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Abstract. The complexity of aircraft systems is steadily growing, 

allowing the machine to perform an increasing number of functions; this 

can result in a multitude of possible failure modes, sometimes difficult to 

foresee and detect. A prognostic tool to identify the early signs of faults 

and perform an estimation of Remaining Useful Life (RUL) can allow 

adaptively scheduling maintenance interventions, reducing the operating 

costs and increasing safety [1-4]. A first step for the RUL estimation is an 

accurate Fault Detection & Identification (FDI) to infer the system health 

status, necessary to determine when the components will no more be able 

to match their requirements [5]. With a model-based approach, the FDI is a 

model-matching problem, intended to adjust a parametric Monitor Model 

(MM) to reproduce the response of the system. The MM shall feature a low 

computational cost to be executed iteratively on-board; at the same time, it 

shall be detailed enough to account for a several failure modes [6]. We 

propose the simplification of an Electromechanical Actuator (EMA) 

dynamical model [7] for model-based FDI, focusing on the BLDC motor 

and Power Electronics, which account for most the computational cost of 

the original high fidelity model. 

1 Introduction 

Electromechanical Actuators (EMAs) are a class of electric-powered servomechanisms 

usually meant to control the position of a mechanical component, referred to as the user. 

These actuators are progressively replacing the more traditional hydraulic systems in 

aeronautical applications to take advantage of the More Electric and All Electric design 

philosophies [8,9]. Ascribing most of the secondary functions to the electrical system of the 

aircraft, the need for a hydraulic and pneumatic system can be virtually eliminated, 

resulting in overall weight reduction and fuel savings. However, some failure modes typical 

of EMAs, such as the mechanical jamming of the transmission, are particularly hazardous if 

those actuation systems are employed for flight critical functions. Hence, reliable 

prognostic tools are required to provide an accurate estimation of the system Remaining 

Useful Life (RUL), in order to either plan maintenance interventions or adaptively modify 

the mission profile according to the residual capability of the system. 
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This work focuses on the Fault Detection and Identification (FDI) phase of the 

prognostic workflow, aimed to isolate accurately the early signs of wear and damage of the 

components. In particular, we propose a simplified dynamical model of an EMA, to be used 

as a near real time monitor of the physical system, enabling to detect the actuator fault by 

comparing the response of the hardware and the monitor model. The monitor model shall 

be computationally light, to allow a fast execution even on the limited hardware resources 

available for onboard computations, but at the same time shall be able to reproduce the 

effects of several failure modes with high accuracy. 

In some circumstances, a simplified dynamical models is preferable over the use of 

standard surrogate modelling techniques (such as Proper Orthogonal Decomposition 

(POD), Artificial Neural Networks, etc. [10-12]) because it allows to exploit the knowledge 

about the physics of the system, with a greater control over the model behavior and a 

greater consistency in the representation of particular phenomena. Moreover, surrogate 

modelling techniques based on Machine Learning are inherently non-deterministic and 

raise issues related to safety regulations if applied in flight critical situations. 

We consider a typical EMA for aircraft secondary flight controls, whose general 

architecture is schematically represented in Figure 1.  The system is composed by a BLDC 

permanent magnet motor with its power inverter module, which converts the electrical 

power supply into mechanical power. A compound planetary gearbox increases the torque 

of the motor to drive a ball screw, which moves the aircraft control surface. Then, an LVDT 

position sensor encodes the measured user position, which is compared to the commanded 

position by the control electronics module to compute the required torque, closing the 

feedback loop. 

 

Fig. 1. Scheme of a typical EMA architecture. 

The system variable monitored for the prognostic analysis is the envelope of the three 

phase currents; the reason is twofold: 

 The three phase currents are easy to measure in a physical system, and in fact are 

already measured for control purposes in our application 

 Motor current has a high sensitivity to a large variety of fault modes, so an early FDI 

is possible 

Moreover, using the envelope of the three phases it is possible to compare the physical 

system and High Fidelity model (Section 2) to the single phase equivalent current of the 

Low Fidelity models (Section 3 and 4). 

2 Description of the High Fidelity (HF) Reference Model 

A detailed High Fidelity (HF) model of the considered EMA was initially developed by 

[13,14]. A high-level scheme of its architecture is shown in Figure 2. Each block of the HF 

model simulates the physical behavior of a component of the actual EMA with great 

accuracy, by integrating the underlying governing equations of the system. 



 The Control electronics block compares the measured user position (and velocity) to 

compute the reference current signal for the power inverter 

 The Power Electronics block simulates the operation of a three-phase solid-state 

inverter, which applies a voltage to the active phases of the BLDC motor (according to the 

motor position feedback provided by the Hall sensors) trying to maintain a current equal to 

the commanded reference current (Iref). 

 The BLDC Electromechanical Model contains a detailed lumped parameter 

simulation of the electromagnetic interactions between the rotor and stator of the electric 

motor. The produced torque and back-emf are computed also taking into account local 

inhomogeneities in the air gap width. 

 The Motor-Transmission Dynamical Model computes the motor and user position by 

considering the system as a second order dynamical system, subject to various additional 

nonlinear effects: mechanical end-of-travels, static and dynamic dry friction, transmission 

backlash. 

 The Computation of envelope current and signal filter block evaluates a filtered 

envelope of the three phase currents, needed to produce an output signal consistent to that 

of the single phase Monitor Models. 

The HF model can simulate the operation of the EMA with high accuracy, however its 

computational cost is very high and unsuitable for nearly real time prognostics. In fact, the 

simulation of a 0.5 seconds test signal requires several tenths of seconds on a common 

laptop PC. 

 

Fig. 2. Block diagram of the HF model; only the first level subsystems are shown. 

3 Description of the Old Monitor Model 

A first Low Fidelity (LF) monitor model was initially developed by [15] and modified 

by [7,16]. The model was meant to greatly reduce the computational cost of the simulation 

with a minimal loss of accuracy, for different position command signals and in several 

faulty operating conditions. 

The main approximation done for this first LF model is the elimination of the static 

inverter model and the three-phase commutation logic. The trapezoidal BLDC motor is 

replaced by a first order dynamical model representing an equivalent single-phase 

permanent-magnet DC motor (Figure 3). Its governing equations relate the motor current 

Im, the applied voltage V and the produced torque T: 

 

(1) 

T = Gt Im (2) 

where Gt = kcemf = ∂Φ/∂θ is the electromagnetic coupling constant of the motor and  ̂ 

denotes the Laplace transform. The PWM motor control was simulated by a sign block to 

apply a voltage: 



 

(3) 

This way, the controller tries to follow the commanded current Iref computed by the 

control electronics block, while observing the limitations imposed by the maximum value 

of the supply voltage Val. This strategy allows to reproduce the behavior of the HF model in 

nominal conditions. However, the introduction of electrical faults (rotor eccentricity and 

partial short circuit) produces ripples in the motor current with characteristic patterns that 

must be introduced indirectly. Two shape functions were introduced for this purpose, to 

correct the electrical parameters of the model according to the rotor angular position [7]. 

 Rotor eccentricity was simulated by multiplying the back-EMF coefficient kcemf, and 

the torque gain Gt by a function: 

 

fζ(θm) = 1 – 0.42ζ [cos(Pθm+ ψ) + sawtooth(6Pθm - π) sin(Pθm+ ψ)]   (4) 

 

 Partial short circuit was simulated by multiplying the back-emf coefficient kcemf, 

torque gain Gt and winding resistance R by a function fsc (θm), expressing the fraction of 

functioning coils active at a time; the winding inductance L is multiplied by the mean value 

of fsc: 

 

(5) 

where Na, Nb, Nc are the fraction of functioning windings of each motor phase. 

The back-EMF is computed by multiplying the nominal coefficient by fζ(θm) fsc(θm). The 

shape functions, and in particular the one relative to the rotor eccentricity, were derived 

with a trial and error procedure. Now we propose a more general method for their 

derivation that will be described in Section 4. 

 

Fig. 3. Block diagram of the old LF model (with current feedback loop) 

4 Description of the Simplified Monitor Model 

The old LF model required the inductive effect of the motor windings not to produce an 

instantaneous current loop (see Figure 3). However, for the small and medium electric 

motors used for EMAs, the motor inductance is relatively low, producing very fast 

electrical dynamics. Then, the integration of the model requires a short time step (at most in 

the order of 10
-6

 to 10
-5

 seconds) to avoid numerical instabilities, resulting in a relatively 

high computational cost. On the other hand, the fast dynamics produced by the motor 

inductance has negligible effects on the overall operation of the motor. Then, it is desirable 



to neglect this phenomenon, to allow simulating a much lighter model without an excessive 

loss of accuracy. 

 

Fig. 4. Block diagram of the new LF model (with dynamic saturation) 

A possible solution is to pre-solve the current loop, while keeping the same overall 

architecture of the old LF model. The current feedback control is meant to follow the 

commanded current Iref; the time constant of this phenomenon is very small (for our 

particular application, in the order of 10
-5

 seconds). Then, we can neglect the inductive 

effect assuming: 

 
(6) 

This results in I=Iref, when this is compatible with the maximum supply voltage 

available. We can notice that the effective voltage that can be applied to the motor winding 

is bounded between:   

 
(7) 

resulting in a maximum current of: 

 

(8) 

This is equivalent to replace the whole current loop with a dynamic saturation block, as 

shown in Figure 4. This strategy allows adopting a longer integration time step, shortening 

the computational time without incurring in numerical instability problems. Another 

modification is the generalization of the shape functions. Starting from (1) and assuming 

L=0 we can solve for kcemf: 

 
(9) 

Then, applying a ramp command to the HF model in presence of an electrical fault, we 

assume ω to settle to a constant value and we measure Vm(t), Im(t) and θm(t). Then, the 

shape function relative to the fault mode introduced in the HF model is computed as: 

 

 
(10) 

where  is the back-emf coefficient in nominal conditions; this can be expressed as a 

lookup table or, if feasible, approximated with a simple function (e.g. combination of sine 

waves and steps). 



With the dynamic saturation block for current computation, the integration time step is 

limited only by the cut frequency of the signal filter (Figure 4). The filter is needed in the 

High Fidelity model to reduce the ripple in the current signal produced by the PWM 

control. In the monitor models, it is necessary to introduce the same filter in order to match 

the signal delay and compare two consistent signals. 

To further reduce the computational cost of the LF model, a first strategy consists in 

tuning the filter cut frequency, in order to find the maximum characteristic time that 

produces an acceptable loss of information. Another strategy is to translate the model from 

the Simulink environment to a Matlab script, and split the integration of the model itself 

and the filter. This way, the model is integrated with a longer time step, while a smaller one 

is employed only for the filter, greatly reducing the computational time (at the expense of a 

slight reduction in resolution and accuracy). 

5 Model validation and results 

We define a two of performance parameters related to the ability of the monitor models 

to replicate the response of the high fidelity model: 

 Mean Squared Error (MSE): 

 

(11) 

where Δt is the time step, t is the duration of the simulation, the subscript i denotes the i-th 

point of the signal expressed as a time series and rms denotes the root mean square value of 

a variable. 

 Total least squares error (TLSE) [17]: 

 
(11) 

where the time derivative İHF is evaluated numerically. 

In both the errors, the term Δt/t is the inverse of the number of integration steps. It has 

to be noticed that the total least squares error has been chosen because it allows to give the 

same importance to errors in signal and in time. Conversely, with the more traditional mean 

square error, a steep derivative of the signal would magnify the discrepancy in time [17,18]. 

To assess the performances of the models, we test them on combinations of two 

command signals and three load profiles, listed in Table 1, in presence of 100 random fault 

conditions. The response of the HF model is taken as a reference signal. 

Table 1. Command and load signals. 

Commands Loads 

Ramp signal Step signal 

 Slope: 0.5 [rad/s]  Amplitude: 100 [Nm] 

Chirp signal Ramp signal 

 Amplitude: 0.005 [rad]  Slope: 100 [Nm/s] 

 Start frequency: 0 [Hz] Sine wave 

 End frequency: 15 [Hz]  Amplitude: 100 [Nm] 

 Duration: 0.5 [s]  Frequency: 10 [Hz] 

 

Figure 5 shows the current errors for the different combinations of loads and 

commands, while Figure 6 synthetizes the average computational time needed for the 

simulation of the three models. The computational time of the Simplified Monitor Model is 

reduced of more than 50% with respect to the old Monitor Model; the speed increase with 

respect to the High Fidelity Model is almost three orders of magnitude. 



 

Fig. 5. Comparison of MSE (top) and TLSE (bottom) of Old and New Monitor Models 

 

Fig. 6. Computational time needed for the three models in the considered test cases 

 

Fig. 7. Example of current signal of the three models 

Comparing the accuracy of the two low fidelity models for a given combination of 

command signal and load profile, the Simplified Monitor Model results in a slightly higher 

mean squared error with a greater dispersion. However, the total least squares error is 

almost unchanged, suggesting a consistent behavior of the models. In fact, to match the 

response of the other models, the signal filter of the Simplified Model is tuned with a cut 



frequency about 20% lower. This is needed to produce a consistent overshoot but 

introduces a slightly increased delay, which tends to be overestimated by the MSE. 

However, the errors are at most in the order of 2% and both the Low Fidelity Models 

can mimic the reference signal with acceptable accuracy, as shown by Figure 7. As we can 

see, the two LF models have similar accuracy in all the considered test cases, which cover 

most of the domain of applicability of the Reference Model itself. However, the new LF 

model is much lighter in terms of needed computational time. 

6 Conclusions 

A computationally light Low Fidelity model of an Electromechanical Actuator has been 

developed and tested, resulting in a much reduced computational time combined to a 

negligible loss of accuracy with respect to older monitoring models. The model is able to 

reproduce the behavior of the system in a wide range of operating conditions in terms of 

input command, load profile and health status. This Low Fidelity model will be employed 

for nearly real time online FDI, enabling the implementation of efficient and reliable 

prognostic methodologies. 
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