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Nuclear phase transition and thermodynamic instabilities in
dense nuclear matter

A. Lavagnoa

1Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy
2Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, I-10126 Torino, Italy

Abstract. We study the presence of thermodynamic instabilities in a nuclear medium
at finite temperature and density where nuclear phase transitions can take place. Such a
phase transition is characterized by pure hadronic matter with both mechanical instability
(fluctuations on the baryon density) that by chemical-diffusive instability (fluctuations
on the electric charge concentration). Similarly to the liquid-gas phase transition, the
nucleonic and the ∆-matter phase have a different isospin density in the mixed phase.
In the liquid-gas phase transition, the process of producing a larger neutron excess in
the gas phase is referred to as isospin fractionation. A similar effects can occur in the
nucleon-∆ matter phase transition due essentially to a ∆− excess in the ∆-matter phase
in asymmetric nuclear matter. In this context we also discuss the relevance of ∆-isobar
and hyperon degrees of freedom in the bulk properties of the protoneutron stars at fixed
entropy per baryon, in the presence and in the absence of trapped neutrinos.

1 Introduction

One of the very interesting aspects in nuclear astrophysics and in the heavy-ion collisions experiments
is a detailed study of the thermodynamical properties of strongly interacting nuclear matter away from
the nuclear ground state. In this direction, many efforts have been focused on searching for possible
phase transitions at finite temperature in dense nuclear matter. The knowledge of the nuclear equation
of state (EOS) of dense matter at finite temperature plays a crucial role in the determination of the
structure and in the evolution of the protoneutron star (PNS) [1–3]. A PNS is formed in a stellar
remnant after a successful core-collapse supernova explosion of a star with a mass smaller than about
20 solar masses and in the first seconds of its evolution it is a very hot (temperature of up to 50 MeV),
lepton rich and β-stable object and a lepton concentration typical of the pre-supernova matter [1, 2].

In this paper, we are going to study a EOS at finite temperature and density by means of a relativis-
tic mean-field model with the inclusion ∆(1232)-isobars [4–6] and by requiring the Gibbs conditions
on the global conservation of baryon number and net electric charge. In regime of finite values of
density and temperature, a state of high density resonance matter may be formed and the ∆(1232)-
isobar degrees of freedom are expected to play a central role in relativistic heavy ion collisions and
in the physics of compact stars [7, 8]. Transport model calculations and experimental results indicate
that an excited state of baryonic matter is dominated by the ∆-resonance at the energy from the BNL
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Alternating Gradient Synchrotron (AGS) to RHIC [9, 10]. Moreover, in the framework of the nonlin-
ear Walecka model, it has been predicted that a phase transition from nucleonic matter to ∆-excited
nuclear matter can take place and the occurrence of this transition sensibly depends on the ∆-meson
coupling constants [11, 12].

2 Relativistic nuclear equation of state and stability conditions
In this section, we start by introducing the hadronic equation of state (EOS) in the framework of a
relativistic mean-field theory. In this investigation we include all the baryon octet in order to reproduce
the chemical composition of the PNS at high baryon chemical potential. We also take into account of
leptons particle by fixing the lepton fraction YL = Ye + Yνe = (ρe + ρνe )/ρB, where ρe, ρνe and ρB are
the electron, neutrino and baryon number densities, respectively. This is because, in the first stage of
PNS evolution, electrons and neutrinos are trapped inside the stellar matter and, therefore, the lepton
number must be conserved until neutrinos escape out of the PNS [2].

The Lagrangian density can be written in term of the hadronic [4, 13, 14] plus leptonic component,
as follow:

Ltot = Loctet +L∆ +Ll =
∑

k

ψ̄k[iγµ∂µ − (Mk − gσkσ) − gωkγµω
µ − gρkγµ�τ · �ρµ]ψk

+
1
2

(∂µσ∂µσ − m2
σσ

2) − U(σ) +
1
2

m2
ωωµω

µ +
1
2

m2
ρ�ρµ · �ρ µ −

1
4

FµνFµν −
1
4
�Gµν �Gµν

+ψ∆ ν [iγµ∂µ − (M∆ − gσ∆σ) − gω∆γµωµ]ψν∆ +
∑

l

ψ̄l[iγµ∂µ − ml]ψl , (1)

where the sums over k and l are over the baryon octet and lepton particles, respectively; ψν
∆

is the
Rarita-Schwinger spinor for the ∆-isobars (∆++, ∆+, ∆0, ∆−). The field strength tensors for the vector
mesons are given by the usual expressions Fµν ≡ ∂µων − ∂νωµ, �Gµν ≡ ∂µ�ρν − ∂ν�ρµ, and U(σ) is a
nonlinear potential of σ meson

U(σ) =
1
3

aσ3 +
1
4

bσ4 , (2)

usually introduced to achieve a reasonable compression modulus for equilibrium nuclear matter.
The field equations in a mean field approximation are

[iγµ∂µ − (Mk − gσkσ) − gωkγ
0ω − gρkγ0τ3ρ]ψk = 0 , (3)

[iγµ∂µ − (M∆ − gσ∆σ) − gω∆γ0ω]ψν∆ = 0 , (4)

m2
σσ + aσ2 + bσ3 =

∑
k

gσkρ
S
k , (5)

m2
ωω =

∑
k

gωkρ
B
k , (6)

m2
ρρ = g

∑
k

gρkt3kρ
B
k , (7)

where σ = 〈σ〉, ω = 〈ω0〉 and ρ = 〈ρ0
3〉 are the nonvanishing expectation values of mesons fields. The

ρB
k and ρS

k are the baryon density and the baryon scalar density, respectively. They are given by

ρB
i = γi

∫
d3k

(2π)3 [ni(k) − ni(k)] , (8)

ρS
i = γi

∫
d3k

(2π)3

M∗i
E∗i

[ni(k) + ni(k)] , (9)
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where γi is the degeneracy spin factor (γN = 2 and γ∆ = 4) and ni(k) and ni(k) are the fermion particle
and antiparticle distribution functions.

The nucleon effective energy is defined as Ei
∗(k) =

√
k2 + Mi

∗2, where Mi
∗ = Mi − gσBσ. The

effective chemical potentials µ∗i are given in terms of the meson fields as follows

µ∗i = µi − gωBω − τ3iBgρBρ , (10)

where µi are the thermodynamical chemical potentials (µi = ∂ε/∂ρi).
The further conditions, required for the β-stable chemical equilibrium and charge neutrality, can

be written as

µΛ = µΣ0 = µΞ0 = µ∆0 = µn , (11)
µΣ− = µΞ− = µ∆− = µn + µe , (12)
µp = µΣ+ = µ∆+ = µn − µe , (13)
µ∆++ = µn − 2µe ; (14)
ρp + ρΣ+ − ρΣ− − ρΞ− + ρ∆+ − ρ∆− + 2ρ∆++ − ρe = 0 . (15)

In the case of trapped neutrinos, the new equalities are obtained by the replacement of µe → µe − µνe .
The total entropy per baryon is calculated using s = (S B + S l)/(TρB), where S B = PB + εB −

∑
i=B µiρi

and S l = Pl + εl −
∑

i=l µiρi, and the sums are extended over all the baryons and leptons species.
The thermodynamical quantities can be obtained from the thermodynamic potential in the standard

way [15, 16]. More explicitly, the baryon pressure PB and the energy density εB can be written as

PB =
2
3

∑
i

∫
d3k

(2π)3

k2

E∗i (k)
[ni(k) + ni(k)] − 1

2
m2
σσ

2

−U(σ) +
1
2

m2
ωω

2 +
1
2

m2
ρρ

2 , (16)

εB = 2
∑

i

∫
d3k

(2π)3 E∗i (k)[ni(k) + ni(k)] +
1
2

m2
σσ

2

+U(σ) +
1
2

m2
ωω

2 +
1
2

m2
ρρ

2 . (17)

Here and in the following, we focus our investigation by considering the so-called GM3 [4] and the
SFHo parameter sets [17, 18]. The implementation of hyperon degrees of freedom comes from deter-
mination of the corresponding meson-hyperon coupling constants that have been fitted to hypernuclear
properties.

Concerning the stability conditions, we are dealing with the study of a multi-component system
at finite temperature and density with two conserved charges: baryon number and electric charge. For
such a system, the Helmholtz free energy density F can be written as [19]

F(T, ρB, ρC) = −P(T, µB, µC) + µBρB + µCρC , (18)

with

µB =

(
∂F
∂ρB

)

T,ρC

, µC =

(
∂F
∂ρC

)

T,ρB

. (19)

In a system with N different particles, the particle chemical potentials are expressed as the linear
combination of the two independent chemical potentials µB and µC and, as a consequence,

∑N
i=1 µiρi =

µBρB + µCρC .
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Assuming the presence of two phases (denoted as I and II, respectively), the system is stable
against the separation in two phases if the free energy of a single phase is lower than the free energy
in all two phases configuration. The phase coexistence is given by the Gibbs conditions

µI
B = µ

II
B , µI

C = µ
II
C , (20)

PI(T, µB, µC) = PII(T, µB, µC) . (21)

Therefore, at a given baryon density ρB and at a given net electric charge density ρC = y ρB (with
y = Z/A), the chemical potentials µB are µC are univocally determined. An important feature of this
conditions is that, unlike the case of a single conserved charge, the pressure in the mixed phase is not
constant and, although the total ρB and ρC are fixed, baryon and charge densities can be different in
the two phases. For such a system in thermal equilibrium, the possible phase transition can be char-
acterized by mechanical (fluctuations in the baryon density) and chemical instabilities (fluctuations in
the electric charge density) [11, 19]. As usual the condition of the mechanical stability implies

ρB

(
∂P
∂ρB

)

T, ρC

> 0 . (22)

By introducing the notation µi, j = (∂µi/∂ρ j)T,P (with i, j = B,C), the chemical stability for a
process at constant P and T can be expressed with the following conditions [11]

ρB µB,B + ρC µC,B = 0 , (23)
ρB µB,C + ρC µC,C = 0 . (24)

Whenever the above stability conditions are not respected, the system becomes unstable and the
phase transition takes place [20, 21]. The coexistence line of a system with one conserved charge be-
comes in this case a two dimensional surface in (T, P, y) space, enclosing the region where mechanical
and diffusive instabilities occur. In analogy with the liquid-gas case, we are going to investigate the
existence of a possible phase transition in the nuclear medium by studying the presence of instabilities
(mechanical and/or chemical) in the system. The chemical stability condition is satisfied if [11]

(
∂µC

∂y

)

T,P
> 0 or



(
∂µB

∂y

)

T,P
< 0 , if y > 0 ,

(
∂µB

∂y

)

T,P
> 0 , if y < 0 .

(25)

From the analysis of the above chemical potential isobars, we are able to construct the binodal
surface relative to the nucleon-∆ matter phase transition. In Fig. 1, we show the binodal section at
T = 50 MeV and xσ∆ = 1.3 for the GM3 EOS.

The right branch (at lower density) corresponds to the initial phase (I), where the dominant compo-
nent of the system is given by nucleons. The left branch (II) is related to the final phase at higher den-
sities, where the system is composed primarily by ∆-isobar degrees of freedom (∆-dominant phase).
In presence of ∆-isobars the phase coexistence region results very different from what obtained in the
liquid-gas case, in particular it extends up to regions of negative electric charge fraction and the mixed
phase region ends in a point of maximum asymmetry with y = −1 (corresponding to a system with
almost all ∆−-particles, being antiparticles and pions contribution almost negligible in this regime).

We analyze the phase evolution of the system during the isothermal compression from an arbitrary
initial point A, indicated in Fig. 1. In this point the system becomes unstable and starts to be energet-
ically favorable the separation into two phases, therefore an infinitesimal ∆-dominant phase appears
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Figure 1. Binodal section at T = 50 MeV and xσ∆ = 1.3.

in B, at the same temperature and pressure. Let us observe that, although in B the electric charge frac-
tion is substantially negative, the relative ∆− abundance must be weighed on the low volume fraction
occupied by the phase II near the point B. During the phase transition, each phase evolves towards a
configuration with increasing y, in contrast to the liquid-gas case, where each phase evolves through
a configuration with a decreasing value of y (with the exception of the gas phase after the maximum
asymmetry point). We will see in the next section how the presence of such features are relevant in
the structure and in the evolution of the PNS.

3 Bulk properties of the protoneutron stars

We are going to investigate the relevance ∆-isobar degrees of freedom and the stability conditions of
compact star and PNS in β-stable and electric-charge neutral nuclear matter.

The neutrino mean free paths and the matter specific heat depend sensitively on the composition;
under degenerate conditions even modest changes to the composition significantly alter the neutrino
scattering and absorbtion mean free paths. Let us start, therefore, to investigate the particle composi-
tions in the first leptonic rich state.

In Fig. 2, we report the particle concentrations for s = 1 and YL = 0.4 in presence of hyperons.
The presence of ∆-isobar degrees of freedom smooths the equation of state enlarging the effect of
thermodynamic instabilities and altering the presence of hyperons in the PNS.

The different behavior in the stellar temperature have important consequences in the PNS evolu-
tion and in its particles concentration. Finite temperature properties of matter at high density influence
the diffusion of neutrinos, being the neutrino mean free paths strongly temperature dependent [2]. In
particular, neutrino opacity is very sensitive to the inner temperature (in general proportional to T 2)
and, therefore, this would affect sensibly the cooling of the PNS.

In Fig. 3, we show the temperature as a function of the baryon density (in units of the saturation
nuclear density), in absence (np) and in presence (npH) of hyperons in the SFHo model [17, 22]. We
limit our analysis in the first two phases: in the left panel, the first leptonic rich state (s = 1, YL = 0.4)
and, in the right panel, the maximum heating phase (s = 2, Yνe = 0). Indeed in the cold-catalyzed
phase (s = 0, Yνe = 0), the temperature is very low (fews MeV), and the above statistical effects due
to thermodynamical instabilities and Delta-isobar formation may be neglected. In the both previous
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Figure 2. Particle concentrations Yi as a function of the baryon density at the fixed scalar coupling ratios.

cases, we observe a reduction in temperature in presence of hyperons and Delta-isobar degrees of
freedom. Note also that, when hyperons are present, for s = 1 and YL = 0.4, the system evolves in a
quasi isothermal configuration above ρB = (2.5 ÷ 6) ρ0.

SFHo
s�1, YL�0.4

np

npH

npH�

xΣ��1.0 xΣ��1.1

2 4 6 8 10 12
ΡB�Ρ00
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npH

xΣ��1.1
xΣ��1.0

0 2 4 6 8
ΡB�Ρ00

20

40

60

80

T�MeV�

Figure 3. Temperature as a function of the baryon density (in units of the saturation nuclear density ρ0) in the
SFHo model and for different value of the Delta coupling constant xσ∆. Left panel: entropy per baryon and
neutrino fraction s = 1, YL = 0.4, right panel: s = 2, Yνe = 0. The labels np and npH stand for nucleons and
nucleons plus hyperons.

In Fig. 4, we show the variation of the gravitational mass in units of solar mass M� as a function
of the central baryon density ρc, for pure nucleonic (np) and hyperonic plus Delta-isobars (npH)
stars in the first leptonic rich state (left panel, s = 1, YL = 0.4). For a comparison, in the figure we
have considered the two models GM3 and SFHo model in presence of ∆-isobars with different scalar
coupling ratios (xσ∆ = 1.0 and xσ∆ = 1.1).

Let us note the strong reduction of the gravitational mass with the introduction of hyperons and
Delta-isobar degrees of freedom. This effect is remarkable stronger for a greater value of the xσ∆
coupling due also to the presence of thermodynamical instabilities conditions.

In the presence of hyperons, when the stellar core contains non-leptonic negative charges, the
maximum masses of neutrino-trapped stars result to be significantly larger than for low temperatures
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SFHo model and for different value of the Delta coupling constant xσ∆. Left panel: entropy per baryon and
neutrino fraction s = 1, YL = 0.4, right panel: s = 2, Yνe = 0. The labels np and npH stand for nucleons and
nucleons plus hyperons.

In Fig. 4, we show the variation of the gravitational mass in units of solar mass M� as a function
of the central baryon density ρc, for pure nucleonic (np) and hyperonic plus Delta-isobars (npH)
stars in the first leptonic rich state (left panel, s = 1, YL = 0.4). For a comparison, in the figure we
have considered the two models GM3 and SFHo model in presence of ∆-isobars with different scalar
coupling ratios (xσ∆ = 1.0 and xσ∆ = 1.1).

Let us note the strong reduction of the gravitational mass with the introduction of hyperons and
Delta-isobar degrees of freedom. This effect is remarkable stronger for a greater value of the xσ∆
coupling due also to the presence of thermodynamical instabilities conditions.

In the presence of hyperons, when the stellar core contains non-leptonic negative charges, the
maximum masses of neutrino-trapped stars result to be significantly larger than for low temperatures
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Figure 4. Gravitational mass MG in units of solar mass M� as a function of the central baryon density ρc (in
units of the nuclear saturation density ρ0) for nucleons (np) and hyperons stars (npH) stars in the case s = 1 and
YL = 0.4.

and for lepton poor matter [2]. Hence, there exists a window of initial masses for which the star
becomes unstable to gravitational collapse during deleptonization and a black hole can take place.
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