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Abstract—This work addresses the problem of training a
convolutional neural network for segmenting satellite images
in emergency situations, where images to be segmented are
potentially very different from training images. Such case is
particularly challenging due to the large intra-class variations in
image statistics between images captured at different locations
by different sensors. We propose a convolutional encoder-decoder
network architecture where the encoder is built around residual
networks. We show that the proposed architecture enable learn-
ing features able to generalize the learning process across images
with largely different statistics. Our architecture can accurately
segment images that have no reference in the training set, whereas
a minimal refinement of the trained network significantly boosts
the segmentation accuracy.

I. INTRODUCTION

Hand-segmenting satellite images is a labor-intensive pro-
cess, thus fast, reliable schemes for automatic satellite image
segmentation are desirable. Image segmentation can be defined
as the problem of classifying each pixel in an image according
to a number of (predefined) labels. Most of the existing
schemes for satellite image segmentation [1] deal with the
case where training samples are first extracted from part of the
image, then a supervised algorithm is trained to segment the
rest of the same image. This work addresses the particular yet
important case of training an algorithm so that it can be quickly
deployed over images that differ substantially from the training
samples. This is the case of satellite based emergency map-
ping, when a large number of image interpreters is required to
manually carry out reference mapping and damage assessment
analyses in a short time frame (few hours) [2]. The challenging
aspect of such applications is the potentially large intra-class
statistics variations between training and deployment images,
which requires a highly-generalized learning process.

Convolutional Neural Networks (CNNs) recently outper-
formed many competing techniques in a number of image
processing tasks [3], [4]. First a number of convolutional layers
extracts discriminative features of increasing semantic level
from the the input image. Position (and scale) robustness are
achieved discarding absolute spatial information via repeated
convolve-and-subsample operations. Considering a classic im-

age classification problem, one or more fully connected layers
label the entire image among a finite set of options accord-
ing to such features. Notably, CNNs can be trained end-to-
end to learn such features, avoiding handcrafting the feature
extractor [5]. However, subsampling operations and fully con-
nected layers remove most of the spatial information, making
classification-tailored CNNs unsuited for image segmentation.

Fully convolutional CNNs (FCNs) recently showed promis-
ing results in image segmentation [6]. In a FCN, deconvolu-
tional [7] layers are used to reverse the subsampling process,
upsampling feature maps and recovering the spatial resolution.
Then, unitary-sized convolutional filters replace the fully con-
nected layers preserving feature position. Symmetric encoder-
decoder architectures and aggressive augmentation help further
performance [8]. In addition, conditional random fields based
postprocessing may further refine the segmentation accuracy
by leveraging context information [9]. FCN-based architec-
tures recently achieved state of the art performance in the
ISPRS segmentation competition [10], [11].

This work investigates architectures [4] for satellite image
segmentation. We propose an encoder-decoder CNN architec-
ture with a residual encoder and deconvolutional decoder that
can be trained in a fully-supervised manner. We experiment
with residual networks of different depth, training the net-
work over images vastly different from deployment images.
Experiments show that network depth improves segmentation
performance. Most important, residual networks enable the
deep architectures required to learn features good enough to
generalize across images with statistics largely different from
training images. Moreover, we show that refining the trained
network over a small hand-annotated portion of the deploy-
ment images can dramatically boosts the network performance
with little extra effort.

The rest of this paper is organized as follows. Sec. II
provides the background relevant to this work. Sec. III de-
scribes the proposed network architecture and relative training
procedures. Sec. IV describes the experimental methodology
and relative results. Conclusions are drawn in Sec. V.



II. BACKGROUND

A. Residual Networks

Residual Networks (ResNets) [4] are a class of CNNs
that enable deep topologies while maintaining the number of
learnable parameters under control. We refer to the basic block
of a ResNet as unit in the following. Each unit includes two or
three convolutional layers with 3×3 or 1×1 filters and ReLU
activation functions as illustrated in Fig. 1 (right box). The
output of the last convolutional layer is added with the input
of the first layer via a skip connection. Multiple residual units
are stacked without intermediate pooling operators to create a
residual block. Notice that the filters in the first convolutional
layer of each block have stride equal to two to compensate
for the lack of pooling operators. The number and the size
of the feature maps within each block is homogeneous, and
multiple blocks can be stacked to create very deep topologies.
Concerning image classification applications, the last block
of a ResNet is typically followed by a pooling operator
and a fully connected layer with C neurons, one per each
classification label. The supervised training of a ResNet is
equivalent to learning one residual function for each unit,
which makes ResNets easier to train than conventional CNNs
of identical depth.

B. Deconvolutional Networks

Deconvolutional networks were introduced as an unsuper-
vised framework for coping with the loss of mid-level cues
[7] due to pooling operations. In our image segmentation
framework, we leverage deconvolutional layers as a supervised
method for spatially upsampling feature maps in the decoder.
Each deconvolutional layer (backward convolution) performs
two operations. First, the input feature map is spatially up-
sampled (unpooling) by a two factor padding missing features
with zero value features. Second, such sparse feature map is
convolved with a number of filters which learn how to recover
the missing features. Such operation generates a dense output
feature map which is upsampled by a two factor with respect
to the input feature map. Therefore, deconvolutional layers
can be approximated as learnable upsampling filters that we
exploit to increase the spatial resolution of segmented images.

III. PROPOSED ARCHITECTURE

A. Network Architecture

The overall convolutional network architecture we propose
is illustrated in Fig. 1 and it consists of an encoder sub-
network responsible for feature extraction followed by a
decoder sub-network responsible for spatial resolution restora-
tion and image segmentation ultimately [8].

1) Encoder: The encoder subnetwork takes as input a
image sized 256 × 256 composed of D spectral channels. The
encoder sub-network is composed of five residual blocks as
follows. As an exception to the ResNet architecture, the first
block includes one single convolutional layer with 7×7 filters
and 2 pixel stride, followed by a 2 × 2 pooling layer. All
other blocks include a variable number of residual units for

learning features of increasing semantic depth and decreasing
spatial resolution. The number of feature maps produced in
output by each block is strictly twice the number of feature
maps generated by the previous block. However, filters in the
first convolutional layer of each block have a stride equal
to 2 pixels and halve the feature maps edge size, keeping
the number of features under control. So, the receptive field
size of each feature map increases at each block depending
on the number of convolutional layers in the units. Increased
receptive fields enable the network to correlate pixels over
larger and larger spatial contexts. At the end, encoder outputs
a certain number of feature maps which can be seen as coarse
8×8 representation of the input image. Using residual network
as encoder enables us to use larger number of convolutions in
encoder compare to other types of convolutional networks such
as Inception [3].

2) Decoder: The decoder sub-network is composed by a
sequence of five deconvolutional blocks which recover the
spatial resolution lost at the encoder due to pooling and
subsampling. Each deconvolutional block is composed by a
deconvolutional layer [7] with 4×4 filters and 2 pixel stride
and ReLU activation functions with batch normalization. Each
deconvolutional block learns the features required to produce
a reduced number of upsampled feature maps with respect to
the input feature maps in input. For example, the first decon-
volutional block takes in input the 512 8 × 8 feature maps
generated by the last block of the encoder and produces 256 16
× 16 feature maps effectively doubling the overall number of
features and recovering spatial information. As Fig. 1 shows,
Feature maps generated by each deconvolutional block are
concatenated with an equal number of identically sized feature
maps generated by the matching encoder block [12]. We
verified that best performance is obtained when the number
of downsampled (encoder) and upsampled (decoder) feature
maps is balanced. Balanced feature maps concatenation, we
understand, avoids that any of the two types of features
dominate the other when fed to subsequent deconvolutional
blocks. Further deconvolutional blocks further increase the
feature maps resolution while reducing their overall count. The
fifth deconvolutional block finally generates 64 feature maps
sized 256 × 256, recovering the original image resolution. Our
experiments also revealed that better performance is achieved
when such feature maps are concatenated with an identical
number of identically sized feature maps generated by 3 ×
3 filters. Finally, the (upsampled) feature maps are convolved
with 1 × 1 filters [6] so to generate a number of output feature
maps equal to the number of classes C. The i-th feature in the
k-th output feature map oi,k represents the relative confidence
that the i-th pixel in the input image belongs to the k-th class.
However, we are interested in estimating, for each i-th pixel,
the pixel class probability distribution over the k classes yi,k.
To this end, spatial SoftMax is used as partition function to
produce the sought score yi,k = eoi,k/

∑C
k=1 e

oi,j , such that∑C
k=1 yi,k = 1.

Table I summarizes the hyperparameters for some common
ResNet variants used in proposed network.



Fig. 1: Proposed encoder-decoder network architecture for satellite image segmentation with exploded residual block and unit
diagram and deconvolutional blocks.

TABLE I: Number of (output feature maps, convolutional
layers) for each encoder (top) and decoder (bottom) block.

Encoder Num. of (feature maps, convolutions) in encoder block
depth Block 1 Block 2 Block 3 Block 4 Block 5

18 (64, 1) (64, 4) (128, 4) (256, 4) (512, 4)
34 ” (64, 6) (128, 8) (256, 12) (512, 6)
50 ” (256, 9) (512, 12) (1024, 18) (2048, 9)
101 ” ” ” (1024, 69) ”
152 ” ” (512, 24) (1024, 108) ”
200 ” ” (512, 72) ” ”

Encoder Num. of (feature maps, convolutions) in decoder block
depth Block 1 Block 2 Block 3 Block 4 Block 5

18,34 (256, 1) (128, 1) (64, 1) (64, 1) (64, 1)
>34 (1024, 1) (512, 1) (256, 1) ” ”

B. Training Samples Generation

Our network is trained over images where each pixel is
labeled according to one out of C possible classes. First, every
image is subdivided in tiles of 364 × 364 pixels each with a
stride of 120 pixels (tiles overlap by 244 pixels horizontally
and vertically). For each image, 80% of the tiles are used for
extracting training samples, whereas the remaining 20% are
reserved for validation samples (training and validation areas
are disjoint sets).
Concerning training samples, a number of random transforma-
tions are performed on each tile. First, with 50% probability,
we crop a 256 × 256 patch at a random location from the tile,
matching our proposed network input window size. Otherwise,
the tile is first randomly rotated by θ ∈ (0, 2π) degrees, then
a 256 × 256 sample is cropped from the tile center. Next, the
sample is randomly flipped horizontally and vertically with
50% probability respectively.
Such transformations are independently performed over each
training tile at each training epoch and are pivotal to augment
[8] the number of unique samples shown to the network
during training, preventing the network from overfitting to the
train data. Notice we experimented with additional random
variations in illumination and contrast variations and with
random color jittering, however with marginal gains only.
Concerning validation tiles, we simply extract a 256 × 256
patch from the center of each tile.

The samples are then normalized with respect to mean pixel
intensity value and standard deviation. For each channel, we
subtract from each pixel intensity value the mean intensity
value and divide by the standard deviation. Normalization
significantly accelerates the learning process and shall be
applied also at deployment time.

C. Cost Function Definition

Training our network over sample x is equivalent to find-
ing the set of network parameters (weights, biases) w that
minimize some error (or loss) function L(w, y, t) where y is
the actual network output to x and t is the expected (target)
network output. Let us indicate as ti,k the expected output
for the i-th pixel xi and for the k-th class among C different
possible classes. Let us assume that ti takes the form of a one-
hot vector, i.e. only the element corresponding to the correct
class is equal to one, whereas all the other C − 1 elements
are equal to zero. The error function L(w, y, t) represents the
network inaccuracy in segmenting sample x and is defined as

L(w, y, t) = −
H×W∑
i=1

C∑
k=1

ti,k log (yi,k). (1)

That is, the segmentation error is defined as the sum of teh
cross-entropy between yi and ti for every i-th pixel xi in
sample x.
It is obviously desirable that the network learns to segment
also samples it has never seen at training time. To this end,
the cost function we actually optimize at training time is

J(w, y, t) = ηL(w, y, t) + λR(w), (2)

where R(w) is a regularization term defined as the squared L2
norm of all the weights in the network. That is, we minimize
a cost function that is a linear combination of a loss function
(pixel classification error) and a regularization term, whose
weight is controlled by the parameters η (learning rate) and
λ respectively.

D. Training Procedure

Finally, we proceed training the network by finding a set
of network parameters w that minimize the cost function in



Eq. (2). First, the derivatives of the cost function J(w, y, t)
with respect to parameters w are recursively computed via
backpropagation [5] for each training sample x. Parameters w
are updated via stochastic gradient descent with momentum
and over minibatches of B training samples each. Batch
training allows higher learning rates and in general lower
training and validation errors. Notice that the upper limit to
B depends on the amount of memory available at training
time (derivatives of network parameters for all B training
samples shall be kept in memory at the same time). With this
respect, residual networks are the key towards larger batch
sizes B as they entail fewer learnable parameters to hold in
memory. Manually updating the learning rate η showed to
somewhat improve the performance with respect to the widely
used AdaGrad learning rate adaptation algorithm. The training
ends when the cost function computed over the validation set
stops decreasing.

IV. EXPERIMENTAL RESULTS

A. Dataset

We experiment with a total of 9 very high resolution images
acquired by three different Earth Observation (EO) satellites
over 9 areas of interest worldwide. The images feature four
spectral bands (blue, green, red and IR) with a nominal
spatial resolution of 0.5 m and different off-nadir angles.
We split the dataset into two subsets: 6 images (D5, D13,
D16, D17, D18 and D20) are used for training and validation,
whereas 3 images (D12, D19 and D22) are reserved for testing.
Ground truth was generated exploiting OpenStreeMap data,
and manually refined and completed where required. Valida-
tion regions are extracted from the 6 training images to cover
approximately 20 percent of each image area and statistically
sample almost all types of texture present in the area. Training
and validation regions are subdivided in tiles from which 256
× 256 samples are extracted as described in Sec. III-B. The
3 test images D12, D19 and D22 in Fig. 2 (left) are 6000
× 4500, 3700 × 2100 and 8700 × 6600 respectively. 512
× 512 tiles from each image are extracted and independently
processed in a fully convolutional way to account for the GPU
memory constraints of our experimental setup. Resulting maps
are finally stitched together and overlapping maps regions are
averaged where needed to avoid artifacts.

B. Testbed and Metrics

The network described in Sec. III-A is trained over the
previously described dataset of satellite images as described
in Sec. III-D. In detail, we use batches of B=8 samples, a
momentum of 0.9 and initial learning rate of 0.005 that we
divide by a 5 every 30 epochs. We experiment separating
the buildings from the ground, i.e. our image segmentation
network operates as a binary pixel classifier (C=2). The
network is implemented using the Torch framework and is
trained over an NVIDIA TitanX Pascal GPU with 12 GB of
memory.
We evaluate the trained network using two metrics. First, the
F1 score is the harmonic mean of precision and recall and is

defined as F1 = 2 · precision·recall
precision+recall , where precision is the

fraction of correctly labeled pixels and recall is the fraction of
correctly predicted positive (building) pixels. Finally, accuracy
is the overall fraction of correctly labeled to all pixels.

C. Results
Our first experiment addresses the deployment situation

where it is not affordable at all to hand-annotate the image
to be processed. Table II evaluates our proposed architecture
with different ResNet-based encoder variants as in Table I. As
a reference, we experiment with the standard U-Net [8] ar-
chitecture (19 convolutional layers, comparable to ResNet18)
and a deeper (35 layers, comparable to ResNet34) variant.
Our proposed architecture consistently outperforms the U-
Net reference for comparable network depths. The table also
shows that the encoder depth plays a key role on the overall
system performance, whereas increasing the encoder depth
beyond 152 layers does not improve performance any further.
This first experiment proves that encoder depth improves
performance, however the proposed residual-based encoder
yields better performance for comparable depth demonstrating
better ability towards generalized learning. While Fig. 2 shows
the segmentation result of Prop-152, due to page constraints,
supplementary results are accessible via an external link 1.

TABLE II: Results over test areas in terms of f1 score and
accuracy.

area D12 area D19 area D22 Mean
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

U-Net(19) [8] 58.17 94.10 61.37 92.10 64.23 96.85 61.25 94.35
U-Net(35) 59.16 94.12 61.17 93.12 66.32 97.77 62.21 95.03

Prop-18 57.08 93.87 63.58 92.89 67.75 97.54 62.80 94.76
Prop-34 59.17 94.12 65.92 93.48 69.83 97.85 64.97 95.15
Prop-50 58.33 93.49 64.10 93.39 69.92 97.85 64.11 94.91
Prop-101 64.95 94.45 67.26 93.59 70.65 97.83 67.62 95.29
Prop-152 67.72 94.70 68.01 93.61 72.93 97.91 69.55 95.40
Prop-200 67.70 94.48 66.86 93.49 71.85 97.84 68.80 95.27

In the second experiment, we investigate refining the trained
network over small regions of the test regions (removed for
the purpose from the test set). This experiment addresses
the deployment situation where it is affordable to hand-
annotate a small portion of the image to be processed. To
this end, we further train the 152 layers encoder network
and also U-Net (19) with a learning rate equal to 10−4 for
100 epochs. We experiment refining the network over areas
covering either about 7 percent (small) or 15 percent (large)
of the region. The refined network is then evaluated over the
rest of each test region. Table III shows consistent gains for all
experimental setups with respect to the reference case where
the network is trained over a totally distinct set of images with
respect to the test set. This experiment shows that refining
a pretrained network over a small annotated portion of the
test area consistently improves the segmentation performance.
Whereas the reference U-Net architecture benefits the most
from refinement, that is because our proposed architecture
performs already well without refinement, thus fine-tuning
gains are smaller.

1https://github.com/sinaghassemi/eusipco2018



TABLE III: Comparison between non-refined and refined
network architectures (U-Net and proposed).

area D12 area D19 area D22 Mean
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Prop-152 67.72 94.70 68.01 93.61 72.93 97.91 69.55 95.40

Tuned 70.46 94.77 71.18 94.15 75.80 98.03 72.48 95.65
(small) +2.74 +0.07 +3.17 +0.54 +3.33 +0.02 +3.08 +0.21

Tuned 74.70 95.40 73.40 94.16 77.24 98.24 75.11 95.93
(large) +6.98 +0.70 +5.39 +0.55 +4.31 +0.33 +5.56 +0.52

U-Net 58.17 94.10 61.37 92.10 64.23 96.85 61.25 94.35

Tuned 67.70 94.46 68.97 93.95 64.40 96.87 67.02 95.09
(small) +9.53 +0.36 +7.60 +1.85 +0.17 +0.02 +5.77 +0.74

Tuned 73.90 95.48 71.78 94.13 73.10 97.91 72.72 95.84
(large) +15.73 +1.38 +10.34 +2.03 +8.87 +1.06 +11.47 +1.49

Furthermore, we experimented postprocessing the seg-
mented images via Conditional Random Fields(CRF). Namely,
CRF refines the segmentation by minimizing an energy func-
tion based on pixel values in input image and the network
output. Our experiments showed minor improvements only: we
attribute that to the fact that in our test images the boundaries
between areas are not always sharp, and furthermore the
generated segmentation map had already been refined by the
decoder subnetwork with skip connections.

Concerning segmentation time, a critical factor in emer-
gency mapping, processing each of the three test images
took 110, 55 and 200 seconds for images D12, D19 and
D22 respectively. Finally, the extra training time required for
refinement amounts to about 2 hours per image in our setup
(by comparison, manually annotating the test images required
about 10 hours each).

V. CONCLUSIONS

We proposed an encoder-decoder convolutional neural net-
work that practically enables time consuming satellite imagery
processing steps crucial for emergency mapping. The encoder
is based on a deep residual design, on the assumption that
residual networks are capable of generalizing the learning
process as required in emergency mapping that can be used
worldwide in areas where no reference data are available.
Our experiments prove our assumptions, demonstrating that
segmentation accuracy improves with the encoder depth.
Moreover, the residual design allows deeper encoders and
larger batch sizes in reason of the lower number of learnable
parameters. Finally, fine-tuning a pretrained network over
small annotated area of the image to be processed further boost
the performance for minimal additional complexity. Future
tests will address also the post-event satellite image analyses,
focusing on damage assessment tasks.
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