of inter-cluster distances 

between two consecutive iterations; then we defined three 

cutoff points as follows: 

- CutA: first iteration in which the difference Diff is higher 

than the average difference μ_Diff. 

- CutB: first iteration in which the difference Diff is higher 

than μ_Diff+σ_Diff, where σ_Diff is the standard 

deviation of Diff. 

- CutC: a moving average (window: 5 points) is applied to 

the Diff series. Beginning from the last value and stepping 

backwards, the cutoff is identified as the point in which the 

series stop decreasing monotonically. 

The best cutoff was identified using (1), which takes into 

account both the intra-cluster variability and the number of 

cycles included in the representative clusters:  

 

𝐶𝑈𝑇_𝐼𝑁𝐷 =
∑ 𝐼𝑁𝑇𝑅𝐴_𝑉𝐴𝑅𝑖

𝑛
𝑖=1

𝑛⁄

∑ |𝐶𝑖|𝑛
𝑖=1

 (1) 

 

where n is the number of representative clusters, |Ci| 

represents the number of cycles included in each cluster Ci, 

and INTRA_VARi is the intra-cluster variability of the i-th 

cluster calculated by using (2):  

 

𝐼𝑁𝑇𝑅𝐴_𝑉𝐴𝑅𝑖 = 𝑑𝑖𝑠𝑡(𝑐𝑦𝑐𝑙𝑒𝑗, 𝑐𝑦𝑐𝑙𝑒𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, ∀𝑗, 𝑘 ∈ 𝐶𝑖 (2) 

 

where dist is the Manhattan distance. 

For each dendrogram we computed the three cutoff points 

and selected the one corresponding to the lowest CUT_IND 

value.  

4) Clustering Evaluation  

In order to choose the final result, we define an index 

(CLUSTER_VAR) that takes into account two aspects: the 

similarity between the centroids and the cluster elements, 

and the number of cycles included in the representative 

clusters.  More specifically, the CLUSTER_VAR index, for 

a single cluster i, is calculated by using (3), 

 

𝐶𝐿𝑈𝑆𝑇_𝑉𝐴𝑅𝑖 =
∑ 𝑑𝑖𝑠𝑡(𝑐𝑦𝑐𝑙𝑒𝑗 , 𝐶𝐿𝐶𝑖)

𝑝
𝑗=1

𝑝
⁄ , ∀𝑗 ∈ 𝐶𝑖 (3) 

 

where p is the number of cycles included in the 

representative cluster Ci, CLCi is the cluster centroid and 

dist represents the Manhattan distance. The final value of 

CLUSTER_VAR is computed as the mean value among all 

the clusters. The clustering result with the lowest value of 

the CLUST_VAR index was considered as the best result: 

low values of the index are associated to high intra-cluster 

similarity and/or high number of cycles included in 

representative clusters.  

D. Principal activation extraction 

After clustering, a post-processing phase was performed to 

extract the principal activations of each muscle. Principal 

activations are defined as those activations that are necessary 

for the biomechanical task that is being actuated by the specific 

muscle [5]. This is complementary to the concept of secondary 

activations, which are activations present only in some strides 

and have an auxiliary function in motor control [27] (e.g. to 

provide a slight correction to muscle activations due to 

temporary subject distractions or extemporaneous external 

disturbances). 

To extract principal activations, we first defined the cluster 

prototype as the cluster centroid (Fig. 2a), coded as a string of 

1000 elements (0 = no muscle activation; 1 = muscle 

activation). Then, the principal activation of each muscle was 

obtained as the intersection of the corresponding cluster 

prototypes (Fig. 2b). More specifically, principal activations are 

defined as binary strings of 1000 elements (0 means that at least 

one prototype has no activation in the specific bit; 1 means that 

all the prototypes have activation in the specific bit). 

E. Muscle-activation asymmetry quantification 

For each muscle, we evaluated the muscle-activation 

asymmetry using an index (EMG_ASYM_INDEX), calculated 

according to (4):  

 

𝐸𝑀𝐺_𝐴𝑆𝑌𝑀_𝐼𝑁𝐷𝐸𝑋 = ∑
|𝑅𝑖−𝐿𝑖|

𝑁

𝑁
𝑖=1 ∙ 100% (4) 
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where R and L are the strings corresponding to the principal 

activations of right and left sides respectively and N is the 

number of elements used for representing the principal 

activations (N=1000). EMG_ASYM_INDEX can range from 0% 

(“perfect” symmetry, the two contralateral muscles are active at 

the same percent of the gait cycle) to 100% (complete 

asymmetry, when, with reference to the same percent of the gait 

cycle, a muscle is active when the contralateral is not).  

F. Other EMG indices used in literature  

To compare the proposed index with other indices found in 

literature, we computed, on our dataset, the asymmetry index 

(ASI) by Schmidt et al. [18] and the symmetry index (SI) by 

Burnett et al. [19].  

In Ref. [18], for each muscle, the EMG envelope is obtained, 

and ASI is defined using (5):  

 

𝐴𝑆𝐼(%) = |
2×(𝑀𝐴𝐿−𝑀𝐴𝑅)

𝑀𝐴𝐿+𝑀𝐴𝑅
| × 100%                    (5) 

 

where MAL and MAR represent individual mean muscle 

activities, obtained during the complete gait cycle of the left and 

right limb, respectively.  

In Ref. [19], for each muscle, SI is defined using (6):  

 

𝑆𝐼 =
𝑅𝑀𝑆𝑁𝐷,𝑠𝑡𝑎𝑛𝑐𝑒

𝑅𝑀𝑆𝐷,𝑠𝑡𝑎𝑛𝑐𝑒
                                 (6) 

 

where 𝑅𝑀𝑆𝑁𝐷,𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑅𝑀𝑆𝐷,𝑠𝑡𝑎𝑛𝑐𝑒  is the root mean square 

amplitude during the stance phase for the non-dominant (ND) 

and dominant (D) limb, respectively. In our dataset, no 

information was available about the dominant side of subjects. 

Consequently, we chose to consider as the dominant side: 

- the right side, for controls and iNPH patients; 

- the sound side, for the remaining groups. 

G. Statistical analysis 

For each group of subjects detailed in Table I and each 

muscle, we calculated the mean value and the standard error of 

the EMG_ASYM_INDEX, ASI and SI. 

To explore the differences between patients and healthy 

controls, we matched each group of patients with one of the 

three healthy groups (age-based matching). Then, we used the 

Lilliefors test to assess the normality of the distributions, 

obtained applying the three indices to our dataset. Because 

some of the distributions were not normal, the Wilcoxon non-

parametric test was used to compare groups (α = 0.05), 

considering each muscle separately. We used 1-tailed tests for 

EMG_ASYM_INDEX and ASI, since the mean value of these 

indices are expected to be higher than (or equal to) that of 

controls. One-tailed tests were applied also to assess the 

differences in THA patients during the follow-up (between 3 

and 6 months, between 6 and 12 months and between 3 and 12 

months). On the other hand, we used 2-tailed tests for the SI 

since, in this case, we could not a-priori hypothesize an effect 

in one direction, due to definition of the index itself. Indeed, in 

patients, SI may assume values higher or smaller than that of 

controls, depending on the pathology and the muscle 

considered. 

III. RESULTS AND DISCUSSION 

Fig. 3 reports the mean values and the standard errors of the 

EMG_ASYM_INDEX, ASI and SI of the analyzed groups.  

A. EMG_ASYM_INDEX 

As it emerges from Fig. 3a, overall, we found the lowest 

values of the index in the three control groups, as it was 

expected. Moreover, orthopedic and neurological patients show 

a different behavior depending on the muscle and the type of 

pathology. The results of the Wilcoxon tests performed to 

assess the inter-group differences are reported in Table II. 

In the following section, we discuss the results that we 

obtained comparing each group of patients with the 

corresponding age-matched control group. 

 

We analyzed both orthopedic and neurologic populations in 

which we expected different levels of asymmetry. More 

specifically, based on our previous knowledge of the different 

disorders and treatments which patients underwent: 

(1) We expected higher differences between Mega TKR 

patients and controls with respect to those between TKR 

patients and controls, since the surgical procedure for the 

implantation of a megaprosthesis implies a higher degree of 

bone and muscle sacrifice with respect to that of a conventional 

prosthesis. 

(2) In a previous study, activation patterns of THA patients 

were analyzed [20]. The results of that study did not evidence 

substantial (qualitative) differences between prosthetic and 

 
Fig. 2.  Example of principal activation (P.A.) extraction for the left and right 
Tibialis Anterior (TA) muscle of an adult healthy subject. a) Representative 

clusters: cluster elements (blue), cluster prototypes (orange). b) Principal 

activations (green), obtained as the intersection of the cluster prototypes. 
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sound sides. Hence, for these patients, we expected a limited 

asymmetry level in muscle activations. 

(3) We also expected different levels of asymmetry on the 

two groups of neurological patients with respect to controls. In 

particular, hemiplegia is a condition that affects one side of the 

body, whereas normal pressure hydrocephalus is not known to 

selectively affect a specific side.  

1) Mega TKR patients and Healthy Adults  

The Mega TKR group consists of patients affected by 

malignant tumors of the distal part of the femur, treated 

through the implant of a modular knee prosthesis 

(megaprosthesis) for saving their lower limb [28], [29]. This 

surgical procedure implies different degrees of bone and 

muscle sacrifice and inevitably leads to a change in the gait 

characteristics of the prosthetic with respect to the sound 

side [30]. The EMG_ASYM_INDEX points out this issue 

clearly: the index values are higher and statistically different 

in the Mega TKR group with respect to controls for all the 

four analyzed muscles. 

2) TKR patients and Healthy Elderly 

As explained before, the Total Knee Replacement is less 

destructive than the megaprosthesis implant; the 

EMG_ASYM_INDEX reflects this aspect, since index 

values for TKR patients and controls result significantly 

different only for the TA muscle. 

3) THA patients and Healthy Elderly 

Patients were evaluated at 3, 6 and 12 months after surgery. 

The index values for TA, LGS and RF muscles are not 

significantly different with respect to controls at each time 

point. On the other hand, LH is the muscle with the greater 

value of the EMG_ASYM_INDEX, and a statistical 

difference was obtained with respect to healthy elderly at 

each time point. An interesting behavior is shown by the RF 

muscle: even if there is no statistical difference respect to 

the control group, a qualitative decreasing trend can be 

noted among the three time points. Moreover, the 

EMG_ASYM_INDEX shows a significant difference for this 

muscle between 3 and 12 months after surgery; this suggests 

that patients progressively recovered symmetrical muscle 

activation patterns during walking. 

4) Hemiplegic and Healthy Children 

Hemiplegia is a common consequence of cerebral palsy 

(CP) and causes altered selective motor control, weakness 

and spasticity. In a previous study the differences between 

EMG activation patterns in hemiplegic and healthy children 

were investigated [21]. Using the defined index, we are also 

able to identify an asymmetry in muscle activation patterns: 

the EMG_ASYM_INDEX results higher with respect to 

healthy children, for every muscle.  

5) iNPH patients and Healthy Elderly 

iNPH is a pathology caused by an excess of cerebrospinal 

fluid in the cerebral ventricles of the brain. This pathology, 

in many cases, does not affect a specific side of the body, 

 
Fig. 3.  Mean values and standard errors of (a) EMG_AYM_INDEX, (b) ASI and (c) SI on the analyzed groups. Muscle: Tibialis Anterior (TA), Gastrocnemius 

Lateralis (LGS), Rectus Femoris (RF) and Lateral hamstring (LH). Significant differences between patients and age-matched controls are marked with a black 

asterisk. Significant difference between THA patients at 3 and 12 months after surgery is marked with a blue asterisk. 
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but it rather affects the overall walking scheme [31]. The 

results obtained for iNPH patients are consistent with the 

previous consideration. Differently from what we found for 

hemiplegic children, we obtained no significant difference 

with respect to controls.  

B. ASI and SI  

The results obtained applying the ASI and SI to our dataset 

are reported in Fig. 3b and Fig. 3c, respectively. The p-values 

of the Wilcoxon tests are reported in Table II. 

We would point out that the ASI and SI indices found in 

literature cannot be directly compared to our index 

EMG_ASYM_INDEX. In fact, while both ASI and SI are related 

to the mean amplitude of the EMG signal during the whole gait 

cycle, our index is related to the difference in the EMG onset-

offset timings at each percent of the gait cycle. Hence, it 

provides an information based on the timing of activation 

patterns rather than EMG amplitudes. Therefore, the 

information obtained with EMG_ASYM_INDEX is 

complementary with respect to that obtained with ASI and SI. 

As an example, using EMG_ASYM_INDEX we found 

differences between hemiplegic children and controls for every 

muscle. On the contrary, using ASI or SI we found differences 

only for the TA muscle. This is reasonable since hemiplegic 

children are expected to show asymmetric timing patterns in 

every muscle [21], considering also compensation mechanisms. 

Moreover, a difference in the mean EMG amplitude asymmetry 

is observed in the TA muscle considering ASI and SI. In 

particular, the SI value (smaller than one) highlights a 

hypoactivation of the TA hemiplegic side with respect to the 

contralateral one, that confirms findings in literature [32]. 

IV. LIMITATIONS OF THE STUDY AND FUTURE WORKS 

The CIMAP algorithm relies on a correct identification of the 

timing of muscular activity. The double threshold algorithm 

used in the pre-processing stage of the sEMG signals is 

included in the STEP32 software. However, many detectors of 

muscular activity have been developed throughout the years, 

e.g. algorithms that improves SNR estimation in the double 

threshold detector [33], [34], and algorithms that are based on 

wavelet-transform [35], [36], or on maximum-likelihood 

identification [37]. A limitation of this study is that we do not 

know if the performance of the CIMAP algorithm might be 

influenced using other pre-processing detection algorithms.  

Furthermore, we used the CIMAP to extract principal 

activations and discard secondary ones. Therefore, the 

computation of the proposed asymmetry index is based only on 

principal activations. This aspect, on one side allows for 

analyzing only those activations that are necessary for the 

walking task, but, on the other side, it does not allow detecting 

possible asymmetries lying in secondary activations. In the 

future, the definition of an asymmetry index including also 

secondary activation could be introduced. 

Moreover, starting from the proposed index, that is specific 

for each muscle, two aspects can be considered as possible 

future developments of this study: (1) the definition of a 

“global” asymmetry index that quantify the overall muscle 

activity asymmetry; (2) the analysis of possible correlation 

between foot-floor contact asymmetries and muscle activity 

asymmetries. 

V. CONCLUSIONS 

In this study we presented an EMG asymmetry index based 

on principal activations extracted with the CIMAP algorithm. 

 

TABLE II 
COMPARISON BETWEEN PATHOLOGICAL GROUPS AND AGE-MATCHED CONTROLS: WILKOXON-TEST RESULTS 

 

Group comparison 

EMG_ASYM_INDEX 
p-values 

ASI (Schmidt et al.) 
p-values 

(SI) Burnett et al. 
p-values 

 
TA LGS RF LH TA LGS RF LH TA LGS RF LH 

ORTHOPEDIC 

PATIENTS 

Mega TKR 
Healthy 

Adults 
0.004 0.002 0.002 0.03 0.2 0.09 0.04 0.03 0.9 0.7 1.0 0.3 

TKR 
Healthy 
Elderly 

0.03 0.3 0.1 0.2 0.02 0.08 0.02 0.2 0.6 0.3 0.2 0.5 

THA 

3 months 

Healthy 

Elderly 
0.5 0.6 0.2 0.009 0.1 0.02 0.01 0.7 1.0 0.01 0.4 0.02 

THA 

6 months 

Healthy 

Elderly 
0.8 0.6 0.6 0.01 0.3 0.02 0.07 0.5 0.8 0.1 0.3 0.004 

THA 
12 months 

Healthy 
Elderly 

0.5 0.6 0.8 0.002 0.2 0.06 0.04 0.2 0.8 0.4 0.7 0.003 

THA 
3 months 

THA 
6 months 

0.2 0.5 0.08 0.2 0.1 0.2 0.2 0.8 0.4 0.4 0.4 0.9 

THA 

6 months 

THA 

12 months 
0.7 0.5 0.3 0.8 0.7 0.4 0.5 0.8 0.9 0.5 0.3 0.4 

THA 

3 months 

THA 

12 months 
0.3 0.5 0.01 0.3 0.2 0.1 0.2 0.9 0.7 0.06 0.8 0.4 

NEUROLOGICAL 
PATIENTS 

Hemiplegic 

Children 

Healthy 

Children 
0.005 0.01 0.004 0.02 0.002 0.4 0.07 0.2 0.02 0.5 0.07 0.9 

iNPH 
Healthy 

Elderly 
0.08 0.1 0.4 0.1 0.6 0.01 0.7 0.5 0.3 0.9 0.5 0.3 

Statistically significant differences (p<0.05) are highlighted in bold font. 
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The proposed index is directly based on muscle activity and 

is not affected by the variability of sEMG patterns since we 

used only principal activations for its definition. 

We quantitatively evaluated the asymmetry levels of four 

lower limb muscles in healthy subjects and in different 

populations of orthopedic and neurological patients.  

Based on our previous knowledge of the different disorders 

and treatments which patients underwent, we expected different 

asymmetry levels on each population. Our results confirmed 

this expectation. The value obtained for the asymmetry index 

was consistent with the expected asymmetry level of each 

specific population of patients. This suggests that the proposed 

index can be successfully used in clinics for an objective 

assessment of the asymmetry of muscle activation patterns 

during locomotion. Furthermore, we would point out that the 

knowledge provided by our index is complementary to that 

obtained by means of the other indices found in literature. In 

fact, it is based on the onset-offset timing of the EMG activation 

patterns rather than on the mean EMG amplitude. 
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