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Abstract. The complexity of aircraft systems is steadily growing,
allowing the machine to perform an increasing number of functions; this
can result in a multitude of possible failure modes, sometimes difficult to
foresee and detect. A prognostic tool to identify the early signs of faults
and perform an estimation of Remaining Useful Life (RUL) can allow
adaptively scheduling maintenance interventions, reducing the operating
costs and increasing safety [1-4]. A first step for the RUL estimation is an
accurate Fault Detection & Identification (FDI) to infer the system health
status, necessary to determine when the components will no more be able
to match their requirements [5]. With a model-based approach, the FDI is a
model-matching problem, intended to adjust a parametric Monitor Model
(MM) to reproduce the response of the system. The MM shall feature a low
computational cost to be executed iteratively on-board; at the same time, it
shall be detailed enough to account for a several failure modes [6]. We
propose the simplification of an Electromechanical Actuator (EMA)
dynamical model [7] for model-based FDI, focusing on the BLDC motor
and Power Electronics, which account for most the computational cost of
the original high fidelity model.

1 Introduction

Electromechanical Actuators (EMAs) are a class of electric-powered servomechanisms
usually meant to control the position of a mechanical component, referred to as the user.
These actuators are progressively replacing the more traditional hydraulic systems in
aeronautical applications to take advantage of the More Electric and All Electric design
philosophies [8,9]. Ascribing most of the secondary functions to the electrical system of the
aircraft, the need for a hydraulic and pneumatic system can be virtually eliminated,
resulting in overall weight reduction and fuel savings. However, some failure modes typical
of EMAs, such as the mechanical jamming of the transmission, are particularly hazardous if
those actuation systems are employed for flight critical functions. Hence, reliable
prognostic tools are required to provide an accurate estimation of the system Remaining
Useful Life (RUL), in order to either plan maintenance interventions or adaptively modify
the mission profile according to the residual capability of the system.
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This work focuses on the Fault Detection and Identification (FDI) phase of the
prognostic workflow, aimed to isolate accurately the early signs of wear and damage of the
components. In particular, we propose a simplified dynamical model of an EMA, to be used
as a near real time monitor of the physical system, enabling to detect the actuator fault by
comparing the response of the hardware and the monitor model. The monitor model shall
be computationally light, to allow a fast execution even on the limited hardware resources
available for onboard computations, but at the same time shall be able to reproduce the
effects of several failure modes with high accuracy.

In some circumstances, a simplified dynamical models is preferable over the use of
standard surrogate modelling techniques (such as Proper Orthogonal Decomposition
(POD), Artificial Neural Networks, etc. [10-12]) because it allows to exploit the knowledge
about the physics of the system, with a greater control over the model behavior and a
greater consistency in the representation of particular phenomena. Moreover, surrogate
modelling techniques based on Machine Learning are inherently non-deterministic and
raise issues related to safety regulations if applied in flight critical situations.

We consider a typical EMA for aircraft secondary flight controls, whose general
architecture is schematically represented in Figure 1. The system is composed by a BLDC
permanent magnet motor with its power inverter module, which converts the electrical
power supply into mechanical power. A compound planetary gearbox increases the torque
of the motor to drive a ball screw, which moves the aircraft control surface. Then, an LVDT
position sensor encodes the measured user position, which is compared to the commanded
position by the control electronics module to compute the required torque, closing the
feedback loop.
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Fig. 1. Scheme of a typical EMA architecture.

The system variable monitored for the prognostic analysis is the envelope of the three
phase currents; the reason is twofold:
—  The three phase currents are easy to measure in a physical system, and in fact are
already measured for control purposes in our application
—  Motor current has a high sensitivity to a large variety of fault modes, so an early FDI
is possible

Moreover, using the envelope of the three phases it is possible to compare the physical
system and High Fidelity model (Section 2) to the single phase equivalent current of the
Low Fidelity models (Section 3 and 4).

2 Description of the High Fidelity (HF) Reference Model

A detailed High Fidelity (HF) model of the considered EMA was initially developed by
[13,14]. A high-level scheme of its architecture is shown in Figure 2. Each block of the HF
model simulates the physical behavior of a component of the actual EMA with great
accuracy, by integrating the underlying governing equations of the system.



—  The Control electronics block compares the measured user position (and velocity) to
compute the reference current signal for the power inverter

—  The Power Electronics block simulates the operation of a three-phase solid-state
inverter, which applies a voltage to the active phases of the BLDC motor (according to the
motor position feedback provided by the Hall sensors) trying to maintain a current equal to
the commanded reference current (/).

—  The BLDC Electromechanical Model contains a detailed lumped parameter
simulation of the electromagnetic interactions between the rotor and stator of the electric
motor. The produced torque and back-emf are computed also taking into account local
inhomogeneities in the air gap width.

—  The Motor-Transmission Dynamical Model computes the motor and user position by
considering the system as a second order dynamical system, subject to various additional
nonlinear effects: mechanical end-of-travels, static and dynamic dry friction, transmission
backlash.

—  The Computation of envelope current and signal filter block evaluates a filtered
envelope of the three phase currents, needed to produce an output signal consistent to that
of the single phase Monitor Models.

The HF model can simulate the operation of the EMA with high accuracy, however its
computational cost is very high and unsuitable for nearly real time prognostics. In fact, the
simulation of a 0.5 seconds test signal requires several tenths of seconds on a common
laptop PC.
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Fig. 2. Block diagram of the HF model; only the first level subsystems are shown.

3 Description of the Old Monitor Model

A first Low Fidelity (LF) monitor model was initially developed by [15] and modified
by [7,16]. The model was meant to greatly reduce the computational cost of the simulation
with a minimal loss of accuracy, for different position command signals and in several
faulty operating conditions.

The main approximation done for this first LF model is the elimination of the static
inverter model and the three-phase commutation logic. The trapezoidal BLDC motor is
replaced by a first order dynamical model representing an equivalent single-phase
permanent-magnet DC motor (Figure 3). Its governing equations relate the motor current
I, the applied voltage 7 and the produced torque 7:
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where G, = ke,y = 0D/00 is the electromagnetic coupling constant of the motor and "~

denotes the Laplace transform. The PWM motor control was simulated by a sign block to
apply a voltage:
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This way, the controller tries to follow the commanded current /.., computed by the
control electronics block, while observing the limitations imposed by the maximum value
of the supply voltage V. This strategy allows to reproduce the behavior of the HF model in
nominal conditions. However, the introduction of electrical faults (rotor eccentricity and
partial short circuit) produces ripples in the motor current with characteristic patterns that
must be introduced indirectly. Two shape functions were introduced for this purpose, to
correct the electrical parameters of the model according to the rotor angular position [7].
—  Rotor eccentricity was simulated by multiplying the back-EMF coefficient £, and
the torque gain G, by a function:

JA0,) =1 —0.42{ [cos(Pb,,+ w) + sawtooth(6.PF,, - 7) sin(Pb,+ y)] 4)

- Partial short circuit was simulated by multiplying the back-emf coefficient Ky
torque gain G, and winding resistance R by a function f;. (6,,), expressing the fraction of
functioning coils active at a time; the winding inductance L is multiplied by the mean value

of fi.:
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where N,, N, N, are the fraction of functioning windings of each motor phase.

The back-EMF is computed by multiplying the nominal coefficient by f:(0,,) fi.(6,,). The
shape functions, and in particular the one relative to the rotor eccentricity, were derived
with a trial and error procedure. Now we propose a more general method for their

derivation that will be described in Section 4.
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Fig. 3. Block diagram of the old LF model (with current feedback loop)

4 Description of the Simplified Monitor Model

The old LF model required the inductive effect of the motor windings not to produce an
instantaneous current loop (see Figure 3). However, for the small and medium electric
motors used for EMAs, the motor inductance is relatively low, producing very fast
electrical dynamics. Then, the integration of the model requires a short time step (at most in
the order of 10 to 10 seconds) to avoid numerical instabilities, resulting in a relatively
high computational cost. On the other hand, the fast dynamics produced by the motor
inductance has negligible effects on the overall operation of the motor. Then, it is desirable



to neglect this phenomenon, to allow simulating a much lighter model without an excessive
loss of accuracy.
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Fig. 4. Block diagram of the new LF model (with dynamic saturation)

A possible solution is to pre-solve the current loop, while keeping the same overall
architecture of the old LF model. The current feedback control is meant to follow the
commanded current /. the time constant of this phenomenon is very small (for our
particular application, in the order of 10™ seconds). Then, we can neglect the inductive
effect assuming:

L
L=0 =—=0 6
=7 R (6)

This results in /=/.; when this is compatible with the maximum supply voltage
available. We can notice that the effective voltage that can be applied to the motor winding
is bounded between:

Vmax = Vaf - kc‘engf w
=V k ()
me Vm’ kc‘en.}f @
resulting in a maximum current of:
Vn - kcem @
I max — : R !
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This is equivalent to replace the whole current loop with a dynamic saturation block, as
shown in Figure 4. This strategy allows adopting a longer integration time step, shortening
the computational time without incurring in numerical instability problems. Another
modification is the generalization of the shape functions. Starting from (1) and assuming
L=0 we can solve for ke

k _'m” m (9)

Then, applying a ramp command to the HF model in presence of an electrical fault, we
assume o to settle to a constant value and we measure V,(f), 1,(f) and 6,(¢). Then, the
shape function relative to the fault mode introduced in the HF model is computed as:
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kN( !
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where keems is the back-emf coefficient in nominal conditions; this can be expressed as a
lookup table or, if feasible, approximated with a simple function (e.g. combination of sine
waves and steps).



With the dynamic saturation block for current computation, the integration time step is
limited only by the cut frequency of the signal filter (Figure 4). The filter is needed in the
High Fidelity model to reduce the ripple in the current signal produced by the PWM
control. In the monitor models, it is necessary to introduce the same filter in order to match
the signal delay and compare two consistent signals.

To further reduce the computational cost of the LF model, a first strategy consists in
tuning the filter cut frequency, in order to find the maximum characteristic time that
produces an acceptable loss of information. Another strategy is to translate the model from
the Simulink environment to a Matlab script, and split the integration of the model itself
and the filter. This way, the model is integrated with a longer time step, while a smaller one
is employed only for the filter, greatly reducing the computational time (at the expense of a
slight reduction in resolution and accuracy).

5 Model validation and results

We define a two of performance parameters related to the ability of the monitor models
to replicate the response of the high fidelity model:
—  Mean Squared Error (MSE):

1 At ,
em.s‘zg—_z(ILFi ']HFJ)‘ (11)
j HFrms ! -
where At is the time step, ¢ is the duration of the simulation, the subscript i denotes the i-th
point of the signal expressed as a time series and rms denotes the root mean square value of
a variable.
—  Total least squares error (TLSE) [17]:
P I At (11,]”:"11.’!’[).: (11)
1.?-{.'-)';713‘ ! i (]HI"{'/.]HJ"‘.“HH)- 7
where the time derivative I is evaluated numerically.

In both the errors, the term A#/t is the inverse of the number of integration steps. It has
to be noticed that the total least squares error has been chosen because it allows to give the
same importance to errors in signal and in time. Conversely, with the more traditional mean
square error, a steep derivative of the signal would magnify the discrepancy in time [17,18].

To assess the performances of the models, we test them on combinations of two
command signals and three load profiles, listed in Table 1, in presence of 100 random fault
conditions. The response of the HF model is taken as a reference signal.

Table 1. Command and load signals.

Commands Loads
Ramp signal Step signal
Slope: 0.5 [rad/s] Amplitude: 100 [Nm]
Chirp signal Ramp signal
Amplitude: 0.005  [rad] Slope: 100  [Nm/s]
Start frequency: 0 [Hz] | Sine wave
End frequency: 15 [Hz] Amplitude: 100 [Nm]
Duration: 0.5 [s] Frequency: 10 [Hz]

Figure 5 shows the current errors for the different combinations of loads and
commands, while Figure 6 synthetizes the average computational time needed for the
simulation of the three models. The computational time of the Simplified Monitor Model is
reduced of more than 50% with respect to the old Monitor Model; the speed increase with
respect to the High Fidelity Model is almost three orders of magnitude.
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Fig. 5. Comparison of MSE (top) and TLSE (bottom) of Old and New Monitor Models

I High Fidelity Madel
[ ¢ld Manitar Madel
[ simplified Manitor Model

computational time [s]

-
E
k=]
=
£
g

com 1, load 2
com 1, load 3

com 2, load 1
com 2, load 2

com 2, load 3

Fig. 6. Computational time needed for the three models in the considered test cases

15 =
—— High Fidelity Model
o H ~ — Oid Monitor Model
Simplified Monitor Model
[* W {
= | f \ |
= SMPE / \ /
s |/ U \ N / \
5 J ™ jooN / \ |
3 0 NG b \ / \ / \ /
N p v \ \
5 |- S / WV ./ af
J \ s 4 \/ v
10 L L ' L L L L s
o 0.05 0.1 0.15 02 0.25 03 0.35 04 0.45 05
time, [s]

Fig. 7. Example of current signal of the three models

Comparing the accuracy of the two low fidelity models for a given combination of
command signal and load profile, the Simplified Monitor Model results in a slightly higher
mean squared error with a greater dispersion. However, the total least squares error is
almost unchanged, suggesting a consistent behavior of the models. In fact, to match the
response of the other models, the signal filter of the Simplified Model is tuned with a cut



frequency about 20% lower. This is needed to produce a consistent overshoot but
introduces a slightly increased delay, which tends to be overestimated by the MSE.

However, the errors are at most in the order of 2% and both the Low Fidelity Models
can mimic the reference signal with acceptable accuracy, as shown by Figure 7. As we can
see, the two LF models have similar accuracy in all the considered test cases, which cover
most of the domain of applicability of the Reference Model itself. However, the new LF
model is much lighter in terms of needed computational time.

6 Conclusions

A computationally light Low Fidelity model of an Electromechanical Actuator has been
developed and tested, resulting in a much reduced computational time combined to a
negligible loss of accuracy with respect to older monitoring models. The model is able to
reproduce the behavior of the system in a wide range of operating conditions in terms of
input command, load profile and health status. This Low Fidelity model will be employed
for nearly real time online FDI, enabling the implementation of efficient and reliable
prognostic methodologies.

References

1. O. Benedettini, T.S. Baines, H.W Lightfoot, R.M. Greenough, Proc. Institution of
Mechanical Engineers J. of Aerospace Engineering, 2 157-170 (2009)

T. Sutharssan, S. Stoyanov, C. Bailey, C. Yin, J. of Engineering, 215-222 (2015)

Z. Williams, 2006 IEEE Aerospace Conference 9 (2006)

NASA-CR-192656 (1992).

G. Vachtsevanos F. Lewis, M. Roemer, A. Hess, B. Wu, Intelligent fault diagnosis and

prognosis for engineering systems (John Wiley & Sons, Inc., Hoboken, NJ, 2006).

6. E. Balaban, A. Saxena, K. Goebel, C.S. Byington, M. Watson, S. Bharadwaj, M Smith,
Annual Conf. of the PHM Society, (27 September-1 October, San Diego, CA 2009)

7. P.C. Berri, M.D.L. Dalla Vedova, P. Maggiore, Int. J. of Mechanics and Control, 2 59-

66 (2016)

M. Howse, Power Engineer, 4 35-37 (2003)

9. R.E.J. Quigley, Proc. Eighth Annual Applied Power Electronics Conference, 906-911
(1993)

10. Z.-Q. Qu, Model Order Reduction Techniques 1-11 (2004)

11. F. Chinesta, P. Ladeveze, E. Cueto, Archives of Computational Methods in
Engineering 18 395-404 (2011)

12. M.A. Bazaz, Mashug-un-Nabi, S. Janardhanan, 2012 IEEE International Conference
on Signal Processing, Computing and Control (2012)

13. M.D.L. Dalla Vedova, P. Maggiore, L. Pace, A. Desando, Int. J. of Prognostics and
Health Management 1 1-13 (2015)

14. M.D.L. Dalla Vedova, A. Germana, P. Maggiore, Proc. of the 26th European Safety
and Reliability Conference ESREL 2016, 313 (2017)

15. M.D.L. Dalla Vedova, P. Maggiore, L. Pace, Int. J. of Mechanics 9 236-245 (2015)

16. M.D.L. Dalla Vedova, A. Germana, P. Maggiore, Proc. of the Third European
Conference of the PHM Society, Bilbao, 5-8 July 2016, 555-564 (2016).

17. 1. Markovsky, S. Van Huffel, J. of Signal Processing 10 2283-2302 (2007)

18. P.C. Berri, M.D.L. Dalla Vedova, P. Maggiore, Safety and Reliability — Theory and

Applications (2017)

agrwn

o



