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Abstract  

Nowadays, medical imaging plays an essential role in the detection and 
diagnosis of several diseases, ranging from the extraction of anatomical and 
functional information to cellular and molecular expressions. However, visual 
inspection of biomedical images is often time-consuming, highly subjective and 
requires experienced operators. Computer aided diagnosis systems (CADx) have 
been extensively used in clinical practise to support the interpretation of medical 
images; however, most of the current CADx approaches still entail substantial 
user-dependency. On the other hand, the development of fully automated 
solutions is still challenging due to the heterogeneity of the analysed medical 
images. In fact, even if images are acquired with the same imaging device and 
standardized protocol, the shape, appearance, and size of internal body structures 
may vary for different patients (inter-subject variability) and for the same patient 
at different times (intra-subject variability). 

The aim of this thesis work is to develop and validate a series of automated 
solutions applied to different medical imaging modalities and scales for the 
modeling and interpretation of physiopathological processes. The proposed 
approach aims to overcome the limitation of traditional CADx systems and 
become the bridge technology that enables the effective extraction of quantitative 
data from biomedical images. 

This thesis work can be divided into two macro-sections: firstly, a novel and 
fully automated strategy for the detection of biological structures is presented. 
Secondly, six automated algorithms for the reliable quantification and 
characterization of biomedical images are described. 

In the first part, an adaptive algorithm, named ARCO (Adaptive Rapid Curve 
Optimization), is proposed for the detection of relevant objects in medical images. 
The ARCO algorithm is the first fully automated method for a fast and accurate 
segmentation of biological structures in several imaging modalities, where objects 
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exhibit different shapes, dimensions, and color appearance. The proposed 
technique has been used as starting point to develop more complex algorithms for 
the extraction of functional and anatomical information in medical imaging.  

In the second part, six algorithms are proposed for the automatic and objective 
analysis of medical images, ranging from the microscale (optical microscopy) to 
in-vivo imaging (ultrasound). The first algorithm, named CARE (CARdiosphere 
Evaluation), is designed for the architectural modeling of cardiac stromal cells in 
fluorescence images. Then, three fully automated methods are proposed for the 
analysis of histopathological images. The MANA (Multiscale Adaptive Nuclei 
Analysis) algorithm is a multi-tissue strategy for nuclei detection, while two other 
presented methods are for the detection of cancer tissue in prostate and breast 
histopathological images. Finally, two algorithms are proposed for the extraction 
of architectural muscle parameters in ultrasound images. The Muscle UltraSound 
Analysis (MUSA) algorithm is designed to measure the muscle thickness on 
longitudinal images while the TRAnsverse Muscle Analysis (TRAMA) algorithm 
is able to measure the muscle cross-sectional area (CSA) in transverse scans. 

In conclusion, the proposed techniques achieve high quality results in the 
architectural and functional modelling of healthy and pathological structures. 
These algorithms can be extended in the investigation of other organs, diseases 
and embedded in CADx systems for obtaining a reliable and user-independent 
diagnosis. 
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 “Not everything that 
can be counted counts, 
and not everything that 
counts can be counted”

 

W. B. Cameron. 
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Chapter 1 

Introduction 

1.1 Quantitative Imaging 

The recent advance of medical science and the creation of several medicines 
have benefited humankind and the whole civilization [1]. In this context, medical 
images play a crucial role in clinical diagnosis and therapy prescription. The term 
“medical imaging” concerns different technologies which give different 
information about anatomic structures or physiologic functions to diagnose, 
monitor or treat medical conditions [2].  

The extraordinary technological advancement of imaging methods has led to a 
significant increase and enrichment of the information that can be extracted from 
the images [3]. Medical research continues to explore new quantitative imaging 
biomarkers with the aim to improve the patients’ health [4], [5]. For this reason, 
quantitative imaging is becoming a reference tool in medicine [6], [7]. Following 
the QIBA (Quantitative Imaging Biomarkers Alliance) definition [8]:  

 

“Quantitative imaging is the extraction of quantifiable features from medical images 
for the assessment of normal conditions or the severity, degree of change, or status of a 
disease, injury, or chronic condition relative to normal. Quantitative imaging includes the 
development. standardization, and optimization of anatomical, functional, and molecular 
imaging acquisition protocols, data analyses, display methods, and reporting structures. 
These features permit the validation of accurately and precisely obtained image-derived 
metrics with anatomically and physiologically relevant parameters, including treatment 
response and outcome, and the use of such metrics in research and patient care.” 

 

Nowadays, quantitative imaging is applied through several modalities, 
including optical and fluorescence microscopy, nuclear medicine, magnetic 
resonance imaging and ultrasound. Obviously, quantitative imaging is enhanced 
by wide datasets, which facilitate the evaluation of morphological and functional 
quantitative features [9]. 
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1.2 Optical Microscopy 

For more than two centuries until now, the optical microscope has been a 
standard tool in life and material science [9], [10]. Often referred to as light 
microscope, it is a kind of microscope that produces a magnified image of small 
samples using a visible light and a system of lenses. From an optical microscope, 
image can be captured by light sensitive cameras to generate digital images.  

Basic optical microscopes can be very simple, although more complex models 
can improve resolution and sample contrast. The most widely used optical 
microscope configuration is the compound light microscope. Modern compound 
microscopes have a two-stage magnifying design built around separate lens 
systems, the objective and the eyepiece [11]. These two convex lenses converge 
the light rays that pass through them. The objective lens is positioned close to the 
object to be viewed and it forms a magnified and upside-down image (real 
image). This image is viewed by the eyepiece lens, acting simply as a magnifying 
glass. This lens is positioned so that it does not form a second real image, but it 
makes the light rays spread more so that as they enter the observer’s eye, they 
appear to come from larger inverted image beyond the object lens (virtual image). 
The scheme of a simple compound microscope is shown in Figure 1.1. 

 

 
 

Fig. 1.1 Diagram of a simple compound microscope. The magnification of the object is 
obtained using two lenses: the objective and the eyepiece lens. 

 

The total magnification of a microscope is calculated by multiplying the 
individual magnifications of the objective and the eyepiece. For example, an 
objective lens of 5x combined with an eyepiece lens of 20x will give a total 
magnification of 100x. 

The resolving power of a microscope determines the degree of detail that is 
visible. Resolution is defined as the minimum distance between two points that 
can still be distinguished as two separate structures to an unaided eye. The 
microscope resolution is generally calculated using the Abbe’s equation of 
diffraction limit [12], as shown in Eq. 1.1: 

 

𝑟
𝜆

𝑛 sin 𝛼
 (1.1)

 
 

where r is the minimum resolution, λ is the wavelength of illumination light, n is 
the refraction index of the medium between lens and point source, and sin α is half 
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of the angle of the cone of light from specimen plane accepted by the objective 
lens. The Abbe’s equation shows that the resolution of an optical microscope 
depends directly on the wavelength of light used to illuminate the specimen and 
inversely on the numerical aperture (n sin α) of the objective lens. 
 

1.2.1 Bright-field Microscopy 

Several types of illumination light can be adopted by a compound light 
microscope to view magnified objects. The most common and simplest 
microscope configuration is called bright-field microscopy [13]. 

In brightfield microscopy, the sample is placed on the microscope translating 
table and an incandescent light is pointed at a lens, called condenser, located 
beneath the specimen. The condenser usually contains an aperture diaphragm to 
focus light on the sample, light passes through it and then is collected by an 
objective lens above the translating table. The objective lens magnifies the light 
and transmits it to the eyepiece and finally into the user’s eyes. Some of the light 
is absorbed by pigmentation, dense areas or stains of the sample and this contrast 
allows the user to see the specimen. Figure 1.2 shows a sketch of a bright-field 
microscope. 
 

 
 

Fig. 1.2 Diagram of a bright-field microscope. The illumination light is focused on the 
object thanks to the condenser lens, then object magnification is achieved through the 
objective and eyepiece lens. 

 
The main advantage of this technique is the simplicity of sample preparation. 

Brightfield microscopy is very easy to use because few adjustments are necessary 
to view specimens. In addition, the optics used in the brightfield technique don’t 
alter the colour of the specimen. 

Bright-field microscopy is intensively used to view live cells or fixed 
specimens. Most of biomedical samples contain very little intrinsic contrast when 
viewed directly with transmitted light, many of them are opaque or transparent, so 
staining is required to increase the contrast between object and background light 
[14], [15]. An example of images acquired with and without staining is presented 
in Figure 1.3. Illumination of the specimen is the most important variable to 
obtain high-quality images in microscopy or digital imaging. Optimal specimen 
illumination should be glare-free, bright and spread in all the field of view. In 
addition, the magnification of bright-field microscopy is limited by the resolving 
power possible with the wavelength of visible light.  
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Fig. 1.3 Example of images acquired using bright-field illumination. (a) unstained 
specimen; (b) stained specimen. Images available from https://olympus.magnet.fsu.edu/ 
 

1.2.2 Confocal Microscopy 

A second type of optical technique is the confocal microscopy. In a 
conventional bright-filed microscope, the specimen is fully illuminated, and the 
image can be viewed directly by eye. In contrast, the image formation technique 
in a confocal microscope is quite different. Illumination comes from the scanning 
of one or more focused beams of light, usually from an arc-discharge source or a 
laser, across the specimen [16]. A beam splitter (dichroic mirror) is placed 
between the illumination light and the specimen to allows light of a certain 
wavelength to pass through, while light of other wavelengths is reflected. Then, 
the illumination is focused in the specimen by the objective lens and collected by 
a scanning device under computer control. The sequences of points of light from 
the specimen are detected by a photomultiplier tube (PMT) through a pinhole, and 
the output from the PMT is built into an image and displayed by the computer 
[17]. The confocal microscope configuration is illustrated in Figure 1.4.  

 

 
 

 

Fig. 1.4 Principle of confocal imaging. Illumination light is focused to the sample by the 
objective lens, then reflected light is detected by the photomultiplier to create the image. 

 
Confocal microscopy offers several advantages over conventional optical 

microscopy, including the elimination of image degrading out-of-focus 
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information, controllable depth of field, and the ability to collect serial optical 
sections from thick specimens. As only light produced by fluorescence very close 
to the focal plane can be detected, the image's optical resolution, particularly in 
the sample depth direction, is much better than bright-field microscopes. 
However, long exposure times are often required to form the image as much of 
the light from sample fluorescence is blocked at the pinhole. 

In recent years, confocal microscopy has become very popular, mostly for the 
high-quality images obtained, and for the increasing number of applications in the 
biological field, based on imaging of tissues and living and fixed cells [17], [18]. 
In fact, confocal technology is proving to be one of the most important advances 
ever achieved in optical microscopy. An example of images acquired using a 
confocal microscope is shown in Figure 1.5.  

 

 
 
 

Fig. 1.5 Example of cell images acquired with a confocal microscope. (a) Cell nuclei are 
highlighted in blue using a fluorescent protein that binds to DNA. (b) Cytoskeletal 
tension of cells is assessed in green through a fluorescent marker. (c) Proliferative cell 
activity is shown in white using a fluorescent marker. (d) Combined image obtained by 
merging the three previous ones. 

1.3 Ultrasound Imaging 

Ultrasound waves are mechanical vibrations with a frequency greater than 
20kHz, higher than the upper limit of the human hearing range [19]. Ultrasound 
imaging uses high-frequency sound waves (2-20 MHz) to view inside the body. In 
an ultrasound exam, a transducer (probe) is placed directly on the skin and a thin 
layer of gel is applied in order to transmit the ultrasound waves from the probe 
into the body. The interaction between the ultrasound beam and the medium (in 
this case tissue) involves the formation of the image [20]. This interaction 
depends on wave characteristics and medium characteristics. The most important 
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medium property is the acoustical impedance which corresponds to the resistance 
that the tissue opposes to mechanical vibrations. Ultrasonography is based on the 
fact that ultrasound waves are partially reflected when they meet an interface 
between two tissues with different acoustic impedance (Figure 1.6) [21].  

 

 
 

Fig. 1.6 Example of the emission, reflection and transmission of the ultrasound waves. 
The US probe emits the ultrasound pulse, then waits for returning echoes to reconstruct 
the image. 

 
In medical imaging the most common mode of representation of the 

ultrasound signal is the Brightness Mode (B-mode): the result is a two-
dimensional grayscale image composed by pixels at different brightness. The 
image formation from all returning echoes is based on a computer analysis of the 
acoustic and temporal proprieties of the echoes [22]. The intensity of each pixel is 
proportional to the amplitude of the return echo while pixel depth depends on the 
depth at which the eco is produces (d), defined as: 

 

𝑑
1
2

𝑐𝛥𝑡  (1.2)
 

where 𝛥𝑡 is the echo travelling time (time between the wave emission and its 
reception) and c is the mean propagation speed of sound waves in biological 
tissues (1540 m/s). 

As ultrasound images are captured in real-time, they can show the movement 
of internal organs. In addition, there is no ionizing exposure associated with 
ultrasound unlike other imaging techniques as X-rays or CT (computed 
tomography). On the other hand, the ultrasound beam is attenuated through tissues 
in direct proportion to its frequency: absorption of ultrasound rises with the 
increasing of beam frequency. For this reason, high frequencies (7.5-15 MHz) are 
suited to study superficial structures, while low frequencies (2.5-5 MHz) are used 
to study deeper structures. A higher frequency allows also to achieve a better 
resolution but a less depth of penetration. For this reason, it is not possible to have 
at the same time the best resolution and the deeper scan. 

In the last decades, medical ultrasonography was used in clinical practise for 
the evaluation and visualization of abdominal tissues [23], neck and organs like 
breasts [24], liver [25], thyroid [26] and skeletal muscles [27]. Figure 1.7 shows 
some application of ultrasound images for different organs. 



7 
 
 

 
 

Fig. 1.7 Ultrasound images of different anatomical structures. (a) US image of a carotid 
artery. (b) Optical nerve evaluation through ultrasound imaging. (c) Thyroid nodule 
detection in US. (d) Muscle aponeurosis in musculoskeletal ultrasound image.  

1.4 Automated Algorithms for Quantitative Analysis in 
Medical Imaging 

Nowadays, medical imaging plays a fundamental role in the diagnosis of 
several diseases, ranging from anatomical and functional information to cellular 
and molecular expressions. However, visual inspection of biomedical images is 
often time-consuming, highly subjective and requires experienced operators. In 
fact, due to various subjective factors as well as limited analysis time and tools, it 
is quite common that different medical doctors may come up with diverse 
interpretations, leading to different diagnoses.  

The first idea of developing a computerized scheme for quantitative analysis 
in medical imaging was reported and discussed by Lodwick in 1960s [28] while 
the concept of computer-aided detection (CAD) and diagnosis (CADx) was 
introduced between 1980 and 1990. Nevertheless, computers were not enough 
powerful at that time and digital images were not easily accessible. In addition, 
advanced biomedical image processing methods were not available.   

At the beginning of 21st century, CAD and CADx systems have spread in 
many diagnostic field thanks to the progress in medical imaging techniques. In the 
last years, several approaches have been developed to assist the specialist during 
the interpretation of biomedical images. CADx systems are used in various 
medical applications as lung [29], [30], liver [31], prostate [32] and breast cancer 
[33], cardiovascular diseases [34] and endocrine disorders. 

Despite being a powerful tool to obtain more accurate and reliable diagnosis, 
most of the current CADx approaches still entail substantial user dependency. 
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Semi-automated tools do not provide repeatable results as their output is closely 
related to the user interaction (i.e. two specialists may make a different diagnosis 
on the same set of images). Recently, particular attention was turned on fully 
automated solutions that allow overcoming the limitations of semi-automatic 
methods with the aim to provide automatic and objective analysis of medical 
images. The development of an automatic algorithm is still challenging due to the 
heterogeneity of the medical images. In fact, even if the images are acquired with 
the same standardized protocol, the shape, appearance, and size of the body 
internal structures may vary for different patients (inter-subjected variation) and 
for the same patient at different time (intra-subject variation). To be useful within 
a biological context, a fully automated method should be: 

- Fast: the computational time may not exceed the time of a manual 
operator analysis. Even if very efficient, an automated method cannot take 
hours to perform an analysis that is usually done by a manual operator in a 
few minutes. 
 

- Robust: automatic analysis of images in medicine may not provide wrong 
measurements. The algorithm should be able to identify images that 
cannot be processed correctly, reject and withdrawn them from further 
processing. 

Modern automated approaches for medical imaging are usually bound to a 
single application. In addition, the computational cost is often huge and requires 
high-performance computers to perform the analysis. Finally, most of the current 
automated solutions are not able to adapt themselves to the inherent variability of 
biomedical images. 

1.5 Objective of the Thesis 

The aim of the work presented here is to develop and validate a set of 
multimodal and multiscale automated solutions for the modeling and 
interpretation of physiopathological processes in the field of medical imaging. 
The proposed approaches aim to overcome the limitation of traditional CADx 
systems and become the bridge technology that enables the effective extraction of 
quantitative data from biomedical images. The described strategies can be applied 
to a variety of imaging modalities, such as optical and fluorescence imaging, 
Magnetic Resonance Imaging (MRI) and ultrasound (US) imaging. The multiscale 
imaging modalities that directly benefited from the developed solutions in this 
work are summarized in Figure 1.8. 

This thesis work can be divided into two macro-sections: in the first part, a 
novel and fully automated strategy for the detection of biological structures is 
presented. In the second part, six automated algorithms for the reliable 
quantification and characterization of biomedical images are described. Each 
chapter of this thesis consists of one or more published articles or manuscripts 
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submitted for peer-reviewed journals. Additional validation and supplemental 
material complete each study.  
 

 
 

Fig. 1.8 Multimodal and multiscale approach of this thesis work. 

 
In Chapter 2, a multiscale and multimodal algorithm, named ARCO 

(Adaptive Rapid Curve Optimization), is proposed for the detection of relevant 
objects in medical images. The ARCO algorithm is the first fully automated 
method for a fast and accurate segmentation of biological structures in several 
imaging modalities, where objects exhibit different shapes, dimensions, and color 
appearance. The proposed technique has been used as starting point to develop 
more complex algorithms (Chapter 3-4-5) for the extraction of functional and 
anatomical information in medical imaging. 

In Chapter 3, a robust and innovative algorithm, named CARE 
(CARdiosphere Evaluation), is proposed for the characterization of cardiosphere 
geometry and architecture. The cardiosphere is a multicellular 3D spheroid used 
as culture model to reproduce the cell interactions of the cardiac micro-domain 
and the molecular mechanisms underlying myocardial diseases. The 3D-image 
processing provided by CARE enabled the quantitative evaluation of the 
geometrically arranged markers distribution within this model of cardiac niche. 

In Chapter 4, three fully automated methods are presented for the analysis and 
extraction of quantitative data from histopathological images. The first algorithm, 
named MANA (Multiscale Adaptive Nuclei Analysis), is a multi-tissue method 
for nuclei segmentation in histological images. The second and third methods are 
designed for cancer detection in prostate and breast histopathological images 
respectively. These three algorithms are used to provide an objective, fast and 
accurate characterization of the histological specimen. 

In Chapter 5, two algorithms named MUSA (Muscle UltraSound Analysis) 
and TRAMA (TRAnsverse Muscle Analysis) are proposed for the architectural 
analysis of four skeletal muscles (medial gastrocnemius, vastus lateralis, rectus 
femoris and tibialis anterior) in ultrasound imaging. The MUSA algorithm is 
developed to measure the muscle thickness on longitudinal images while the 
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TRAMA algorithm is designed for the segmentation of the muscle cross-sectional 
area (CSA) in transverse scans. The architectural muscle parameters provided by 
MUSA and TRAMA can be used for the investigation of muscle size and for the 
detection of muscle atrophy, neuromuscular disorders and other pathological 
conditions. 
The conclusions and final remarks of this work are reported in the last section of 
the thesis.   
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Chapter 2 

Multimodal and Multiscale 
Strategy for Automatic Object 
Detection in Medical Images 

 
 
 
 

Part of this chapter has been patented as:  
 

F. Molinari and M. Salvi, Method for an automatic segmentation and 
classification of relevant objects in a digital tissue sample image, Patent 
application on 30/05/2018, patent number: 102018000005848. 
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2.1 Introduction 

As discussed in the Chapter 1, medical image analysis is an important tool for 
the detection of several diseases. An automatic processing of a medical image has 
several advantages including the decrease of the overall time to provide a 
professional diagnosis and of errors due to a human factor when the image is 
analyzed.  

During medical image analysis, the first step of an automatic algorithm is 
always the identification of the objects of interest (cells, tissues, structures, etc.). 
Then, different methods can be applied to the detected objects (morphological or 
texture analysis) with the aim to provide a diagnosis or to extract quantitative data 
from the image. For this reason, the correct identification of the relevant objects 
plays a crucial role during image processing. 

Over the years, several automated strategies have been proposed for object 
recognition in medical images [1], [2]. These segmentation techniques can be 
divided into macro-classes based on the approach used to recognize the objects of 
interest. Segmentation algorithms can be grouped into five categories: pixel-based 
models, edge-based methods, region-based methods, statistical models and deep 
learning algorithms. 

In pixel-based methods, each pixel is segmented according to its intensity 
value: this operation is called thresholding [3], [4]. Typically, these models use 
the grayscale image histogram to perform the object detection. The segmentation 
result strongly depends on the characteristics of the histogram and the image 
itself. Although they are very simple to implement, these algorithms often fail to 
achieve satisfactory performance in high-noise images where the gray-level 
intensity distribution of the object is similar to that of the background. 

Edge-based models take advantage of image gradients to perform object 
recognition [5], [6]. Over the years, complex edge-based methods have been 
implemented for structures segmentation within medical images (parametric 
deformable models). These models consist of a parametric and deformable curve 
guided and influenced by image forces (external constraint forces) that pull it 
toward features such as edges or lines. However, these parametric models do not 
adapt itself to the topological variations of the objects (i.e. structures fused) and 
do not generate high-quality outputs in low contrast images. 

Region-based work under the assumption that different objects are separated 
by perceptual boundaries like neighbourhood or texture features. Through these 
models, good segmentation results can be achieved even in images where objects 
exhibit different intensities [7]. Moreover, thanks to the implementation of 
geometrical deformable models, topological variations of the object can be 
detected [8]. Nevertheless, region-based methods are often slow and have a high 
computational cost.  

The model-based segmentation (statistical models) is performed by matching 
a model that contains information about the expected shape and appearance of the 
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structure of interest to new images [9]. Due to the inherent a-priori information, 
this approach is more stable against local image perturbations and artifacts respect 
to other techniques. Information about common variations of the object of interest 
must be included in the model: in fact, a wide and representative training set of all 
the possible variations of the anatomical structure is needed to obtain reliable 
performance.  

Deep learning approaches exploit deep neural networks (DNNs) for the 
recognition and classification of objects inside medical images [10], [11]. These 
types of networks are able to automatically extract features from the image. DNNs 
are often constructed with a layer-by-layer method and their architecture is much 
more complex and ‘deep’ than traditional networks. Recently, DNNs achieved 
state-of-art performance in many segmentation tasks of medical imaging [12]. 
However, DNNs need a large annotated training set to obtain satisfactory 
performance and they are not suitable for multimodal or multiscale approaches. 

Besides their accuracy and efficiency, all the previously cited methods for 
object detection present several weak points, such as the low adaptability, the 
need of wide datasets, the manual initialization and the design oriented for a 
single application, which make them unsuitable for clinical use. In addition, a 
completely multimodal and fully automated algorithm for the extraction of 
relevant objects in medical images has never been proposed in literature.   

It is desirable that the automatic processing of a medical image be scalable to 
a wide variety of object classes, e.g. from sub-cellular objects such as nuclei, to 
bigger and more complex structures like tissues and organs. It is further desirable 
that an automatic algorithm be adaptable to the natural variability (size, 
morphology and color texture) of biological objects. An optimal method should 
also be robust, fast and with a low computational cost. 

In this Chapter, a fully automated strategy for the detection of relevant objects 
in medical images is described. This method is fast, accurate and can be applied to 
a variety of imaging modalities such as fluorescence and optical imaging, CT, 
MRI and so on. To the best of our knowledge, the proposed method is the first 
multiscale, multimodal and fully automated algorithm for the segmentation of the 
objects of interest within medical images. 

 

2.2 Materials and Methods 

2.2.1 ARCO Algorithm 

The ‘core’ of the proposed method for the identification of the relevant 
objects is the ARCO (Adaptive Rapid Curve Optimization) algorithm. The ARCO 
algorithm is a multiscale method designed for object segmentation in medical 
images with different light conditions. The proposed strategy is composed by two 
steps: object-based thresholding and post-processing refining. In the following 
paragraphs, an exhaustive description of the ARCO algorithm is provided. 
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Object-based detection  
 

This step represents the technical innovation to achieve a first object-based 
detection. Firstly, the original RGB image is converted into grayscale by 
eliminating the hue and saturation information while retaining the luminance. 
Then, the grayscale histogram of the image is computed and the Progressive 
Weighted Mean (PWMCURVE) of the histogram is calculated.  

Considering a grayscale image with pixel intensities expressed by integer 
numbers between 0 and N. The histogram is defined as a distribution with N+1 
classes where the frequency of each gray level within the image is displayed. For 
the generic class K of the histogram (0≤K≤N), the value of PWMCURVE for that 
class is defined as follows:  

 

𝑃𝑊𝑀 𝐾
∑ 𝑤 𝑥
∑ 𝑤

 (Eq. 2.1) 

 

where wi represents the histogram count of the ith class and xi is the respective 
gray level value. For each class of the histogram, the value of the PWMCURVE is 
defined as the weighted average of all the grayscale histogram values up to that 
class. The trend and the shape of PWMCURVE strongly depend on the image 
histogram so significant characteristics of the grayscale distribution can be 
extracted using this function. Notably, if the histogram shows a significant color 
variation from a certain point with respect to the distribution that precedes it, here 
we can expect to see a change of concavity in the PWMCURVE. Inflection points of 
the PWMCURVE may suggest potential threshold values for objects detection as 
they are the local stability points of the grayscale histogram. 

Conceptually, PWMCURVE is an alternative representation of the color 
distribution that makes it easier to apply object-based thresholds. Therefore, 
PWMCURVE can be used to automatically spot objects and structures within the 
image.  

First of all, the PWMCURVE is calculated as described in Equation 2.1 and it is 
fitted using a polynomial function to estimate its inflection points (candidate 
thresholds). Then, the grayscale image is segmented using all the candidate 
thresholds and, for each of them, the median area of objects found is evaluated. 
Among all the candidate thresholds, the algorithm defines as the optimal threshold 
the one that has the segmented objects with the highest median area. Finally, the 
ARCO algorithm applies the optimal threshold to the grayscale image to obtain a 
first raw mask of relevant objects inside the image.  

The processing for obtaining the optimal threshold is shown in Figure 2.1, 
where an image acquired using a confocal microscope is used as example. In this 
case, the objects of interest are the colored and bright spots (brain cells) within the 
image.  

In conclusion, this method implements a novel object-based thresholding and 
it is robust to different image resolutions, staining, and tissue types. Being a 
method that can be applied to different types of imaging and objects, some input 
parameters can be modified by the user to achieve the best performance. The list 
of the input parameters of the object-based detection is listed in Table 2.1. 
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Fig. 2.1 Processing for obtaining the optimal threshold for a confocal microscopy image. 
(a) Original RGB image. (b) Grayscale image. (c) The PWMCURVE is evaluated from the 
grayscale histogram and the candidate thresholds (red dotted lines) are estimated as 
inflection points of the PWMCURVE. (d) Median area of segmented objects for each 
candidate threshold. (e) The optimal threshold is chosen as the one with the objects with 
the highest median area. (f) Application of the initial threshold on the RGB image. 

 
Table 2.1 Input parameters of the object-based detection provided by the ARCO 
algorithm. 
 
 

Parameters Description 

image LAYER Layer of the image to be processed  

object TYPE  Specify if the object of interest is bright on a dark 
background or vice versa

polynomial ORDER Order of the polynomial function that fit the PWMCURVE 

object PROPERTY  Condition to be imposed on the objects to find the optimal 
threshold among the candidate ones 

 
ImageLAYER defines the layer of the image that should be processed by the 

ARCO algorithm (i.e. grayscale, red layer, …). ObjectTYPE indicates the intensity 
of relevant objects with respect to the background. This parameter affects the sign 
applied by the object-based thresholding ('>' if the object is lighter than 
background, '<' if the object is darker than background). PolynomialORDER 
specifies the polynomial order of the function that fit the PWMCURVE. Low values 
of this parameter may not provide a good 'fit' of the PWMCURVE function, while 
too high values of polynomialORDER can generate 'ghost' inflection points due to 
mathematical interpolation. Finally, objectPROPERTY defines which criteria should 
be imposed on the objects segmented with the candidate thresholds to find the 
optimal one. For example, if the algorithm should perform a cell nuclei detection, 
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the optimal threshold is the one that has the objects with the highest median area 
(Figure 2.1). On the other hand, if the algorithm should identify homogeneous 
structures, the optimal threshold is defined as the one has the objects’ intensity 
with the lowest standard deviation.  

All the ARCO input parameters strongly depend on the type of objects that 
should be segmented (see next Chapters for more applications). Given a specific 
application, the ARCO parameters are optimized following the procedure 
described in Appendix A. Briefly, different combinations of polynomialORDER and 
objectPROPERTY are defined (creation of all the configurations). Then, for each 
configuration generated in the previous step, the ARCO algorithm is applied to 
the entire image dataset. This step is repeated until all the configurations are 
tested. The optimal combination of the ARCO input parameters is chosen as the 
one that maximize the object-level F1SCORE, which is defined as: 

 

𝐹1
2𝑇𝑃

2𝑇𝑃 𝐹𝑁 𝐹𝑃
 (Eq. 2.2) 

 

where TP (true positive) represents the number of objects identified by ARCO 
with an overlap higher than 80% with the manual annotations. FN (false negative) 
denotes all the objects not found by the proposed method (or with an overlap 
lower than 20% with the manual objects). FP (false positive) represents all objects 
obtained by ARCO without a corresponding manual drawing. 

In general, the value of polynomialORDER is correlated with the imaging 
modality while objectPROPERTY depends on the number of expected objects within 
the image (some sample images are reported in Appendix A). 

 
Post-processing refining  

 

This step is required to correct over-segmentation from the object-based 
detection as the thresholding can lead to small or too large structures. Too small 
structures may be under-segmented or wrong objects, whereas too large areas may 
consist of a fusion of different objects. For this reason, a posteriori check of the 
output of the object-based detection is needed to increase the robustness of the 
proposed method. The ARCO algorithm integrates several post-processing 
refining with the aim to optimize the segmentation result. These post-processing 
algorithms are grouped into two categories: 

 structure separation: methods based on the morphological and/or chromatic 
characteristics of the objects; they perform separation between structures by 
implementing techniques such as watershed transform [13], [14] or 
morphological operators [15]; 
 

 structure removal: selective removal of segmented structures using 
morphological [16], [17] and/or chromatic characteristics [18]. Geometric 
constraints can also be applied on the segmented object to correctly recognize 
the structures of interest. 
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For example, since the goal of the segmentation shown in Figure 2.1 is the 
identification of cell nuclei, the ARCO algorithm applies a structure removal 
strategy by deleting all the segmented objects below a certain solidity. Solidity of 
a structure is defined as the ratio between its actual area and its convex area. Since 
it is expected that brain cells are convex objects, a segmented region containing a 
nucleus should have a solidity near to one. For this reason, objects solidity can be 
used for this specific application as a feature for the removal of unwanted objects. 
The segmentation result after the post-processing refining is shown in Figure 2.2. 

 

 
 

Fig. 2.2 Post-processing refining of the ARCO algorithm. (a) Segmentation pre-refining. 
(b) Segmentation post-refining. White arrows indicate the objects found at the end of the 
post-processing refining. 

 
The ARCO algorithm is designed as a high PPV (Positive Predictive Value) 

method for object segmentation. PPV [19] is defined as:  
 

𝑃𝑃𝑉
𝑇𝑃

𝑇𝑃 𝐹𝑃
 (Eq. 2.3) 

 

where TP (True Positive) denotes the number of objects correctly identified 
by the ARCO algorithm and FP (False Positive) represents all the structures 
obtained by ARCO without a corresponding manual object. This means that 
ARCO may miss some objects (False Negative) but it is unlikely that the 
algorithm finds incorrect objects (False Positives). The ARCO algorithm is 
integrated into a more complex workflow in order to make the algorithm more a 
reliable and complete. A detailed description of the workflow is provided in the 
next section. 

 

2.2.2 Workflow Description 

To improve the results provided by the ARCO algorithm, an iterative 
workflow is designed for the segmentation of objects of interest. The workflow 
adopted by the proposed method is schematically described in Figure 2.3. 
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Fig. 2.3 Schematic representation of the proposed workflow for relevant objects 
detection. 
 

The input data of the workflow are defined in the first three steps. Firstly, the 
original image is read and stored in memory (load image). Then, the input 
parameters of the ARCO algorithm (Table 2.1) are set. Finally, the definition of 
the search parameters and their ranges is performed. The search parameters are 
defined by the user and they represent the morphological and chromatic 
characteristics of the relevant objects. On the other hand, the ranges of the search 
parameters are used as a stopping condition of the workflow: if one or more 
segmented objects have at least one search parameter outside its range, the 
processing stops.  

Once the input parameters of the workflow have been defined, the ARCO 
algorithm is applied to the image. Being a high-PPV algorithm, ARCO does not 
recognize false-objects, but it may not find all the relevant objects at once. 
Therefore, additional steps are needed to identify all the objects of interest present 
within the image. First of all, the chromatic and morphological characteristics of 
the objects segmented with ARCO are extracted (parameters extraction from 
ARCO segmentation). If the extracted parameters are within the ranges of the 
search parameters, the newly segmented objects are added to the final binary 
mask (inclusion of the objects detected in the final result) and, at the same time, 
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they are deleted from the original image (exclusion from image of the previously 
identified objects); otherwise the segmentation ends. 

All the previous steps are repeated until the objects segmented with ARCO 
have the characteristics within the ranges of the search parameters. Using this 
strategy, multiple segmentations can be applied on the same image in order to 
identify all the objects of interest. The workflow previously described is applied 
to the image in Figure 2.2 to trace all the cells boundaries. Figure 2.4 shows the 
iterations performed by the algorithm and the result of the automatic 
segmentation. Figure 2.4 also provides the comparison between the automatic 
result (final iteration) and the manual annotation (ground truth).  

 
 

 
 
 

Fig. 2.4 Iterations of the proposed workflow for object segmentation. (a) Result after the 
first iteration. (b) Result after the second iteration. (c) Final automatic result. (d) Manual 
annotation. White arrows indicate the objects found at the end of the i-th iteration. 
 

2.3 Results 

The ARCO algorithm and the iterative workflow have been applied to 
different imaging modalities to find all the objects of interest within the image. In 
the next subsections, some results obtained with the proposed method are shown. 

2.3.1 Segmentation results in Confocal Imaging 

Brain cells segmentation in fluorescence images  
 

The understanding of how cell diversity within and across distinct brain 
regions is ontogenetically achieved is a pivotal topic in neuroscience [20], [21]. 
Clonal analyses based on multicolor cell labeling represent a powerful tool to 
tackle this issue and disclose lineage relationships [22], but produce enormous 
sets of fluorescence images, leading to time consuming analyses that may be 
biased by the operator’s subjectivity. For this reason, the ARCO algorithm and the 
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entire workflow are applied to automatically spot all the brain cells. The 
segmentation result is illustrated in Figure 2.5. The same figure also shows the 
robustness of the proposed method, where the cells are found regardless objects’ 
appearance or background intensity. 

 
 

 
 

 

Fig. 2.5 Comparison between manual annotation and automatic result for three samples 
(rows) of brain cells imaging, showing a high variation of laser intensities and cells 
appearance. The original RGB image, manual annotation (ground truth) and automatic 
segmentation are shown in columns. 

 
Membrane segmentation of stem cells in fluorescence images 
 

The ‘cardiosphere’ is a 3D cluster of cardiac progenitor cells recapitulating a 
stem cell niche-like microenvironment with a potential for disease and 
regeneration modelling of the failing human myocardium [23], [24]. In this 
multicellular 3D context, it is extremely important to decrypt the spatial 
distribution of cells for dissecting the evolution of cellular phenotypes by direct 
quantification of fluorescent signals in confocal microscopy [25]. An automated 
method is developed using ARCO to perform cardiosphere membrane 
segmentation. Figure 2.6 shows the results obtained by applying the proposed 
algorithm on this type of images. A detailed description of this application in 
provided in Chapter 3.  

 



23 
 

 

 
 

Fig. 2.6 Comparison between manual and automatic segmentation of stem cells for three 
samples (rows), showing images with a high variation of laser intensities and membranes 
appearance. The original RGB image, manual annotation (ground truth) and automatic 
segmentation are shown in columns. 

 

2.3.2 Segmentation results in Bright-field Imaging 

Cell nuclei segmentation in digital pathology  
 

Accurate nuclei detection in histopathological images is essential for many 
clinical purposes like cancer detection and reporting [26], [27]. While manual 
annotations are operator-dependent and time-consuming, fully automatic solutions 
still remains challenging for the high variability of cells’ appearance [27]. An 
ARCO-based method is developed for the recognition and segmentation of nuclei 
in histological images [28]. Figure 2.7 shows the segmentation results obtained on 
three sub-images taken from different tissues. A detailed description of the 
algorithm and the application is provided in Chapter 4. 
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Fig. 2.7 Comparison between manual and automatic segmentation of nuclei cells for three 
tissues (rows), showing images with a high variation of cells number, size and color. The 
original RGB image, manual annotation (ground truth) and automatic segmentation are 
shown in columns. 

 
 
Lipid vesicles segmentation in bright-field microscopy 
 

The ability to provide a certain dose of medicine inside the body in a specific 
time and place through artificially designed drug carriers is one of the core 
challenges in biomedical research [29], [30]. Recent developments in the design 
and interaction of nanoparticles have led to applications in drug delivery with 
liposome-based vehicles (lipid vesicles). For this application, an automated 
algorithm is designed using ARCO for segmentation and tracking of liposomes 
[31]. Figure 2.8 shows some examples of automatic recognition of liposomes. 
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Fig. 2.8 Comparison between manual and automatic segmentation of lipid vesicles for 
three images (rows), showing samples with a high variation of vesicles size and 
appearance. The original image, manual annotation (ground truth) and automatic 
segmentation are shown in columns. 

 
2.3.3 Segmentation results in other Imaging Modalities 

Muscle aponeuroses detection in ultrasound imaging 
 

Musculoskeletal ultrasound imaging allows a real-time and non-invasive 
measurement of the muscle thickness and cross-sectional which are clinically 
relevant descriptors of muscle size [32]. The extraction of quantitative parameters 
from muscle ultrasound images has proven to be useful to assess muscle force and 
its changes during musculoskeletal rehabilitation and training [33] as well as to 
diagnose neuromuscular disorders [34]. An automated strategy is developed using 
the proposed workflow for the detection of muscular aponeuroses in longitudinal 
and transverse ultrasound images [35]. Some examples of segmentation are shown 
in Figure 2.9. An exhaustive description of this application in provided in Chapter 
5. 
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Fig. 2.9 Comparison between manual and automatic segmentation of muscle aponeuroses 
for three images (rows), showing muscles with a high variation of muscle shape and size. 
The original image, manual annotation (ground truth) and automatic segmentation are 
shown in columns. 

 
 
Prostate segmentation in MR imaging 

 

Magnetic resonance imaging (MRI) has an increasing role in the clinical 
workup of prostate cancer [36]. Recently, MRI functional imaging (DWI – 
diffusion weighted imaging) is emerging as a promising tool for the quantification 
of the prostate cancer aggressiveness [37]. For this reason, prostate gland 
boundary delineation in DWI represents an important role for MR-guided biopsy, 
radiation therapy planning and development of computer-aided diagnosis system 
for the early detection [38], [39]. Starting from ARCO, an automated and 
unsupervised methodology for the prostate segmentation in DWI sequences is 
developed. The comparison between manual and automatic tracing is shown in 
Figure 2.10. 
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Fig. 2.10 Comparison between manual and automatic segmentation of prostate gland for 
three images (rows), showing scans with a high variation of intensities and glands 
appearance. The original image, manual annotation (ground truth) and automatic 
segmentation are shown in columns. 
 

2.4 Discussion 

The segmentation of a bio-image represents a fundamental step in the context 
of evidence-based medicine [40], radiomics and decision support systems [41]. 
Object segmentation in the medical field is notoriously a difficult task due to the 
high variability of the biological structures (in both physiological and pathological 
conditions) and for the different characteristics of the data acquired with different 
imaging systems (ultrasound, radiography, magnetic resonance, computed 
tomography). 

In this Chapter, a multiscale and multimodal technique for object 
segmentation in medical images is presented. The developed method did not 
require any user interaction and automatically detected different relevant objects 
in several imaging modalities. The proposed workflow integrates several image 
processing and segmentation techniques to identify the object contours (post-
processing refining). The observed robustness provided by the proposed method is 
mainly due to the use of a novel object-based detection (ARCO algorithm). 
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Thanks to the ARCO algorithm, it is possible to recognize and segment objects 
coming from different types of images, brightness and magnification. Once the 
user defined the layer to analyze (imageLAYER), the algorithm can process any type 
of image, format and color space (RGB, CMYK, YCbCr, ...). 

The proposed method analyzes the intensity histogram of the image to 
perform the segmentation, therefore the computational cost is low, and the 
computational time is independent of the image complexity. Furthermore, the 
proposed algorithm does not take as input the image resolution, so it can be used 
to identify any objects, ranging from cellular and sub-cellular structures to tissues 
or entire organs. The entire workflow can be applied to the analysis of two-
dimensional images of 3D volumes (“plane-wise” analysis) or to the study of 
entire volumes (volumetric analysis). Moreover, the ARCO algorithm can also be 
used for the analysis of video frames (dynamic analysis). 

Being a fast method, the workflow can also be implemented in a cloud 
computing architecture. In addition, the proposed algorithm does not need a 
training set like deep learning algorithms to work properly. The simple and 
adaptive structure of the algorithm makes it easily integrated into commercial 
medical devices as a ready-to-use tool for quantitative analysis. This method can 
also be used for research/discovery in all those applications where the manual 
operator takes a long time to annotate the data. 

Further studies are required to test the reliability and the robustness of the 
ARCO algorithm in other imaging modalities and applications. In the future, 
thanks to the speed and robustness provided by this method, fast and high-
throughput analyses on medical images could be performed. 

 

2.5 Conclusion 

To the best of our knowledge, ARCO is the first automated multimodal and 
multiscale method for the segmentation of relevant objects in medical images. The 
developed method is capable of processing images acquired from different 
acquisition systems where objects present different geometries, dimension and 
texture.  

In the future, thanks to the reliable object detection provided by ARCO, the 
proposed workflow could be the starting point for the development of automatic 
methods for quantitative analyses in the medical field. Since it is a completely 
automated technique and does not require any user-interaction, ARCO could also 
be used in future works to process large amounts of data and extract 'knowledge' 
in the field of big data and radiomics. 

In the next Chapters, a detailed description of different ARCO-based 
algorithms designed for morphological and textural characterization of biological 
structures is provided. 
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3.1 Introduction 

Heart failure is a clinical condition in continuous growth worldwide, 
characterized by inflammation and a progressive fibrosis that negatively impacts on 
the contractility of the heart. This is particularly relevant in elderly people with long 
course consequences of acute or chronic ischemia and increased physical frailty. 
Recent studies how cardiac stem cells have a sensing apparatus that makes them 
specifically reactive to environmental mechanics [1], [2]. Experimental evidences 
establish the role of heart resident (stem) cells as active “mechanosensors”, capable 
of showing alterations of the myocardial compliance. Previous studies also 
demonstrate the presence of a strong mechanical and biological connection in 
chronic diseases like heart failure [3]. 

Monitoring the differentiation process of stem/progenitor cells is important 
either to devise new regenerative medicine approaches, or to understand the 
molecular basis of chronic diseases involving modifications in tissue structure and 
property. Until now, this issue has remained unaddressed, also given the lack of 
systematic tools enabling quantitative investigation (even in real time) of cells 
dynamics [4] inside vivo micro-domains (the niches) or in disease models [5], [6]. 
The need for quantitative, cost-effective methods for analyzing, e.g., cell-matrix  or 
cell-cell dynamic interactions, in the last decade has become more and more 
compelling, stimulated by the plethora of methods recently proposed to engineer 
tissue-specific 3D microenvironments mimicking the native architecture, i.e. the 
so-called ‘organoid’ approach [7]. This approach is expected in the future to support 
‘synthetic’ tissue/niche modelling [8] for enhanced regenerative medicine 
applications [9], pathology decryption [10] or fundamental cell differentiation 
programs in developmental processes [11], [12]. 

In this context, the cardiosphere is a representative model of cardiac niche, 
which may be suitable for myocardial regeneration/engineering approaches [13], 
[14], [15], as well for decryption and modelling of molecular mechanisms 
underlying myocardial diseases, such as, for example, cardiac fibrosis [16], [3]. The 
cardiosphere is a multicellular 3D spheroid used as culture model to reproduce the 
cell interactions of the cardiac micro-domain. Cardiospheres are cultured taking 
advantage of the natural ability of stromal progenitors to (1) outgrow from 
explanted human adult-derived atrial appendage tissue, and (2) aggregate onto cell-
repulsive culture substrates [17], thereby maintaining cell to cell contacts.  

Previous studies have already demonstrated that the outer and the inner 
cardiosphere environments present remarkable differences, as far as differentiation 
potency, paracrine signaling and metabolism are concerned [3]. Up to now, only 
approaches with limited quantitative throughput have been applied to assess cell 
dynamics inside these complex structures, mostly based on fluorescence-based 
imaging technology. The quantitative and spatial analysis of fluorescent markers 
within the cardiosphere has shown promising results for the functional 
characterization of these 3D cell aggregates [18]. However, in order to quantify the 
spatial arrangement of fluorescent markers (e.g. marker inside/outside cell nuclei), 
robust and automated segmentation algorithms are needed. 
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Cell segmentation within fluorescence microscopy images is a challenging task 
for an automated algorithm. The main reason is the uneven background intensity 
caused by the fluorescence of the out-of-focus structures. For an automated method, 
this unevenness makes the separation between background and foreground a non-
trivial task. In addition, intensity variations inside cell nuclei may lead to an over-
segmentation as one nucleus can be split into more than one object. Most current 
nuclei detection approaches in fluorescence microscopy images are based on 
intensity thresholding [19] and gradients [20]. However, all of these methods have 
been developed to analyze 2D images and none of these has been applied in a 
multicellular 3D context. 

To bridge the gap of knowledge derived by a paucity of automatic solutions for 
the specific characterization of cells inside in vitro 3D aggregates, including 
cardiospheres, here an adaptive algorithm is presented, CARE (‘CARdiosphere 
Evaluation’), for automatic cardiosphere segmentation in fluorescence microscopy 
images. The proposed technique takes a 3D stacked image from confocal 
microscopy as input and performs the segmentation and 3D rendering of 
cardiosphere membranes and nuclei. Starting from the 3D rendering, the spatial 
distribution of three markers involved in the evolution of cardiac stromal cells 
(YAP, GATA4 and Ki67) is also evaluated to provide a functional characterization 
of the cardiosphere.  

The aim of this study is to modeling the outer and the inner cardiosphere 
environments to provide quantitative data on the functional properties of the 
cardiosphere. 

In this Chapter, a robust and innovative automatic algorithm, named CARE is 
proposed to characterize, in few minutes of processing, the cardiosphere geometry 
and architecture. To the best of our knowledge, the proposed method is the first 
fully automated algorithm for the characterization and segmentation of in vitro 3D 
cell spheroids, including cardiospheres. 
 

3.2 Materials and Methods 

Cardiosphere culture 
 

Primary cardiospheres (CSs) were isolated as described in [3] from right atrial 
appendage biopsies obtained from three donor patients undergoing elective cardiac 
surgery. All patients signed an informed consent and the entire study was approved 
by the institutional review board of "Umberto I” Hospital, “La Sapienza” University 
of Rome.  

Briefly, explant cultures were obtained after mechanical fragmentation and 
enzymatic digestion (trypsin/EDTA 0.05% for 15 minute at room temperature) of 
myocardial tissue, and plated on fibronectin-coated petri dishes in the following 
media recipe: Iscove’s modified Dulbecco’s medium (IMDM) (Sigma-Aldrich) 
supplemented with 20% FBS (Sigma-Aldrich), 1% penicillin-streptomycin (Sigma-
Aldrich), 1% L-glutamine (Lonza, Basel, Switzerland), and 0.1mM2-
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mercaptoethanol (Gibco, Thermo Fisher Scientific, Waltham, MA, USA). After 4 
weeks, explant cells spontaneously migrated from tissue fragments were harvested 
with EDTA wash and mild trypsinization (trypsin/EDTA 0.05% for 2-3 minute at 
room temperature).  

Cells were then plated on poly-D-lysine (BD-Biosciences) coated wells (9000 
cells/cm2) in the following media: 35% IMDM / 65% DMEM/F-12 Mix (Gibco and 
Lonza), 3.5% FBS, 1% penicillin-streptomycin, 1% L-glutamine, 0.1mM 2-
mercaptoethanol, 1 unit/ml thrombin (Sigma-Aldrich), 1:50 B-27 (Invitrogen), 80 
ng/ml bFGF, 25 ng/ml EGF, and 4 ng/ml cardiotrophin-1 (all Peprotech).  

Primary cardiospheres (CSs)  were harvested by pipetting and centrifugation at 
50rcf after 1 week and plated in fibronectin-coated 8-well chamber-slides 
(Eppendorf) for 3-4 hours to allow attachment. Cardiospheres were then fixed with 
4% paraformaldehyde for 10 minutes at room temperature, and then subjected to 
immunofluorescence staining protocols. 
 

3.2.1 Automated Cell Detection in Human-Derived Cardiospheres: 
CARE Algorithm 

 

Image database 
 

Twenty 3D-stacks of human-derived cardiospheres obtained from different 
patients, for a total number of 27 cardiospheres and 1160 slides, are analyzed. Each 
3D-stack is acquired using two different lasers to highlight cell membranes (PHAL) 
and nuclei (DAPI). PHAL (phalloidin) is a peptide used to stain actin filaments that 
compose the cardiac stem cell membrane (fluorescent color: red). DAPI is a 
fluorescent protein that bind to DNA and highlights cell nuclei (fluorescent color: 
blue). Two expert biologists, with more than 10 years of experience, manually 
annotated membranes and nuclei boundaries.  

 
CARE algorithm architecture 
 

The algorithm is designed to automatically segment cardiosphere-derived cells 
in fluorescence microscopy imaging. The CARE algorithm is developed in 
MATLAB environment (MathWorks, Natick, MA, USA). Image processing and 
analysis is carried out on a workstation with a 2.8 GHz exa-core CPU and 64-GB 
of RAM. Three main steps compose the processing: PHAL processing, DAPI 
processing and 3D rendering. The procedure of the CARE algorithm is 
schematically described in Figure 3.1. In the next paragraphs, an exhaustive 
description of the proposed method is provided. 
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Fig. 3.1 Schematic representation of the CARE algorithm. The proposed technique takes 
as input the 3D stack of PHAL images to perform membranes segmentation. Then, DAPI 
images are used to detect all cell nuclei. Finally, CARE performs a 3D rendering of the 
membranes and nuclei within the cardiosphere.  

 
PHAL processing 
 

The first step of the CARE algorithm is the identification of the cardiosphere 
membranes by analyzing the 3D stack of the PHAL layer. Then, the identification 
of the external borders of the cardiospheres is performed by applying an object-
based detection scheme to each image of the stack. The core of this step is the 
ARCO algorithm that we previously developed and adapted to these images 
(Chapter 2). The input parameters of the ARCO algorithm are listed in Table 3.1.  
 
Table 3.1 Input parameters of ARCO for membrane segmentation in the CARE algorithm. 
 
 

Parameters Value 

image LAYER Red layer of the PHAL image 

object TYPE Object of interest is bright on a dark background 

polynomial ORDER PWMCURVE is fitted with a 7th order polynomial function 

object PROPERTY  
Minimum standard deviation of the segmented objects is 
imposed as condition to find the optimal threshold among 
candidate ones. 



37 
 
 
Briefly, the red layer of the PHAL image is extracted. From the grayscale 

histogram of the image, the Progressive Weighted Mean (PWMCURVE) is computed 
as described in Chapter 2. Then, the PWMCURVE is fitted with a 7th order polynomial 
function in order to estimate its inflection points (candidate thresholds). Among 
candidate thresholds, the optimal threshold is chosen as the one that identifies 
objects with the lowest standard deviation. This condition on the standard deviation 
is imposed to obtain homogeneous objects. Finally, cardiosphere membranes are 
found as the regions with an intensity higher than the optimal threshold (bright 
objects on a dark background). 

The processing steps for obtaining the optimal threshold are shown in Figure 
3.2, where images with three different laser intensities are presented as explanatory 
examples. From the results presented in Figure 3.2, it can be appreciated the 
robustness of the proposed method for cardiospheres border identification, where 
an optimal threshold image intensity value is selected, regardless of the shape both 
of the image histogram and of the cardiosphere. 

 

 
 

Fig. 3.2 Steps for obtaining the optimal threshold for three images of the stack with a 
different variation of laser intensity. Starting from the red layer of the RGB image, the 
PWMCURVE is calculated from the grayscale histogram. Then, the inflection points of the 
PWMCURVE (red dotted lines) are estimated (candidate thresholds). For each candidate 
threshold, the standard deviation of detected objects intensity is evaluated. The optimal 
threshold (black-dotted line) is chosen as the one that identifies objects with the lowest 
standard deviation. In the rightmost column, the application of the optimal threshold on the 
PHAL image is illustrated. 

 
The herein develop method also includes an automatic strategy for the 

refinement of the shapes of the objects detected. Preliminarily, detected objects with 
area less than 1200 µm2 are deleted because they are too small to be considered as 
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cardiospheres. Then, starting from the first frame of the stack, the CARE algorithm 
also performs an iterative four-steps processing procedure to further clean the 
obtained masks: 

1. definition of reference frame as the current frame; 
 

2. definition of realign frame as the next frame after the reference frame; 
 

3. deletion of all the objects inside the realign frame with an overlapping lower 
than 75% with reference frame objects; 
 

4. move on to next frame (with the current realign frame becoming the next current 
frame).  

The procedure described above is extended to all the images of the stack. With 
this operation, all previously segmented objects that do not belong to the 
cardiosphere are deleted. The refining process for a sample image is presented in 
Figure 3.3a-c.  

The object-based detection provided by ARCO has a high sensitivity, but 
sometimes it may lead to suboptimal profiles, given by two or more cardiospheres 
that are very close to each other. In such a case, the automatic algorithm may depict 
them as a single object. For this reason, the ARCO algorithm incorporates a post-
processing refining to overcome this issue. 

The aim of this step is to separate cardiospheres still fused together. In previous 
works, the watershed transform was successfully used to isolate touching structures 
[21]. Using this transform, the image is treated as a topographic map where the 
intensity of each point represents its height. In order to separate touching objects, 
the watershed transform finds the lines that run along the tops of ridges. However, 
objects of interest may have uneven color, causing low performance of the classical 
watershed. For this reason, seed-based methods were proposed [22]. The first step 
in seed-based techniques is to identify seeds close to the object center and use them 
as starting points for watershed transform. Because of the advantages of simplicity 
and speed, several marker-based watershed methods have been developed for image 
segmentation [22], [23], [24]. 

A marked-based watershed [25] is used to separate “fused” cardiospheres. 
Firstly, the distance transform (DT) of the membrane binary mask is calculated. To 
identify marker positions, local maxima of the DT are identified using the extended-
maxima transform [24]. Technically, the extended-maxima transform estimates 
regional maxima by searching in N-connected neighborhoods. For this application, 
a neighborhood size of N=20 pixels (equal to 6.91 µm) is empirically set, based on 
the observation that it guarantees an effective and affordable output in terms of 
cardiospheres separation. The separation process of “fused” cardiospheres is 
illustrated in Figure 3.3. 
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Fig. 3.3 Processing of cardiospheres membranes. First row shows the refining operation of 
cardiospheres external edges while second row illustrates the separation process of 
touching cardiospheres. (a) Current frame (reference frame). (b) Realign frame (next 
frame). (c) Realign frame after refining. (d) Distance transform of the membrane mask. (e) 
Application of the marker-based watershed for cardiosphere separation. (f) Final membrane 
mask on RGB image. 

 
DAPI processing 
 

After cardiospheres border segmentation, the proposed method analyzes the 3D 
stack of the DAPI layer. Starting from the original RGB image, the membranes 
segmentation mask is applied to each frame (Figure 3.4a). All objects outside the 
mask are excluded from the analysis, as they do not belong to the cardiosphere. The 
same object-based detection used for the PHAL processing is applied for cell nuclei 
segmentation to obtain a raw mask of cells inside each cardiosphere (Figure 3.4b). 
The input parameters of the ARCO algorithm for cell detection in fluorescent 
images are listed in Table 3.2. 

 
Table 3.2 Input parameters of ARCO for cell detection in the CARE algorithm. 
 
 

Parameters Value 

image LAYER Blue layer of the DAPI image 

object TYPE Object of interest is bright on a dark background 

polynomial ORDER PWMCURVE is fitted with a 7th order polynomial function 

object PROPERTY  
Maximum median area of the segmented objects is imposed 
as condition to find the optimal threshold among candidate 
ones. 
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In the acquired images, cell nuclei are very often close to each other and the 

algorithm connects them as a single structure. For this reason, also at this stage of 
the investigation a marker-based watershed is applied in order to separate fused 
nuclei (Figure 3.4c). 

 

 
 

Fig. 3.4 Processing of DAPI layer. (a) Membrane mask applied to the original image. (b) 
Raw nuclei detection. (c) Cell nuclei separation using a marker-based watershed. 

 
3D rendering 
 

The 3D rendering of cardiospheres is obtained combining the segmentation 
masks obtained as mentioned above with the corresponding RGB image (Figure 
3.5). Unfortunately, this operation is not sufficient to ensure a proper 3D 
reconstruction of the volume of cardiospheres, because it is affected by the border 
effect in the region where the cardiosphere is in contact with the surface on which 
it grows. To overcome this limitation, the method proposed here identifies the frame 
where the first contact between the cardiosphere and the support surface occurs 
(cut-off frame). To do that, starting from the first image of the stack, three 
conditions are checked on the border segmentation mask. If at least one of these 
conditions is satisfied, the slide is labeled as cut-off frame and the remaining images 
are not used for 3D rendering: 

1. grayscale intensity - if in the image ith of the stack the grayscale average intensity 
inside the segmented border mask is lower than 0.20, then the image is too dark 
to be considered for 3D rendering; 

 

2. shape difference - if the area difference between the segmented border in frame 
i-1 and frame i is greater than 30%, then the cardiosphere is starting to spread on 
the surface; 

 

3. shape solidity - if the segmented border mask solidity is less than 0.60, then the 
shape is so irregular that it cannot belong to a single cardiosphere. Solidity of a 
structure is defined as the ratio between its actual area and its convex area. Since 
it is expected that cardiospheres are convex objects, the solidity is used as feature 
for the identification of the cut-off frame. 

Figure 3.5 shows a 3D rendering before and after the estimation of the cut-off 
frame. Through the process described above, the CARE algorithm produces two 
renderings: (i) the 3D volume of the external border of the cardiosphere and (ii) the 
3D volume of all the cell nuclei inside the cardiosphere. 
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Fig. 3.5 Cardiosphere 3D rendering before and after the cut-off frame estimation. PHAL 
and DAPI mask are combined to obtain the raw volumes. Then, the proposed algorithm 
identifies the frame in which there is the first contact between the cardiosphere and the 
surface. The final 3D rendering is achieved by excluding all the slides after the cut-off 
frame. 
 

Performance indicators 
 

The parameters tuning of the CARE algorithm is reported in Appendix B. All 
the 1160 images of the dataset are used to validate the performance of CARE in 
segmenting cardiospheres borders respect to two manual operators (OP1, OP2). 
Given the presence of a high number of nuclei in each image, only part of them are 
used to validate the DAPI layer. In particular, five random images are extracted 
from each stack, for a total of 100 images. The same two operators manually draw 
each cell in order to assess inter-operator variability in the cell nuclei detection.  

A comparison between masks drawn by a manual operator (MASKMANUAL) and 
those provided by CARE (MASKAUTOMATIC) is also carried out to assess the 
algorithm performance in the segmentation of cardiosphere borders and cell nuclei. 
True positive (TP) denotes the number of pixels in common between manual and 
automatic masks, false negative (FN) represents all pixels not identified by CARE 
and false positive (FP) are all the pixels identified by CARE but not by the manual 
operator. The segmentation performance is assessed by calculating the recall, 
precision, F1SCORE and jaccardINDEX, defined as follows: 

 

𝑟𝑒𝑐𝑎𝑙𝑙
𝑇𝑃

𝑇𝑃 𝐹𝑁
 (Eq. 3.1) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑇𝑃

𝑇𝑃 𝐹𝑃
 (Eq. 3.2) 

 

𝐹1  
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙
 (Eq. 3.3) 

 

𝑗𝑎𝑐𝑐𝑎𝑟𝑑  
|𝑀𝐴𝑆𝐾 ∩ 𝑀𝐴𝑆𝐾 |
|𝑀𝐴𝑆𝐾 ∪ 𝑀𝐴𝑆𝐾 |

 (Eq. 3.4) 

 

In detail, recall measures the missed detection of ground truth shapes, precision 
indicates the false detection of ghost objects and F1SCORE is defined as the harmonic 
mean between precision and recall [26]. The jaccardINDEX measures the similarity 
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between two different shapes and it is defined as the ratio between the size of the 
intersection and the size of the union of the segmented objects [27].  

 

3.2.2 Quantitative Spatial Assessment of Markers in 3D 
Cardiospheres 

Image database 
 

Fifty-four 3D-stacks of human-derived cardiospheres obtained from different 
patients are analyzed to quantitatively characterize the fluorescence distribution 
within the cardiosphere of three markers involved in the evolution of cardiac 
stromal cell: YAP, GATA4 and Ki67. YAP is a transcription factor whose nuclear 
translocation dynamics is regulated by the generation of cellular cytoskeletal 
tension [28]. GATA4 is a transcription factor involved in cardiac differentiation 
while Ki67 is use to marker the proliferative cell activity. Firstly, each 3D-stack is 
acquired using two different lasers to highlight cell membranes (PHAL) and nuclei 
(DAPI); then, immunofluorescence is performed for YAP, GATA4 and Ki67, 
followed by high-resolution confocal imaging. All the cardiospheres completely 
within the field of view (FOV) of the image are analyzed for the spatial evaluation 
of the markers. The overall dataset composition is reported in Table 3.3. 
 
Table 3.3 Database composition for quantitative assessment of markers inside 
cardiospheres. 
 
 

Marker Fluorescent color # 3D-stacks # Cardiospheres 

YAP Green 24 43 

GATA4 Green 6 18 

Ki67 White 24 50 

 
Markers evaluation 
 

First of all, the CARE algorithm is applied to all the 3D-stacks to identify 
membranes and cell nuclei within the cardiosphere. Then, the binary masks 
obtained with CARE are used to evaluate the concentration of the three markers 
(YAP, GATA4 and Ki67) inside and outside the cell nuclei. Figure 3.6 shows an 
example of the starting images and the respective masks used for marker evaluation. 

In order to assess the spatial distribution of markers, the volume of the 
cardiosphere is divided into two sub-volumes: internal and external volumes. 
Firstly, each cardiosphere is automatically cut into two non-overlapped areas: ‘cap’ 
(spherical cap of the sample) and ‘center’ (central body of the sample). Then, the 
‘center’ body is further divided into two sub-volumes: ‘center external’ and ‘center 
internal’. 
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Fig. 3.6 Starting images and masks for protein markers evaluation. The first column shows 
the original YAP image and the corresponding automatic PHAL (red) and DAPI (blue) 
masks. The second and columns illustrate the GATA4 and the Ki67 images respectively. 

 

The external volume represents the actual external volume of the cardiosphere 
and it is given by the sum of the 'cap' and 'center external' volumes. The internal 
volume represents the internal core of the cardiosphere and it is composed of the 
'center internal' volume. Figure 3.7 shows the processing for obtaining the internal 
and external volumes starting from the 3D reconstruction of the PHAL layer 
provided by CARE. 

 

 
 

Fig. 3.7 Steps for obtaining external and internal volumes of the cardiosphere. The external 
volume consists of the spherical ‘cap’ and the external border of the central body (‘center 
external’). The internal volume represents the core of the cardiosphere (‘center internal’). 
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For both internal and external volumes, the ratio between the fluorescence 

concentration expressed inside the cell nuclei and the overall fluorescence 
concentration is evaluated. This ratio indicates how much fluorescence has been 
internalized by the cell nuclei of the cardiosphere respect to the entire volume 
considered. For each of the two volumes (internal and external), the following 
parameters have been evaluated: 
 

𝑌𝐴𝑃 /
∑ 𝑌𝐴𝑃
∑ 𝑌𝐴𝑃

 (Eq. 3.5) 
 

𝐺𝐴𝑇𝐴4 /
∑ 𝐺𝐴𝑇𝐴4
∑ 𝐺𝐴𝑇𝐴4

 (Eq. 3.6) 
 

where () INT indicates the amount of fluorescence expressed within the nuclei 

and () TOT represents the total fluorescence expressed in the volume considered. 
Since Ki67 is a nuclear marker, Ki67INT/TOT has been computed as the ratio between 
the fluorescence within nuclei and the total fluorescence of the entire cardiosphere:  

 

𝐾𝑖67 /   
∑ 𝐾𝑖67

∑ 𝐾𝑖67
 (Eq. 3.7) 

 

YAPINT/TOT, GATA4INT/TOT and KI67INT/TOT are compared in internal and 
external volumes using two-tailed paired sample. All statistical tests are carried out 
with a significance level (p) of 0.05. 

3.3 Results 

Cardiospheres are stained with DAPI, and TRITC-labelled phalloidin to 
highlight, respectively, cells and nuclei distribution and shapes [17]. Conventional 
confocal microscopy is employed to obtain images of the cardiospheres by 3D-stack 
acquisition with a relatively high definition. By visual inspection of Figure 3.8, 
cardiospheres exhibit a complex structure emerging above the culture plate as 
hemispheres, made of cells distributed with apparent multiple orientation and 
cells/nuclei shapes. The presence of internal cavities with a non-uniform dimension 
can be also appreciated. 
 

3.3.1 Segmentation results of CARE Algorithm 

CARE vs manual operator image segmentation 
 

The results of the comparison between automatic and manual segmentation are 
summarized in Table 3.4. CARE demonstrates excellent performances in 
segmenting cardiospheres borders (PHAL), with very high average values of 
precision, recall, F1SCORE and jaccardINDEX respect to two expert operators (OP1, 
OP2) thus demonstrating the accuracy of the method (Table 3.4).  
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Fig. 3.8 Structure of the cardiospheres as observed by confocal microscopy. White color 
represents the cytoskeleton as evidenced by F-actin staining with Phalloidin. Blue color 
represents the nuclei as revealed by DAPI, an intercalant of the DNA. The three panels 
represent the midline stack (upper left) the 2.5 projection of the cardiospheres with the X 
and Y dimensions (lower left) and the projection of the whole stack along the indicated X 
and Y axes (right) respectively. 
 

 
Table 3.4 Performance of the CARE algorithm in the cardiosphere border (PHAL) and 
nuclei segmentation (DAPI). Data are reported as mean ± standard deviation. 

Layer #Images Validation Recall Precision F1SCORE jaccardINDEX

PHAL 1160 

OP1 vs OP2 
0.9410 ± 
0.0285 

0.9789 ± 
0.343 

0.9588 ± 
0.0158 

0.9170 ± 
0.0281 

OP1 vs CARE
0.9339 ± 
0.0241 

0.9728 ± 
0.0345 

0.9497 ± 
0.0157 

0.9079 ± 
0.0255 

OP2 vs CARE
0.9508 ± 
0.0264 

0.9717 ± 
0.0351 

0.9606 ± 
0.0201 

0.9271 ± 
0.0255 

DAPI 100 

OP1 vs OP2 
0.7602 ± 
0.0486 

0.8215 ± 
0.0507 

0.7872 ± 
0.0234 

0.6497 ± 
0.0318 

OP1 vs CARE
0.9001 ± 
0.0329 

0.6713 ± 
0.0506 

0.7679 ± 
0.0370 

0.6157 ± 
0.0431 

OP2 vs CARE
0.9210 ± 
0.0316 

0.6517 ± 
0.0599 

0.7615 ± 
0.0439 

0.6174 ± 
0.0586 

 

 

As for nuclei segmentation (DAPI), the average F1SCORE calculated between the 
two operators (0.7872) is comparable with the one obtained between CARE and 
each of them (0.7679 and 0.7615). The algorithm exhibits an excellent performance 
in the recognition of cell nuclei, compared to manual operators (OP1: 0.9001 and 
OP2: 0.9210). Being very sensitive, CARE tends to slightly overestimate the nuclei 
surface, and this leads to a lower precision, compared to manual operators (OP1: 
0.6713 and OP2: 0.6517). Finally, the values of jaccardINDEX, between OP1 and 
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CARE (0.6157), and OP2 and CARE (0.6174) are comparable to the value between 
OP1 and OP2 (0.6497). 

An explanatory example comparing the output of the segmentation obtained by 
applying CARE and by manual operators is presented in Figure 3.9.  

 

 
 

Fig. 3.9 Comparison between manual and automatic segmentation (rows). First column 
shows the original RGB image while manual masks performed by two expert operators 
(OP1, OP2) are reported in the second and third columns. The result provided by the 
proposed method is shown in the rightmost column. 
 
 

Comparison with open-source software 
 

Automatic results provided by CARE are also compared with two open-source 
software (CellProfiler and Fiji) widely applied to the analysis of fluorescence 
microscopy images. CellProfiler [29] is a software with a modular structure that 
integrates several image-processing techniques to perform automatic analyses on 
biological images. Fiji [30] is a Java-based software with several plugins which 
facilitate scientific image analysis based on a semi-automatic pipeline consisting 
of: (i) conversion of RGB image into grayscale, (ii) manual intensity thresholding, 
(iii) hole filling and (iv) small particles removal. For the nuclei segmentation, here 
an additional step is included in the analysis: (v) automatic cell separation. A visual 
inspection of Figure 3.10 allows to compare the performances of CellProfiler, Fiji 
and CARE in cardiospheres segmentation.  

A quantitative comparison of the performances offered by the two open-source 
software with CARE is reported in Table 3.5 and Table 3.6. As can be seen from 
Table 3.5 and Table 3.6, the Cell Profiler segmentation is characterized by a low 
recall (PHAL: 0.7997, DAPI: 0.8053) and this lead to a lowering of the average 
F1SCORE (PHAL: 0.7997, DAPI: 0.8053). Moreover, the mean jaccardINDEX (PHAL: 
0.7939, DAPI: 0.5031) is lower than the proposed one for more than 10%. 
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Fig. 3.10 Comparison between CellProfiler, Fiji and CARE in the cardiosphere 
segmentation (rows). First column shows the original RGB image while CellProfiler and 
Fiji result are provided in the second and third columns respectively. The automatic mask 
obtained with CARE is shown in the last column. 
 

Fiji segmentation performance is quite similar to CARE results. The average 
F1SCORE achieved with Fiji is slightly lower than those obtained with CARE (PHAL: 
0.9249, DAPI: 0.7504). This software is semi-automatic and requires user 
intervention to function properly. For this reason, the average computational time 
is about 10 times higher than CARE algorithm. 

 
Table 3.5 Performance of CellProfiler and Fiji software in the segmentation of the external 
cardiosphere membrane (PHAL layer). Data are reported as mean ± standard deviation. 

Method 
Computational 

Time (sec) 
PHAL layer 

Recall Precision F1SCORE jaccardINDEX

CellProfiler 
(automatic) 

13.18 ± 4.51 
0.7997 ± 
0.0655 

0.9912 ± 
0.0028 

0.8724 ± 
0.0482 

0.7939 ± 
0.0671 

Fiji (semi-
automatic) 

117.21 ± 13.91 
0.8865 ± 
0.0559 

0.9902 ± 
0.0005 

0.9249 ± 
0.0387 

0.8775 ± 
0.0548 

CARE 
(proposed) 

8.27 ± 1.31 
0.9339 ± 
0.0241 

0.9728 ± 
0.0345 

0.9497 ± 
0.0157 

0.9079 ± 
0.0255 

 
Table 3.6 Performance of CellProfiler and Fiji software in the segmentation of the 
cardiosphere cell nuclei (DAPI layer). Data are reported as mean ± standard deviation. 

Method 
Computational 

Time (sec) 
DAPI layer 

Recall Precision F1SCORE jaccardINDEX

CellProfiler 
(automatic) 

14.26 ± 3.02 
0.8053 ± 
0.1198 

0.5818 ± 
0.1704 

0.6536 ± 
0.1341 

0.5031 ± 
0.1365 

Fiji (semi-
automatic) 

123.81 ± 19.38 
0.8457 ± 
0.0944 

0.6845 ± 
0.0453 

0.7504 ± 
0.0522 

0.6045 ± 
0.0633 

CARE 
(proposed) 

12.42 ± 2.36 
0.9001 ± 
0.0329 

0.6713 ± 
0.0506 

0.7679 ± 
0.0370 

0.6157 ± 
0.0431 
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3.3.2 Functional Characterization of 3D Cardiospheres 

For each 3D-stack, the three parameters YAPINT/TOT, GATA4INT/TOT and 
KI67INT/TOT are calculated. Then, a comparison of those parameters in external and 
internal volumes is carried out. Figure 3.11 shows the variation of YAPINT/TOT, 
GATA4INT/TOT and KI67INT/TOT in internal and external volumes.  

 

 
 

Fig. 3.11 Comparison of average YAPINT/TOT, GATA4INT/TOT and Ki67INT/TOT in internal vs 
external volume. Asterisk denotes statistically significant difference (p<0.05).  

 
As shown in Figure 3.11, the values of YAPINT/TOT and Ki67INT/TOT increase in 

the external volume. On the contrary, GATA4INT/TOT shows nearly the same values. 

The paired t-test reveals a significant difference in YAPINT/TOT (p=1.7410-6) and 

Ki67INT/TOT (p=1.0510-10) between internal and external volumes, whereas no 
significant difference is found for GATA4INT/TOT (p=0.55). On average, YAPINT/TOT 
increases from 0.2899 to 0.3604, whereas Ki67INT/TOT elevates from 0.3706 to 
0.6294. In contrast, the values of GATA4INT/TOT on the internal volume remain 
almost equal to the ones on the external volume (0.4687 vs 0.4873). The results of 
the statistical analysis are shown in Table 3.7. 
 
Table 3.7 Paired t-test of YAPINT/TOT, GATA4INT/TOT and Ki67INT/TOT for external and 

internal volume. Data are reported as mean  standard deviation. 
 
 

Parameter Internal volume External volume p value  

YAPINT/TOT 0.2899  0.0704 0.3604  0.033 1.7410-6 * 

GATA4INT/TOT 0.4687  0.098 0.4873  0.074 0.5583 

Ki67INT/TOT 0.3706  0.1109 0.6294  0.1109 1.0510-10 * 

* denotes a statistically significant difference compared with border volume 
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3.4 Discussion 

In the present study, a fully automatic algorithm is proposed for human-derived 
cardiosphere segmentation and characterization in fluorescence microscopy 
images. A cardiosphere is a 3D cluster of cardiac stromal cells that show a 
promising phenotype for regeneration of the failing human myocardium [13], [15], 
[3] but also as a model of cardiac pathologies such as heart failure [16]. 

The proposed technique is able to detect cardiosphere membrane and cells 
inside fluorescence images. The CARE algorithm does not require any user 
interaction and it is capable of automatically detecting membranes and cell nuclei 
in a 3D context. The algorithm is tested on twenty 3D-stacks of human-derived 
cardiospheres, for a total number of 27 cardiospheres and 1160 slides. Two expert 
biologists manually annotate cardiosphere membranes for all the images of our 
dataset. To assess the inter-operator variability in nuclei segmentation, the same 
manual operators also draw each cell boundary on 100 random images.  

The comparison between automatic results and manual annotations show high 
performance of the proposed method. The CARE algorithm showed excellent 
performance in the membranes segmentation, with an average F1SCORE of 0.9497 ± 
0.0157 and jaccardINDEX of 0.9079 ± 0.0255. In the cell segmentation, the proposed 
algorithm obtains a mean F1SCORE and jaccardINDEX comparable with respect to two 
expert operators (Table 3.4). In addition, the CARE algorithm obtains the highest 
F1SCORE compared to other software (Fiji and CellProfiler) designed for cell 
detection in fluorescence microscopy. Respect to other automatic and semi-
automatic methods, the proposed algorithm has also the lowest computational time 
and the best jaccardINDEX. 

When CARE is employed to assess markers distribution in the cardiosphere, a 
prevalent distribution of cells with high YAP nuclear concentration is observed in 
the external shell. This suggests dependence of YAP-nuclear translocation process 
on cytoskeleton tensioning as already shown in literature for 2D systems [31]. The 
results obtained with CARE demonstrate a tight correlation between cell 
mechanical tension and YAP nuclear translocation in the 3D cardiosphere. 
Localization of the Ki67 proliferation marker exhibits a similar trend, confirming 
the correlation between control of cell proliferation and YAP nuclear signaling in 
the 3D model. These results suggest that cells that are located in the external border 
of the cardiosphere are exposed to a surface tension and are more actively 
proliferating [3].  

This study demonstrated, for the first time, the existence of spatially regulated 
mechanosensing mechanism linking cytoskeleton tensioning to activity of cardiac 
stromal cells evolution in pro-fibrotic phenotype [18]. 

Thanks to the fast and robust cell detection provided by CARE, fully automatic 
systems for morphological/antigenic characterization of cells inside 3D aggregates 
can be easily developed. Our research group is currently working on a CARE-based 
algorithm for the automated quantitative analysis of other markers distribution 
within the cardiosphere (alphaSMA, Collagen I), with the aim to discover predictive 
associations between cell mechanical cues and dynamic phenotypic changes. The 
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assessment of cardiosphere proprieties could help to understand the mechanisms 
that regulate cardiac biology and disease[17], [32], and it could also open new 
technological and therapeutic perspectives [33], [34]. 

In the future, a 3D object separation will be integrated within the CARE 
algorithm in order to increase the cell nuclei segmentation performance. Future 
studies are also required to test the accuracy and reliability of the proposed tecnique 
in cell nuclei detection in other 3D aggregates grown in vitro. 

3.5 Conclusion 

In this Chapter, an adaptive algorithm for segmentation and characterization of 
3D cardiosphere in fluorescence microscopy images is presented. To the best of our 
knowledge, CARE is the first fully automated solution for the detection of cells 
inside in vitro 3D aggregates. 

The CARE algorithm is tested on twenty 3D-stacks of human-derived 
cardiospheres, in which nuclei have different morphologies and laser intensities. 
For each image of the dataset, high segmentation performances are achieved. The 
observed accuracy of CARE in cell segmentation is mainly due to the use of the 
adaptive thresholding provided by the ARCO algorithm. CARE takes around 25 
seconds to perform membrane and cells detection in images with hundreds of 
nuclei, thus indicating the efficiency of the proposed technique. 

The 3D-image processing provided by CARE enabled the automatic 
quantitative evaluation of the geometrically arranged markers distribution in the 
cardiospheres. The proposed algorithm allows to establish a criterion to dissect the 
effect of cell straining and the relative amount of YAP, GATA4 and Ki67 nuclear 
concentrations. After the 3D analysis, a recurrent positioning of cells with nuclear 
localized YAP and Ki67 in the external volume of the cardiosphere is observed. 
Cells with nuclear-localized YAP and exhibiting proliferation marker Ki67 are 
abundant at the cardiosphere periphery, but undetectable in their core [18]. On the 
other hand, this asymmetric distribution is not observed in GATA4, a transcription 
factor expressed in cardiac cells.  

Being totally automated, CARE could be used in the future as starting point to 
realize rapid and accurate systems for functional characterization of cell aggregates 
in 3D contexts. In the future, the combination of innovative cell engineering, 3D 
biology tools, and 3D image processing [16], [3] will provide advanced methods to 
obtain an integrated representation of cell forces sensing in the context of the 
cardiac stiffing process and myocardial inflammation.  
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Chapter 4 

Digital Histopathology Image 
Analysis 
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4.1 Introduction 

Digital pathology is the process where the histological specimen is digitized 
in order to generate a high-resolution image. Nowadays, the digital pathology is  
spreading due to the growing availability of whole-slide digital scanners 
[1]. These digitized slides afford the possibility of applying image analysis 
techniques for applications in detection, segmentation, and classification of 
cellular structures. In the last years, automated algorithms have shown to be 
beneficial in many contexts as they have the capacity to not only significantly 
reduce the laborious and tedious nature of providing accurate quantifications, but 
to act as a second reader helping to reduce inter-reader variability among 
pathologists [2]. The variety of image analysis tasks in the context of digital 
pathology includes segmentation (e.g., nuclei) and tissue classification (e.g., 
cancerous vs. non-cancerous).  

The evaluation of cell nuclei plays a fundamental role in the analysis of 
histological images. In particular, parameters like nuclei spatial distribution, cells 
shape and size are generally used by pathologists for tumor detection and 
characterization [3]. In routine histology, the most widely used staining method is 
the hematoxylin and eosin (H&E). This coloration allows the specialist to 
discriminate between cell nuclei (hematoxylin: bluish color) from cytoplasm 
(eosin: pinkish color) [4]. Cell nuclei counting is a time-consuming operation and 
it is prone to intra- and inter-observer variability, which results in a limited 
reliability.  

Manual annotation of cell nuclei boundaries is a cumbersome operation, 
which is never performed in routine, but which would be required to precisely 
assess nuclei size and morphology. The spatial and architectural dispersion of 
nuclear structures in histopathological images is highly relevant in the context of 
tumor grading [5]. Cancer grade is a key-feature used to predict the patient 
prognosis and to prescribe a therapy [3].  

Recently, many efforts have been devoted to developing fully automated 
strategies to perform cell nuclei segmentation with the aim to improve the 
accuracy and efficiency of histological analysis. Most of the current nuclei 
detection approaches on H&E stained images are based on color information [6], 
[7]. Using these techniques, an segmentation accuracy of 80% can be achieved 
[8]. Since these approaches are dependent on either color and intensity-related 
attributes, none of these works have been tested on multi-tissue data or in 
pathological conditions, where nuclei may exhibit irregular shapes and different 
intensities.  

In the last decade, several methods have been developed to perform nuclei 
detection using image gradients [9] or morphological operators [10]. 
Nevertheless, automated methods using of a prior knowledge of nuclei shape are 
prone to fail due to the high variation of tissue preparation procedures (staining 
and sectioning). Moreover, the existence of touching cells makes the nuclei 
separation quite challenging for an automatic algorithm [1].  
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In recent times, deep neural networks (DNNs) drove advances in computer 
vision tasks and achieved the same performance of many segmentation algorithms 
in medical imaging [11], [12]. Above all, convolutional neural networks (CNNs) 
have shown a great potential in the detection of cell nuclei for different tissues 
[13]. These networks estimate a probability map of the nuclear regions based on 
the learned cellular appearances. In this way, convolutional networks can 
generalize across various nuclear color variations [13]. However, CNNs need a 
large annotated training set to obtain adequate performance and the network 
architecture must be changed in case of variation in the magnification. This is 
because CNNs fail to generalize if the nuclei, in addition to changing color, also 
change size. For this reason, deep neural networks are not suitable for multiscale 
approaches. 

In recent times, several automated strategies have shown promising results in 
tumor detection and classification within histopathological images [14], [15]. 
Consequently, researchers have begun to develop computer-aided diagnosis 
strategies using computer vision and image processing methods in order to 
identify the location and spatial extent of diseases such as prostate [16], [17] and 
breast cancer [18], [19]. 

Prostate cancer is among the most diagnosed forms of tumor in men 
worldwide [20]. Recently, a new, clinically validated, more accurate Gleason 
scoring system was proposed [21] in order to reduce overtreatments of low-grade 
cases. Briefly, the Gleason scoring method classifies the architecture of prostate 
glands into 5 patterns, ranging from 1 to 5. Patterns 1+2 are considered obsolete 
and no more assigned in prostate biopsies, pattern 3 is low-grade, and patterns 4 
and 5 are high-grade cancers. The final Gleason Score (GS) is obtained by the 
most predominant pattern plus the secondary pattern (if only two patterns present) 
or the most aggressive pattern (if more than two patterns are present). So, five 
Gleason Grade Groups (GG) are defined: GG 1 (GS ≤ 6), GG 2 (GS 3+4=7), GG 
3 (GS 4+3=7), GG 4 (GS 4+4=8, 3+5=8, 5+3=8), and GG 5 (GS = 9-10).  

The manual visual assessment of prostate histopathological images is time-
consuming and prone to errors due to intra- and inter-operator variability [22]. An 
increasing interest in developing robust algorithms for the rapid and reproducible 
Gleason scoring of digital images has therefore developed. Several methods are 
reported in literature, many that focus on training a classifier and then classifying 
a gland image into the correct pattern [23], [24]. The downfall to these techniques 
is that they are based on analyzing images containing only one gland and 
therefore only one pattern, making it necessary to first isolate the glands within an 
entire biopsy image. Other techniques are nuclei distribution-based [5] or lumen-
based [25], and then employ a subsequent classification, requiring manual 
identification of the pixels of interest to train a classifier. However, most of the 
available techniques either distinguish between cancerous and non-cancerous 
glands or give a primary score of a specific pattern, and rarely focus on the final 
Gleason GG and the discrimination between Gleason GG 2 and 3, which is crucial 
for the prognosis of the patient [21].  
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Besides prostate cancer, one of the common cancer types is breast cancer 

[20]. A generally underrated problem related to image analysis of breast cancer on 
histopathological slides is the correct identification of neoplastic epithelium and 
its distinction from stromal reaction. In most cases, the focus is on the neoplastic 
epithelium where morphological measures (nuclear pleomorphism, glands 
formation) and immuno-phenotypical quantifications (proteins expression) are 
performed. In other cases, the stromal component is analyzed (quantification of 
tumor infiltrating lymphocytes, characterization of stromal reaction type). In both 
cases, morphological and immuno-phenotypic characterization of the tumor can 
predict the breast carcinoma behavior and its prognosis [26], [27], [28] and, of 
course, should only be evaluated on the correct tumor component (epithelial vs 
stromal). In addition, the direct estimation of tumor/stroma ratio (the ratio of 
tumor volume occupied by neoplastic epithelium and stroma) has relevance in the 
determination of the pathological response to neoadjuvant therapy [29] and 
represents a novel prognostic parameter [30]. 

Since most of the current diagnosis processes are based on the subjective 
opinion of pathologists, automated and quantitative solutions for the assessment 
of histopathological images would have scope of application. In particular, an 
automatic system for the analysis of histological tissue could assist pathologists 
by providing objective results, quantitative measurements or even a second 
opinion. In the last decade, several algorithms have been proposed for the 
automatic analysis of breast carcinoma [14]. These methods are based on multi-
resolution algorithms [31], nuclear features [32], [33], and deep neural networks 
[34], [35] to perform cancer detection and grading. Given a digital histological 
image, these techniques are trained to recognize the presence or the absence of 
tumor tissue within the image, but none of them is capable of discriminating 
between neoplastic epithelium and stromal response within the same image. These 
methods do not perform a segmentation of the tumor areas; therefore, it is not 
possible to obtain accurate contours of the cancer tissue. In fact, the extreme inter-
tumoral and intra-tumoral variability of neoplastic epithelium morphology is the 
main challenge for an automatic algorithm aiming at the segmentation of the 
tumoral area. 

In this Chapter, three robust and novel algorithms are proposed for the 
quantitative analysis of histopathological images. The first method, named 
MANA (Multiscale Adaptive Nuclei Analysis), is a multi-tissue and multiscale 
method for cell detection and segmentation in histological images. The second 
method is able to perform an automated gleason grading in prostate cancer 
histopathological images. Finally, the third method consists of a full-automated 
solution for the segmentation of neoplastic epithelium in H&E stained images of 
breast tissue. 
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4.2 Materials and Methods 

4.2.1 Multi-tissue and Multiscale Nuclei Segmentation: MANA 
Algorithm 

Image database 
 

The histological dataset consists of 30 H&E stained images taken from six 
different organ tissues (bone, liver, thyroid, colon, adrenal gland and prostate). 
Moreover, images were digitalized using three magnifications (10x, 20x, 40x) in 
order to test the multiscale approach of MANA algorithm. In each image, one 
expert pathologist (with 15 years of experience in histopathology) manually 
marked the nuclei centers, for a total of more than 59000 cells. The images were 
acquired at “Città della Salute” Hospital – Molinette (Torino, Italy). The overall 
dataset composition is shown in Table 4.1. 
 
Table 4.1 Dataset composition of the MANA algorithm. 
 
 

Tissue Magnification # Images # Nuclei 
Bone 40x 5 6889 

Liver 10x, 20x 5 5051 

Thyroid 10x, 20x 5 19050 

Colon 20x 5 9166 

Adrenal gland 10x, 20x 5 12972 

Prostate 20x 5 5995 

Total 10x, 20x, 40x 30 59123 

 
MANA algorithm architecture 
 

The proposed algorithm is designed to automatically segment nuclei in H&E 
staining images. The MANA algorithm is developed using MATLAB 
environment and the image processing is carried out on a workstation with a 2.8 
GHz exa-core CPU and 64 GB of RAM. The processing is composed by three 
main steps: raw nuclei detection, area-based correction and nuclei separation. In 
the next paragraphs, an exhaustive description of the proposed method is 
provided. 

 
Raw nuclei detection 
 

The first step of the MANA algorithm consists of a preliminary cell 
segmentation by analyzing the grayscale image of the histological sample. Then, 
the identification of nuclei boundaries is performed by applying the object-based 
detection provided by the ARCO algorithm (Chapter 2). The input parameters of 
the ARCO algorithm are listed in Table 4.2. 
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Table 4.2 Input parameters of the ARCO algorithm for the MANA algorithm. 
 
 

Parameters Value 

image LAYER Grayscale image 

object TYPE Object of interest is dark on a bright background 

polynomial ORDER PWMCURVE is fitted with a 5th order polynomial function 

object PROPERTY  
Maximum median area of the segmented objects is imposed 
as condition to find the optimal threshold among candidate 
ones. 

 
Briefly, the RGB image of the histological specimen is converted into 

grayscale. From the grayscale histogram of the image, the Progressive Weighted 
Mean (PWMCURVE) is computed as described in Chapter 2. Then, the PWMCURVE 
is fitted with a 5th order polynomial function in order to estimate its inflection 
points (candidate thresholds). Among candidate thresholds, the optimal threshold 
is chosen as the one that identifies objects with the highest median area. Finally, 
cell nuclei are found as the regions with an intensity lower than the optimal 
threshold (dark objects on a bright background). The processing steps for 
obtaining the optimal threshold are shown in Figure 4.1, where images taken from 
three different tissues are presented as explanatory examples. From the results 
presented in Figure 4.1, it can be appreciated the robustness of the proposed 
algorithm for cell nuclei detection, where an optimal threshold value is selected, 
regardless of the cells’ appearance or image histogram shape. 
 

 
 

Fig. 4.1 Steps for obtaining the optimal threshold for three images of different tissues 
with a high variation of cells color and size. Starting from the RGB image, the 
PWMCURVE is calculated from the grayscale histogram. Then, the inflection points of the 
PWMCURVE (red dotted lines) are estimated (candidate thresholds). For each candidate 
threshold, the median area of detected objects is evaluated. The optimal threshold (black-
dotted line) is chosen as the one that identifies objects with the highest median area. In 
the rightmost column, the application of the optimal threshold on the RGB image is 
illustrated. 
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Area-based correction 
 

This step is devoted to correcting the over-segmentation of the previous step 
as the ARCO algorithm may lead to small or too large objects. Small regions 
could be wrong or over-segmented objects while too large areas may consist of a 
fusion of different nuclei. To lessen the over-segmentation and to optimize the 
nuclei detection, the mean area of segmented objects (meanAREA) is calculated. 
Then, all the objects are labelled as ‘small’, ‘normal’, or ‘big’. ‘Small’ objects are 
regions smaller than 25% of meanAREA while all the objects greater than 5 times 
the meanAREA are classified as ‘big’. The remaining structures are labeled as 
‘normal’.  

‘Small’ objects are deleted because they are too little to be potentially 
considered as nuclei, whereas ‘big’ structures should be split, in case they are 
nuclei agglomerates. A first nuclei separation is obtained by iteratively decreasing 
the optimal threshold for all the 'big' objects until they are labeled as ‘normal’ 
(area less than 5 times the meanAREA). The effect of this procedure is sketched in 
Figure 4.2a. Using these criteria, the optimal threshold found by the ARCO 
algorithm is locally modified to identify the highest number of nuclei within the 
histopathological image.   

 

 
Nuclei separation 
 

This step is needed to further separate remaining fused nuclei. In previous 
works, the watershed transform was successfully used to isolate touching 
structures [36]. The proposed method implements a marked-based watershed to 
separate “fused” nuclei [37]. In marker-based techniques, seeds close to nuclear 
centers are used as starting points for watershed transform. Firstly, the distance 
transform (DT) of the nuclei binary mask is calculated. To identify marker 
positions, local maxima of the DT are identified using the extended-maxima 
transform [38]. This transform estimates the regional maxima by searching in N-
connected neighborhoods. The size of neighborhood (N) affects the sensitivity of 
the maxima-extended transform in the detection of nuclear seeds. 

Additionally, the solidity of all objects is also evaluated. Solidity of a 
structure is defined as the ratio between its actual area and its convex area. Since 
it is expected that nuclei are convex objects, a detected shape containing an actual 
nucleus should have a solidity approximately equal to one. Hence, the solidity of a 
region is used as a discriminant feature for varying the sensitivity of the watershed 
transform by changing the neighborhood size of the maxima-extended. The 
MANA algorithm applies a high-sensitive watershed for low solidity shapes 
(object to split) while sensitivity is decreased for high solidity regions (single 
nuclei). The application of a marker-based watershed sensitive to shapes solidity 
is shown in Figure 4.2c. As a final operation, the mean area of the structures 
obtained after watershed is calculated and all the regions smaller than 25% of 
mean area are erased by MANA. 
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Fig. 4.2 Area correction and nuclei separation of the MANA algorithm. The input image 
is shown on the left column while, on the right one, the corresponding output image is 
represented. The first row (a,b) is relative to the area-based correction, where 'big' regions 
(red) are partially split  and 'small' structures (blue) are deleted. The second row (c,d) 
shows the nuclei separation in which a marker-based watershed is applied on structures 
with a small (red) and high solidity (green). 

 
Performance indicators 
 

The parameters tuning of the MANA algorithm is reported in Appendix B. A 
comparison between manual annotations and automatic segmentation is carried 
out to assess the MANA algorithm performance in the detection and segmentation 
of nuclei. The segmentation performance is assessed by calculating the recall, 
precision and F1SCORE, defined as follows: 

 

𝑟𝑒𝑐𝑎𝑙𝑙
𝑇𝑃

𝑇𝑃 𝐹𝑁
 (Eq. 4.1) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑇𝑃

𝑇𝑃 𝐹𝑃
 (Eq. 4.2) 

 

𝐹1  
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙
 (Eq. 4.3) 

 

In detail, recall measures the missed detection of ground truth shapes and 
precision indicates the false detection of ghost objects [39]. F1SCORE is a common 
used object detection metric [40], but it penalizes only object-level errors [13]. In 
fact, F1SCORE does not take into account all pixel-level errors (e.g. under-
segmentation of correctly detected objects). Let NCS, NUS and NSE represent the 
numbers of correct-segmentation (CS), under-segmentation (US) and 
segmentation-error (SE). The pixel-level performance of the MANA algorithm is 
assessed by calculating the CS, US and SE rates [41], which are defined as 
follows: 
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𝐶𝑆
𝑁
𝑁

𝑥100 (Eq. 4.4) 
 

𝑈𝑆
𝑁
𝑁

𝑥100 (Eq. 4.5) 
 

𝑆𝐸
𝑁
𝑁

𝑥100 (Eq. 4.6) 
 

where NGT (GT: ground truth) represents the number of nuclei identified by 
the pathologist. The US rate reveals the failure to split nuclear regions in the 
correct number of nuclei while the SE rate indicates the missed detection of cells. 
An example of correct-segmentation (CS), under-segmentation (US) and 
segmentation-error (SE) is provided in Figure 4.3. 

 

 
 

Fig. 4.3 Evaluation of the pixel-level performance. Manual annotations are illustrated in 
the left column while, in the right one, the corresponding automatic result is shown. (a,b) 
Correct-segmentation (color: green). (c,d) Under-segmentation (color: orange). (e,f) 
Segmentation-error (color: yellow). 

4.2.2 Automated Gleason Score in Prostate Histological Images 

Image database 
 

The histological dataset consists of 25 biopsy images collected from 11 
patients. The samples were H&E stained and digitalized at a 10x magnification 
(Aperio Scanscope XT) at “Città della Salute” Hospital – Molinette (Torino, 
Italy). Four images from each biopsy were extracted for a total of 100 images. An 
expert pathologist with over 15 years of experience assigned a Gleason Score to 
each image and was blinded from the automatic algorithm results. The overall 
dataset composition is shown in Table 4.3. 
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Table 4.3 Dataset composition of the algorithm for automatic gleason scoring. 
 
 

Gleason Group Gleason Score # Images 
1  ≤ 6 30 
2 3+4 20 
3 4+3 25 
4 4+4 25 

 
Gleason grading algorithm architecture 
 

The algorithm is designed to automatically assign the Gleason score in 
prostate histopathological images. The proposed method is developed using 
MATLAB environment and the image processing is carried out on a workstation 
with a 2.8 GHz exa-core CPU and 64 GB of RAM. The procedure of the proposed 
method is schematically described in Figure 4.4. Three main steps compose the 
processing: nuclei and lumen detection, glands segmentation and glands 
classification. In the next paragraphs, an exhaustive description of the proposed 
method is provided. 

 

 
 

Fig. 4.4 Schematic representation of the algorithm for gleason scoring. The proposed 
technique takes as input the RGB image of the histological specimen to perform nuclei 
and lumen detection. Then, prostate glands are detected and classified to obtain the 
gleason score. 

 
Nuclei and lumen detection 
 

Starting from the original RGB image of the specimen (Figure 4.5a), the 
proposed algorithm performs the discrimination between the histological tissue 
and the background. The aim of this step is to process only the cellular structures 
within the image. The tissue recognition occurs thanks to the application of an 



63 
 

RGB high-pass filter [42] where the RGB color of each pixel is treated as a 3D 
vector, and the strength of the edge is the magnitude of the maximum 
gradient. Then, Otsu thresholding [43] is applied to extract a raw binary mask of 

the tissue and a morphological opening with a disk of 50m radius is carried out 
to obtain smoother tissue contours (Figure 4.5b).  

Once obtained the tissue boundary, the algorithm performs the nuclei 
detection (Figure 4.5c) using the MANA algorithm [44]. Then, the proposed 
method performs the lumen detection. Simple thresholding may be ineffective to 
segment gland lumina, since they often have different intensity and uniformity 
depending on their size, shape, and the presence of artefacts. Therefore, in order 
to properly segment the lumen, a series of Gabor kernels are applied to the 
original grayscale image, which are defined as follows: 

 
 

𝑔 𝑥, 𝑦, 𝜆, 𝜃, 𝜓, 𝜎, 𝛾 exp
𝑥 𝛾 𝑦

2𝜎
cos

2𝜋𝑥′
𝜆

𝜓  (Eq. 4.7) 

 

where 𝑥′ = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃), 𝑦′ = −𝑥𝑠𝑖𝑛(𝜃) + 𝑦𝑐𝑜𝑠(𝜃), γ is the spatial aspect 
ratio that specify the ellipticity of the Gabor function, ψ represents the phase 
offset, λ is the wavelength of the sinusoidal factor, θ denotes the orientation of the 
normal to the parallel stripes of a Gabor function and σ is the standard deviation 
of the Gaussian envelope. For this application, we imposed γ=1.2, ψ=0, λ=10, σ=1 
and eight directions (θ) are considered to make the algorithm faster and to still 
reduce the noise level. The obtained eight filtered images are summed and 
normalized; then a threshold equal to 90% of the image maximum is applied. 
Finally, all small elements are removed to obtain the final lumen mask (Figure 
4.5d). 
 

 
 

Fig. 4.5 Processing steps for nuclei and lumen detection. (a) Original RGB image. (b) 
Tissue identification. (c) Nuclei detection (green). (d) Lumina segmentation (cyan). 
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Glands segmentation 
 

A first initial glands segmentation is obtained by means of a k-means 
algorithm [45]. The k-means algorithm is an iterative and unsupervised method 
that assign n observation to exactly one of k clusters defined by centroids, where k 
is fixed a priori. The main idea is to define k centroids, one for each cluster. Then, 
the algorithm assigns each observation to the cluster with the closest centroid. At 
this point the average of the observation in each cluster is computed to obtain k 
new centroid locations. The algorithm repeats the previous step until cluster 
assignments do not change, or the maximum number of iterations (iterMAX) is 
reached. The k-means algorithm is applied to the image 𝐼1 = 𝐼𝑅 − 𝐼𝐵, where 𝐼𝑅 and 
𝐼𝐵 are the red and blue channels of the considered image 𝐼, respectively. This 
channel subtraction aims to brighten the stroma while simultaneously darkening 
everything belonging to the glands (Figure 4.6a). In order to obtain a correct 
classification, the background, nuclei and lumen mask are subtracted from image 
I1. The initial centroids for clustering are respectively the pixel with the highest 
and lowest intensity within image I1. IterMAX is set to 100 and the k-means is 
applied with a number of clusters (k) equal to 2: stroma and glands (Figure 4.6b). 
Gland pixels are defined as the pixels belonging to the cluster with the lower 
mean intensity.  

Since the k-means result is noisy, a refinement process is necessary before 
obtaining the final gland segmentation. First of all, the k-means glands mask is 
merged with the lumen and nuclei masks to obtain a raw glands mask (Figure 
4.6c). Then, small objects are removed (isolated nuclei), and a morphological 
closing is applied to smoothen the gland contours (Figure 4.6d). The processing 
for obtaining the prostate glands contours in shown in Figure 4.6. 

 

 
 

Fig. 4.6 Processing steps for prostate glands segmentation. (a) starting image for k-means 
algorithm. (b) K-means result for two classes: glands (blue) and stroma (green), (c) raw 
glands mask. (d) final glands contours (blue). 
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Glands classification 
 

In order to obtain the Gleason Score, each gland needs to be classified 
according to a certain pattern (normal, pattern 3, pattern 4, and pattern 5).  

A feed-forward neural network (NN) is used to classify each gland. To train 
the network, three glands are extracted from each image and the pathologist 
assigns a pattern for each of them. The total number of glands (300) is equally 
divided among the 3 classes (100 'normal', 100 'pattern3' and 100 'pattern4'). 
Then, the 300 extracted glands are randomly divided into 3 sets: the training set 
(70% = 210 glands), development set (15% = 45 glands), and test set (15% = 45 
glands). Seven features are extracted from each gland: two morphological 
descriptors and five first-order texture descriptors [46], [47]. The detailed features 
description is provided in Table 4.4.  

 
Table 4.4 Input features of the neural network to perform glands pattern classification. 
 
 

Feature Mathematical definition 

Area (A) | 𝑥 , 𝑦 |, ∀ 𝑥 , 𝑦 ∈ 𝐺𝑙𝑎𝑛𝑑 

Solidity (S) 

 

𝑆
𝐴

𝐴
 

Mean (m) 𝑚
1
𝑁

𝐼 𝑥 , 𝑦  

Variance (𝜎 ) 𝜎
1
𝑁

𝐼 𝑥 , 𝑦 𝑚  

Skewness (Sk) 

 

𝑆
1
𝑁

∑ 𝐼 𝑥 , 𝑦 𝑚

𝜎
 

 

Kurtosis (Kt) 

 

𝐾
1
𝑁

∑ 𝐼 𝑥 , 𝑦 𝑚
𝜎

 
 

Entropy (E) 𝐸 𝑝 log 𝑝  

 

where ACONVEX indicates the area of the smallest convex polygon that can contain the 
gland, I(x,y) denotes the grayscale image of the gland, N indicates the glands area and p 
represents its normalized histogram. 
 

In order to understand the feature’s relation to the response variable (gland 
pattern), the Pearson correlation coefficient is also computed [48]. All seven input 
features are used to train the neural network because, for each of them, the 
Pearson coefficient is always higher than 0.3. Feature standardization is applied to 
obtain variables with zero-mean and unit-variance. During network training, the 
Levenberg-Marquardt backpropagation [49] and the mean squared normalized 
error (mse) are used as optimization algorithm and cost function respectively. 
Finally, the number of epochs is set to 100. 

Several network configurations are tested, varying the network parameters 
(#units, #layers, activation functions and learning rate) and, for each 
configuration, the errors on the train and dev sets are evaluated. The optimal 
neural network is chosen in two steps. First of all, the NNs with a maximum 
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difference between the train and development error equal to 3% are selected to 
avoid overfitting. Among these, the final configuration is chosen as the one with 
the minimum train/dev mean error to ensure best performance. 

The optimal network is then used to classify all the glands detected by the 
proposed algorithm (Figure 4.7). After glands classification, the Gleason Score is 
assigned according to two rules: i) the main pattern is defined as the most 
dominant pattern in the image, ii) the secondary pattern is set as the second most 
dominant pattern as long as it covers at least 5%, of the image; otherwise the 
secondary pattern is imposed as the primary one. 

 

 
 

Fig. 4.7 Glands classification for gleason scoring. (a) Glands mask. (b) Glands 
classification (yellow: pattern 3, orange: pattern 4).  
 

Performance indicators 
 

The parameters tuning of the proposed algorithm is reported in Appendix B. 
The classification accuracy is evaluated to measure the algorithm performance in 
glands classification and gleason scoring: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (Eq. 4.8) 

 

Accuracy represents the proportion of correct classifications among all 
classifications, eventually multiplied by 100 to turn it into a percentage. 

 

4.2.3 Automated Detection of Neoplastic Epithelium in Breast 
Carcinoma 

Image database 
 

The histological dataset consists of 100 H&E stained images from 10 different 
cases of invasive carcinoma, non-special type (according to WHO 2012 
classification), each with a dimension of 600x1200 pixel and extracted from a 
whole-slide digital scan. The samples were digitalized at a 20x magnification at 
the “ASL CN2 Alba-Bra” (Alba, Italy). 50 images include both neoplastic 
epithelium and stromal reaction, 25 has only neoplastic epithelium and 25 images 
are extracted without cancer tissue in the field-of-view. One expert pathologist 
manually annotated the neoplastic epithelium contours in each image. The overall 
dataset composition is shown in Table 4.5. 
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Table 4.5 Dataset composition of the algorithm for neoplastic epithelium detection in 
breast carcinoma. 
 

 

Tissue condition # Images 

Neoplastic epithelium 
and stromal reaction 

50 

All neoplastic 
epithelium 

25 

No neoplastic 
epithelium 

25 

Total 100 
 
 
 

Neoplastic detection algorithm architecture 
 

The proposed algorithm is designed to automatically detect neoplastic 
epithelium contours in H&E stained images of breast tissue. The algorithm is 
developed using MATLAB and runs on a workstation with a 2.8 GHz exa-core 
CPU and 64 GB of RAM. The procedure of the proposed method is schematically 
described in Figure 4.8. Two main steps compose the processing: i) nuclei 
segmentation and classification, ii) neoplastic epithelium detection. In the next 
paragraphs, an exhaustive description of the method is provided. 

 

 
 

Fig. 4.8 Schematic representation of the algorithm for neoplastic epithelium detection in 
breast tissue. The proposed technique takes as input the RGB image of the histological 
specimen to perform nuclei detection and classification. Then, neoplastic epithelium is 
detected as the area containing tumoral nuclei. 
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Nuclei segmentation and classification 
 

The first step of the proposed algorithm is the cell nuclei segmentation inside 
the image. This task is performed using the nuclei detection provided by the 
MANA algorithm [44]. Briefly, the RGB image of the histological specimen 
(Figure 4.9a) is converted into grayscale and the object-based detection provided 
by ARCO is applied to obtain a raw mask of nuclei. Then, area-based corrections 
and nuclei separation are performed to identify the cells boundaries (Figure 4.9b).  

In order to find tumor areas, each nucleus needs to be classified according to a 
certain pattern (tumor or no-tumor). A feed-forward neural network (NN) is used 
to classify each cell. Five images are randomly selected to train the network. For 
each image, the pathologist manually draws all nuclei and assigns a pattern for 
each of them. Then, the total number of nuclei (9316) is randomly divided into 3 
sets: the training set (70% = 6522 cells), development set (15% = 1397 cells), and 
test set (15% = 1397 cells). The same five first-order texture descriptors used for 
gleason scoring (Table 4.4) are extracted from each cell and used as input features 
for the NN: mean, variance, skewness, kurtosis and entropy. Nuclear texture is 
used to classify each cell as cancer nuclei have a distinct morphology 
characterized by coarse chromatin texture [50]. 

The optimal network configuration is chosen using the same criteria adopted 
for gleason scoring (section 4.2.2). The resulting network configuration has three 
hidden layers, with respectively 8, 4 and 3 units. All layers have a tan-sigmoid 
transfer function while the output layer has a linear transfer function. The network 
learning rate is set to 0.01. The optimal network is then used to classify all the cell 
nuclei detected by the MANA algorithm (Figure 4.9c). Since some nuclei can be 
misclassified, an iterative three-steps refining process is applied to better define 
the tumor areas: 

1. for each cell classified as no-tumor, a Region of Interest (ROI) of 40x40 m 
surrounding that cell is defined. If inside that ROI at least 95% (conversion 
percentage) of the nuclei has been classified as tumor, then the cell is now 
labeled as tumor; 
 

2. for each cell classified as tumor, a Region of Interest (ROI) of 40x40 m is 
also defined. If inside that ROI at least 95% of the nuclei has been classified as 
no-tumor, then the cell is now labeled as no-tumor; 
 

3. lowering of the conversion percentage by 5%. These steps are repeated until 
the conversion percentage reaches 75%. 

The procedure described above allowed to decrease the number of 
misclassified nuclei. An example of the refining process is shown in Figure 4.9d.  
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Fig. 4.9 Nuclei detection and classification. (a) Original RGB image. (b) Nuclei detection 
(blue). (c) Raw nuclei classification (red: tumor nuclei, green: no-tumor nuclei). (d) 
Nuclei classification after refining process. 
 
 

Neoplastic epithelium detection 
 

Once performed nuclei detection and classification, only nuclei labelled as 
tumor are considered for the next steps of the processing (Figure 4.10a). Centroids 
of tumor cells are extracted, and a density-based clustering is performed to 
segment tumor areas. In particular, a spatial clustering named DBSCAN (Density-
Based Spatial Clustering of Application with Noise) is applied to each nuclei 
centroid [51]. This algorithm finds all the neighbors of data points, within a circle 
of radius ε, and adds them into the same cluster. For any neighbor point, if its ε-
neighborhood contains at least a predefined number of points (minPOINTS), the 
cluster is expanded to contain its neighbors, as well. However, if the number of 
points in the neighborhood is less than minPOINTS, the point is considered to be 
noise and it is deleted. An iterative two-steps DBSCAN is performed by the 

proposed method, starting from ε = 200 m and minPOINTS = 5: 

1. application of the DBSCAN on nuclei centroids using the current values of ε 
and minPOINTS; 
 

2. comparison between the number of cells before and after the clustering. If the 

difference is less than 5%, ε is decreased by 20 m and the algorithm returns to 
step 1. 

These two steps are repeated until more than 5% of nuclei are deleted by 

DBSCAN or ε reaches 50 m. In this way, the clustering sensitivity is adapted for 
each image by varying the neighborhood size (ε). The application of the iterative 
DBSCAN is shown in Figure 4.10b.  

For each cluster, the proposed method extracts the circumscribed polygon to 
all the nuclei of that cluster (Figure 4.10c). However, the result obtained is still 
sub-optimal, so further steps are performed to get an accurate contour of the 
neoplastic epithelium. 
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The proposed method applies an active contour model to improve the 

detection of tumor borders. In particular, the Chan-Vese region-based energy 
model is implemented as described in [52]. This model could detect objects whose 
boundaries are not necessarily defined by gradient. The Chan-Vese active 
contours is based on techniques of curve evolution [53], Mumford–Shah 
functional for segmentation [54] and level sets [55]. For each image of the dataset, 
this model allows to obtain accurate contours of tumor areas, even if the gradient 
between neoplastic epithelium and stromal response is very low. The Chan-Vese 
active contours is applied to the image 𝐼1 = 𝐼𝑅−𝐼𝐵, where 𝐼𝑅 and 𝐼𝐵 are the red and 
blue channels of the considered image 𝐼, respectively. This channel subtraction 
aims to brighten the stromal response while simultaneously darkening everything 
belonging to the neoplastic epithelium (Figure 4.10d). The tumor polygons 
obtained in the previous step are used as the initial contour at which the evolution 
of the segmentation begins, and the number of iterations is set to 100. The result 
obtained after the application of Chan-Vese model is illustrated in Figure 4.10e.  
 

 
 

Fig. 4.10 Neoplastic epithelium detection. (a) Nuclei classified as tumor, (b) Density-
based nuclei clustering (DBSCAN) where each color represents one cluster. (c) 
Circumscribed polygon for each tumor zone. (d) Starting image for active contours. (e) 
Tumor boundaries after active contours. (f) Final neoplastic epithelium contours. 

 
Morphological operators are then applied to tumor areas to obtain smoother 

contours. This process is composed of three steps: i) morphological erosion using 

a disk with 5 m radius, ii) removal of areas smaller than 100 m2 and iii) 
morphological dilation using the same structural element of the previous erosion. 
Finally, boundaries between neoplastic epithelial and stromal response are 
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interpolated using the Savitzky-Golay filter [56]. The Savitzky-Golay filter is 
designed to smoothing data points using a polynomial function fitted to N 
neighboring points. For this application, the polynomial order is set to 11 with a 
neighborhood size of 201. The final result provided by the proposed algorithm is 
illustrated in Figure 4.10f.  

Finally, one of the three tissue conditions (Table 4.5) is associated to each 
image following these rules:  

1. if the whole image is recognized as a tumor area, then the tissue condition is all 
neoplastic epithelium; 
 

2. if there is no tumor area, then the tissue condition is no neoplastic epithelium; 
 

3. in all other cases the tissue condition is neoplastic epithelium and stromal 
reaction. 

Performance indicators 
 

The parameters tuning of the proposed algorithm is reported in Appendix B. 
The accuracy (Eq.4.8) of the algorithm in the association of the tissue condition 
(all neoplastic epithelium, no neoplastic epithelium, neoplastic epithelium and 
stroma reaction) is evaluated. Then, a comparison between masks drawn by a 
manual operator (MASKMANUAL) and those provided by the proposed method 
(MASKAUTOMATIC) is carried out by calculating the recall (Eq. 4.1), precision 
(Eq. 4.2), F1SCORE (Eq. 4.3), specificity and jaccardINDEX: 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
𝑇𝑁

𝑇𝑁 𝐹𝑃
 (Eq. 4.9) 

 

𝑗𝑎𝑐𝑐𝑎𝑟𝑑  
|𝑀𝐴𝑆𝐾𝑀𝐴𝑁𝑈𝐴𝐿 ∩ 𝑀𝐴𝑆𝐾𝐴𝑈𝑇𝑂𝑀𝐴𝑇𝐼𝐶|
|𝑀𝐴𝑆𝐾𝑀𝐴𝑁𝑈𝐴𝐿 ∪ 𝑀𝐴𝑆𝐾𝐴𝑈𝑇𝑂𝑀𝐴𝑇𝐼𝐶|

 (Eq. 4.10) 

 

In detail, specificity assesses the true negative fraction and the jaccardINDEX 
measures similarity between two different shapes, defined as the size of the 
intersection divided by the size of the union of the segmented object [57]. 
 

4.3 Results 

4.3.1 Segmentation results of MANA Algorithm 

MANA vs manual operator image segmentation 
 

An example of the validation process for each of the six organs analyzed 
(colon, liver, bone, prostate, adrenal gland and thyroid) is shown in Figure 4.11. 
Table 4.6 summarizes both the object-level performance (recall, precision and 
F1SCORE) and pixel-level performance (CS, US, SE rates) of the proposed 
technique. As can be seen from Table 4.6, the MANA algorithm achieves an 
average F1SCORE of 0.9305 on 30 images. The accuracy and the robustness of the 
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proposed algorithm are also demonstrated by the similar values of recall and 
precision obtained for the entire dataset. 

 

 
 

Fig. 4.11 Examples of sub-images taken from each tissue analyzed (columns), showing 
challenging cases based on variation in nuclear size, color appearance and crowding. In 
the first and second row are shown the original image and the manual annotations 
respectively. The automatic result of the MANA algorithm is presented in the third rows. 
In the last row, the validation process is illustrated (correct-segmentation: green, under-
segmentation: orange, segmentation-error: blue, false-negative: red). 

 
 
Table 4.6 Performance of the MANA algorithm in the nuclei segmentation (mean ± 
standard deviation). 
 

Organ 
Computational 

Time (sec) 
Object-level performance Pixel-level performance 

Recall Precision F1SCORE CS (%) US (%) SE (%) 

Colon 22.89 ± 2.15 
0.9505 ± 
0.0121 

0.9048 ± 
0.0114 

0.9270 ± 
0.0086 

86.78 ± 
1.97 

8.69 ± 
2.00 

4.53 ± 
1.14 

Liver 11.32 ± 1.25 
0.9249 ± 
0.0267 

0.9547 ± 
0.0114 

0.9392 ± 
0.0101 

87.17 ± 
4.55 

5.81 ± 
2.42 

7.02 ± 
2.37 

Bone 13.10 ± 1.13 
0.9486 ± 
0.0290 

0.9362 ± 
0.0203 

0.9417 ± 
0.0077 

74.15 ± 
4.17 

21.35 ± 
4.30 

4.07 ± 
2.49 

Prostate 12.28 ± 1.31 
0.9533 ± 
0.0127 

0.9404 ± 
0.0147 

0.9467 ± 
0.0106 

77.47 ± 
7.72 

18.79 ± 
7.31 

3.74 ± 
0.88 

Adrenal 
Gland 

18.02 ± 1.26 
0.9126 ± 
0.0300 

0.9239 ± 
0.0312 

0.9174 ± 
0.0129 

84.60 ± 
4.44 

7.33 ± 
2.55 

8.06 ± 
2.62 

Thyroid 23.71 ± 5.94 
0.9335 ± 
0.0296 

0.8914 ± 
0.0221 

0.9112 ± 
0.0038 

81.62 ± 
6.18 

12.61 ± 
5.39 

5.77 ± 
2.60 

Overall 16.89 ± 5.72 
0.9372 ± 
0.0288 

0.9253 ± 
0.0293 

0.9305 ± 
0.0161 

81.97 ± 
7.05 

12.43 ± 
7.32 

5.53 ± 
2.66 
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An average correct-segmentation (CS) rate of 81.97% coupled to a 

segmentation-error (SE) rate of 5.53% is also obtained. Furthermore, the under-
segmentation (US) rate is around 7% in tissues with well-defined nuclei (e.g. liver 
and adrenal gland) while the percentage increases up to 20% in images containing 
a lot of touching cells (e.g. bone and prostate). 

Finally, the computational time is slightly dependent on the number of 
detected nuclei, ranging between 11 and 23 seconds (average computational time: 
16.89 seconds). 
 

Comparison with open-source software 
 

Automatic results provided by MANA are also compared with three open-
source software (CellProfiler, QuPath and Fiji) widely applied to the analysis of 
histological images [58]. CellProfiler [59] is a software with a modular structure 
that integrates several image-processing techniques to perform automatic analyses 
on biological images. QuPath [60] is a new bio-image software designed to 
provide an open-source solution for whole slide images in digital pathology. This 
software allows performing different automatic analyses of histopathological 
images, including cell nuclei segmentation. Fiji [61] is a Java-based software with 
several plugins which facilitate scientific image analysis based on a semi-
automatic pipeline consisting of: (i) conversion of RGB image into grayscale, (ii) 
manual intensity thresholding, (iii) automatic nuclei separation using watershed 
transform and (iv) small particles removal. 

A quantitative comparison of the performances offered by the three open-
source software with MANA is reported in Figure 4.12 and Table 4.7. 
 

 
 

Fig. 4.12 Comparison between CellProfiler, QuPath, Fiji and MANA in the nuclei 
segmentation (columns). The first and second column show the original image and the 
corresponding manual annotation. Sub-images taken from three different organs are 
illustrated in rows.   
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Table 4.7 Performance of CellProfiler, QuPath and Fiji software in the segmentation of 
the cell nuclei (mean ± standard deviation). 
 

Method 
Computational 

Time (sec) 
Object-level performance Pixel-level performance 

Recall Precision F1SCORE CS (%) US (%) SE (%) 
CellProfiler 
(automatic) 

21.13 ± 3.78 
0.6866 ± 
0.2421 

0.8274 ± 
0.0820 

0.7154 ± 
0.2030 

65.47 ± 
23.23 

4.79 ± 
3.21 

29.73 ± 
23.44 

QuPath 
(automatic) 

11.37 ± 1.96 
0.9248 ± 
0.0552 

0.7120 ± 
0.0916 

0.8004 ± 
0.0638 

74.24 ± 
10.41 

9.29 ± 
7.70 

6.47 ± 
3.23 

Fiji (semi-
automatic) 

252.73 ± 76.11 
0.9462 ± 
0.0386 

0.8658 ± 
0.0424 

0.9030 ± 
0.0248 

82.59 ± 
7.05 

12.69 ± 
5.88 

4.65 ± 
3.30 

MANA 
(proposed) 

16.89 ± 5.72 
0.9372 ± 
0.0288 

0.9253 ± 
0.0293 

0.9305 ± 
0.0161 

81.97 ± 
7.05 

12.43 ± 
7.32 

5.53 ± 
2.66 

 
 

As can be seen from Table 4.7, the nuclei segmentation provided by 
CellProfiler has a low recall. In fact, several nuclei are not detected by the 
software, and this generates a high number of false negative (FN) cells. In 
addition, the average F1SCORE of CellProfiler is lower than the proposed one for 
more than 20 % (0.7154 vs 0.9305). This software has also the poorest pixel-level 
performance, with a low CS rate (65.45%) and a large mean SE rate (29.73%). 

The QuPath software proves to be an efficient tool for nuclei segmentation, 
with an average recall of 0.9248 and a fast-computational time (11.37 seconds). 
On the other hand, this software detects a lot of false-positive (FP) nuclei, causing 
a very low precision (0.7120). This low precision leads to a lowering of the 
average F1SCORE (0.8004). 

The average F1SCORE obtained with Fiji is slightly lower than those achieved 
with the MANA algorithm (0.9030 vs 0.9305). In fact, the Fiji processing is based 
on a manual single threshold whereas MANA can locally modify the optimal 
threshold to detect the highest number of actual nuclei. Being a semi-automated 
pipeline, the Fiji processing is also 15 times higher than MANA algorithm 
(252.73 vs 16.89 seconds). 

 

4.3.2 Tissue Characterization in Prostate Cancer 

The optimal network configuration used for glands classification has four 
hidden layers, with respectively 9, 5, 7 and 8 units (Figure 4.13). The first two and 
the last layers has a tan-sigmoid transfer function, the third layer has a log 
sigmoid transfer function and the output layer has a linear transfer function. The 
network learning rate is 0.01. This network achieves an average accuracy of 
82.85% (training set) and 84.54% (development set). In the test set, the network 
obtains a mean accuracy of 81.98% in glands classification (76.92% for normal 
pattern, 82.35% for pattern 3 and 86.67% for pattern 4).  
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Fig. 4.13 Neural network architecture for glands classification.  

 
To evaluate the performance of the algorithm, a comparison between the 

automatic Gleason Group and the one assigned by the pathologist is carried out. 
The overall accuracy of the proposed method for gleason scoring is reported in a 
confusion matrix in Figure 4.14. 

 

 
Fig. 4.14 Confusion matrix of the classification accuracy for all the Gleason Group (GG).  

 
It can be observed that the algorithm correctly assigns the Grade Group in 

84% of the images (84 out of 100 images). Importantly, the difference between 
Gleason Group 2 (3+4) and 3 (4+3) is correctly distinguished with a rate of 84.4% 
(38/45 images). In five cases the algorithm underestimates the Gleason Group, 
and a GG 2 is misclassified in GG 1 in only one image. Results also show how the 
proposed algorithm never classify a high Gleason Group (GG3, GG4) as a low 
one (GG1), showing excellent sensitivity. Figure 4.15 shows the comparison 
between manual and automatic gleason scoring (GGMANUAL, GGAUTOMATIC) for 
four sample images.  
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Fig. 4.15 Comparison between manual and automatic gleason scoring. First row 
illustrates the manual Gleason Group while second row shows the glands classification 
(green: normal, yellow: pattern 3, orange: pattern 4) and the corresponding automatic 
Gleason Group. 
 

4.3.3 Tissue Characterization in Breast Carcinoma 

The network for nuclei classification achieves an average accuracy of 94.64% 
(training set) and 94.29% (development set). In the test set, the network obtains a 
mean accuracy of 95.22% (93.81% for no-tumor nuclei and 96.62% for tumor 
nuclei).  

The algorithm also obtains a 100% of accuracy in the identification of the 
tissue condition for all the 100 images of the dataset. An example of manual and 
automatic segmentation in the three tissue conditions is shown in Figure 4.16. 

The performance of the proposed method in the discrimination between 
neoplastic epithelium and stromal response is also assessed. In order to perform 
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this kind of evaluation, images should contain both neoplastic epithelium and 
stromal response. For this reason, only images labeled as neoplastic epithelium 
and stromal response are used. The results of the comparison between manual and 
automatic segmentation are summarized in Table 4.9.  
 

 
 

Fig. 4.16 Comparison between manual and automatic segmentation in the three tissue 
conditions. First column illustrates the manual annotations while second column shows 
the corresponding automatic results. (a,b) image labeled as neoplastic epithelium and 
stromal response, (c,d) image with all neoplastic epithelium, (e,f) image without 
neoplastic epithelium. 

 
Table 4.9 Performance of the proposed algorithm in the discrimination between 
neoplastic epithelium and stromal response (mean ± standard deviation). 
 

Tissue 
condition 

Computational 
Time (sec) 

Recall Precision F1SCORE Specificity 
jaccard

INDEX 
Neoplastic 
epithelium 
and stromal 

reaction 

18.11 ± 3.86 
0.8680 ± 
0.0418 

0.9326 ± 
0.0660 

0.8894 ± 
0.0736 

0.9407 ± 
0.0683 

0.8481 ± 
0.1114 

 
The proposed method can be considered very performing in the detection and 

segmentation of neoplastic epithelium, with very high average values of recall, 
precision, F1SCORE, specificity and jaccardINDEX thus demonstrating the accuracy 
of the method (Table 4.9). For all images, precision and specificity are always 
higher than 0.90. In addition to being accurate, the proposed method is also fast, 
with an average computational time of 18.21 seconds.  
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Figure 4.17 shows some examples of manual and automatic segmentation of 

neoplastic epithelium in different patients. 
 

 
 

Fig. 4.17 Comparison between manual and automatic segmentation of the neoplastic 
epithelium for four different patients, showing challenging cases with high variation of 
staining intensities, cells morphology and tumor-stromal architecture. 
 

4.4 Discussion 

In this Chapter, three fully automated methods are proposed for the 
quantitative analysis of histopathological images. The analysis of 
histopathological images is crucially important and has a wide range of 
applications, like cancer grading [62], cancer diagnosis [63] and molecular 
markers quantification in healthy and pathological samples specimens [10]. 

The first algorithm, named MANA, is able to detect cell nuclei boundaries 
within H&E stained images. Nuclei segmentation in histopathological images is a 
challenging task due to the high variability of nuclei size, shape and color 
intensity [64], [65]. The MANA algorithm does not need any user interaction and 
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it is able to automatically detect cell nuclei in several tissues and magnifications. 
Nuclei centers were manually marked by an expert pathologist, for a total of 
59,123 cells. It was not necessary to segment nuclei boundaries since the MANA 
algorithm does not require a training set as deep learning-based methods. For this 
reason, having a faster manual segmentation, the number of annotated nuclei was 
increased, creating a dataset that contains more than twice the number of marked 
nuclei compared to previous works [2], [13], [63]. 

The MANA algorithm is validated using metrics that penalizes both detection 
(object-level) and segmentation (pixel-level) errors. The comparison between 
manual annotations and automatic results shows high performances of the 
proposed algorithm. For each of the six tissues analyzed, the MANA algorithm 
obtains always an F1SCORE higher than 0.90, with an average F1SCORE of 0.9305 
(Table 4.6). Compared with the only multi-tissue nuclei segmentation system 
proposed in literature [13], the proposed method achieves a large margin, with 
more than 10% improvement in nuclei detection (F1SCORE: 0.8267 vs 0.9305). 
Object-level and pixel-level performance of the MANA algorithm are also 
comparable to previous works on cell nuclei detection in H&E stained images 
[15], [64], [66]. Overall, the accuracy and robustness of MANA allows achieving, 
on different magnifications and tissues, performances in line or better than those 
of state-of-art algorithms designed for single tissues [59], [60]. The proposed 
technique also obtains the highest F1SCORE compared to other open-source 
software (CellProfiler, QuPath and Fiji) designed for nuclei segmentation. 
Compared to other automatic methods, MANA has the best pixel-level 
performance and one of the lowest computational time. 

The second method presented is a fully automated strategy for gleason scoring 
in prostate histopathological images. The gleason grading system is used to help 
evaluate the prognosis of prostate cancer using samples from a prostate biopsy. 
The proposed method can operate at the commonly used magnification (10x) and 
discriminate between normal glands, Gleason patterns 3, and Gleason patterns 4, 
and finally provide the correct Gleason Group to each image. The algorithm is 
tested on 100 H&E stained images of prostate tissue and automatic results are 
compared with manual scoring of an expert pathologist. To the best of our 
knowledge, there is no published work reporting about an algorithm able to 
distinguish between the ambiguous Gleason GG 2 (3+4) and 3 (4+3). Compared 
to other works found in literature [25], [67], the proposed approach does not 
require a very high magnification and provides good results of glands 
segmentation even without well-defined lumina.  

As can be seen from the classification performance (Figure 4.14), only 16 
images out of 100 are incorrectly classified (total accuracy of 84%). In 11 cases 
the algorithm overestimates the GG while in only 5 images the GG is 
underestimated. The algorithm is very performing in the distinction between GG 2 
and GG3, with an accuracy of 84.4% (38/45 images). An integration of our glands 
dataset is required in order to improve the neural network performance. Currently, 
our research team is collecting new prostate images of GG 4 (5 + 3 and 3 + 5) and 
GG 5 (GS = 9-10) to include patter 5 glands in the dataset. 
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The third proposed technique is a fully automatic method for the 

discrimination between neoplastic epithelium and stromal reaction in H&E 
stained images of breast tissue. The distinction between neoplastic epithelium and 
stromal reaction is essential in the correct extraction of predictive and prognostic 
biomarkers for breast carcinoma [26], [28]. Starting from cell nuclei, our 
technique is able to detect neoplastic epithelium boundaries without any user 
interaction. The proposed method is tested on 100 H&E stained images of breast 
tissue and automatic results are compared with manual annotations of an expert 
pathologist. 

The comparison between manual and automatic segmentation shows high 
performances of the proposed technique (Table 4.9). In particular, an average 
F1SCORE of 0.8894 coupled to a mean jaccardINDEX of 0.8481 is obtained. These 
high performances are mainly due to the combination of an accurate cell nuclei 
detection/classification and adaptive techniques (spatial clustering and active 
contours). The proposed method needs an image acquired with at least 20x 
magnification otherwise the neural network fails the nuclear texture classification 
due to low resolution. As a consequence, the algorithm is not able to correctly 
discriminate between neoplastic epithelium and stromal response for images 
acquired with a magnification lower than 20x. The proposed technique shows 
excellent performance in images with large extension of tumor areas (Figure 4.17, 
patient 1-3) while the algorithm accuracy slightly decreases with a lobular-
structure tumor (Figure 4.17, patient 2-4) due to the imposed parameters (i.e. 
settings of the spatial clustering and active contours). The proposed method 
exhibits excellent performance in images of invasive non-special type carcinoma, 
but future studies are required to test the accuracy of the algorithm for tumor 
segmentation in other types of cancer like tubular and lobular breast carcinoma. 

Thanks to the accurate and fast nuclei segmentation of the MANA algorithm, 
fully-automated systems for markers quantification [10], histological lesions 
evaluation [65] and tumor patterns recognition [68] can be easily developed. In 
addition, automated systems for tumor characterization in whole-slide tissue can 
be easily developed thanks to the speed and robustness of the proposed methods. 

4.5 Conclusion 

The visual inspection of histological images is often subjective and time-
consuming, so reliable automatic algorithms could help the pathologists in their 
everyday work. 

 In this Chapter, three methods are presented as fully-automated solutions for 
the quantitative analysis of histopathological images. The three developed 
algorithms are designed to: i) perform cell nuclei detection on different organs and 
magnification (MANA algorithm); ii) perform the Gleason Group of a histological 
prostate specimen; iii) perform the neoplastic epithelium segmentation in H&E 
stained images of breast tissue. The proposed algorithms are compared with 
manual operators and high performances are obtained for each image of the 
dataset. The observed reliability and robustness of these techniques are mainly 
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due to the use of the object-based detection of the ARCO algorithm and an 
optimized and adaptive workflow. 

Starting from the proposed algorithms, our research group is currently 
working on a system for the discrimination of cancerous areas from non-
cancerous areas on entire biopsies of prostate and breast tissue. In addition, we are 
also working on a MANA-based algorithm for the automatic detection of cellular 
structures in other organs (e.g. steatosis and necrosis in liver tissue, glomeruli and 
tubules in kidney tissue).  
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5.1 Introduction 

Thanks to ultrasound (US) imaging, a non-invasive and reliable investigation 
of skeletal muscles in both healthy and pathological conditions can be easily 
performed. In the last decades, musculoskeletal ultrasonography has been 
extensively used to characterize muscles both morphologically [1], [2], and 
architecturally [3], [4], [5]. 

The appearance of skeletal muscles in US is clearly distinctive and can be 
easily discriminated through visual inspection [6]. Skeletal muscles are identified 
by the superficial and deep aponeuroses, two boundary highly reflective 
connective tissue. Muscle ultrasound scans are often collected in the transverse 
and longitudinal plane through the placement of the US probe in correspondence 
of the maximum muscle diameter or the muscle region of interest. 

In particular, the measurement of muscle thickness has been widely used in 
clinical studies to investigate several pathological conditions like disuse atrophy 
[7], ageing (e.g. primary sarcopenia) [8], [9], [10] and muscle hypertrophy [11], 
[12]. Furthermore, previous studies adopted the muscle thickness as a measure to 
predict the total body fat-free mass [13],  the leg skeletal muscle mass [14], [15], 
as well as to indirectly evaluate the cross-sectional area [16], [17] and volume 
[18], [19], [20] of superficial muscles. 

In transverse plane, musculoskeletal ultrasound imaging enables to quantify 
muscle characteristics (e.g. size and echogenicity) relative to the maximal cross-
sectional area (CSA). The CSA represents a fundamental architectural parameter 
directly correlated with to the maximum force generated by the muscle [21], [22]. 
Previous studies have shown the feasibility of the quantitative assessment of 
cross-sectional area for different skeletal muscles [2], [23], [24], [25], [26], in 
both static and dynamic conditions. These studies demonstrated that the CSA 
quantification is a reliable tool for the assessment of muscle size during 
musculoskeletal rehabilitation [27], [28] and training [29] as well as to 
neuromuscular disorders [30]. 

In most of the previously cited works, the muscle parameters extraction (CSA 
and thickness) from ultrasound images is manually performed, which is a time-
consuming task and is also prone to errors. Several semi-automatic and fully-
automated approaches have been proposed in the last decays to extract 
quantitative data on muscle ultrasound images. In 2010, a muscle boundary 
tracking algorithm to measure the thickness of the pectoralis major muscle was 
presented [31]. Few years later, a sequential programming approach was proposed 
to measure the abdominal muscles thickness [32]. In another work, a semi-
automatic approach was implemented to detect the aponeuroses and estimate the 
gastrocnemius muscle thickness as the distance between the deep and superficial 
aponeurosis [33].  

Although the previous cited studies were applicable in the study of muscle 
ultrasound architecture, they were all designed and optimized for a specific 
muscle, making them of difficult application in a clinical scenario. In addition, all 
these methods were developed for the extraction of the parameters from 
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longitudinal scans and most of them are manually driven and require the user 
input to work properly. Furthermore, an automatic strategy for the quantitative 
evaluation of the muscle in transverse scans has never been proposed in literature. 
To the best of our knowledge, no previous work presented a fully automated 
algorithm for muscle thickness measurement and CSA segmentation for different 
superficial skeletal muscles.  

In this Chapter, two robust and novel algorithms are presented to characterize 
the skeletal muscle geometry and architecture in both longitudinal and transverse 
planes. The first method, named MUSA (Muscle UltraSound Analysis), is an 
automatic technique designed for the muscle thickness measurement of different 
skeletal muscles acquired in longitudinal plane. The second method, named 
TRAMA (TRAnsverse Muscle ultrasound Analysis), is a completely automatic 
algorithm for the CSA segmentation in transverse ultrasound images taken from 
four different skeletal muscles of the lower limb. 

5.2 Materials and Methods 

5.2.1 Longitudinal Muscle Ultrasound Analysis: MUSA algorithm 

Image database 
 

A total of 200 images were acquired from 50 subjects (25 males and 25 
females). All the subjects were free from neuromuscular or skeletal impairments. 
For each subject, four skeletal muscles were investigated during the ultrasound 
session: medial gastrocnemius, tibialis anterior, vastus lateralis and rectus femoris. 
The dominant side was acquired in the longitudinal plan for each of the four 
muscles and a total of 200 images (4 muscles x 50 subjects) were collected and 
analyzed. All the subjects signed an informed consent. The entire study was 
approved by the local ethics committee and was conducted at "Città della Salute" 
Hospital – Molinette (Torino, Italy). 

A detailed explanation of the ultrasound device settings and acquisition 
protocol is described in Appendix C and D. 
 
MUSA algorithm architecture 
 

The algorithm is designed to automatically identify the aponeuroses in muscle 
ultrasound images acquired in the longitudinal plane. Once the aponeuroses are 
correctly located, the proposed method estimates the muscle thickness by 
measuring the distance between the superficial and deep aponeurosis. The MUSA 
algorithm is developed in MATLAB environment and image processing is carried 
out on a workstation with a 2.8 GHz exa-core CPU and 64 GB of RAM. The 
procedure of the MUSA algorithm is schematically described in Figure 5.1. Three 
main steps compose the processing: search for candidate aponeuroses, search for 
muscle fascicles and selection of the actual aponeuroses. In the next paragraphs, 
an exhaustive description of the proposed method is provided. 
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Fig. 5.1 Schematic representation of the MUSA algorithm. Starting from the original US 
image, the proposed method finds all the candidate muscle aponeuroses. Then, after the 
fascicle detection, the MUSA algorithm detects the two actual aponeuroses and perform 
the muscle thickness measurement. 
 

Search for candidate aponeuroses  
 

The first step of the MUSA algorithm is the automatic search of all the 
possible positions of the muscle aponeuroses within the image. Starting from the 
original image (Figure 5.2a), the vertical Sobel gradient is computed to enhance 
all the aponeuroses-like structures (Figure 5.2b). Then, a vertical FODG filter 
(First-Order Derivative Gaussian) is applied to the processed image. This filter is 
obtained by the convolution between a simple derivative filter and a Gaussian 
kernel [34]. The dimension of the structures enhanced by the FODG is directly 
proportional to its kernel size. For this reason, a kernel dimension of 1 mm is 
selected to enhance all the aponeurosis-like structures with a size equal to or 
bigger than 1 mm. The output of the FODG filter (Figure 5.2c) is thresholded 
using the ARCO algorithm hence obtaining the FODG binary mask shown in 
Figure 5.2d. The input parameters of the ARCO algorithm are listed in Table 5.1. 

As can be seen in Figure 5.2d, the FODG binary mask contains the two 
muscle aponeuroses as well as other structures with a thickness comparable to an 
aponeurosis. A heuristic cleaning step is then performed to delete all the objects 
that cannot be qualified as candidate aponeuroses. In order to discard no-
aponeurosis structures, each object within the FODG binary mask is approximated 
to an ellipsis and its eccentricity and its major axis length is evaluated. The 
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eccentricity is defined as the ratio of the distance between the foci of the ellipse 
and its major axis length (an ellipse whose eccentricity is 1 is a line segment, 
while an ellipse whose eccentricity is 0 is actually a circle). All the regions with a 
major axis length lower than 60% of the image column width or with an 
eccentricity lower than 0.995 are deleted (Figure 5.2e).  

 
Table 5.1 Input parameters of ARCO for candidate aponeuroses detection in the MUSA 
algorithm. 
 
 

Parameters Value 

image LAYER Grayscale image 

object TYPE Object of interest is bright on a dark background 

polynomial ORDER PWMCURVE is fitted with a 7th order polynomial function 

object PROPERTY  
Minimum standard deviation of the segmented objects is 
imposed as condition to find the optimal threshold among 
candidate ones. 

 

 

Finally, branch removal is carried out to smooth the morphology of the 
remaining regions. In Figure 5.2f, the white arrow illustrates the correction made 
by the branch removal with respect to the irregularity of the superficial 
aponeurosis of Figure 5.2e. 

 
 

 
 

Fig. 5.2 First steps of the MUSA algorithm. (a) Original muscle ultrasound image of a 
medial gastrocnemius. (b) Vertical Sobel gradient applied to the original image. (c) 
FODG output image. (d) FODG binary mask obtained with the ARCO algorithm. (e) 
FODG mask after the removal of no-aponeuroses structures. (f) Binary mask after the 
branch removal step. In panels (e) and (f), the arrow illustrates the effect of branch 
removal on the FODG binary mask. APOINF = deep aponeurosis, APOSUP = superficial 
aponeurosis. 
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Search for muscle fascicles 
 

After the branch removal of the previous section (Figure 5.2f), the FODG 
binary mask often contains more than two candidate aponeuroses. For this reason, 
the presence of muscle fascicles is checked between each pair of candidate 
aponeuroses to detect the two actual muscle aponeuroses among all the candidate 
ones. In fact, a muscle region always contains fascicles in longitudinal US scans. 
Firstly, the original image (Figure 5.2a) is equalized and then Otsu thresholding 
[35] is applied to obtain a fascicles binary mask (Figure 5.3a). This mask contains 
the muscle fascicles and aponeuroses within the image. All the candidate 
aponeuroses are removed from the binary fascicles mask (Figure 5.3b), together 
with all the structures with an area lower than 1 mm2 (which are likely to 
represent over-segmentation due to speckles). 

In the longitudinal plane, muscle fascicles are represented by a line with a 
specific orientation. For this reason, a line detection based on Hough transform 
[36] is computed on the fascicles binary mask. The variable θ is the angle that the 
line forms with the origin, measured in degrees anticlockwise from the positive x-
axis (0° ≤ θ ≤ 180°). For this application, all the detected lines with an orientation 
outside the range 90° ≤ θ ≤ 180° are deleted. Figure 5.3c illustrates the detected 
fascicles (green line) overlaid with the original ultrasound image. 

 

 
 

Fig. 5.3 Processing steps for fascicle detection. (a) Fascicles binary mask obtained with 
histogram equalization and Otsu thresholding. (b) Fascicles mask without aponeurosis 
candidates. (c) Line detection overlaid on the original image: fascicles endpoints are 
portrayed in yellow while muscle fascicles are shown in green. 

 
Selection of the actual aponeuroses 
 

This step is devoted to the detection of the actual muscle aponeuroses in 
longitudinal plane. First of all, the final fascicles mask is merged with FODG 
mask (Figure 5.4a). At this stage, we do not need an accurate profile of the muscle 
aponeuroses, but we just need to select the correct aponeuroses among the 
candidate ones. A heuristic search is carried out to identify the two muscle 
aponeuroses. This heuristic search is applied in the central region of the image 
(between 20% and 80% of the image width) since, in this region, the muscle 
geometry is reproduced without distortions (the ultrasound beams are perfectly 
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perpendicular to the muscle aponeuroses). Seven columns spaced by 10% are 
defined to search the two muscle aponeuroses. The number of search columns is 
set experimentally to guarantee the best performance coupled with the lowest 
computational cost. The heuristic search follows three steps:  

1. the proposed method detects all the intersection points between the aponeurosis 
candidates and each search column. Columns with only one intersection point 
are discarded from the search. Each intersection point is labelled as Ym,n (n 
identifies the search column while m denotes the corresponding structure 
intersected). The MUSA algorithm also calculates the distance between 
consecutive intersection points on the same search column. If two points are 
closer than 15 mm, then those points are deleted. The minimal vertical distance 
is set to 15 mm based on the minimum thickness of the four investigated 
muscles [37]. If no couple of points have a distance higher than 15 mm, the 
entire search column is discarded; 
 

2. if only one pair of intersection points is detected for a single search column, 
then the uppermost point represents the superficial aponeurosis (APOSUP) while 
the lowest point indicates the deep aponeurosis (APOINF); 

 

3. if more than one pair of intersection points are detected for a column, then the 
proposed technique selects the ROI (region of interest) with the highest number 
of muscle fascicles: for each couple of points, a ROI with width equal to the 
10% of the entire image width and height equal to the distance between the two 
points is defined (Figure 5.4b). The Hough transform emphasize muscle 
fascicles within the image; therefore, in order to define the APOSUP and 
APOINF, the number of fascicles within each ROI of the analyzed column is 
calculated. The APOSUP and APOINF coordinates are defined as the pair of 
points of the ROI with the highest number of muscle fascicles. 

The result of this heuristic search is a sequence of points that delineate the 
position of the superficial aponeurosis APOSUP and the deep aponeurosis APOINF. 
The output of the heuristic search is illustrated in Figure 5.4c. The region within 
the FODG binary mask mostly recognized as APOINF is labelled as the final deep 
aponeurosis; similarly, for the superficial aponeurosis (Figure 5.4d). After the 
heuristic search, the two profiles are roughly placed on the aponeuroses (Figure 
5.4d), therefore a refinement is required to obtain more accurate muscle profiles. 
A DoG (Difference of Gaussians) filter is then applied to detect the actual 
aponeurosis edges. For an input image I, the DoG filtered image is defined as: 

 
 

                                 𝐷𝑜𝐺 𝐼 ⋅ 𝐺 𝐼 ⋅ 𝐺  (Eq. 5.1) 
 

where G1 and G2 are the kernes of two low-pass Gaussian filters. For this 
application, the size of each kernel (N) and the corresponding standard deviation σ 
is set as follow: N1=9, σ1=101, N2=83 and σ2=21. The DoGIMAGE is shown in 
Figure 5.4e. In the DoGIMAGE, the transitions from dark to bright (i.e. from muscle, 
which is dark, to APOINF, which is bright) are negative, whereas the transitions 
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from bright to dark (i.e. from APOSUP to muscle) are positive. In this way, it is 
possible to locate the exact position of the interface between aponeurosis and 
muscle for each column of the image.  

Finally, the aponeuroses profiles are interpolated by a bicubic spline as 
illustrated in Figure 5.4f. 

 
 

 
 

Fig. 5.4 MUSA heuristic process for the selection of actual aponeuroses. (a) Fascicles and 
FODG masks overlaid on the original image. (b) Sketch of the heuristic search where two 
ROI (regions of interest) are illustrated in dashed rectangles. (c) APOINF and APOSUP 
identified for each search column. (d) Profiles obtained at the end of the heuristic process. 
(e) Application of the DoG filter on the original image. (f) Final interpolated profiles of 
the deep and superficial aponeuroses. 

 
Tibialis anterior images 
 

The tibialis anterior is a bipennate muscle and it is characterized by a unique 
architecture. The fibers of this muscle branch out at a specific angle (pennation 
angle), from the central intramuscular fascia to the deep and superficial 
aponeuroses [38]. As can be seen in Figure 5.5a, the muscle fascicles of the two 
compartments exhibit opposite pennation angles. The MUSA processing can be 
applied and repeated for each muscle compartment. In this way, the proposed 
method is able to process ultrasound images containing multi-compartimental 
muscles. For the tibialis anterior muscle, the proposed method performs the 
following three steps: 

1. starting from the FODG binary mask (Figure 5.5b), MUSA finds the lower 
compartment (between central fascia and deep aponeurosis). Among all 
candidates, the ones that are correspond to the central fascia and the deepest 
aponeurosis are traced (Figure 5.5c) by applying the same strategy as described 
for mono-compartmental muscles; 
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2. the central fascia also defines the bottom limit of muscle upper compartment. 
As shown in Figure 5.5d, the MUSA algorithm is then applied from the central 
fascia upwards in order to identity the upper compartment (between central 
fascia and superficial aponeurosis); 
 

3. once the superficial and deep aponeuroses are correctly located (Figure 5.5e), 
the final muscle profiles are obtained by applying the DoG filter (Figure 5.5f). 

Since pennation angles are apposite in the two compartments of the tibialis 

anterior, the range of  for the Hough transform is set to 0°    90° for the lower 

compartment and 90°    180° for the upper compartment. 
 

 
 

Fig. 5.5 Processing steps for a tibialis anterior muscle. (a) Original image of a 
representative tibialis anterior. (b) Binary FODG mask of the image. (c) Automatic 
profiles of the lower compartment (central fascia and deep aponeurosis). (d) Automatic 
profiles of the upper compartment (superficial aponeurosis and central fascia). (e) 
APOSUP and APOINF profiles obtained at the end of the heuristic process. (f) Final profiles 
of the deep (APOINF) and superficial (APOSUP) deep aponeuroses.  

 
Performance indicators 
 

The parameters tuning of the MUSA algorithm is reported in Appendix B. To 
estimate the muscle thickness, the MUSA algorithm implements the centerline 
distance metric. This metric has been widely used for thickness measurements in 
ultrasound images [39], [40]. The first step of the centerline distance metric is the 
determination of the centerline between the two profiles. Then, a chord 
perpendicular to each point of the centerline is plotted (the chord length represents 
the measure of muscle thickness at that point). The final thickness measurement is 
computed as the mean distance of all the chords along the centerline. 

The measure of muscle thickness provided by MUSA is compared with the 
manual measures performed by three experienced operators. The manual 
operators drew five-line segments that connects the two muscle aponeuroses at 
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around 10%, 30%, 50%, 70% and 90% of the entire length of the muscle profile in 
the image. The Euclidean distance is calculated between each segment’s 
endpoints and the final manual measurement is obtained as the average of these 
five distances. The absolute error between the mean of the three manual 
measurements and the automatic muscle thickness is evaluated in terms of mean 
and standard deviation. 

Finally, automatic results and the mean of the three manual measurements are 
compared using the Kruskall-Wallis analysis of variance and the Bland-Altman 
plots [41]. A correlation analysis between the differences and averages of the two 
measurement methods (MUSA vs mean of manual operators) is also performed 
using the Spearman test to evaluate if there is any statistical dependence between 
the two datasets (manual vs automatic). All statistical tests are carried out with a 
significance level (p) of 0.05. 

5.2.2 Transverse Muscle Ultrasound Analysis: TRAMA Algorithm 

Image database 
 

A total of 200 images were acquired from 50 subjects (25 males and 25 
females). Twenty subjects were healthy, while the remaining 30 subjects were 
affected by different hormonal disorders (growth hormone deficiency: n=5; type 2 
diabetes: n=5; transgender individuals under hormonal treatment: n=5; 
acromegaly: n=5; obesity: n=5) possibly affecting muscle size and/or structure. 
For each subject and patients, the same four skeletal muscles of the MUSA 
algorithm were investigated (medial gastrocnemius, tibialis anterior, vastus 
lateralis and rectus femoris). The dominant side was acquired in the longitudinal 
plan for each of the four muscles and a total of 200 images (4 muscles x 50 
subjects) were collected and analyzed. All the subjects signed an informed 
consent. The entire study was approved by the local ethics committee and was 
conducted at "Città della Salute" Hospital – Molinette (Torino, Italy). 

A detailed explanation of the ultrasound device settings and acquisition 
protocol is described in Appendix C and D.  

 
TRAMA	algorithm	architecture 

The TRAMA algorithm is designed to detect and segment the muscle cross-
sectional area (CSA). This method is developed in MATLAB environment and 
image processing is carried out on a workstation with a 2.8 GHz exa-core CPU 
and 64-GB of RAM. The processing of TRAMA is sketched in Figure 5.6. The 
proposed technique has been built following a similar architecture already 
proposed in the MUSA algorithm [42]. In particular, a similar approach is adopted 
during the search of aponeurosis candidates and the final muscle border 
refinement. Three main steps compose the processing: search for candidate 
aponeuroses, search of muscle connective tissue and selection of the actual 
aponeuroses. In the next paragraphs, an exhaustive description of the proposed 
method is provided. 
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Fig. 5.6 Schematic representation of the TRAMA algorithm. Starting from the original 
US image, the proposed method finds all the candidate muscle aponeuroses. Then, after 
the connective tissue detection, the TRAMA algorithm detect the two actual aponeuroses 
and extract the cross-sectional area (CSA). 

 
Search for candidate aponeuroses  
 

In order to find the aponeurosis candidates, the TRAMA algorithm follows 
the same steps of the MUSA algorithm. Briefly, the vertical Sobel gradient is 
applied to the original image (Figure 5.7a) to enhance all the aponeuroses-like 
structures (Figure 5.7b). The resulting image is filtered with a FODG filter (Figure 
5.7c) and then thresholded using the ARCO algorithm (Figure 5.7d). In order to 
discard no-aponeurosis structures, each object with a major axis length shorter 
than 60% of the image column width or with an eccentricity lower than 0.995 is 
deleted (Figure 5.7e). Finally, branch removal is carried out to smooth and fix 
potential irregularities on the muscle aponeuroses. Figure 5.7f shows the result 
obtained where only aponeurosis-like objects are preserved.  
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Fig. 5.7 First steps of the TRAMA algorithm. (a) Original muscle ultrasound image of a 
vastus lateralis. (b) Vertical Sobel gradient applied to the original image. (c) FODG 
output image. (d) Binary FODG mask obtained with the ARCO algorithm. (e) FODG 
mask after the removal of no-aponeuroses structures. (f) Binary mask after the branch 
removal step. In panels (e) and (f), the arrow illustrates the effect of branch removal on 
the FODG binary mask. APOINF = deep aponeurosis, APOSUP = superficial aponeurosis. 

 
Search of muscle connective tissue 

 

The presence of connective tissue is checked between each pair of candidate 
aponeuroses to detect the two actual muscle aponeuroses among all the candidate 
ones. A Frangi filter [43] is applied to the original image (Figure 5.8a) for its 
intrinsic versatility in detecting objects with different shapes and sizes within an 
image. This multiscale filter is based on the local second-order structure of the 
image: second-order partial derivatives are calculated by convolution of the image 
with the second-order derivative of Gaussian kernels of different sizes. For this 
application, three values of sigma are defined (6, 8 and 10 pixels) since they 
represent the sizes of the muscle connective tissue in transverse scans. Then, the 
second derivative Gaussian kernels are iteratively computed according to the 
chosen sigma (σ) values as a 3σ × 3σ grid. The resulting image after the 
application of the Frangi filter is defined as follows:  

 
 

𝑉  

0        𝑖𝑓 𝜆 0

1 𝑒  𝑒 𝑖𝑛 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠
 (Eq. 5.2) 

 

where β and c are sensitivity parameters, λ1 and λ2 are the eigenvalues of the 
Hessian matrix and S and Rb measure the second-order structureness and the blob-
like structure respectively.  In our case, β is set to 0.5 and c is equal to 15. The 
pixel values of the final filtered image (Figure 5.8b) are the maximum pixel 
values among all the output images generated using the three sigma values. 
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Fig. 5.8 Detection of muscle connective tissue. (a) Original image. (b) Connective tissue 
structures highlight using Frangi filter. 

 
Selection of the actual aponeuroses 

 

This step is devoted to the detection of the actual muscle aponeuroses in 
transverse plane. First of all, the FODG binary mask is merged with the output of 
the Frangi filter (Figure 5.9a) and seven columns spaced by 10% are defined to 
search the two muscle aponeuroses. A heuristic search is carried out to reduce the 
number of candidate aponeuroses. This heuristic search is applied in the central 
region of the image (between 20% and 80% of the image width). The heuristic 
search follows three steps: 

1. the proposed method detects all the intersection points between the aponeurosis 
candidates and each search column. Columns with only one intersection point 
are discarded from the search. Each intersection point is labelled as Ym,n (n 
identifies the search column while m denotes the corresponding structure 
intersected). The TRAMA algorithm also calculates the distance between 
consecutive intersections points on the same search column. If two points are 
closer than 15 mm, then those points are deleted (15 mm is the minimum 
thickness for the four investigated muscles); 
 

2. if only one pair of intersection points is detected for a single search column, 
then the uppermost point represents the superficial aponeurosis (APOSUP) while 
the lowest point indicates the deep aponeurosis (APOINF); 
 

3. if more than one pair of intersection points are detected for a column, then the 
proposed technique selects the ROI (region of interest) with more presence of 
connective tissue: for each couple of points, a ROI with width equal to the 10% 
of the entire image width and height equal to the distance between the two 
points is defined (Figure 5.9b). This operation is possible thanks to the Frangi 
filter that enhance the connective tissue regions within the image. Therefore, in 
order to define the APOSUP and APOINF, the mean gray-scale intensity of the 
output of Frangi filter within each ROI is calculated. The APOSUP and APOINF 
coordinates are defined as the pair of points of the ROI with the highest 
grayscale value.  
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The results of this heuristic search is shown in Figure 5.9c. The region within 

the FODG binary mask mostly recognized as APOINF is labelled as the final deep 
aponeurosis; similarly, for the superficial aponeurosis (Figure 5.9d).  

Figure 5.9e shows the interpolation of the aponeurosis profiles. The 
interpolation is performed only on the central 90% of the image width to exclude 
all the region with a poorer skin-probe contact due to the curvature of the lower 
limbs. Finally, the endpoints of the deep and superficial aponeurosis are 
connected together through two vertical lines (Figure 5.9f). 
 

 
 

Fig. 5.9 TRAMA heuristic process for the selection of actual aponeuroses. (a) FODG 
masks overlaid on the multiscale output image. (b) Sketch of the heuristic search where 
two ROI (regions of interest) are illustrated in dashed rectangles. (c) APOINF and APOSUP 
identified for each search column. (d) Profiles obtained at the end of the heuristic process. 
(e) Interpolation of the deep and superficial aponeurosis profiles. (f) Muscle cross-
sectional area (CSA).  

 
Tibialis anterior images 

 

Since the tibialis anterior muscle is a bipennate muscle, the cross-sectional 
area detection is slightly different due to its specific circular crown shape (Figure 
5.10a). The detection of deep and superficial aponeuroses follows the same 
approach adopted for the other muscles (Figure 5.10b). Then, Frangi filter is 
applied to enhance the tibia-bone interface (Figure 5.10c). The filtered image is 
thresholded using Otsu thresholding and the same cleaning structures step is 
performed. This new image presents a L-shaped structure where the horizontal 
profile is the deep aponeurosis while the vertical profile represents the tibia-bone 
interface (Figure 5.10d). These two profiles are interpolated and prolonged until 
their intersection (Figure 5.10e, point H). The automatic cross-sectional area is 
obtained connecting the superficial aponeurosis endpoints with the deep 
aponeurosis and the lateral interface profile, as shown in Figure 5.10f. 
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Performance indicators 
 

The parameters tuning of the TRAMA algorithm is reported in Appendix B. 
The measure of CSA provided by TRAMA is compared with the manual 
measures performed by two experienced operators. The absolute error between 
the mean of the two manual measurements and the automatic CSA measurement 
is evaluated in terms of mean and standard deviation. A Kruskall-Wallis analysis 
of variance is used to perform a statistical comparison between automatic and 
manual measurements. To evaluate the accuracy of the automatic segmentation, 
SDC (Sorensen-Dice Coefficient) and HD (Hausdorff Distance) are also 
evaluated: 

 

𝑆𝐷𝐶
2 |𝐴 ∩ 𝐵|
|𝐴| |𝐵|

 (Eq. 5.3) 
 

𝐻𝐷 ∈ , ∈ max 𝑑 𝑎, 𝑏 (Eq. 5.4) 
 

where A is the manual CSA shape drawn by the operator, B is the CSA 
identified by the algorithm and d(a,b) is the distance between point a (on border 
of shape A) and point b (on border of shape B). SDC measures similarity between 
two different shapes, defined as twice the size of their intersection divided by the 
sum of the two shapes areas [44]. HD measures how far two borders are from 
each other. Two contours are close in the Hausdorff distance if every point of 
either set is close to some point of the other set [45]. All statistical tests were 
carried out with a significance level (p) of 0.05. 

 

 
 

Fig. 5.10 Processing steps for a tibialis anterior muscle. (a) Original image of a 
representative tibialis anterior. (b) Superficial and deep aponeurosis profiles obtained at 
the end of the heuristic process. (c) Frangi filter output image. (d) Identification of the 
tibia-bone interface (red). (e) Intersection between deep aponeurosis and tibia-bone 
interface (point H). (f) Final CSA (cross-sectional area) segmentaiton. 
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5.3 Results 

5.3.1 Segmentation results of MUSA Algorithm 

Segmentation results 
 

For each of the four muscles investigated, Figure 5.11 illustrates a visual 
comparison between manual thickness measurement (right panel) and the 
corresponding result provided by the proposed method (left panel). The MUSA 
algorithm achieved a 100% segmentation success rate as it is able to compute the 
muscle thickness in the entire image dataset. 

 

 
 

Fig. 5.11 Comparison between automatic (left column) and manual (right column) 
thickness measurement for rectus femoris (a,b), vastus lateralis (c,d), tibialis anterior (e,f) 
and medial gastrocnemius (g,h). 
 

Performance evaluation 
 

Table 5.2 reports mean and standard deviation of the errors between muscle 
thickness provided by MUSA algorithm and the mean of the three manual 
measurements. The error is computed as the difference between the automatic 
thickness and the mean of the three manual measurements while absolute error is 
defined as the absolute value of the error. The difference between the mean of 
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manual measurements and the automatic value is in the range of 0.06–0.45 mm. 
Analysis of the group data (Table 5.2) shows comparable values obtained by 
automatic and manual measurements. In fact, no significant differences are 
observed between the mean of the three operators and MUSA for any muscle (p = 
0.63 for rectus femoris, p = 0.70 for vastus lateralis, p = 0.85 for tibialis anterior, 
and p = 0.23 for medial gastrocnemius).   

 

Table 5.2 Manual and automatic muscle thickness measurements for each muscle (mean 
± standard deviation). RF = rectus femoris, VL = vastus lateralis, TA = tibialis anterior, 
MG = medial gastrocnemius. 
 

Muscle 
Operator 
1 (mm) 

Operator 
2 (mm) 

Operator 
3 (mm) 

Mean of 
Operators 

(mm) 
 

MUSA 
(mm) 

Error 
(mm) 

Absolute 
Error 
(mm) 

 

RF 22.3 ± 3.8 22.4 ± 3.7 21.7 ± 3.7 22.1 ± 3.7  
21.8 ± 

3.8 
0.43 ± 
0.78  

0.49 ± 
0.80  

VL 21.9 ± 4.0 22.0 ± 4.0 21.4 ± 4.0 21.7 ± 4.0  
21.3 ± 

4.0 
0.45 ± 
0.56  

0.51 ± 
0.58 

TA 28.2 ± 3.6 28.0 ± 3.6 27.6 ± 3.5 27.9 ± 3.5 
27.9 ± 

3.7 
0.06 ± 
0.70 

0.47 ± 
0.56  

MG 19.9 ± 3.1 20.0 ± 3.0 19.3 ± 3.1 19.7 ± 3.1 
19.4 ± 

3.1 
 0.30 ± 

0.45 
0.48 ± 
0.35  

 

The Bland-Altman plots in Figure 5.12 show that the mean difference 
between the manual and automatic measurements is in the range of 0.06–0.45 
mm. Moreover, most of the differences are within the 95% limits of agreement, 
which indicates that the two measurement methods (manual and MUSA) are 
interchangeable. For the four muscles investigated, the Spearman test shows no 
significant correlation between the means and the differences of the two 
measurements, thus suggesting that the accuracy of MUSA is not correlated with  
the muscle thickness value (medial gastrocnemius: R = -0.07, p = 0.64; vastus 
lateralis: R = -0.01, p = 0.95; tibialis anterior: R = -0.14, p = 0.33 and rectus 
femoris: R = -0.09, p = 0.61). 

 

 
Fig. 5.12 Bland-Altman plots for between the mean of the three manual operators and 
MUSA algorithm. (a) Rectus femoris. (b) Vastus lateralis. (c) Tibialis anterior. (d) Medial 
gastrocnemius. 
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5.3.2 Segmentation results of TRAMA Algorithm 

Segmentation results 
 

For each of the four muscles investigated, Figure 5.13 illustrates a visual 
comparison between manual CSA tracing (right panel) and the one obtained with 
TRAMA (left panel). The TRAMA algorithm achieved a 100% segmentation 
success rate as it is able to detect the muscle CSA in the entire image dataset. 

 

 
 

Fig. 5.13 Comparison between automatic (left column) and manual (right column) cross-
sectional area (CSA) identification. (a,b) rectus femoris. (c,d) vastus lateralis. (e,f) tibialis 
anterior. (g,h) medial gastrocnemius. 

 
Performance evaluation 
 

Table 5.3 reports mean and standard deviation of the errors between manual 
CSA measurements obtained by the two operators and automatic CSA detection. 
The error is computed as the difference between the mean of the two manual 
CSAs and the automatic CSA measurements while absolute error is the absolute 
value of the error. Analysis of the group data (Table 5.3) shows comparable 
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values (no statistical differences) between automatic and manual measurements (p 
= 0.32 for rectus femoris, p = 0.34 for vastus lateralis, p = 0.14 for tibialis 
anterior, and p = 0.10 for medial gastrocnemius).   

 
Table 5.3 CSA measurements for each muscle (mean ± standard deviation) obtained by 
each operator and TRAMA. RF = rectus femoris, VL = vastus lateralis, TA = tibialis 
anterior, MG = medial gastrocnemius. 
 

Muscle 
Operator 
1 (mm2) 

Operator 
2 (mm2) 

Mean of 
Operators 

(mm2) 
 

TRAMA 
(mm2) 

Error 
(mm2) 

Absolute 
Error 
(mm2) 

 

RF 
833.3 ± 
160.0 

807.6 ± 
152.0 

820.5 ± 
155.7 

851.1 ± 
159.6 

31.1 ± 
17.5 

37.1 ±  
17.4 

VL 
876.2 ± 
149.1 

883.3 ± 
137.1 

879.8 ± 
142.1 

906.7 ± 
146.7 

26.9 ± 
19.4 

27.8 ±  
18.1 

TA 
797.0 ± 
145.2 

792.1 ± 
153.0 

794.6 ± 
148.1 

892.3 ± 
152.7 

34.8 ± 
23.6 

35.4 ±  
22.6 

MG 
782.4 ± 
128.5 

747.1 ± 
125.4 

764.8 ± 
126.0 

806.4 ± 
128.6 

41.7 ± 
17.4 

41.7 ±  
17.4 

 
The mean and standard deviation values of SDC and HD are reported in Table 

5.4. Comparison between the two operators and TRAMA shows average SDC in 
the range of 94-97% and mean HD values from 1.7 to 3.5 mm, which are 
comparable to the average values of the inter-operator variability (HD from 1.7 to 
2.6 mm and SDC in the range of 95-96% and). These results indicates that the two 
measurement methods (manual and TRAMA) are interchangeable. In order to 
provide a more clinical context of the TRAMA performances, we divided our 
dataset into three different sets (normal-BMI vs increased-BMI subjects, shallow 
vs. deep images and normal vs. patients). No significant difference in the SDC 
values is found between the groups in all three cases, further underlying the 
accuracy and versatility of the developed technique. 

 
Table 5.4 Sorensen-dice coefficient (SDC) and Hausdorff distance (HD) (mean ± 
standard deviation) computed to compare the two operators (Operator 1 and Operator 2) 
with TRAMA for each of the four muscles. RF = rectus femoris, VL = vastus lateralis, 
TA = tibialis anterior, MG = medial gastrocnemius. 
 

Muscle 
Operator 1 vs 

Operator 2 
TRAMA vs  
Operator 1 

TRAMA vs  
Operator 2 

 

SDC (%) HD (mm) SDC (%) HD (mm) SDC (%) HD (mm) 

RF 96.7 ± 0.9 1.7 ± 0.7 96.1 ± 1.2 2.3 ± 0.7 97.2 ± 0.8 1.8 ± 0.8 

VL 95.8 ± 1.4 2.3 ± 1.1 95.6 ± 1.4 2.8 ± 1.3 96.9 ± 1.0 1.9 ± 0.8 

TA 95.8 ± 1.8 2.4 ± 1.2 94.7 ± 1.8 3.5 ± 1.3 96.1 ± 1.6 2.4 ± 1.0 

MG 95.3 ± 1.9 2.6 ± 1.5 94.6 ± 1.7 3.3 ± 1.3 96.9 ± 0.7 2.3 ± 0.9 
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5.4 Discussion 

The extraction of the muscle architectural parameters is used to investigate the 
muscle characteristics (size, echogenicity and texture) in both physiological [12] 
and pathological conditions [30]. The variability in depth, direction, and shape of 
muscle aponeuroses makes the automatic segmentation of muscle contours a 
challenging task. This variability is caused by several physiological and 
anatomical factors, like the thickness of the subcutaneous adipose layer, the health 
status and the age of the subject, and the contraction status and the anatomy of the 
analyzed muscle. In this Chapter, two fully automated algorithms are proposed for 
quantitative analysis of skeletal muscle ultrasound images.  

The first proposed technique, named MUSA, is able to recognize the muscle 
aponeuroses and measure the muscle thickness in longitudinal scans. The 
comparison between automatic and manual measurements shows a mean 
difference below 0.5 mm (worst case for vastus lateralis: 0.45 mm). Since the 
average muscle thickness for the entire dataset is around 23 mm, the mean 
measurement error of the MUSA algorithm is around 2.5% of the nominal 
thickness value. A mean error equal to 2.5% can be considered negligible from a 
clinical point of view as a percentage reduction higher than 5-10% is needed to 
diagnose muscle pathological conditions such as the atrophy and hypotrophy [37]. 

The second method presented, named TRAMA, is an algorithm for the 
measurement of the cross-sectional area in musculoskeletal ultrasound images 
acquired in the transverse plane. The average absolute error between the manual 
and automatic measures is always below 45 mm2 (around 4% of the nominal 
value), also confirmed by the excellent results of the Dice coefficient (DSC). Also 
in this case, the AE can be considered irrelevant as a CSA variation of more than 
10% allows the correct identification of clinically relevant changes [37], [46].  

The excellent performance of the MUSA and TRAMA is mainly due to the 
implementation of multiscale and scale filters like Frangi and FODG operators. 
These filters are able to selectively enhance all the regions/structures of interest 
with low computational cost. In fact, the parameters of FODG filter are optimized 
to enhance all the aponeurosis-like regions while the Frangi filter is capable of 
amplifying the anatomic size of the connective tissue. Both of the proposed 
techniques do not require any user interaction and they are able to correctly detect 
both the superficial and deep aponeuroses (100% segmentation success rate). Four 
skeletal muscles of the lower limb (tibialis anterior, vastus lateralis, medial 
gastrocnemius and rectus femoris) are investigated, due to the fact that they are 
the most informative muscles for detecting sarcopenia and neuromuscular 
disorders [15], [37], [30].  

Additional studies are required to test the accuracy of MUSA and TRAMA in 
the extraction of muscle architectural parameters for other superficial muscles of 
the upper (e.g. biceps brachii) or lower limb (e.g. vastus medialis). From a 
technical point of view, MUSA and TRAMA can be applied to detect the 
aponeurosis of any muscle as long as it is represented in a transverse or 
longitudinal projection. Being totally automated, these methods could also be used 
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in future works to initialize muscle architectural parameters measurements in 
dynamic conditions. 

5.5 Conclusion 

Ultrasound imaging allows a non-invasive and reliable measurement of the 
skeletal muscle architecture. Nowadays, computer-aided approaches in 
musculoskeletal ultrasound imaging are semi-automatic or specifically optimized 
for a single muscle. In this Chapter, two methods (MUSA and TRAMA) are 
presented as first fully-automated systems capable for processing US images 
coming from different skeletal muscles of the lower limb. Statistical analysis 
shows that the manual and automatic measurements can be used interchangeably. 

In the future, the MUSA and TRAMA algorithms could be integrated into 
ultrasound devices as fully automated tools for real-time acquisition session. In 
addition, we plan to use these algorithms as starting points to detect the muscle 
ROIs and automatize a multi-texture analysis to study the alteration of muscle 
architecture in physiological and pathological conditions [5], [47], [48] and its 
changes related to physiological and pathological condition. The proposed 
methods provide an excellent tool for the quantitative extraction of morphological 
parameters from muscle ultrasound images and, in the next future, they can be 
used as the first step in more complex texture-analysis studies. 
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Conclusions and Final Remarks 

As stated in the Introduction, medical research and healthcare are 
continuously seeking for computer-aided schemes that can offer non-invasive, 
reliable and fast image-based diagnosis. Moreover, looking at technological 
trends, future diagnostic procedures will be adopted to provide personalized 
medicine based on quantitative data extracted from patient-specific medical 
images. The work presented aims to develop quantitative and multimodal imaging 
techniques for the modeling and interpretation of physiopathological processes. 

A new completely automated algorithm for the segmentation of relevant 
objects within medical images is developed and validated, and it is shown how the 
proposed technique is able to correctly detect biological structures in different 
imaging modalities and magnifications. Starting from this method, several fully 
automated algorithms are proposed for the reliable and quantitative analysis of 
medical images. The strategies proposed in this thesis are scalable and relevant in 
a wide range of applications (modeling of heart failure, cancer detection and 
classification, muscle architectural analysis) and modalities (fluorescent and 
optical microscopy, ultrasound imaging). The proposed algorithms are validated 
using expert manual segmentations and benchmarked with semi-automatic 
techniques, providing very promising results.  

 In the near future, the developed techniques will be used to process wide 
datasets, extract additional information from the images and help remove the 
subjectivity from the diagnosis process. These automated strategies combine the 
human cognitive procedures of structure recognition with image information 
revealed through the extraction of quantitative morphological and functional 
features, with the final aim to significantly improve the patient’s diagnosis, 
prognosis and treatment. 
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Appendix A 

Tuning of the ARCO input parameters  
 

In all the proposed studies, the object-detection provided by ARCO is 
automatically optimized using the procedure sketched in Figure A.1. 

 

 
 

Fig. A.1 Workflow adopted for tuning of ARCO input parameters. 
 

First of all, different combination of the ARCO input parameters (imageLAYER, 
objectTYPE, polynomialORDER, objectPROPERTY) are generated through the creation of 
all the ARCO parameters configurations. For each parameters configuration 
generated in the previous step, the ARCO algorithm is applied to the entire image 
dataset (processing the image dataset with the i-th configuration). This step is 
repeated until all the configurations are tested. The optimal parameters 
configuration of the ARCO algorithm is selected as the one with the highest 
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object-level F1SCORE (Eq. 2.2). If one or more configurations obtain the same 
performances, the one with the lower average computational time is chosen. 

Figure A.2 shows an example of ultrasound image with different level of 
noise. For each of the three images, the ARCO algorithm is applied to identify 
muscle aponeuroses. Three different polynomialORDER are used (3, 5, and 7) to 
evaluate the object-detection performed by the proposed method. 

 

 
 

Fig. A.2 ARCO performance with different order of the polynomial function that fit the 
PWMCURVE (polynomialORDER). Three ultrasound images with different noise-level are 
analyzed (columns). In the second row, the ARCO segmentation with a polynomialORDER 
of 3 is illustrated. The third and last rows show the ARCO object-detection with a 
polynomialORDER equal to 5 and 7 respectively. If the noise level increases (last column), a 
higher polynomialORDER is required to achieve good segmentation. 
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The optimal polynomialORDER for images with low-level noise (i.e. 1st row) is 

generally low (between 3rd and 5th). The increase in the noise level causes a higher 
"complexity" of the grayscale histogram and, therefore, a higher order of the 
polynomial function is required for a good fit of the PWMCURVE. As can be seen 
in Figure A.2, a polynomialORDER equal to 5 guarantees the best result for a mid-
level noise image (2nd row) while a polynomialORDER = 7 is the best choice for a 
high-level noise image (3rd row). 

The objectPROPERTY generally depends on the number of expected objects 
within the image. The following figures show an example of images containing 
few (Figure A.3) and many objects (Figure A.4). 

Generally, if the image contains few structures (≤10), the best performances 
are obtained by imposing a condition on the standard deviation of the detected 
objects intensity. In particular, the optimal segmentation is achieved by choosing 
the candidate threshold that has the objects' intensity with the lowest standard 
deviation (as the algorithm should identify homogeneous structures). Figure A.3 
illustrates the results obtained with three candidate thresholds and the 
corresponding standard deviation of segmented objects. The same figure also 
shows how the best object-detection is achieved with the threshold that has the 
objects’ intensity with the lowest standard deviation. 

  

 
 

Fig. A.3 ARCO segmentations for a sample image with few expected objects. First 
column shows the original image and the corresponding grayscale image. Second, third 
and fourth columns illustrate the object-detection provided by ARCO using three 
different candidate thresholds. Last row shows the intensity distribution of segmented 
objects. The optimal segmentation is obtained with the candidate threshold that has the 
objects’ intensity with the lowest standard deviation. 

 
On the other hand, if the expected objects are higher than 10 (e.g. cell nuclei), 

the best performances are achieved by imposing a condition on the median area of 
the detected structures. In particular, the optimal segmentation is obtained by 
choosing the candidate threshold that has the objects with the highest median area. 
Figure A.4 illustrates the results obtained with three candidate thresholds and the 
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corresponding area distribution of segmented objects. The same figure also shows 
how the best object-detection is achieved with the threshold that has the objects 
with the highest median area. 

 

 
 

Fig. A.4 ARCO segmentations for a sample image with several expected objects. First 
column shows the original image and the corresponding grayscale image. Second, third 
and fourth column illustrate the object-detection provided by ARCO using three different 
candidate thresholds. Last row shows the area distribution of segmented objects. The 
optimal segmentation is obtained with the candidate threshold that has the objects with 
the highest median area. 
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Appendix B 

Automated parameter tuning and algorithm configuration  
 

In all the proposed studies, the algorithms are automatically optimized using 
the procedure sketched in Figure B.1. 

 

 
 

Fig. B.1 Workflow adopted for the algorithm tuning and optimization. 
 

First of all, the performance metric for the algorithm optimization is chosen 
(definition of the performance metric). This metric can be an overlap index (e.g. 
Jaccard coefficient, F1SCORE), a distance metric (e.g. Hausdorff distance) or a 
similarity index (e.g. Dice coefficient). For each of the algorithm parameter (e.g. 
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percentages, thresholds, etc.), we define all the reasonable values that the 
parameter can assume by creating a ‘parameter vector’ (e.g. parameter1 = 
[1,3,5,7]). This step is called definition of the tuning parameters and their values. 
Then, all the possible combinations between the elements of the parameters 
vectors are generated through the creation of all the configurations. For each 
parameters configuration generated in the previous step, the algorithm is applied 
to the entire image dataset (processing the dataset with the i-th configuration). 
This step is repeated until all the configurations are tested. The optimal 
parameters configuration is selected as the one that maximizes the performance 
metric chosen (selection of the optimal configuration). If one or more 
configurations obtain the same performances, the one with the lower average 
computational time is chosen. 

The optimal parameters and the performance metric used for each algorithm 
proposed in this thesis are listed below. 
 

CARE algorithm (CARdiosphere Evaluation)  
 

Performance metric: jaccardINDEX 
 

Parameter Description 
Possible 
values 

Optimal 
value 

polynomial ORDER 
Order of the polynomial 

function that fit the 
PWMCURVE (ARCO algorithm)

[3;5;7;9; 
11;13;15] 

7 

small COMPONENT 
Minimum area of detected 
objects to be considered as 

cardiospheres (µm2) 

[600;1200; 
1800;2400] 

1200 

overlap AREA 
Percentage of overlapping 

between objects from realign 
frame and reference frame (%) 

[60;65;70; 
75;80;85] 

75 

shape SOLIDITY 
Minimum solidity of a shape 

in the identification of the cut-
off frame 

[0.50;0.60; 
0.70;0.80] 

0.60 

 
MANA algorithm (Multiscale Adaptive Nuclei Analysis) 
 

Performance metric: F1SCORE 
 

Parameter Description 
Possible 
values 

Optimal 
value 

polynomial ORDER 
Order of the polynomial 

function that fit the 
PWMCURVE (ARCO algorithm)

[3;5;7;9; 
11;13;15] 

5 

small OBJECTS 

Maximum percentage with 
respect to the mean objects 
area for labelling a structure 

 as 'small' (%)

[15;20;25; 
30;35;40] 

25 

big OBJECTS 

Multiplicative factor with 
respect to the mean objects 

area for labelling a  
structure as 'big'

[3;5;7;9; 
11;13;15] 

5 
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Algorithm for Gleason Scoring 
 

Performance metric: accuracy 
 

Parameter Description 
Possible 
values 

Optimal 
value 

γ GABOR 
Spatial aspect ratio of the 
Gabor function support  

[1;1.2;1.4; 
1.6;1.8;2] 

1.2 

θ GABOR 
Number of directions of the 

Gabor filter  
[2;4;8;12; 

16;20] 
8 

white THRESHOLD 
Threshold to apply after the 

Gabor filter for lumen 
detection 

[0.7;0.75;0.8; 
0.85;0.9;0.95]

0.90 

 
Algorithm for Neoplastic Epithelium Detection in Breast Carcinoma 
 

Performance metric: F1SCORE 
 

Parameter Description 
Possible 
values 

Optimal 
value 

percentage START 
Initial percentage for the 

conversion of tumor and no-
tumor cells (%) 

[70;75;80; 
85;90;95] 

95 

percentage STOP 
End percentage for the 

conversion of tumor and no-
tumor cells (%) 

[50;55;60; 
65;70;75;80] 

75 

min POINTS 
Minimum number of 

neighborhood points used for 
the cluster expansion  

[5;10; 
15;20] 

5 

ε DBSCAN 
Initial neighborhood size for 
the iterative DBSCAN (µm) 

[50;100;150; 
200;250;300] 

200 

 
MUSA algorithm (Muscle UltraSound Analysis) 
 

Performance metric: Absolute error 
 

Parameter Description 
Possible 
values 

Optimal 
value 

FODG SIZE 
Kernel size of the FODG filter 

to enhance aponeurosis-like 
structures (mm) 

[0.5;1;1.5; 
2;2.5;3] 

1 

min ECCENTRICITY 
Minimum eccentricity for 
considering a structure a 
candidate aponeurosis 

[0.98;0.985; 
0.99;0.995] 

0.995 

scan LINES 

Number of scan lines for the 
detection of the actual 

aponeuroses in the heuristic 
search

[3;5;7; 
9;11;13] 

7 
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TRAMA algorithm (TRAnsverse Muscle ultrasound Analysis) 
 

Performance metric: Absolute error 
 

Parameter Description 
Possible 
values 

Optimal 
value 

FODG SIZE 
Kernel size of the FODG filter 

to enhance aponeurosis-like 
structures (mm) 

[0.5;1;1.5; 
2;2.5;3] 

1 

β FRANGI 

First sensitivity parameter of 
the Frangi filter during the 

search of muscle connective 
tissue

[0.25;0.5;0.75; 
1;1.25;1.5] 

0.5 

c FRANGI 

Second sensitivity parameter 
of the Frangi filter during the 
search of muscle connective 

tissue

[5;10;15; 
20;25;30] 

15 

scan LINES 

Number of scan lines for the 
detection of the actual 

aponeuroses in the heuristic 
search

[3;5;7; 
9;11;13] 

7 
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Appendix C 

Ultrasound device settings  
 

In the proposed studies, all ultrasound images are acquired using a MyLabTM 
Twice device (Esaote, Italy) with a 3-13 MHz linear array transducer. For all 
depths, the gain is set to 50%, the gain compensation is kept neutral and the 
dynamic image compression is switched off. All the ultrasound device settings are 
kept constant except for the image depth. For each subject, the image depth 
(initial value: 44 mm) is varied so as to be able to visualize the entire muscle 
(range:44 – 59 mm). The images are then exported to DICOM and transferred to a 
workstation for offline processing. 
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Appendix D 

Acquisition protocol in skeletal muscle ultrasound images  
 

During a single experimental session, the following muscles are investigated 
using ultrasounds: medial gastrocnemius, tibialis anterior, vastus lateralis and 
rectus femoris. These superficial skeletal muscles have been chosen since they are 
the most informative in the assessment of neuromuscular disorders and 
sarcopenia.  

The following acquisition protocol is followed to ensure the best 
representation of the four muscles: i) medial gastrocnemius and vastus lateralis: 
the depiction of the two aponeuroses and of the muscle fascicles is optimized; ii) 
tibialis anterior: the representation of the muscle fascicles and of the bone 
boundary is maximized; iii) rectus femoris: the representation of the deep and 
superficial aponeuroses is optimized. Ultrasound images are acquired with the 
subjects in the supine position, except for the medial gastrocnemius where the 
subjects are positioned prone.  

A suitable amount of ultrasound gel is used to minimize the transducer 
pressure on the skin and to ensure optimal image quality. During each acquisition, 
the lower limb joints are extended, and the subjects are asked to completely relax 
their muscles. All scans are performed by placing the transducer in 
correspondence of the largest muscle diameter at the following anatomic sites: the 
medial gastrocnemius from the mid-sagittal line of the muscle, midway between 
the proximal and distal tendon insertions; the tibialis anterior at one-quarter of the 
distance from the inferior border of the patella to the lateral malleolus; the vastus 
lateralis half-way along the line from the anterior-superior iliac spine to the 
superolateral border of the patella; and rectus femoris is measured half-way along 
the line from the anterior-superior iliac spine to the superior border of the patella. 
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