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Accurate stress fields of post-buckled laminated
composite beams accounting for various kinematics
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Abstract: Highly flexible laminated composite structures, prone to suffering large-deflection
and post-buckling, have been successfully employed in a number of scenarios. Therefore,
accurate predictions of their stress distributions in the geometrically nonlinear analysis are
of paramount importance for their design and failure evaluation. In this paper, for com-
posite beams subjected to large-deflection and post-buckling, we investigate the effectiveness
of different geometrically nonlinear strain approximations for the description of their non-
linear static response and for the determination of stress distributions. For this purpose,
a unified formulation of geometrically nonlinear refined beam theory based on the Carrera
Unified Formulation (CUF) and a total Lagrangian approach constitutes the basis of our
analysis. Accordingly, various kinematics of one-dimensional structures are formulated via
an appropriate index notation and an arbitrary cross-section expansion of the generalized
variables, leading to lower- to higher-order beam models with only pure displacement vari-
ables for laminated composite beams. In view of the intrinsic scalable nature of CUF and by
exploiting the principle of virtual work and a finite element approximation, nonlinear govern-
ing equations corresponding to various nonlinear strain assumptions can be straightforwardly
and easily formulated in terms of fundamental nuclei, which are independent of the theory
approximation order. Several numerical assessments are conducted, including large-deflection
and post-buckling analyses of asymmetric and symmetric laminated beams under compres-
sion loadings. The numerical solutions are solved by using a Newton-Raphson linearization
scheme along with a path-following method based on the arc-length constraint. Our numerical
findings demonstrate the capabilities of the CUF model to calculate the large-deflection and
post-buckling equilibrium curves as well as the stress distributions with high accuracy, which
could be a basis to assess the validation ranges of various kinematics and different nonlinear
strain approximations.

Keywords: Carrera Unified Formulation; Geometrical nonlinearities; Post-buckling; Com-
posite beams; Accurate stress fields; Strain approximations.
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1 Introduction

Owing to their superior advantages such as high strength-to-weight and stiffness-to-weight
ratios, laminated composite structures have been of great interest for many decades, with
widespread applications in numerous areas, especially in the aeronautical and aerospace in-
dustry. Consequently, a large number of theories have been developed in order to improve
those obsolete models that were originally established for metallic components, and to un-
derstand their structural behaviors such as deformation characteristics and stress/strain dis-
tributions. Interested readers can refer to the bibliographic review works by Carrera [1] and
Kapania and Raciti [2, 3], which addressed in a comprehensive manner the modeling and
analysis of composite laminates for beam and plate/shell structures in the linear regime.
In contrast, highly flexible structures, susceptible to suffering large displacements and ro-
tations, are widely employed in various engineering structural components, as for example,
wing structures, space antennas and rotor blades in aeronautical engineering, robotic arms in
mechanical engineering, hulls of submarines in naval industry, tubes and pipelines for liquid
or gas transportation in chemical industry, etc. Moreover, complex soft tissues and organs as
well as advanced biological instrument are usually made of highly flexible structures. A recent
literature review on the modeling of these nonlinear plate/shell structures in the application
of bioengineering can be seen in the valuable monograph by Amabili [4]. As a result, the
elastic, geometrical nonlinear analysis of laminated composite structures has always been a
fundamental topic in structural mechanics. Accurate predictions of stress distributions (espe-
cially the interlaminar stresses) in the geometrically nonlinear (including large-deflection and
post-buckling) analysis are challenging but essential for the design and failure evaluation of
these composite structures.

Nowadays, considerable attention has been focusing on the problem of how to establish
an excellent theory to exactly determine the three-dimensional (3D) stress fields. It is well
known that owing to the neglect of transverse shear effects, the classical Euler-Bernoulli beam
theory (classical lamination theory, CLT) [5] is too limiting for the analysis of laminated com-
posite beams. Although the Timoshenko beam theory [6], the extension of which to the
analysis of laminates is known as the first-order shear deformation theory (FSDT), assumes a
uniform shear distribution across the cross-section together with the rotatory inertia effects,
it is not adequate for forecasting local stress-strain characteristics of the composite beams
[7]. Therefore, a variety of higher-order shear deformation theories (HSDT) that improve
CLT and FSDT have been proposed for the enhancement of solutions in laminated composite
structures [8, 9, 10, 11, 12, 13, 14]. Inherently, these theories, assuming the laminate as an
equivalent single layer (ESL) whose properties can be obtained by homogenization techniques,
can be derived by introducing gradually the high-order terms into the in-plane and transverse
displacement components and have the advantage that the number of the unknowns is inde-
pendent of the number of the layers [15]. Nevertheless, the failure of HSDT or ESL models
to accurately predict the displacement and stress fields is mainly due to the fact that these
theories could not fulfill the interlaminar stress continuity conditions at each interface and
are not able to describe the so-called zig-zag shape distributions [7, 16] of displacement fields
along the laminate thickness [15, 17]. Recently, the Murakami zig-zag function (MZZF) [18]
was used to provide a valuable tool to enhance the performance of both CLT and HSDT
[19]. Specifically, the zig-zag effect could be easily included into the existing CLT and HSDT
for laminated structures [19]. It is worth noting that, based on the Reissner’s mixed varia-
tional theorem [20, 21] and in the framework of ESL models, C0 Reissner-Mindlin laminated
plate elements including both the zig-zag distribution along the thickness direction of in-
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plane displacements and the interlaminar continuity for transverse shear stresses, i.e. RMZC
(Reissner-Mindlin Zig-zag Continuity) elements, were established [22].

Furthermore, in order to generate more accurate and realistic distributions of strains and
stresses, the layer-wise theories (LWT), which consider each layer as a single lamina with
different material properties leading to the increase of the number of the unknowns, can
capture well the zig-zag form of the displacement fields that are matched at each interface
[23, 24, 25]. Based on the Reissner’s mixed variational theorem [20, 21], a layer-wise mixed
theory [26] was developed to furnish a better description of the in-plane and out-of-plane
response of laminated structures with respect to existing ESL theories and LWT. Particularly,
the layer-wise mixed theory satisfies a priori the continuity of transverse shear and normal
stress components at interfaces and describes the transverse shear and normal stress fields
with excellent accuracy [26].

It should be noted that various advances with emphasis on the accuracy improvement
of stress field distributions can be found in the literature. For instance, the additional en-
hancement functions such as transverse Hermite polynomials were introduced into the zig-zag
higher-order C1 formulations for the displacements to enforce the continuity of the transverse
shear stresses [27]. Nonetheless, their generalization to more complex problems (i.e. robust-
ness) still remains questionable. In contrast to the displacement-based elements exhibiting
over rigidity, the hybrid stress elements with high performance [28, 29, 30] were developed for
better description of stress distributions but their developments are complicated and limited
to the linear analysis. A good summary of the evolution regarding the 3D stress field calcula-
tion can be seen in the work [31], which demonstrated an extremely enlightening discussion of
the pros and cons of the above-mentioned analytical, semi-analytical or numerical approaches.
The same authors also presented an efficient 3D Hybrid-EAS (enhanced assumed strain) solid
element formulation to accurately predict interlaminar stresses in thick laminated beams and
plates/shells based on the mixed three-field Fraeijs de Veubeke-Hu-Washizu (FHW) functional
principle [31].

The presence of geometrical nonlinearities of highly flexible structures greatly increases
the difficulties of finding analytical and even numerical solutions, as a result of which only
a few results are available concerning the distributions of stress and displacement compo-
nents along the thickness direction of laminated structures in the geometrically nonlinear
scenario. In the framework of ESL models, laminated finite elements for composite beams
and plates/shells were formulated based on the total Lagrangian kinematic description to
carry out the geometrically nonlinear analysis [32, 33], which demonstrated good stress distri-
butions even for complex materials in the case of large displacements. The same authors [34],
furthermore, included the zig-zag effect on the distributions of displacements and transverse
stresses of laminated structures into the geometrically nonlinear laminated finite elements
developed in [32, 33]. In the framework of LWT models, a positional unconstrained vector
layer-wise FEM formulation accounting for the geometrical nonlinearities were established for
laminated structures in order to obtain an accurate determination of transverse stresses and
eliminate the ill-conditioning of stiffness matrix for thin elements [35]. However, their math-
ematical derivations are in some sense cumbersome and not easily generalized. Additionally,
it should be emphasized that the aforementioned works are primarily devoted to discussing
the stress distributions in the large-deflection fields before buckling and post-buckling. In
fact, some structural components (such as fuselage, wing, and stabilizer panels) of current
aircraft are designed to have a post-buckling strength. Evidently, a better understanding
of the post-buckling behavior of laminated composite and a more accurate prediction of the
stress distributions in the post-buckling case constitute an essential requirement toward ra-
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tional employment of their strength. Based on the von Kármán assumption in conjunction
with a mixed two-dimensional (2D) mechanical model [22], the local characteristics of dis-
placement and stress distributions for laminated plates were numerically investigated in the
large-deflection and post-buckling scenarios, where the RMZC model was also developed to
describe the zig-zag form for the in-plane displacement components and the interlaminar
continuity of the transverse shear stress components [15]. To the authors’ best knowledge,
no results are available from the open literature regarding the accurate prediction of stress
distributions of laminates in the post-buckling regime based on the 3D full geometrically
nonlinear analysis, which takes into consideration all nonlinear terms of the Green-Lagrange
strain tensor.

In addition to the precise calculation of displacement and stress/strain distributions, the
accurate description of large-deflection, buckling and post-buckling nonlinear response also
plays a crucial role in the design, manufacturing, and application of composite laminates.
As a matter of fact, as the extension of the Euler-Bernoulli and Timoshenko beam theories,
contributions to the development of FSDT, HSDT as well as refined beam theories in the geo-
metrically nonlinear scenario have been made so as to effectively analyze the large-deflection,
buckling and post-buckling response [36, 37, 38, 39, 40, 41, 13]. The literature about this
subject is enormous, and a detailed discussion on nonlinear formulations of composite beam
structures falls outside the scope of this paper. It is worthy to mention that most of the
research works in the literature made use of the von Kármán nonlinear strain approximation
to assess the load-carrying capability of highly flexible composite structures. As commented
by Carrera and Parisch [42] in the evaluation of geometrically nonlinear effects of laminated
composite shells, the von Kármán approximation could obtain good accuracy in the thin shell
case when deflections are of the same order of magnitude of the thickness, while such accuracy
could be not confirmed for the thick structures. Furthermore, the same authors pointed out
that the error made by the von Kármán approximation is more evident in the case of shear
loadings in which the deformation exhibits large rotations. Moreover, in the geometrically
nonlinear analysis of laminated cylindrical panels, Kim and Chaudhuri [43] demonstrated
that the von Kármán nonlinear strain approximation overestimates the transverse displace-
ments, especially in the advanced nonlinear regime. As far as the authors’ knowledge goes, the
accuracy of different geometrically nonlinear strain approximations for laminated beam struc-
tures and their related effects on nonlinear stress distributions (especially the von Kármán
approximation) have not been studied yet in the literature.

As a consequence, the primary objectives of the present investigation are: (1) to com-
pare and determine the effectiveness of various geometrically nonlinear strain assumptions
for the analysis of large-deflection and post-buckling nonlinear response for composite beams;
(2) to accurately predict their stress distributions in the large-deflection and post-buckling
regime and compare the prediction results based on different nonlinear strain approximations.
The geometrically nonlinear analysis in this investigation is based on the Carrera Unified
Formulation (CUF), which has been recently extended to geometrically nonlinear analyses
for both metallic and composite beam structures [44, 45]. According to CUF [46, 47], any
structural theory could degenerate into a generalized kinematics by utilizing an appropri-
ate expansion of the generalized variables (such as Lagrange and Taylor expansions). In this
manner, the nonlinear governing equations and the related finite element arrays of the generic
geometrically-exact composite beam theory can be expressed in terms of fundamental nuclei,
which represent the basic building blocks allowing for the straightforward generation of lower-
and higher-order finite beam elements. Over the last few years, CUF has been employed to
solve many engineering problems, including aerospace constructions [48], civil engineering
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Figure 1: n-ply laminated composite beam and related Cartesian coordinate system.

structures [49], rotating blades and rotors [50], multi-field problems [51], and free vibration
analysis [52], among the others. It should be emphasized that, owing to its intrinsic scal-
able nature, different nonlinear strain approximations can be automatically and opportunely
incorporated by using CUF.

2 Unified finite beam element

2.1 Preliminary formulations

Consider a n-ply laminated composite beam structure of width b, thickness h, and length L
displayed in Fig. 1, with each layer being made of linear elastic monoclinic material in the
x− y plane (e.g., orthotropic fiber-matrix lamina with fiber orientation angle equal to θ with
respect to the z-axis). The 3D displacement vector (u) of a given point in the composite
beam is

u(x, y, z) =
{
ux uy uz

}T
(1)

The stress (σ)-strain (ε) constitutive relations for these materials with monoclinic sym-
metry can be expressed as

σ = C̃ε (2)

where the stress (σ) and strain (ε) can be written as

σ =
{
σxx σyy σzz σxz σyz σxy

}T
, ε =

{
εxx εyy εzz εxz εyz εxy

}T (3)

and the material elastic matrix C̃ is

C̃ =



C̃11 C̃12 C̃13 0 0 C̃16

C̃22 C̃23 0 0 C̃26

C̃33 0 0 C̃36

C̃44 C̃45 0

C̃55 0

sym. C̃66


(4)
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Note that the elastic coefficients C̃ij are functions of the elastic moduli along the longi-
tudinal and transverse directions of the fiber, the shear moduli, the Poisson’s ratios, and the
fiber orientation angle. Their specific expressions are omitted here for simplicity, but can be
found in many reference texts, such as [53].

For many problems of large displacement and rotation analysis as well as elastic post-
buckling analysis, the displacement derivatives are finite and the inclusion of their high-order
terms into the geometrical relations is of practical importance for accurately predicting the ge-
ometrically nonlinear response and the stress field distributions. In fact, the total Lagrangian
formulations are generally utilized to describe the pure geometrically nonlinear problems based
on a natural undeformed state to which the structure will recover if unloaded. In contrast
to the Eulerian and updated Lagrangian formulations, strains are expressed in terms of the
undeformed configuration in the total Lagrangian description. This aspect entails a number
of advantages when a total Lagrangian formulation is employed along with a numerical in-
cremental solution scheme [32, 35, 54]: (1) Theoretically, there exists no error accumulation
due to the independence of the accuracy at the current solution step on the solution at the
previous step; (2) There is no necessity to conduct any coordinate transformation of stress
and strain components during iteration; (3) If the implemented approach is convergent, large
loading steps and reverse analysis can be allowed with no loss of accuracy.

In the proposed total Lagrangian description, the Green-Lagrange strain tensor will be
used to measure the geometrically nonlinear strain. The reasons are that Green-Lagrange
strains vanish for rigid body rotations (this is not true in the case of engineering strains)
and these strains are work-conjugate to the second Piola-Kirchoff stresses. Specifically, the
Green-Lagrange strain components can be defined as:

ε = εl + εnl = (bl + bnl)u (5)

where the linear and nonlinear differential operators bl and bnl are defined as:

bl =



0 ∂y 0

∂x 0 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, bnl =



1

2
(∂y)

2 1

2
(∂y)

2 1

2
(∂y)

2

1

2
(∂x)

2 1

2
(∂x)

2 1

2
(∂x)

2

1

2
(∂z)

2 1

2
(∂z)

2 1

2
(∂z)

2

∂x ∂z ∂x ∂z ∂x ∂z

∂y ∂z ∂y ∂z ∂y ∂z

∂x ∂y ∂x ∂y ∂x ∂y


(6)

in which ∂x = ∂(·)/∂x, ∂y = ∂(·)/∂y, and ∂z = ∂(·)/∂z.
It should be emphasized that large displacements and rotations may induce coupling

phenomena among bending, extension, shear, and torsion of structures. Consequently, it is
necessary to account for the 3D full Green-Lagrange strains shown in Eq. (6). Over the last
decades, on the other hand, many simplified geometrically nonlinear models have been estab-
lished for two-dimensional (2D) and one-dimensional (1D) structures from the 3D full geomet-
rical relations, among which the von Kármán nonlinear strain approximation for plates is the
well-known model, see [55]. Inherently, the von Kármán theory for 2D thin plates/shells with
moderate rotations hypothesizes that the nonlinear terms of Eq. (6) that cannot be discarded
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are those associated with the in-plane partial derivatives of the transverse displacement, which
means that the only non-zero terms of geometrically nonlinear strains are

εxxnl
=

1

2
(uz,x)

2, εyynl
=

1

2
(uz,y)

2, εxynl
= uz,xuz,y (7)

where comma denotes the partial derivative and the z-axis is placed along the thickness
direction of the plates/shells. Applying von Kármán assumptions to the case of 1D beams,
one can obtain the only non-zero component of the nonlinear strain vector as:

εyynl
=

1

2
(uz,y)

2 (8)

where the undeformed beam axis is located along the y-axis as shown in Fig. 1. Although
numerous research works are based on the von Kármán model, it is well known that it cannot
even properly capture the moderate rotations [54].

In this work, we will study the effects of different geometrically nonlinear strain assump-
tions on the geometrically nonlinear response and the stress field distributions of the flexible
laminated composite beams in the case of large-deflection and post-buckling. For this pur-
pose, the Carrera Unified Formulation (CUF) will be employed to formulate the nonlinear
governing equations of composite beams. In fact, owing to the superior advantages of CUF
such as the scalable nature, one can develop conveniently the nonlinear governing equations
for beam, plate and shell structures in a unified manner. Furthermore, by eventually van-
ishing or adding the corresponding nonlinear terms into the CUF fundamental nuclei (the
basic building blocks of the secant and tangent stiffness matrices), we can obtain different
geometrically nonlinear models, such as the 3D full Green-Lagrange strain model (Eq. (6))
and the simplified von Kármán model (Eqs. (7) and (8)).

2.2 CUF and finite element approximation

Within the framework of CUF, the 3D displacement field u(x, y, z) can be expanded in terms
of the primary unknowns. Specifically, for the 1D beam theory, we have:

u(x, y, z) = Fs(x, z)us(y), s = 1, 2, · · · ,M (9)

where Fs are the expansion functions of the coordinates x and z on the cross-section, us is
the vector of the generalized displacements along the beam axis y, M represents the number
of the expansion terms, and the repeated subscript s indicates summation. The choice of Fs
determines the class of the 1D CUF model that is to be adopted.

In this paper, we will consider both the Taylor and Lagrange polynomials as Fs cross-
sectional functions. The resulting beam theories are known as Taylor expansion (TE) and
Lagrange expansion (LE) CUF models in the literature [47]. Specifically, the first-order and
second-order Taylor expansions, four-node bilinear (L4), nine-node quadratic (L9), and 16-
node cubic (L16) Lagrange expansions are exploited on the cross-section of the laminated
beams. Compared with the TE beam models, the LE beam models are equipped with only
pure displacement variables, layer-dependent unknowns and piece-wise refined kinematics.
Additionally, the higher-order LE layer-wise formulation in the context of CUF can predict
the results of stress distributions more accurately than the TE predictions, which will be
demonstrated in Sec. 5. The TE and LE functions Fs are not presented here for brevity. For
more details about the descriptions of TE and LE CUF models as well as the formulation of
layer-wise models, the interested reader is referred to the texts [46] and [47].
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For the sake of generality, the Finite Element Method (FEM) is adopted to discretize the
structure along the y-axis. Therefore, the generalized displacement vector us(y) is approxi-
mated as follows:

us(y) = Nj(y)qsj j = 1, 2, . . . , p+ 1 (10)

where Nj represents the j-th shape function, p is the order of the shape functions and j
indicates summation. The vector of the FE nodal parameters qsj is defined as

qsj =
{
qxsj qysj qzsj

}T
(11)

The specific expressions of the shape functions Nj are not shown here for simplicity, which
can be found in many reference books about FEMs, for instance in Bathe [56]. In this work,
the classical 1D four-node cubic finite elements will be adopted for the shape function along
the y-axis. It is worth noting that the choice of the cross-section polynomials for various
kinematics is completely independent of that of the beam finite element along the beam axis.

3 Nonlinear governing equations

As is known to all, nonlinear static equilibrium equations can be derived based on the principle
of virtual work, which states that for arbitrary infinitesimal virtual displacement satisfying
the prescribed geometrical constraints, the virtual variation of internal strain energy (δLint)
must be equal to the virtual variation of the work of external loadings (δLext), i.e.,

δLint = δLext (12)

Large displacement/rotation analysis of elastic systems leads to complex nonlinear differ-
ential problems which are difficult to solve analytically. However, if FEM (Eq. (10)) and
CUF (Eq. (9)) are employed, the nonlinear equilibrium equation (12) of the structure can be
expressed as a system of nonlinear algebraic equations which will be derived below.

The virtual variation of the strain energy, for example, can be written as

δLint =< δεTσ > (13)

where < (·) >=
∫
V

(·) dV and V = Ω×L is the initial volume of the beam structure. Making
use of Eqs. (9) and (10), we can express the strain vector ε in Eq. (5) and its virtual variation
δε in terms of the generalized FE nodal unknowns qsj and δqτi as

ε = (Bsj
l + Bsj

nl)qsj, δε = (Bτi
l + 2Bτi

nl)δqτi (14)

where the two matrices Bsj
l and Bsj

nl of linear and nonlinear geometrical relations are given
by

Bsj
l = bl(FsNj) =



Fs,xNj 0 0

0 FsNj,y 0

0 0 Fs,zNj

Fs,zNj 0 Fs,xNj

0 Fs,zNj FsNj,y

FsNj,y Fs,xNj 0


(15)
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and

Bsj
nl =

1

2



ux,xFs,xNj uy,xFs,xNj uz,xFs,xNj

ux,yFsNj,y uy,yFsNj,y uz,yFsNj,y

ux,zFs,zNj uy,zFs,zNj uz,zFs,zNj

ux,xFs,zNj + ux,zFs,xNj uy,xFs,zNj + uy,zFs,xNj uz,xFs,zNj + uz,zFs,xNj

ux,yFs,zNj + ux,zFsNj,y uy,yFs,zNj + uy,zFsNj,y uz,yFs,zNj + uz,zFsNj,y

ux,xFsNj,y + ux,yFs,xNj uy,xFsNj,y + uy,yFs,xNj uz,xFsNj,y + uz,yFs,xNj


(16)

The other two matrices Bτi
l and Bτi

nl can be obtained by replacing the indices s and j with
τ and i in Eqs. (15) and (16). It should be pointed out that Eq. (16) is valid for the 3D
full Green-Lagrange strains in Eq. (6), which can be easily modified to account for different
geometrically nonlinear assumptions. For example, for the 1D von Kármán model with the
only non-zero nonlinear strain component given in Eq. (8), the geometrical matrix operator
Bsj
nl will become

[
Bsj
nl

]1D-VK
=

1

2



0 0 0

0 0 uz,yFsNj,y

0 0 0

0 0 0

0 0 0

0 0 0


(17)

Substituting these geometric relations (Eqs. (14)) into Eq. (13) and using the constitutive
equation (2) and CUF (Eqs. (9) and (10)) yields

δLint = δqT
τi <

(
Bτi
l + 2 Bτi

nl

)T
C̃
(
Bsj
l + Bsj

nl

)
> qsj = δqT

τi K
ijτs
S qsj (18)

where Kijτs
S = Kijτs

0 + Kijτs
lnl + Kijτs

nll + Kijτs
nlnl is the Fundamental Nucleus (FN) of the secant

stiffness matrix. Note that Kijτs
0 stands for the linear component of KS, Kijτs

lnl and Kijτs
nll

represent the nonlinear contributions of first order, and Kijτs
nlnl contains the nonlinearities of

second order [44, 45]. These 3× 3 matrices are obviously expressed as

Kijτs
0 =< (Bsj

l )TC Bτi
l > , Kijτs

lnl =< (Bsj
l )TC Bτi

nl >

Kijτs
nll = 2 < (Bsj

nl)
TC Bτi

l > , Kijτs
nlnl = 2 < (Bsj

nl)
TC Bτi

nl >
(19)

The specific expressions of these matrices and the FN of the 3× 3 secant stiffness matrix
Kijτs
S are not given here for the sake of brevity, which have been presented in the work of

Pagani and Carrera [45]. Given the cross-sectional functions (Fτ = Fs, for τ = s) and the axial
shape functions (Ni = Nj, for i = j), the elemental secant stiffness matrix of any arbitrarily
refined beam model can be obtained by using the indices τ, s = 1, ...,M and i, j = 1, ..., p+ 1.
In other words, by opportunely choosing various beam kinematics (i.e., by choosing Fτ as
well as the number of expansion terms M), we can implement the classical and higher-order
beam theories as well as the related secant stiffness matrices in an automatic manner based
on the index notation of CUF. In addition, it is evident from the above derivations that,
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by properly varying Bsj
nl, Kijτs

S can be easily scaled to account for different geometrically
nonlinear approximations, from the 3D full Green-Lagrange strains (Eq. (6)) to the simplified
von Kármán strains (Eq. (8)).

Once the elemental secant stiffness matrix is obtained according to the desirable approx-
imation order and for different assumptions of geometrically nonlinear strains, it can be
assembled in the classical way of FEM, see [47]. In fact, after the virtual variation of the
external work δLext is also formulated by δqτi (conservative systems are considered in this
work) and the finite element assembly procedure in the framework of CUF is conducted, the
nonlinear algebraic governing equations can be, thus, obtained from Eq. (12) as

KS q− p = 0 (20)

where KS, q, and p are global, assembled finite element arrays of the final structure. For
more details about the calculation of the work of external loadings and the related vector of
generalized forces p, interested readers are referred to Carrera et al. [47].

4 Linearization for the tangent stiffness matrix

In order to conduct the finite element calculation of the nonlinear algebraic governing equa-
tions (20), an incremental linearized scheme, typically the Newton-Raphson method (or tan-
gent method), has been used by Pagani and Carrera [44, 45] to solve the geometrically non-
linear systems. Based on the Newton-Raphson method, Eq. (20) can be expressed as:

ϕres ≡ KS q− p = 0 (21)

where ϕres is the vector of the residual nodal forces (unbalanced nodal force vector). Expand-
ing ϕres of Eq. (21) in Taylor’s series about a known solution (q,p), utilizing the linearization
method and omitting the second-order terms, we have

ϕres(q + δq,p + δp) = ϕres(q,p) +
∂ϕres
∂q

δq +
∂ϕres
∂p

δλpref = 0 (22)

where ∂ϕres/∂q = KT is the tangent stiffness matrix and −∂ϕres/∂p is equal to the unit
matrix I. In Eq. (22), it has been envisioned that the load varies directly with the vector of
the reference loadings pref with a rate of change equal to the load parameter λ, i.e. p = λpref .
Furthermore, it should be emphasized that, since we take the load-scaling parameter λ as a
variable, an additional constraint relationship c(δq, δλ) is required to Eq. (22), which finally
leads to 

KT δq = δλpref −ϕres

c(δq, δλ) = 0
(23)

Depending on the constraint equation, different incremental schemes can be implemented. For
instance, the constraint relationship δλ = 0 corresponds to a load-control method, while the
constraint condition δq = 0 represents a displacement-control method. In this work, a path-
following constraint equation, which is a function of both displacement and load parameter
variations, is employed. Specifically, an arch-length method proposed by Crisfield [57, 58] and
later modified by Carrera [59] is utilized in this paper. More explanations about the arch-
length method are omitted here and interested readers are referred to the above-mentioned
literature.
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For the purpose of completeness, it is pointed out that the tangent stiffness matrix KT can
be derived from the linearization of the nonlinear static equilibrium equation (12) [60]. In the
case of conservative loading, the linearization of the virtual variation of external loads vanishes,
i.e. δ(δLext) = 0. Therefore, the only terms to be linearized are the strain-displacement
operators and the stress-strain relations. As a matter of fact, linearizing the virtual variation
of the internal strain energy can yield

δ(δLint) =< δ(δεTσ) >=< δεTδσ > + < δ(δεT)σ >= δqT
τiK

ijτs
T δqsj (24)

where Kijτs
T = Kijτs

0 +Kijτs
T1

+Kijτs
σ , in which Kijτs

T1
= 2 Kijτs

lnl +Kijτs
nll +2 Kijτs

nlnl, and Kijτs
σ , arising

from the nonlinear form of the strain-displacement relations, is often called the geometrical
stiffness [44, 45]. The specific derivation procedure and expressions of Kijτs

T are provided in
the work of Pagani and Carrera [45] and not shown here for brevity. Analogous to the case
of the secant stiffness matrix, Kijτs

T represents the 3 × 3 FN and can be used as the basic
building block to formulate the tangent stiffness matrix for any higher-order refined beam
elements accounting for various kinematics and different nonlinear strain approximations.

It is worth mentioning that unlike the secant stiffness matrix KS, the tangent stiffness
matrix KT is symmetric. As Pagani and Carrera [44] pointed out, the main disadvantages of
employing KS to solve the geometrically nonlinear governing equations (20) is that the gen-
erally non-symmetric secant stiffness matrix is not uniquely defined and leads to resolution
methods with lower orders of convergence (approximately 1.6 against 2 of tangent methods).
Thus, in this work, the tangent stiffness matrix is employed to formulate the linearized itera-
tive scheme while the secant stiffness matrix is exploited merely for evaluating the equilibrium
defect and the residual at each iteration. Additionally, we will use the full Newton-Raphson
method that updates the tangent stiffness matrix at each iteration to carry out the numerical
calculations displayed in Sec. 5.

5 Numerical results

In this section, numerical calculations will be conducted for the post-buckling of three-layered
symmetric or asymmetric cross-ply beams and the large displacement analysis of two-layered
asymmetric composite beams under compression loadings, in order to quantitatively compare
the numerical results of various kinematics and determine the validation ranges of different
geometrically nonlinear approximations based on the 3D full geometrically nonlinear CUF
beam model. If not otherwise stated, 20 cubic finite elements along the longitudinal axis are
employed to approximate the solution fields with high accuracy.

5.1 Post-buckling of three-layered composite beams

The first loading case addresses the post-buckling analysis of a simply-supported symmetric
cross-ply [0◦/90◦/0◦] beam structure. For the purpose of illustration, each layer is made
of an orthotropic material with properties as follows: E1 = 155 GPa, E2 = 15.5 GPa,
G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25. The beam cross-section is square with
width b = 5 mm and total height h = b. In addition, each layer of the laminate has the same
thickness t = h/3 and the length-to-width ratio L/b is set to be equal to 50, where L is the
beam length.

Before comparing the numerical results of various geometrically nonlinear approximations,
we first carry out the comparison based on different expansion functions on the cross-section
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Figure 2: Post-buckling equilibrium curves of the simply-supported symmetric cross-ply
[0◦/90◦/0◦] beam (L = 250 mm, b = 5 mm): (a) comparison of different LE functions;
(b) comparison of L16 with different TE functions.

(i.e. various kinematics). Specifically, we calculate the post-buckling equilibrium curves of
the simply-supported symmetric cross-ply beam in Fig. 2 for different LE and TE functions,
where the applied compression load P at the tip end varies with the vertical displacement
component uz at the center of the mid-span section. The loading and boundary conditions
are also shown in Fig. 2 for clarity reasons, where a small defect load d = 0.2 N is applied at
the mid-span section to activate the stable branch along the nonlinear response path. These
solutions provided by the bi-linear (3L4), bi-quadratic (3L9), and bi-cubic (3L16) layer-wise
full nonlinear CUF models are compared in Fig. 2(a), while the numerical results predicted by
the TE functions (N = 1 and N = 2) and the bi-cubic layer-wise LE function (3L16) based on
the full geometrically nonlinear theory are depicted in Fig. 2(b). Furthermore, the normalized
axial stress σyy and transverse stress σyz distributions along the thickness of the laminated
beam close to the loaded end (at y = 0.9L) is demonstrated in Fig. 3 for different cross-section
kinematics based on the 3D full nonlinear theory at a fixed loading force PL2/(bh3E2) = 10.

It should be pointed out from Figs. 2 and 3 that (1) both lower- and higher-order LE
and TE full geometrically nonlinear CUF models can be able to correctly predict the post-
buckling equilibrium path and capture successfully the reliable axial stress distribution of the
simply-supported symmetric cross-ply beam; (2) in order to accurately describe the quadratic
piece-wise distributions of the transverse shear stresses and ensure the continuity of the shear
stresses through the thickness in the large-deflection and post-buckling regime (which is re-
quired physically), the bi-cubic layer-wise LE function (3L16) based on the 3D full nonlinear
theory is needed. On the contrary, other kinematics can only predict constant or linear distri-
butions of the shear stresses. Post-buckling equilibrium curves and stress distributions have
also been calculated for various length-to-width ratios. The results are qualitatively similar
to those in Figs. 2 and 3 and thus not reported here for the sake of brevity.

As a result, in the following calculations, we will exploit the bi-cubic layer-wise LE kine-
matics (L16) as a basis to assess the validation ranges of different geometrically nonlinear
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Figure 3: Through-the-thickness distributions of the normalized components of axial stress
σyy (a) and transverse stress σyz (b) at y = 0.9L of the simply-supported symmetric cross-ply
[0◦/90◦/0◦] beam (L = 250 mm, b = 5 mm, and PL2/(bh3E2) = 10).

approximations, since the numerical results for the L16 full nonlinear CUF model can be
assumed to be highly accurate [45].

To clearly highlight the difference predicted by different geometrically nonlinear approx-
imations, the post-buckling equilibrium curves of the simply-supported symmetric cross-ply
[0◦/90◦/0◦] beam are displayed in Fig. 4 for various geometrically nonlinear models. In essence,
different nonlinear terms of the operator matrix bnl are activated in each geometrically non-
linear approximation theory. For instance, the analysis with all 3D nonlinear terms involved
(i.e., 3D full Green-Lagrange strains are included) is hereafter abbreviated as the “Full Non-
linear” analysis, while that with all nonlinear terms excluded represents a “Linear” analysis
that predicts a vertical straight line in Fig. 4, meaning that a Linear analysis cannot generate
the buckling phenomenon. It is worth pointing out that since the bending and buckling of
the structure is enforced in the y − z plane by a small defect load acting in the z-direction,
the nonlinear terms including the derivatives with respect to x and being associated with the
displacement ux have little influence on the nonlinear response of the structure. Therefore,
the result of this analysis excluding those nonlinear terms shows the same trend of the“Full
Nonlinear” analysis and hence is omitted here. The “1D-VK” analysis in Fig. 4 utilizes the
von Kármán assumptions to 1D beams with the only non-zero nonlinear strain term bnl[2, 3],
presented in Eq. (8). It can be seen from Fig. 4 that an almost horizontal line after the
buckling load is predicted based on the 1D-VK analysis, which will deviate from the Full
Nonlinear solution around the normalized displacement value of uz/L = 0.075. In addition,
the 1D-VK analysis overestimates the transverse displacements for a given loading force, es-
pecially in the advanced nonlinear regime. This phenomenon is qualitatively similar to that
observed by Kim and Chaudhuri [43] in the geometrically nonlinear analysis of laminated
cylindrical panels. It is important to notice that in order to fulfill the compatibility between
the von Kármán strains and the model kinematics, the nonlinear effects of all shear strains
along with the bending need to be considered (i.e., the nonlinear term bnl[3, 2] should be
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Figure 4: Post-buckling equilibrium curves of the simply-supported symmetric cross-ply
[0◦/90◦/0◦] beam (L = 250 mm, b = 5 mm) subjected to compression based on different
geometrically nonlinear theories.

also taken into account in addition to bnl[2, 3]). The analysis with all nonlinear shear effects
will be referred to as “1D-VKS” afterwards for simplicity. Fig. 4 shows that both 1D-VKS

and 1D-VK curves can capture the buckling conditions, but after that, the 1D-VKS analysis
describes a more rigid structure, which physically means that a higher compression loading
predicted by the 1D-VKS analysis is needed to reach the same displacement than that by the
1D-VK theory. In order to demonstrate how the post-buckling equilibrium curve can change
if other nonlinear terms are chosen, we show the final analysis “Case 5” in Fig. 4, where the
nonlinear terms bnl[2, 2], bnl[2, 3], bnl[3, 2], bnl[3, 3] and bnl[5, 2] are included. In a word, the
validation range predicted by the 1D-VK analysis is largest compared with other nonlinear
approximation theories, but there is no solution to the nonlinear response for the 1D-VK
analysis when the compression loading exceeds the buckling load.

Furthermore, the through-the-thickness distributions of the normalized axial stress σyy
and transverse shear stress σyz components at y = 0.9L of the simply-supported symmetric
cross-ply [0◦/90◦/0◦] beam are depicted in Fig. 5 based on different geometrically nonlinear
theories. Figs. 5(a) and 5(b) show the stress distributions of equilibrium points A, B, C and
D shown in Fig. 4 for a fixed loading force PL2/(bh3E2) = 12, while Figs. 5(c) and 5(d)
display the stress distributions of equilibrium points E, F , G and the Case 5 analysis shown
in Fig. 4 for a fixed displacement uz/L = 0.3. Note that the transverse stress σyz distribution
corresponding to the Case 5 is not shown in Fig. 5(d) since its predicting result is much larger
than those given by other nonlinear approximation theories.

It can be seen from Figs. 5(a) and 5(c) that the Full Nonlinear prediction gives the linear
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Figure 5: Through-the-thickness distributions of the normalized components of axial stress σyy
(a, c) and transverse shear stress σyz (b, d) based on different geometrically nonlinear theories
at y = 0.9L of the simply-supported symmetric cross-ply [0◦/90◦/0◦] beam (L = 250 mm,
b = 5 mm): (a, b) for a fixed loading force PL2/(bh3E2) = 12 corresponding to points A, B,
C and D shown in Fig. 4; (c, d) for a fixed displacement uz/L = 0.3 corresponding to points
E, F , G and the Case 5 shown in Fig. 4.
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axial stress distribution and clearly demonstrates the flexure nature of the symmetric struc-
ture after the buckling phenomenon occurs. However, other approximation theories deviate
largely from the Full Nonlinear results. In particular, the 1D-VKS model induces the positive
axial stress along the whole thickness of the laminated beam, which violates the intrinsic
flexure characteristics and is unacceptable physically. As described above, the 3L16 Full Non-
linear analysis can accurately predict the quadratic transverse shear stress distribution and the
continuity of the shear stress through the thickness, shown in Figs. 5(b) and 5(d). Nonethe-
less, other nonlinear assumption models cannot ensure the continuous transverse shear stress
distributions.

The displacements at the mid-span cross-section and the deformed configurations of the
simply-supported symmetric cross-ply [0◦/90◦/0◦] beam based on different geometrically non-
linear approximation theories for a fixed loading force PL2/(bh3E2) = 12 are depicted in
Table 1. It is worth noticing that corresponding to the loading case, no solution for the
1D-VK analysis exists for the nonlinear response. The Full Nonlinear analysis predicts the
largest mid-span displacement and describes the most compliant structure. Additionally, Ta-
ble 2 displays the loading forces and the deformed configurations of the simply-supported
symmetric cross-ply [0◦/90◦/0◦] beam based on different geometrically nonlinear theories for
a fixed mid-span displacement uz/L = 0.3. Although the mid-span displacements are the
same for different analyses, the deformed modes of the whole structure are different from
each other.

Linear (A) Case 5 (B) 1D-VKS (C) Full Nonlinear (D)

Displacement
uz = 0.008 uz = 39.335 uz = 58.517 uz = 99.473

at the mid-span

Deformed
Configuration

(x-direction view)

Table 1: Displacements at the mid-span and deformed configurations of the simply-supported
symmetric cross-ply [0◦/90◦/0◦] beam based on different geometrically nonlinear theories for
a fixed loading force PL2/(bh3E2) = 12 (i.e., P = 1.86 × 103 N) corresponding to points A,
B, C and D shown in Fig. 4. Note: uz is expressed in mm.

1D-VK (E) Full Nonlinear (F) 1D-VKS (G) Case 5

Loading Force P = 1.224 P = 1.406 P = 2.280 P = 10.894

Deformed
Configuration

(x-direction view)

Table 2: Loading forces and deformed configurations of the simply-supported symmetric cross-
ply [0◦/90◦/0◦] beam based on different geometrically nonlinear theories for a fixed mid-span
displacement uz/L = 0.3 (i.e., uz = 75 mm) corresponding to points E, F , G and the Case 5
shown in Fig. 4. Note: P is expressed in 103 N.

Now we turn to investigating the effect of different lamination angles on the buckling and
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post-buckling characteristics. In the case of simply-supported boundary conditions, the post-
buckling equilibrium curves of three-layered composite beams for different lamination angles
are plotted in Fig. 6 based on the Full Nonlinear analysis. It should be emphasized that for
the asymmetric cross-ply beams such as [−15◦/0◦/15◦] and [−45◦/0◦/45◦], a small defect load
applied at the mid-span is still required to induce the post-buckling branch. It can be seen
from Fig. 6 that the variation trend of the post-buckling equilibrium curves is not qualitatively
affected by the lamination angle, but the lamination angle indeed has a significant influence
on the buckling loads of three-layered composite beams and must be taken into account.
Specifically, the normalized critical buckling loads PcrL

2/(bh3E2) correponding to [0◦/90◦/0◦],
[−15◦/0◦/15◦], [−45◦/0◦/45◦], [45◦/90◦/45◦] and [−90◦/0◦/90◦] laminated beams are about
7.88, 4.90, 1.50, 1.25 and 1.10. Thus, the symmetric cross-ply [0◦/90◦/0◦] beam structure
can withstand larger loads before buckling due to the more rigid outer layers along the axial
direction. Finally, it can be noted from Fig. 6 that the post-buckling equilibrium curves
of the [−45◦/0◦/45◦] and [−90◦/0◦/90◦] laminated beams overlap with the [45◦/0◦/45◦] and
[90◦/0◦/90◦] laminated beams, which can be assumed trivial owing to the relation cos θ =
cos (−θ).

For three-layered composite beams with simply-supported boundary conditions and differ-
ent lamination angles from [0◦/90◦/0◦], we have also numerically calculated the post-buckling
equilibrium curves for various geometrically nonlinear theories. The qualitative variation
trend is unaltered compared with that in Fig. 4 and thus not reported here.

5.2 Large-deflection of two-layered asymmetric composite beams

Now our interest is to employ the 3D full geometrically nonlinear CUF model to determine the
validation ranges of different geometrically nonlinear assumptions for two-layered asymmetric
composite beams subjected to compression loadings. For representative purposes, we will
first consider the two-layered asymmetric [0◦/45◦] beam structure and each layer has the
same thickness t = h/2 = 0.3 m. The total length and section width of the laminated beam
are equal to L = 9 m and b = 1 m, respectively. Besides, the laminated beam consists
of an orthotropic AS4/3501-6 graphite/epoxy material with the following properties: E1 =
144.8 GPa, E2 = 9.65 GPa, G12 = G13 = 4.14 GPa, G23 = 3.45 GPa, ν12 = 0.3.

Fig. 7 demonstrates the post-buckling equilibrium curves of the cantilever asymmetric
cross-ply [0◦/45◦] composite beam subjected to compression for various geometrically nonlin-
ear models including the Linear, 1D-VK, 1D-VKS, Case 5 and Full Nonlinear analyses. The
post-buckling equilibrium curves provide the vertical displacement component uz as functions
of the applied compression load P . Note that the displacements are calculated at the free end
of the cantilever beam and the Full Nonlinear analysis is based on the 2L16 layer-wise CUF
beam model. For the sake of clarity, the loading and boundary conditions are also displayed
in Fig. 7, and there is no need to apply the defect load. As we can see, due to the cou-
pling effect between the axial and transverse displacement components, the Linear analysis
generates an almost vertical straight line and the predicted displacement is extremely small.
It can be found from Fig. 7 that the predictions of the 1D-VK analysis with the classical
von Kármán approximations and of the Full Nonlinear analysis are almost indistinguishable
when uz/L ≤ 0.2. However, when uz/L > 0.2, the difference between them gradually in-
creases. Specifically, the 1D-VK analysis predicts an almost horizontal line and overestimates
the transverse displacements for a given loading force [43], which is similar to that in Fig. 4.
The post-buckling curves predicted by the 1D-VKS analysis with modification to include non-
linear shear effects and by the Case 5 analysis begin to deviate from that based on the Full
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Figure 6: Post-buckling equilibrium curves of three-layered simply-supported composite
beams (L = 250 mm, b = 5 mm) for different lamination angles based on the Full Non-
linear analysis.

Nonlinear analysis after the normalized displacement value of 0.1. Consequently, the vali-
dation range of the latter two nonlinear approximation theories is smaller than that of the
1D-VK analysis, which cannot provide solutions to the nonlinear response after approximately
PL2/(bh3E2) = 0.74.

Moreover, Fig. 8 shows through-the-thickness distributions of the normalized axial stress
σyy and transverse shear stress σyz components at the mid-span section of the cantilever asym-
metric cross-ply [0◦/45◦] beam based on different geometrically nonlinear theories. Specifi-
cally, the stress distributions of equilibrium points A, B, C and D labelled in Fig. 7 for a fixed
compression load PL2/(bh3E2) = 0.9 are displayed in Figs. 8(a) and 8(b), while Figs. 8(c)
and 8(d) depict the stress distributions of equilibrium states E, F , G and the Case 5 analysis
in Fig. 7 for a fixed vertical displacement uz/L = 0.55. It can be found from Figs. 8(a) and
8(c) that although all the geometrically nonlinear approximation theories predict linear axial
stress distributions along the beam thickness, their predictions deviate quantitatively from
the Full Nonlinear results. In addition, analogous to the symmetric cross-ply [0◦/90◦/0◦] beam
case shown in Figs. 5(b) and 5(d), the 2L16 Full Nonlinear analysis in Figs. 8(b) and 8(d)
can ensure the continuity of the transverse shear stress and result into the quadratic shear
stress distributions. Interestingly, it can be found from Figs. 8(b) and 8(d) that the prediction
results based on the 1D-VKS analysis also display the continuous shear stress distributions
owing to the correction of nonlinear shear strain effects. Other nonlinear approximation the-
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composite beam (L = 9 m, b = 1 m) subjected to compression based on different geometrically
nonlinear theories.

ories cannot guarantee the continuous transverse stress distributions. Therefore, the Full
Nonlinear analysis is of paramount importance to predict the accurate stress distributions in
the large-deflection scenario.

In order to evidently demonstrate the equilibrium states of different geometrically nonlin-
ear theories, Table 3 concludes and compares the displacements at the free end and the de-
formed configurations of the cantilever asymmetric cross-ply [0◦/45◦] beam for a fixed loading
force PL2/(bh3E2) = 0.9. Similar to the results in Table 1, the 2L16 Full Nonlinear analysis
leads to the largest displacement at the free end. In addition, Table 4 shows the loading forces
and the deformed configurations of the cantilever asymmetric cross-ply [0◦/45◦] beam based
on different geometrically nonlinear theories for a fixed free-end displacement uz/L = 0.55.
It can be noted that the deformed modes of the laminated beam differ from each other.

Finally, Fig. 9 displays the post-buckling equilibrium curves of the cantilever asymmetric
cross-ply [0◦/90◦] and [15◦/− 45◦] laminated beams subjected to the compression load based
on various geometrically nonlinear theories. The numerical results and discussion procedure
are qualitatively analogous to those in Fig. 7 and hence neglected here for simplicity. It can
be seen that the variation trend of the post-buckling equilibrium curves hardly varies with
the stacking sequence of the two-layered asymmetric composite beams.
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Figure 8: Through-the-thickness distributions of the normalized components of axial stress
σyy (a, c) and transverse shear stress σyz (b, d) based on different geometrically nonlinear
theories at the mid-span of the cantilever asymmetric cross-ply [0◦/45◦] beam: (a, b) for a
fixed loading force PL2/(bh3E2) = 0.9 corresponding to points A, B, C and D shown in
Fig. 7; (c, d) for a fixed displacement uz/L = 0.55 corresponding to points E, F , G and the
Case 5 shown in Fig. 7.
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Linear (A) Case 5 (B) 1D-VKS (C) Full Nonlinear (D)

Displacement
uz = 0.182 uz = 2.169 uz = 2.881 uz = 5.951

at the free end

Deformed
Configuration

(x-direction view)

Table 3: Displacements at the free end and deformed configurations of the cantilever asym-
metric cross-ply [0◦/45◦] beam based on different geometrically nonlinear theories for a fixed
loading force PL2/(bh3E2) = 0.9 (i.e., P = 2.316 × 107 N) corresponding to points A, B, C
and D shown in Fig. 7. Note: uz is expressed in m.

1D-VK (E) Full Nonlinear (F) 1D-VKS (G) Case 5

Loading Force P = 1.877 P = 2.112 P = 3.276 P = 10.975

Deformed
Configuration

(x-direction view)

Table 4: Loading forces and deformed configurations of the cantilever asymmetric cross-
ply [0◦/45◦] beam based on different geometrically nonlinear theories for a fixed tip end
displacement uz/L = 0.55 (i.e., uz = 4.95 m) corresponding to points E, F , G and the Case
5 shown in Fig. 7. Note: P is expressed in 107 N.

6 Conclusions

In this paper, we accurately determined the stress field distributions for the large-deflection
and post-buckling of laminated composite beams based on various geometrically nonlinear
approximations. We briefly addressed the formulations utilized to conduct such investiga-
tions, which is based on the Carrera Unified Formulation (CUF). Specifically, the nonlinear
governing equations along with the related finite element approximation have been presented
and formulated employing the principle of virtual work. We provided a detailed numerical
evaluation for the post-buckling of three-layered composite beams and for the large displace-
ment analysis of two-layered asymmetric composite beams under compression, in order to
quantitatively compare the numerical results of various cross-sectional kinematics (including
both TE and LE) and different geometrically nonlinear models (including 3D full nonlinear
model, 1D von Kármán approximation and its modified counterpart with nonlinear shear ef-
fects). Owing to the scalable advantage of CUF, we can consistently investigate the effects of
different geometrically nonlinear approximations in a unified way, without altering the form
of CUF. From the numerical results, we can draw the following conclusions:

1) For symmetric cross-ply beams, both TE and LE 3D full geometrically nonlinear CUF
models can correctly predict the post-buckling equilibrium curves and successfully capture
the reliable axial stress distributions. Nevertheless, in order to accurately describe the
quadratic piece-wise distributions of the transverse shear stresses and ensure their conti-
nuity through the thickness in the case of large-deflection and post-buckling, the bi-cubic
layer-wise LE function based on the Full Nonlinear theory is required with high accuracy,
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Figure 9: Post-buckling equilibrium curves of the cantilever asymmetric composite beam
(L = 9 m, b = 1 m) subjected to compression based on different geometrically nonlinear
theories: (a) [0◦/90◦]; (b) [15◦/− 45◦].

which could be a basis to assess the validation ranges of different geometrically nonlinear
approximations.

2) Geometrically nonlinear simplified models such as the von Kármán model may provide
acceptable results of the post-buckling equilibrium curves in the regimes of small and
moderate displacements/rotations, while, in the large displacement/rotation analysis, the
3D full geometrically nonlinear CUF model must be exploited to obtain the reliable results.

3) Full Nonlinear predictions yield the linear axial stress distributions and clearly demon-
strate the flexure nature subjected to the compression loading, while other approximation
theories deviate largely from the Full Nonlinear results. Unlike the bi-cubic layer-wise LE
Full Nonlinear model, most of other geometrically nonlinear approximation models cannot
describe the continuous transverse shear stress distributions.

4) The lamination angle or the stacking sequence does not qualitatively affect the variation
trend of the post-buckling equilibrium curves, but it indeed has a significant influence on
the buckling loads of laminated composite beams.

All these results provide significant guidance for the accurate analysis of the post-buckling
equilibrium curves and the stress field distributions for the geometrically nonlinear laminated
composite beams. In addition, the validation ranges of various geometrically nonlinear ap-
proximation models can be determined compared with the 3D full geometrically nonlinear
model.

Finally, we emphasize here that in the large-deflection and post-buckling analyses inves-
tigated in this work, only the geometrical nonlinearity is taken into consideration and the
flexible composites are assumed to be linear elastic under the assumption of small strains.
For biological soft materials commonly subjected to large strains (or deformations), further
analysis on the influence of both geometrical and material nonlinearities on the stress field
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distributions for the large-deflection and post-buckling of laminated composites should be
required, especially for incompressible biological hyperelastic materials [4, 61].
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